1
|
Tian R, Song H, Li J, Yuan T, Liu J, Wang Y, Li Y, Song X. PINCH-1 promotes tumor growth and metastasis by enhancing DRP1-mediated mitochondrial fission in head and neck squamous cell carcinoma. Cancer Biol Ther 2025; 26:2477365. [PMID: 40065703 PMCID: PMC11901378 DOI: 10.1080/15384047.2025.2477365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
PURPOSE Abnormal expression of PINCH-1 has been observed in various types of human cancers. However, the clinical importance and mechanism underlying its role in head and neck squamous cell carcinoma (HNSCC) is yet to be fully elucidated. METHODS This study evaluated the expression of PINCH-1 in HNSCC samples through immunohistochemical staining and Western blotting. AMC-HN-8, Cal27, and SCC7 cell lines were utilized for cellular function experiments, both in vivo and in vitro. CCK8, colony-formation assay, flow cytometry, wound-healing assay, and transwell assay were employed to investigate the effects of alterations in target proteins on the growth and metastasis of cancer cells. Mito-Tracker Deep Red FM was used to track mitochondrial morphology. RESULTS PINCH-1 was found to be overexpressed in HNSCC and closely associated with lymph node metastasis and poor pathologic differentiation. Its upregulation promoted proliferation, inhibited apoptosis, and enhanced migration and invasion in HNSCC cells. It also promoted mitochondrial fission. We conducted a mechanism analysis, which showed that PINCH-1 knockdown inhibited mitochondrial fission by reducing the expression of DRP1. Furthermore, inhibition of mitochondrial fission could impede the proliferation and metastasis of HNSCC cells. Re-expression of DRP1 reversed the inhibitory effect of PINCH-1 knockdown on mitochondrial fission, cell proliferation, and metastasis in HNSCC cells. CONCLUSIONS PINCH-1 plays a critical oncogenic role in HNSCC by enhancing DRP1-mediated mitochondrial fission, which may serve as a novel therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Hao Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jiaxuan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ting Yuan
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
2
|
Gong Y, Zhao M, Pan M, Zhao Y, Liu J, Wen H, Wang J. Harmine derivative H-2-168 induces the death of Echinococcus granulosus by regulating mitochondrial fusion and fission. PHARMACEUTICAL BIOLOGY 2025; 63:188-200. [PMID: 40188381 PMCID: PMC11980216 DOI: 10.1080/13880209.2025.2485898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
CONTEXT H-2-168 has pharmacological effects similar to those of harmine, with less toxicity. The health of cells and organisms depends on a delicate balance between mitochondrial fusion and fission. OBJECTIVE This study investigated the roles of H-2-168 and mitochondrial fusion and fission in Echinococcus granulosus. MATERIALS AND METHODS Notably, E. granulosus were isolated from fresh sheep livers, and then treated with H-2-168 (25 μg/mL), mitochondrial division inhibitor 1 (Mdivi-1, 25 μg/mL) or the combination of H-2-168:Mdivi-1 (25 μg/mL:12.5 μg/mL). After 24 h of culture, the indices related to E. granulosus were measured. Additionally, Drp1 was knocked down to explore its effects on E. granulosus growth. RESULTS The EC50 values of H-2-168, Mdivi-1 and H-2-168:Mdivi-1 against E. granulosus were 44.171, 117.882 and 32.924 μg/mL, respectively. Compared with H-2-168 or Mdivi-1, the combination of H-2-168 and Mdivi-1 showed better inhibitory effects on E. granulosus viability, as well as increased levels of ROS and LDH, decreased ATP levels, inhibited mitochondrial activity and reduced mitochondrial membrane potential (p < 0.05), with the upregulation of Caspase-3, Cyt-c, Drp1, Fis1 and downregulation of Bcl-2, Mfn2 and OPA1. Additionally, Drp1 knockdown was successfully performed in E. granulosus, which significantly inhibited E. granulosus viability (p < 0.05) and further downregulated Mfn2 expression induced by H-2-168. DISCUSSION AND CONCLUSION Drp1 is closely associated with mitochondrial fusion and fission, and H-2-168 may promote E. granulosus death through disrupting the balance between mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Yuehong Gong
- Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, China
| | - Meiling Zhao
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Meichi Pan
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yicong Zhao
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junpeng Liu
- Department of Medicine, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianhua Wang
- Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, China
| |
Collapse
|
3
|
Li C, Ji H, Zhuang S, Xie X, Cui D, Zhang C. Update on the correlation between mitochondrial function and osteonecrosis of the femoral head osteocytes. Redox Rep 2025; 30:2491846. [PMID: 40249372 PMCID: PMC12010656 DOI: 10.1080/13510002.2025.2491846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Mitochondrial health is maintained in a steady state through mitochondrial dynamics and autophagy processes. Recent studies have identified healthy mitochondria as crucial regulators of cellular function and survival. This process involves adenosine triphosphate (ATP) synthesis by mitochondrial oxidative phosphorylation (OXPHOS), regulation of calcium metabolism and inflammatory responses, and intracellular oxidative stress management. In the skeletal system, they participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes, and osteocytes to external stimuli. Indeed, mitochondrial damage or dysfunction occurs in the development of a few bone diseases. For example, mitochondrial damage may lead to an imbalance in osteoblasts and osteoclasts, resulting in osteoporosis, osteomalacia, or poor bone production, and chondrocyte death and inflammatory infiltration in osteoarthritis are the main causes of cartilage degeneration due to mitochondrial damage. However, the opposite exists for osteosarcoma, where overactive mitochondrial metabolism is able to accelerate the proliferation and migration of osteosarcoma cells, which is a major disease feature. Bone is a dynamic organ and osteocytes play a fundamental role in all regions of bone tissue and are involved in regulating bone integrity. This review examines the impact of mitochondrial physiological function on osteocyte health and summarizes the microscopic molecular mechanisms underlying its effects. It highlights that targeted therapies focusing on osteocyte mitochondria may be beneficial for osteocyte survival, providing a new insight for the diagnosis, prevention, and treatment of diseases associated with osteocyte death.
Collapse
Affiliation(s)
- Chengming Li
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Hangyu Ji
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Suyang Zhuang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Xinhui Xie
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Daping Cui
- Department of Orthopedics, Shenzhen Bao’an District Central Hospital, Shenzhen, People’s Republic of China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Yang K, Yang K, Lei Z, Wu K, Li J, Peng Q, Liu C, Qu K, Lin T. Identification of molecular subtypes and a prognostic risk model based on mitochondrial dynamic related genes in clear cell renal cell carcinoma. Biochem Biophys Res Commun 2025; 767:151911. [PMID: 40318378 DOI: 10.1016/j.bbrc.2025.151911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents the most prevalent histological subtype and primary contributor to unfavorable prognosis in renal cancer. While mitochondrial dynamics serve as a critical quality control mechanism linked to tumor malignancy, their clinical significance and specific mechanisms in ccRCC remain poorly understood. METHODS Consnsuclusterplus was used to consensus clustering and molecular subtype screening, Kaplan-Meier analysis was used to analyze survival in different subtypes. PINK1 expression was detected by westernblot, and CCK8 is used to detect cell activity. Immunofluorescence staining of LC3 for evaluating mitochondrial autophagy levels. RESULTS In this study, we classified 534 ccRCC samples, identified from the UCSC XENA database, into A and B clusters based on 42 mitochondrial dynamic related genes. Cluster A demonstrated superior survival outcomes compared to cluster B. Subsequent analysis revealed significant inter-cluster differences in gene expression profiles, mutational spectra, and immune infiltration patterns. We established a mitochondrial dynamics-related prognostic model incorporating PINK1, NIPSNAP1, and MTFR2, with mitophagy-associated genes represented by PINK1 showing particular prognostic significance in ccRCC. Gene Ontology (GO) analysis indicated significant enrichment of mitophagy pathways in cluster A. Functional investigations demonstrated that PINK1-overexpressing cells exhibited increased sensitivity to sunitinib (lower IC50 values), whereas PINK1 knockdown conferred therapeutic resistance. Western blot and immunofluorescence analyses confirmed elevated mitophagy levels in PINK1-overexpressing cells under sunitinib treatment, contrasting with diminished mitophagy in PINK1-deficient cells. CONCLUSIONS Our findings advance the understanding of mitochondrial dynamics in ccRCC progression, demonstrating that PINK1-mediated enhancement of mitophagy critically potentiates the anti-tumor effects of sunitinib in ccRCC.
Collapse
Affiliation(s)
- Kaibo Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Kun Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Zitong Lei
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University. 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| | - Kunjin Wu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jing Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Qiuting Peng
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chang Liu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Kai Qu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ting Lin
- Department of Surgical ICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Wang S, Liu Z, Li R, Wang L, Wu Y, Zhang W, Yu Y. Acetaldehyde dehydrogenase 2 attenuates lipopolysaccharide -induced endothelial barrier damage by inhibiting mitochondrial fission in sepsis-associated encephalopathy. Eur J Pharmacol 2025; 997:177468. [PMID: 40054720 DOI: 10.1016/j.ejphar.2025.177468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis, and acetaldehyde dehydrogenase 2 (ALDH2) has been identified as a protective factor for endothelial cells against oxidative stress. In this study, we aimed to investigate the therapeutic potential of ALDH2 and its impact on mitochondrial dynamics using both mouse and brain microvascular endothelial cells (BMECs) injury models induced by lipopolysaccharide (LPS). Our findings demonstrated that ALDH2 attenuated LPS-induced brain endothelial barrier damage, as evidenced by reduced brain water content and Evans blue dye in mice, decreased transepithelial electrical resistance (TEER), and increased fluorescein isothiocyanate-dextran (FITC-Dextran) leakage in bEnd.3 cells. Furthermore, ALDH2 reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD) and catalase (CAT). ALDH2 also decreased 4-HNE content and restored mitochondrial membrane potential and ATP production, promoting a balanced mitochondrial fission and fusion. Notably, our use of the mitochondrial fission inhibitor Mdivi-1 confirmed that ALDH2 alleviated mitochondrial damage by inhibiting dynamin-related protein 1 (Drp1). Consequently, our findings suggest that the effects of ALDH2 on LPS-induced blood-brain barrier (BBB) damage and oxidative stress may alleviate SAE by inhibiting Drp1 to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Zhongyi Liu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Rong Li
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Liya Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Yue Wu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical University, Bengbu 233000, China
| | - Weiping Zhang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| | - Ying Yu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
7
|
Hu Y, Zhu W, Li Z, Chen G, Chen Q, Li Z, Huang J, Huang H, Xie Y, Wang M, Chen X, Liang D. miR142 silencing alleviates retinal inflammation by impairing mitochondrial function and reprogramming metabolism of CD4 + T cells via targeting MTFR1. Int Immunopharmacol 2025; 157:114727. [PMID: 40334625 DOI: 10.1016/j.intimp.2025.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Autoimmune uveitis is a sight-threatening inflammatory disease of the retina. MicroRNA-142 (miR-142) has been implicated in its pathogenesis. This study aimed to elucidate the role of miR-142 in uveitis and its underlying mechanisms. METHODS The expression of miR-142-3p was analyzed in peripheral blood mononuclear cells from uveitis patients and in experimental autoimmune uveitis (EAU) models. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the retinal inflammation. To investigate the effects of miR-142 deficiency on uveitis development, the miR-142 knockout (miR-142-/-) mouse model was used. The miR-142-/- T cell phenotype and function were characterized using flow cytometry and single-cell sequencing for both in vivo and in vitro experiments. The Seahorse Analyzer, mitochondrial staining and electron microscope analysis were conducted to reveal the mitochondrial function and morphology. And then Luciferase Assays and Western-Blot analysis were used to explore the target of miR-142. RESULTS We found that miR-142-3p was significantly up-regulated in uveitis and that its deletion in mice prevented EAU development. The T cell isolated from miR-142-/- mice lose its uveitogenic nature. T cell lacking miR-142 exhibited reduced numbers and attenuated pathogenicity in uveitis, characterized by decreased proliferation, increased apoptosis, and abnormal differentiation. Single-cell sequencing, energy metabolism analysis and flow cytometry analysis unveiled metabolic reprogramming in miR-142-/- T cells, with a distinct shift toward glycolysis and restrained oxidative phosphorylation. Further investigation revealed mitochondrial fission regulator 1 (MTFR1) as a direct target of miR-142. The over-expressed protein of MTFR1 in CD4+ T cells was found in miR-142-/- mice. CONCLUSIONS Our findings highlight the indispensable role of miR-142 in maintaining T cell mitochondrial function. By modulating MTFR1, miR-142 orchestrates mitochondrial homeostasis, metabolic alterations, apoptosis susceptibility, and proliferation capacity in T cells, thereby influencing susceptibility to autoimmune uveitis.
Collapse
Affiliation(s)
- Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
8
|
Feng R, Liu J, Yao T, Yang Z, Jiang H. Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy. Mol Neurobiol 2025; 62:7041-7053. [PMID: 39570499 DOI: 10.1007/s12035-024-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Realgar is a toxic mineral medicine containing arsenic that is present in many traditional Chinese medicines. It has been reported that the abuse of drugs containing realgar has potential neurotoxicity, but its mechanism of toxicity has not been fully clarified. In this study, we demonstrated that arsenic in realgar promoted mitochondrial fission via UBXD8-mediated DRP1 translocation to the mitochondria and activated mitophagy via PINK1-Parkin, resulting in mitochondrial dysfunction and nerve cell death in the rat cortex. We used PC12 cells and treated them with inorganic arsenic (iAs). Mdivi-1, a mitochondrial fission inhibitor, and the siRNA UBXD8 or PINK1 were used as interventions to verify the precise mechanism by which arsenic affects realgar-induced mitochondrial instability. The results revealed that the arsenic in realgar accumulated in the brain and led to neurobehavioral abnormalities in the rats. We demonstrated that arsenic in realgar-induced high expression of UBXD8 promoted the translocation of DRP1 to the mitochondria, where it underwent phosphorylation, which led to the over-fission of the mitochondria and mitochondria-mediated apoptosis. Moreover, the over-fission of the mitochondria activates mitophagy, which is self-protective but only partially alleviates apoptosis and mitochondria dysfunction. Our findings revealed the crosstalk between mitochondrial fission and mitophagy in realgar-induced neurotoxicity. These results highlight the role of the transposition of DRP1 by UBXD8 in realgar-induced mitochondrial dysfunction and provide new ideas and data for the study of the mechanism of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Rui Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
| |
Collapse
|
9
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
10
|
Yi X, Cao H, Liao J, Yu W, Hu G, Tang Z, Yang F. Metabolomics analysis reveals the effects of high dietary copper on mitochondria-mediated autophagy and apoptosis in spleen of broiler chicken. Avian Pathol 2025; 54:306-316. [PMID: 39483061 DOI: 10.1080/03079457.2024.2423716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Copper (Cu) is a necessary micro-element and plays important roles in many biochemical processes. However, excessive Cu intake can lead to multi-organ toxicity, especially in the spleen. To gain further insights into the specific mechanisms of splenic toxicity associated with Cu-induced metabolic disorders, 192 one-day-old chickens were selected and randomly divided into four groups for this study. The broilers were fed with diets containing Cu at final concentrations of 11, 110, 220 and 330 mg/kg for 49 days. The results showed that high dietary Cu caused nuclear shrinkage and mitochondrial vacuolization in the spleen and induced splenic injury through regulating the glutathione metabolism, pentose and gluconate interconversion, tryptophan metabolism and glycerophosphatidylcholine metabolism pathways. Moreover, excess Cu could disorder the mitochondrial dynamics via up-regulating the levels of Drp1, Parkin PINK1, and Dynein, and down-regulating the levels of Mfn1, Mfn2 and OPA1. Cu treatment increased the levels of LC3A, LC3B, mTOR, Beclin1, and ATG5 and decreased the p62 level to promote autophagy of splenocytes. Meanwhile, a high dose of Cu promoted splenocyte apoptosis by increasing the levels of p53, BAK-1, Bax, Cyt C and Caspase-3 and decreasing the level of Bcl-2. These results demonstrated that high dietary Cu could cause autophagy and apoptosis via inducing metabolic disturbances and disordering mitochondrial dynamics in the spleen of broiler chicken.
Collapse
Affiliation(s)
- Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
11
|
Luan R, Xu S, Xu M, Wang M, Huang X, Wang J, Li Q, Gong Y, Liu J, Shao Y, Li X. Targeting BMP4 as a therapeutic strategy for neovascularization and fibrosis in age-related macular degeneration. Exp Eye Res 2025; 255:110348. [PMID: 40118134 DOI: 10.1016/j.exer.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
This study investigates the role of bone morphogenetic protein-4 (BMP4) in age-related macular degeneration (AMD), with a focus on its effects on subretinal fibrosis and choroidal neovascularization (CNV). Using a mouse model of laser-induced CNV, we found that BMP4 expression was significantly elevated in CNV lesions. BMP4 was shown to promote fibroblast proliferation and their differentiation into myofibroblasts, as indicated by increased expression of α-smooth muscle actin (α-SMA). Additionally, BMP4 promoted the transition of endothelial progenitor cells (EPCs) into endothelial cells (ECs), a process that was modulated by mitochondrial function. Intravitreal administration of Noggin, a BMP4 inhibitor, significantly reduced CNV lesion volume and decreased the expression of CD31 and α-SMA, suggesting a decrease in neovascularization and fibrosis. These findings underscore BMP4's critical role in AMD pathogenesis by driving both angiogenesis and fibrosis. Targeting BMP4 with Noggin presents a promising therapeutic approach for AMD, addressing both neovascularization and fibrosis in a single intervention, and highlights BMP4 as a potential novel target for AMD therapy.
Collapse
Affiliation(s)
- Rong Luan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Shuzhan Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Xinyuan Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Jie Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Qingbo Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Yi Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China.
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 384300, China.
| |
Collapse
|
12
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2025; 62:6748-6763. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
13
|
Luo H, Jin M, Hu H, Ying Q, Hu P, Sheng W, Huang Y, Xu K, Lu C, Zhang X. SIRT4 Protects Müller Glial Cells Against Apoptosis by Mediating Mitochondrial Dynamics and Oxidative Stress. Mol Neurobiol 2025; 62:6683-6702. [PMID: 39023793 DOI: 10.1007/s12035-024-04349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
SIRT4 is a member of the sirtuin family, which is related to mitochondrial function and possesses antioxidant and regulatory redox effects. Currently, the roles of SIRT4 in retinal Müller glial cells, oxidative stress, and mitochondrial function are still unclear. We confirmed, by immunofluorescence staining, that SIRT4 is located mainly in the mitochondria of retinal Müller glial cells. Using flow cytometry and Western blotting, we analyzed cell apoptosis, intracellular reactive oxygen species (ROS) levels, apoptotic and proapoptotic proteins, mitochondrial dynamics-related proteins, and mitochondrial morphology and number after the overexpression and downregulation of SIRT4 in rMC-1 cells. Neither the upregulation nor the downregulation of SIRT4 alone affected apoptosis. SIRT4 overexpression reduced intracellular ROS, reduced the BAX/BCL2 protein ratio, and increased the L-OPA/S-OPA1 ratio and the levels of the mitochondrial fusion protein MFN2 and the mitochondrial cleavage protein FIS1, increasing mitochondrial fusion. SIRT4 downregulation had the opposite effect. Mitochondria tend to divide after serum starvation for 24 h, and SIRT4 downregulation increases mitochondrial fragmentation and oxidative stress, leading to aggravated cell damage. The mitochondrial division inhibitor Mdivi-1 reduced oxidative stress levels and thus reduced cell damage caused by serum starvation. The overexpression of SIRT4 in rMC-1 cells reduced mitochondrial fragmentation caused by serum starvation, leading to mitochondrial fusion and reduced expression of cleaved caspase-3, thus alleviating the cellular damage caused by oxidative stress. Thus, we speculate that SIRT4 may protect retinal Müller glial cells against apoptosis by mediating mitochondrial dynamics and oxidative stress.
Collapse
Affiliation(s)
- Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Weiwei Sheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Yi Huang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Chuming Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China.
| |
Collapse
|
14
|
Fu R, Ling D, Zhang Q, Jiang A, Pang H. Harnessing Nur77's mitochondrial apoptotic pathway: A promising therapeutic strategy for targeted disease intervention. Biomed Pharmacother 2025; 187:118091. [PMID: 40286599 DOI: 10.1016/j.biopha.2025.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
The role of mitochondria in disease development cannot be overlooked, and the targeting of mitochondria for the treatment of disease has emerged as a significant area of research in recent years. Mitochondria are the control center of the intrinsic apoptotic pathway, and their normal functions are finely regulated by a series of complex mechanisms. The nuclear receptor Nur77 is closely related to the functions of the mitochondria and is an active pro-apoptotic member of the nuclear receptor superfamily. The translocation of Nur77 to the mitochondria can promote the conversion of the anti-apoptotic protein Bcl-2 to a pro-apoptotic state, disrupt the balance between mitochondrial fission and fusion, and inhibit mitophagy. These effects lead to irreversible damage to mitochondria and apoptosis, ultimately accelerating the progression of the disease. Here, we review the mechanism and targeted drug development of the mitochondrial apoptosis pathway activated by Nur77 in human diseases, helping to understand the new advances in disease treatment.
Collapse
Affiliation(s)
- Ruihai Fu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Dandan Ling
- Clinical Research Center for Placental Medicine In Hunan Province, Changsha City, Hunan Province, PR China; Department of Obstetrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha City, Hunan Province, PR China
| | - Qiqi Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, PR China
| | - Haiyan Pang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, PR China; School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, PR China.
| |
Collapse
|
15
|
Qian M, Zhu Y, Lin W, Lian H, Xia Y, Papadimos T, Wang J. PICK1 overexpression ameliorates endotoxin-induced acute lung injury by regulating mitochondrial quality control via maintaining Nrf-2 stabilization through activating the PI3K/Akt/GSK-3β pathway and disrupting the E3 ubiquitin ligase adapter β-TrCP. Int Immunopharmacol 2025; 156:114685. [PMID: 40286782 DOI: 10.1016/j.intimp.2025.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Mitochondria are important targets for preventing oxidative damage during the progression of sepsis-induced lung injury. Numerous studies have pointed out that maintaining the stabilization of Nrf-2, thereby activating its transcription, may combat pathological inflammation by sustaining the integrity of mitochondrial function. Our previous study found that protein interaction with C-kinase 1 (PICK1) deficiency disrupts the physiological anti-inflammatory mechanism by affecting Nrf-2 transcription. However, whether PICK1 participates in mitochondrial quality control regulation through Nrf-2 has not been explored, and the underlying interaction between PICK1 and Nrf-2 has not been fully elucidated. We found that PICK1 decreased mitochondria-derived ROS, upregulated MnSOD activity in endotoxin-induced acute lung injury mice, improved mitochondrial membrane potential, and restored the damaged structure of mitochondria in LPS-stimulated macrophages. Through in-depth studies, we demonstrated that PICK1 maintains the stability of Nrf-2 by preserving mitochondrial dynamic equilibrium, facilitating mitochondrial biogenesis, and participating in mitophagy by activating the PI3K/AKT/GSK-3β pathway. PICK1 also inhibits the β-TrCP-mediated ubiquitination of Nrf-2. Thus, PICK1 offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation. Our study demonstrated the protective effects of PICK1 overexpression in endotoxin-associated ALI. PICK1 overexpression and the subsequent PI3K/AKT/Nrf-2/HO-1 pathway-dependent and E3 ubiquitin ligase adapter β-TrCP-mediated mitochondrial quality control contribute to lung repair, which offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation.
Collapse
Affiliation(s)
- Meizi Qian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yurun Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Wen Lin
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Huidan Lian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Yun Xia
- The Ohio State University Wexner Medical Center, Department of Anesthesiology, Columbus, OH, USA
| | - Thomas Papadimos
- The University of Toledo Medical Center, Department of Anesthesiology, Toledo, OH, USA.
| | - Junlu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
16
|
Antov GG, Gospodinova ZI, Novakovic M, Tesevic V, Krasteva NA, Pavlov DV, Valcheva-Kuzmanova SV. Molecular mechanisms of the anticancer action of fustin isolated from Cotinus coggygria Scop. in MDA-MB-231 triple-negative breast cancer cell line. Z NATURFORSCH C 2025; 80:233-250. [PMID: 39331583 DOI: 10.1515/znc-2024-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024]
Abstract
The aim of the present work was to investigate some of the molecular mechanisms and targets of the anticancer action of the bioflavonoid fustin isolated from the heartwood of Cotinus coggygria Scop. in the triple-negative breast cancer cell line MDA-MB-231. For this purpose, we applied fluorescence microscopy analysis to evaluate apoptosis, necrosis, and mitochondrial integrity, wound healing assay to study fustin antimigratory potential and quantitative reverse transcription-polymerase chain reaction to analyze the expression of genes associated with cell cycle control, programmed cell death, metastasis, and epigenetic alterations. A complex network-based bioinformatic analysis was also employed for protein-protein network construction, hub genes identification, and functional enrichment. The results revealed a significant induction of early and late apoptotic and necrotic events, a slight alteration of the mitochondria-related fluorescence, and marked antimotility effect after fustin treatment. Of 34 analyzed genes, seven fustin targets were identified, of which CDKN1A, ATM, and MYC were significantly enriched in pathways such as cell cycle, intrinsic apoptotic signaling pathway in response to DNA damage and generic transcription pathway. Our findings outline some molecular mechanisms of the anticancer action of fustin pointing it out as a potential oncotherapeutic agent and provide directions for future in vivo research.
Collapse
Affiliation(s)
- Georgi G Antov
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zlatina I Gospodinova
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslav Novakovic
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Vele Tesevic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Natalia A Krasteva
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Danail V Pavlov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics with Laboratory of Nutrigenomics, Functional Foods and Nutraceuticals, Faculty of Pharmacy, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Stefka V Valcheva-Kuzmanova
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| |
Collapse
|
17
|
Yuxuan H, Sixu R, Chenglin L, Xiufen Z, Cuilin Z. Targeting mitochondria quality control for myocardial ischemia-reperfusion injury. Mitochondrion 2025:102046. [PMID: 40419068 DOI: 10.1016/j.mito.2025.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025]
Abstract
Cardiovascular disease (CVD) remains the leading global cause of mortality. Acute myocardial infarction (AMI) refers to acute myocardial ischemia resulting from thrombosis secondary to coronary atherosclerosis, which poses a major threat to human health. Clinically, timely revascularization (reperfusion) represents the basis of clinical treatment for AMI. However, secondary myocardial ischemia-reperfusion injury (MIRI) caused by reperfusion often exacerbates damage, representing a major challenge in clinical practice. Mitochondria represent essential organelles for maintaining cardiac function and cellular bioenergetics in MIRI. In recent years, the role of mitochondrial quality control (MQC) in maintaining cell homeostasis and mediating MIRI has been extensively studied. This review provides a concise overview of MQC mechanisms at the molecular, organelle, and cellular levels and their possible complex regulatory network in MIRI. In addition, potential treatment strategies targeting MQC to mitigate MIRI are summarized, highlighting the gap between current preclinical research and clinical transformation. Overall, this review provides theoretical guidance for further research and clinical translational studies.
Collapse
Affiliation(s)
- He Yuxuan
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Ren Sixu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Liu Chenglin
- China-Japan Union Hospital of Jilin University, Changchun City 130033 Jilin Province, China
| | - Zheng Xiufen
- Department of Surgery, Western University, Ontario, Canada
| | - Zhu Cuilin
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China.
| |
Collapse
|
18
|
Wang H, Chen L, Mao Z, Liu S, Huang R, He R, Zhang Y, Wei J. Boosting Energy Deprivation via Synchronous Interventions of Oxidative Phosphorylation and Glycolysis for Cancer Therapy with 1,8-Naphthyridine-Piperazine-Dithiocarbamate Ruthenium(II) Polypyridyl Complexes. J Med Chem 2025; 68:10203-10215. [PMID: 40353767 DOI: 10.1021/acs.jmedchem.5c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bioenergetic therapy targeting mitochondrial bioenergy is a promising therapeutic strategy for cancer. However, its clinical efficacy is limited by the metabolic adaptability of tumor cells, as they can switch between glycolytic and oxidative phosphorylation metabolic phenotypes to maintain energy homeostasis. In this study, we discovered 1,8-naphthyridine-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes (RuL1) that enhanced energy deprivation by inhibiting the activity of mitochondrial complex I and III, thereby disrupting oxidative phosphorylation. Simultaneously, RuL1 inhibits glycolysis while unexpectedly activating antitumor immunity. This dual metabolic-immunological targeting resulted in enhanced anticancer activity against MGC-803 cells. To the best of our knowledge, RuL1 is the first ruthenium polypyridyl complex reported to achieve high anticancer activity through dual metabolic inhibition.
Collapse
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Lei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Zhichen Mao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Shuangqiang Liu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Ruijie He
- Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guilin 541006, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
| | - Jianhua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199 Guangxi, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001 Guangxi, China
| |
Collapse
|
19
|
Lu W, Liao Z, Jiang X, Peng M, Deng Q, Zhou X, Lu M, Duan X. Targeting Mitochondrial Dysfunction: Innovative Strategies to Combat Glaucoma Neuroinflammation. Exp Eye Res 2025:110441. [PMID: 40409355 DOI: 10.1016/j.exer.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Glaucomatous optic neuropathy represents a prevalent optic nerve degenerative disease. Neuroinflammation is recognized as a significant mechanism underlying optic nerve damage in glaucoma; however, the precise mechanisms driving neuroinflammation remain largely elusive. Existing studies have indicated that microglia-driven neuroinflammation is pivotal for neuroinflammation onset and progression. Mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) damage, metabolic deficiencies, and quality control impairments, is upstream of microglial activation and neuroinflammation. Thus, a deeper comprehension of the link between mitochondrial dysfunction and microglial activation in glaucoma may provide valuable insights into the underlying pathogenesis. As a result of these findings, promising avenues for developing effective interventions to mitigate optic nerve damage and preserve visual function in glaucoma patients have been identified.
Collapse
Affiliation(s)
- Wen Lu
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Zhimin Liao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China
| | - Xinchen Jiang
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Manjuan Peng
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Que Deng
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China
| | - Ming Lu
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China.
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.
| |
Collapse
|
20
|
Wen Y, Huang Y, Zhang W, Chen P, Hu X, Xiong X, Luo L. B cell dysfunction in thalamus and brainstem involvement and high lactate caused by novel mutation of EARS2 gene. Ital J Pediatr 2025; 51:143. [PMID: 40389993 PMCID: PMC12090667 DOI: 10.1186/s13052-025-01999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
PURPOSE The EARS2 gene, a member of the mt-aaRS family, encodes mitochondrial glutamyl-tRNA synthetase (GluRS), which is involved in the synthesis of mitochondrial proteins. Pathogenic defects in EARS2 may cause mitochondrial OXPHOS deficiency, which is associated with a rare autosomal-recessive mitochondrial disease, leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). METHODS In this study, clinical features were obtained, and whole-exome sequencing was conducted on a patient with LTBL. B- and T-cell immunophenotyping and protein expression were analyzed using flow cytometry, and B-cell metabolism was investigated using confocal microscopy. RESULTS The patient with LTBL exhibited typical neurological manifestations, recurrent respiratory tract infections, and humoral immune disorders. Molecular analysis revealed a compound heterozygous novel mutation in c.1304T > A (p.L435Q) and a previously reported c.319 C > T (p.R107C) mutation of EARS2. The mutations led to protein structural modifications of EARS2. The patient also exhibited disrupted peripheral B-cell differentiation and B-cell receptor signal transduction. The EARS2 mutation led to decreased expression of CD38 and dysfunction of mitochondrial metabolism, with elevated reactive oxygen species levels in B cells. CONCLUSION We identified a novel mutation of the EARS2 gene in a patient with LTBL, expanding the mutation database. The mutation of EARS2 modified protein structure and impaired B-cell function, decreased CD38 expression, and led to dysfunction of mitochondrial metabolism, all of which may account for the recurrent respiratory tract infections and humoral immune disorders observed in LTBL.
Collapse
Affiliation(s)
- Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufen Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Huang Y, Liu Y, Dong C, Zan Q, Feng F, Wang R, Shuang S. A dual-channel fluorescent probe with mitochondria-immobilization: Detecting polarity and viscosity during mitophagy. Biosens Bioelectron 2025; 276:117246. [PMID: 39954518 DOI: 10.1016/j.bios.2025.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/01/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Mitophagy is a key pathway for regulating mitochondrial quality and quantity which is essential for the preservation of cellular homeostasis. Mitophagy process may be accompanied by changes of the mitochondrial microenvironments. The multifunctional fluorescent probe is crucial for the precise detection of multiple microenvironments, which is vital for the visualization of mitophagy. Herein, a mitochondria-immobilized fluorescent probe DPP was designed and fabricated to visualize mitophagy by monitoring polarity and viscosity in dual-channel. The DPP is characterized by "D-π-A″ structure, which provides the basis for the intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) platform, enabling dual-channel responses to polarity and viscosity at emission wavelengths of 487 nm and 656 nm, respectively. The significant wavelength gap (169 nm) between the above channels prevents signal crosstalk. Additionally, the incorporation of 1, 4-dibenzyl chloride grants the probe mitochondrial immobilization capabilities, avoiding the leak of probe due to mitochondrial depolarization during autophagy. The DPP accumulates in mitochondria and monitors polarity and viscosity changes in green and red channels, respectively. Notably, the investigation of the relationship between polarity and viscosity revealed that an increase in viscosity is accompanied by a decrease in polarity. The mitophagy was effectively observed through the induction of DPP by rapamycin, with a particular emphasis on the increase in viscosity and decrease in polarity. Thus, DPP offers a powerful tool for a deeper understanding of the physiological and pathological processes associated with mitophagy and are regulated by various microenvironmental parameters.
Collapse
Affiliation(s)
- Yue Huang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Yang Liu
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Qi Zan
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, 037009, PR China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
22
|
Hu C, Ren C, Wu Y, Lin R, Shen T, Li T, Yu D, Jiang L, Wan Z, Luo Y, Su T, Yu J, Qiu Y. ZLN005, a PGC-1α agonist, delays photoreceptor degeneration by enhancing mitochondrial biogenesis in a murine model of retinitis pigmentosa. Neuropharmacology 2025; 269:110361. [PMID: 39952351 DOI: 10.1016/j.neuropharm.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Retinitis pigmentosa (RP) is a hereditary neurodegenerative disease characterized by the degeneration of photoreceptors caused by mutations in various genes. Increasing evidence suggests that mitochondrial biogenesis plays a critical role in many neurodegenerative diseases. This study investigated the role of mitochondrial biogenesis in rd1 mice, a widely recognized model of RP. Male C57BL/6 mice and age-matched rd1 mice were used for in vivo experiments, while H2O2 was employed on 661w cells to establish an in vitro model. Our findings revealed that mitochondrial biogenesis and the regulatory PGC-1α/NRF-1/TFAM pathway were significantly downregulated in rd1 mice. Treatment with ZLN005, a PGC-1α agonist, markedly improved visual function in rd1 mice and alleviated thinning of the retinal outer nuclear layer. Additionally, ZLN005 enhanced mitochondrial biogenesis and restored mitochondrial function in photoreceptors. Further analysis in vitro confirmed that ZLN005 rescued photoreceptor degeneration by promoting mitochondrial biogenesis through the PGC-1α/NRF-1/TFAM pathway. In summary, our results highlight the critical role of mitochondrial biogenesis and the PGC-1α/NRF-1/TFAM pathway in the progression of RP. This offers a potential strategy to delay photoreceptor degeneration in RP by maintaining mitochondrial function and could be combined with existing therapies for improving treatment outcomes through synergistic pathways.
Collapse
Affiliation(s)
- Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengda Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Li
- Department of Ophthalmology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yunhong Luo
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| | - Yaoyan Qiu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
23
|
Losasso MR, Parussolo MLC, Oliveira Silva A, Direito R, Quesada K, Penteado Detregiachi CR, Bechara MD, Méndez-Sánchez N, Abenavoli L, Araújo AC, de Alvares Goulart R, Guiger EL, Fornari Laurindo L, Maria Barbalho S. Unraveling the Metabolic Pathways Between Metabolic-Associated Fatty Liver Disease (MAFLD) and Sarcopenia. Int J Mol Sci 2025; 26:4673. [PMID: 40429815 PMCID: PMC12111209 DOI: 10.3390/ijms26104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a public health concern that is constantly expanding, with a fast-growing prevalence, and it affects about a quarter of the world's population. This condition is a significant risk factor for cardiovascular, hepatic, and oncologic diseases, such as hypertension, hepatoma, and atherosclerosis. Sarcopenia was long considered to be an aging-related syndrome, but today, it is acknowledged to be secondarily related to chronic diseases such as metabolic syndrome, cardiovascular conditions, and liver diseases, among other comorbidities associated with insulin resistance and chronic inflammation, besides inactivity and poor nutrition. The physiopathology involving MAFLD and sarcopenia has still not been solved. Inflammation, oxidative stress, mitochondrial dysfunction, and insulin resistance seem to be some of the keys to this relationship since this hormone target is mainly the skeletal muscle. This review aimed to comprehensively discuss the main metabolic and physiological pathways involved in these conditions. MAFLD and sarcopenia are interconnected by a complex network of pathophysiological mechanisms, such as insulin resistance, skeletal muscle tissue production capacity, chronic inflammatory state, oxidative stress, and mitochondrial dysfunction, which are the main contributors to this relationship. In addition, in a clinical analysis, patients with sarcopenia and MAFLD manifest more severe hepatitis fibrosis when compared to patients with only MAFLD. These patients, with both disorders, also present clinical improvement in their MAFLD when treated for sarcopenia, reinforcing the association between them. Lifestyle changes accompanied by non-pharmacological interventions, such as dietary therapy and increased physical activity, undoubtedly improve this scenario.
Collapse
Affiliation(s)
- Marina Ribas Losasso
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Maria Luiza Cesto Parussolo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Antony Oliveira Silva
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiger
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordinator, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
24
|
Lei S, Liu Y. Identifying blood mitochondrial DNA copy number as a biomarker for development of neurodegenerative diseases: Evidence from Mendelian randomization analysis. Neuroscience 2025; 573:421-429. [PMID: 40185386 DOI: 10.1016/j.neuroscience.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Mitochondrial dysfunction has been associated with neurodegenerative diseases (NDDs). This study aimed to explore the association between blood mitochondrial DNA copy number (mtDNA-CN) and development of NDDs. This study was based on two-sample Mendelian randomization (MR) analysis. The genome wide association study (GWAS) data of NDDs including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD), multiple sclerosis (MS), Parkinson's disease (PD), primary open-angle glaucoma (POAG), and vascular dementia (VD) was obtained from FinnGen consortium. Inverse-variance weighted (IVW) was applied as the primary approach for MR estimation. MR results revealed that blood mtDNA-CN exhibited a significant relationship with the incidence of AD (IVW-P = 0.011, odds ratio [OR] = 0.65) and AMD (IVW-P = 0.038, OR = 0.64). However, there was no significant association observed between blood mtDNA-CN and other NDDs (IVW-P > 0.05). Our findings supported the relationship between mitochondrial dysfunction and development of AD and AMD, and that blood mtDNA-CN may serve as a potential biomarker for the incidence of these two NDDs.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China.
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
25
|
Amaral L, Martins M, Côrte-Real M, Outeiro TF, Chaves SR, Rego A. The neurotoxicity of pesticides: Implications for Parkinson's disease. CHEMOSPHERE 2025; 377:144348. [PMID: 40203643 DOI: 10.1016/j.chemosphere.2025.144348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder worldwide, and no effective cure is currently available. Neuropathologically, PD is characterized by the selective degeneration of dopaminergic neurons in the substantia nigra and by the accumulation of alpha-synuclein (aSyn)-rich proteinaceous inclusions within surviving neurons. As a multifactorial disorder, approximately 85 % of PD cases are sporadic with unknown etiology. Among the many risk factors implicated in PD, exposure to neurotoxic pesticides stands out as a significant contributor. While the effects of many are still uncharacterized, it has already been shown that rotenone, paraquat, maneb, and dieldrin affect critical cellular pathways, including mitochondrial and proteasomal dysfunction, aSyn aggregation, autophagy dysregulation, and disruption of dopamine metabolism. With the constant rise in pesticide usage to meet the demands of a growing human population, the risk of environmental contamination and subsequent PD development is also increasing. This review explores the molecular mechanisms by which pesticide exposure influences PD development, shedding light on their role in the pathogenesis of PD and highlighting the need for preventative measures and regulatory oversight to mitigate these risks.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Márcia Martins
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| | - António Rego
- Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; Solfarcos, Pharmaceutical and Cosmetic Solutions, Braga, Portugal.
| |
Collapse
|
26
|
Ge T, Zou R, Zhang M, Hu J, He K, Li G, Zhang T, Fan X. Natural products alleviate atrial fibrillation by modulating mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156555. [PMID: 40056631 DOI: 10.1016/j.phymed.2025.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Atrial fibrillation (AF), one of the most common cardiac arrhythmias, is associated with high mortality rates and significant healthcare burdens. Mitochondrial homeostasis has recently emerged as a critical factor in AF pathogenesis but remains at the experimental stage. Current drug and surgical treatments for AF often involve side effects and require ongoing treatment plan evaluation and adjustment. In contrast, natural products (NPs), which have been utilized in China for over 2,000 years, show remarkable efficacy in treating AF and are receiving growing attention. PURPOSE We aimed to investigate the regulatory effects of NPs on mitochondrial quality control (MQC) and their impact on AF occurrence and progression. By constructing a novel NP-mitochondria-AF axis, we propose a framework to translate experimental findings into clinical practice and identify potential therapeutic strategies for AF. METHODS Databases such as PubMed, Web of Science, and China National Knowledge Infrastructure were searched (up to October 2024) using the following keywords: "atrial fibrillation," "traditional Chinese medicine," "mitochondrial biogenesis," "mitochondrial dynamics," "mitophagy," "apoptosis," "oxidative stress," "inflammation," and "Ca2+ concentration." NP targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, while disease targets were retrieved from Online Mendelian Inheritance in Man, GeneCards, and Therapeutic Target Database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the Metascape database. Protein-protein interactions were analyzed using the STRING database, and core monomers and hub genes were identified using Cytoscape 3.7.2. RESULTS We found a strong relationship between mitochondrial homeostasis and AF development. KEGG pathway analysis indicated that commonly used NPs regulate mitochondrial homeostasis, affecting AF progression through various hub genes, including protein kinase B-alpha (AKT1), jun proto-oncogene (JUN), and tumor necrosis factor (TNF). Molecular docking analysis revealed that NP core monomers exhibited binding affinities to hub genes below -5 kcal/mol and to transforming growth factor-β (TGF-β) below -7 kcal/mol. CONCLUSION NPs, including traditional Chinese medicine (TCM) compounds, TCM monomers, and traditional Chinese patent medicines, alleviate AF by modulating MQC with minimal side effects and high efficacy. These findings highlight the therapeutic potential of NPs as promising candidates for AF treatment and further underscore the importance of MQC in AF pathogenesis.
Collapse
Affiliation(s)
- Teng Ge
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Rongjun Zou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, PR China
| | - Miao Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jinlin Hu
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Kunyang He
- School of Second Clinical Medical, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Guanmou Li
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China
| | - Tong Zhang
- Heart Failure Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong, PR China.
| | - Xiaoping Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, PR China.
| |
Collapse
|
27
|
Zhang C, Pang B, Luo Y, Cao Z, Qiao P, Zhu Z, Fang H, Yang J, Dang E, Shen S, Kang P, Jiao Q, Hasegawa A, Abe R, Qiao H, Wang G, Fu M. Targeting the Galectin-7/TRPM2/Zn 2+/DRP-1 Signaling Pathway: A Potential Therapeutic Intervention in the Pathogenesis of SJS/TEN. Allergy 2025; 80:1358-1376. [PMID: 40042066 DOI: 10.1111/all.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) represent a spectrum of severe drug-induced cutaneous reactions. These conditions are characterized by widespread and confluent keratinocyte apoptosis, which differentiates them from erythema multiforme (EM). Mounting evidence has implicated the mitochondrial-dependent apoptosis pathway in the pathogenesis of SJS/TEN, but the potential roles and specific mechanisms of these pathways in SJS/TEN remain largely unexplored. METHODS Proteomic analyses were conducted to investigate differential protein expression in blister fluid (BF)-derived exosomes from suction surgery in healthy individuals (Con Exo) or patients with EM (EM Exo) or SJS/TEN (TEN Exo). Further analysis involved glutathione S-transferase (GST) pull-down assay, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and validation of MS results through proximity ligation assay (PLA) and coimmunoprecipitation (co-IP). Phenotypic and mechanistic analyses were performed using immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), western blotting, reverse transcription-polymerase chain reaction (RT-PCR), co-IP, CCK-8 assay, adenosine triphosphate (ATP) level measurements, and flow cytometry. RESULTS Galectin-7 was markedly upregulated in BF-derived exosomes from SJS/TEN patients and showed a correlation with disease severity. Further analysis confirmed the interaction between galectin-7 and transient receptor potential (melastatin) 2 (TRPM2). BF-derived exosomes from SJS/TEN patients induced an imbalance in mitochondrial dynamics via galectin-7/TRPM2 upregulation. Activation of TRPM2 led to an elevation in mitochondrial Zn2+, which facilitated the recruitment of the fission factor dynamin-related protein-1 (DRP-1) to mitochondria to trigger mitochondrial fission in the keratinocyte. In addition, the recruitment of DRP-1-dependent mitochondrial fission via the voltage-dependent anion channel 1 (VDAC1)/hexokinase 2 (HK2)-mediated opening of the mitochondrial permeability transition pore (mPTP)-triggered cytochrome c release. These effects ultimately induce activation of the intrinsic mitochondrial apoptotic pathway and contribute to the pathogenesis of SJS/TEN. CONCLUSIONS Targeting the galectin-7/TRPM2/Zn2+/DRP-1 signaling pathway in keratinocytes presents a prospective therapeutic strategy for mitigating SJS/TEN in the future.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - BingYu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - YiXin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Health Education and Management and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ZhenLai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - JianKang Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ErLe Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ShengXian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingqing Jiao
- Department.of Dermatology, The First Affiliated Hospital of Soochow University Central Research Laboratory, Suzhou, China
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - HongJiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Wang Y, Guo A, Yang L, Han X, Li Q, Liu J, Han Y, Yang Y, Chao L. Immune dysregulation of decidual NK cells mediated by GRIM19 downregulation contributes to the occurrence of recurrent pregnancy loss. Mol Cell Biochem 2025; 480:3117-3131. [PMID: 39663335 DOI: 10.1007/s11010-024-05181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
In patients with recurrent pregnancy loss (RPL), excessive activation of decidual natural killer (dNK) cells has been widely observed, yet the precise underlying mechanisms remain to be elucidated. We collected decidual specimens from RPL patients and controls to assess GRIM19 expression, activation phenotype, cytotoxic function, inflammatory cytokine secretion, and mitochondrial homeostasis in dNK cells. Furthermore, we established a GRIM19-knockout NK-92MI cell line and a GRIM19 ± C57BL/6J mouse model to investigate the relationship between GRIM19 downregulation and dNK immune dysregulation, ultimately contributing to pregnancy loss. Decidual NK cells from RPL patients exhibited significantly lower GRIM19 expression, accompanied by abnormal hyperactivation, enhanced cytotoxicity, and abnormal mitochondrial activation. In vitro experiments confirmed that reduced GRIM19 expression significantly potentiated the cytotoxicity and pro-inflammatory cytokine secretion of NK-92MI cells, while also promoting mitochondrial homeostasis imbalance. Mouse model studies corroborated that GRIM19 downregulation triggers NK cell homeostasis imbalance, contributing to the occurrence of pregnancy loss. Downregulation of GRIM19 in dNK cells contributes to RPL through hyperactivation and disruption of mitochondrial homeostasis, emphasizing its potential as a diagnostic and therapeutic target.
Collapse
MESH Headings
- Female
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/metabolism
- Animals
- Humans
- Mice
- Pregnancy
- Down-Regulation
- Abortion, Habitual/immunology
- Abortion, Habitual/pathology
- Abortion, Habitual/metabolism
- Abortion, Habitual/genetics
- Decidua/immunology
- Decidua/pathology
- Decidua/metabolism
- Mice, Inbred C57BL
- Apoptosis Regulatory Proteins/immunology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Adult
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/immunology
- NADH, NADPH Oxidoreductases
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Anliang Guo
- Shandong University, Jinan, 250012, Shandong, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaojuan Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qianni Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jin Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yilong Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lan Chao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
29
|
He M, Wang H, Fu J, Ruan J, Li F, Liang X, Wei L. Oxidative stress and mitochondrial dysfunctions induced by cyanobacterial microcystin-LR in primary grass carp hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107327. [PMID: 40121739 DOI: 10.1016/j.aquatox.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microcystin-LR (MC-LR), a cyclic heptapeptide produced by freshwater cyanobacteria, induces a range of liver injuries. However, the mechanisms underlying MC-LR toxicity in primary hepatocytes of aquatic organisms remains poorly understood. In this study, we investigated the effects of MC-LR on oxidative stress and mitochondrial function using primarily cultured grass carp hepatocytes. The results revealed that IC50 of MC-LR on grass carp primary liver cells for 24 hours was 2.40 μmol/L. Based on 24h-IC50, concentrations of 0, 0.30, 0.60, and 1.20 μmol/L were used in subsequent experiments. MC-LR exposure led to a significant reduction in cell viability, induced abnormal cell morphology, and caused plasma membrane rupture, as indicated by elevated LDH activity in a concentration-dependent manner. Additionally, MC-LR exposure induced oxidative stress, resulting in increased ROS levels and downregulation of genes associated with oxidative stress, including keap1, nrf2, cat, sod1, gpx, gst, and gr (P<0.05). Furthermore, the electron microscopy results showed that MC-LR caused damage to the ultrastructure of primary hepatocytes, including mitochondrial membrane rupture, vacuolation, and induction of mitochondrial autophagy. Moreover, MC-LR exposure elevated intracellular Ca2+ concentration, reduced MMP and ATP levels, and inhibited mitochondrial respiratory chain complex I activity (P<0.05). qRT-PCR analysis demonstrated that MC-LR treatment significantly decreased the transcriptional levels of genes related to mitochondrial quality control including pgc-1α, tfam, nrf1, drp1, opa1, mfn1, and mfn2 (P<0.05). Collectively, our findings highlight that MC-LR causes oxidative stress and impairs mitochondrial function, leading to further hepatocyte damage, which provides insights into the mechanisms of MC-LR-induced hepatotoxicity and offers valuable references for further investigations.
Collapse
Affiliation(s)
- Miao He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jianping Fu
- College of life sciences, Jiangxi Normal University, Nanchang, Jiangxi Province 330022, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
30
|
Tong Y, Wang Z, Wang Y, Chen Y, Zhang H, Lu Y, Xu L, Shen H, Huang C, Zhao M, Li W, Wang S, Shao Y, Fu Z. The E3 Ubiquitin Ligase ARIH1 Facilitates Colorectal Cancer Progression by Promoting Oxidative Phosphorylation via the Mitochondrial Translocation of K63-Linked Ubiquitinated PHB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501017. [PMID: 40285603 DOI: 10.1002/advs.202501017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/05/2025] [Indexed: 04/29/2025]
Abstract
The RBR E3 ubiquitin ligase ARIH1 has been proven to induce specific ubiquitylation of substrates, thereby regulating cell proliferation and the cell cycle. However, the understanding of how ARIH1 influence cancer development is limited. This study revealed that ARIH1 is upregulated in colorectal cancer (CRC) cells and facilitates cell growth and metastasis. Clinically, high ARIH1 levels are linked to an unfavorable CRC prognosis. Mechanistically, ARIH1 directly interacts with PHB1 via its RING1+RBR+RING2 domains, catalyzing the K63-linked ubiquitination of PHB1 at lysine 186 (K186). The increased interaction between PHB1 and Akt through this modification results in PHB1 phosphorylation by Akt and its subsequent translocation into mitochondria, where it maintains mitochondrial stability and promotes oxidative phosphorylation (OXPHOS). Collectively, these findings demonstrate the role of ARIH1-mediated K63-linked ubiquitination of PHB1 in mitochondrial dynamics and OXPHOS, suggesting that it has potential as diagnostic biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Ying Tong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yong Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Min Zhao
- The Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Wenjie Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuai Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
31
|
Long Y, Li Y, Ma Z, Xie Y, Zhao H, Zhang M, Liu R. Epimedii Folium and Ligustri Lucidi Fructus synergistically delay renal aging through AMPK/ULK1/Bcl2L13-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119668. [PMID: 40122318 DOI: 10.1016/j.jep.2025.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of aging is attributed to kidney essence insufficiency and gradual loss of kidney function. The combination of Epimedii Folium and Ligustri Lucidi Fructus (ELL) is traditionally recognized to tonify kidney yin and yang and has significant efficacy in delaying aging and aging-related diseases, but little is known about the exact mechanism. AIM OF THE STUDY The research focuses on the mechanism of delaying renal aging by which ELL regulates mitophagy through serine/threonine kinase AMP-activated protein kinase (AMPK)/UNC-51- like autophagy activating kinase 1 (ULK1)/B-cell lymphoma-2-like protein 13 (Bcl2L13) in vivo. MATERIALS AND METHODS We employed a rat model of natural aging, using rats of different ages as dynamic controls, and a natural aging mouse model to evaluate the effects of ELL on delaying renal aging via AMPK/ULK1/Bcl2L13. The assessment included renal histopathology, oxidative stress, cell senescence, mitochondrial dynamics, mitophagy, and the AMPK/ULK1/Bcl2L13 signaling pathway. In the aging rat model, network pharmacology and proteomics were combined to dissect the renal aging process, and a Multilayer Perceptron (MLP) -artificial neural networks (ANN) model was used to evaluate the effects of ELL comprehensively. In the aging mouse model, the AMPK inhibitor dorsomorphin was applied to assess whether the AMPK signaling pathway was involved in ELL-induced mitophagy. RESULTS Compared with the young rats, the kidney exhibited signs of degenerative pathologies and increased oxidative stress in 17-month-old rats. A thorough analysis identified the mitochondrial protein Bcl2L13 as a crucial biomarker associated with renal aging. The AMPK/ULK1/Bcl2L13 pathway significantly regulated mitochondrial function and mitophagy, which were potential mechanisms underlying renal aging. In contrast to aged rats, the renal pathological changes and cell senescence in rats treated with ELL were significantly mitigated, the antioxidant capacity, mitochondrial dynamics, and mitophagy were improved, and the expression of AMPK/ULK1/Bcl2L13 was upregulated. After the application of AMPK inhibitor dorsomorphin, the effects of ELL were reversed. It appears that ELL modulates the AMPK/ULK1/Bcl2L13 signaling pathway, and upregulates mitophagy to potentially decelerate renal aging. CONCLUSIONS The findings indicate that aging kidneys display mitochondrial dysfunction, disorganization of mitochondria, and a decrease in mitophagy. Concurrently, ELL significantly regulates mitochondrial dynamics and mitophagy via AMPK/ULK1/Bcl2L13. This regulation helps mitigate mitochondrial dysfunction, suggesting ELL as a promising herbal remedy for delaying renal aging and age-related kidney diseases.
Collapse
Affiliation(s)
- Yuting Long
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuman Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zaina Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yonghao Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| | - Renhui Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
32
|
Wu J, Xu J, Zhang M, Zhong J, Gao W, Wu M. Chondrocyte Mitochondrial Quality Control: A Novel Insight into Osteoarthritis and Cartilage Regeneration. Adv Wound Care (New Rochelle) 2025. [PMID: 40248893 DOI: 10.1089/wound.2024.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Significance: Osteoarthritis (OA), one of the most prevalent joint diseases affecting more than 240 million people, strongly influences human health and reduces life quality. This review aims to fill the current research gap regarding the application and potential of mitochondrial quality control (MQC) based therapies in the treatment of OA, thereby providing guidance for future research and clinical practice. Recent Advances: Chondrocytes respond to the inflammatory microenvironment via an array of signaling pathways and thus are critical in cartilage degeneration and OA progression. Mitochondria, as an important metabolic center in chondrocytes, play a vital role in responding to inflammatory stimuli. Multiple MQC mechanisms, including mitochondrial antioxidant defense, mitochondrial protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, sustain mitochondrial homeostasis under pathological conditions. Critical Issues: Despite extensive OA research, effective therapies remain limited. Elucidating MQC mechanisms in disease progression and post-traumatic cartilage repair is crucial. While preclinical studies demonstrate potential, clinical translation requires addressing protocol standardization, patient stratification, and long-term efficacy, as well as safety validation. Future Directions: Future research should focus on developing personalized MQC-based OA therapies guided by biomarker profiling and signaling pathway modulation. However, translational challenges persist, particularly regarding pervasive off-target effects, inadequate OA-specific targeting capacity, interpatient heterogeneity, and reliable evaluation of long-term therapeutic efficacy. Strategic prioritization of OA-specific MQC targets coupled with delivery system optimization may significantly improve both clinical translatability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jinni Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiawen Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Menghan Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiahui Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Weijin Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
Li Y, Zhao W, Yang Q. Effects of high-intensity interval training and moderate-intensity continuous training on mitochondrial dynamics in human skeletal muscle. Front Physiol 2025; 16:1554222. [PMID: 40313872 PMCID: PMC12043657 DOI: 10.3389/fphys.2025.1554222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Exercise and physical activity confer health advantages, in part, by enhancing skeletal muscle mitochondrial respiratory function. The objective of this study is to analyze the impacts of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the dynamics and functionality of the mitochondrial network within skeletal muscle. 20 young male participants were assigned to either HIIT or MICT group. Initial assessments of exercise-related indicators were conducted, followed by skeletal muscle biopsies from the vastus lateralis before, 1 day after, and 6 weeks post-experiment. We utilized multi-dimensional myofiber imaging to analyze mitochondrial morphology and arrangement, and assessed citrate synthase activity, complex I activity, and dynamics-related mRNA. Both training modalities increased VO2max, Wmax, citrate synthase and complex I activities, mitochondrial content, and volume density, though the changes differed between the two groups. 6 weeks training induced remodeling of the mitochondrial network within skeletal muscle. Before training, the network appeared sparse and punctate. After MICT, it adopted a grid-like structure with partially robust longitudinal connections. In contrast, HIIT resulted in a less obvious grid structure but showed a stronger longitudinally oriented network. Training also increased mRNA expression of mitochondrial fusion proteins and decreased fission protein expression, with these effects being more pronounced in HIIT. Similarly, peroxisome proliferator-activated receptor γ coactivator 1-alpha mRNA expression showed a comparable trend, though the changes differed between 1 day and 6 weeks of training. In conclusion, HIIT and MICT induce distinct mitochondrial adaptation in skeletal muscle, reflected in different network remodeling and molecular pathways. These findings may be due to HIIT's more pronounced effect on mitochondrial dynamics or respiratory function, but the study has only conducted preliminary observational experiments and further evidence is required for confirmation.
Collapse
Affiliation(s)
- Yuqing Li
- Orthopedic Department, Hunan Children’s Hospital (The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Pediatric Orthopedics, Changsha, Hunan, China
- The School of Pediatrics, University of South China, Changsha, Hunan, China
| | - Wanjun Zhao
- Otolaryngology-Head and Neck Surgery Department, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Yang
- Physical Education and Sports Training School, Hunan Provincial Sports Vocational College, Changsha, Hunan, China
| |
Collapse
|
34
|
Liao J, Shao M, Zhou Z, Wang S, Lv Y, Lu Y, Yao F, Li W, Yang L. Correlation of organelle interactions in the development of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1567743. [PMID: 40308615 PMCID: PMC12040704 DOI: 10.3389/fimmu.2025.1567743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Organelles, despite having distinct functions, interact with each other. Interactions between organelles typically occur at membrane contact sites (MCSs) to maintain cellular homeostasis, allowing the exchange of metabolites and other pieces of information required for normal cellular physiology. Imbalances in organelle interactions may lead to various pathological processes. Increasing evidence suggests that abnormalorganelle interactions contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the key role of organelle interactions in NAFLD has not been fully evaluated and researched. In this review, we summarize the role of organelle interactions in NAFLD and emphasize their correlation with cellular calcium homeostasis, lipid transport, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Jiabao Liao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Mengqiu Shao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ze Zhou
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - You Lv
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanming Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fang Yao
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wenting Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ling Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
35
|
Xu X, Zhao Y, Zhu Z, Wen W, Li X. Mitofusin-Mediated Mitochondrial Fusion Inhibits Pseudorabies Virus Infection in Porcine Cells. Vet Sci 2025; 12:368. [PMID: 40284870 PMCID: PMC12030837 DOI: 10.3390/vetsci12040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Mitochondria are highly dynamic organelles that undergo fusion/fission dynamics, and emerging evidence has established that mitochondrial dynamics plays a crucial regulatory role in the process of viral infection. Nevertheless, the function of mitochondria dynamics during pseudorabies (PRV) infection remains uncertain. Methods: Our investigation commenced with examining PRV-induced alterations in mitochondrial dynamics, focusing on morphological changes and the expression levels of fusion/fission proteins. We then restored mitochondrial dynamics through Mfn1 (Mitofusin 1)/Mfn2 (Mitofusin 2) overexpression and mdivi-1 (mitochondrial division inhibitor-1) treatment to assess their impact on PRV replication and mitochondrial damage. Results: We found a downregulation of the mitochondrial fusion proteins Mfn1, Mfn2, and OPA1 (optic atrophy 1), along with the activation of the fission protein Drp-1 (dynamin-related protein 1) upon PRV infection. Restoring the function of mitochondrial fusion inhibited PRV infection. Furthermore, elevated mitochondrial membrane potential (MMP), decreased reactive oxygen species (ROS) levels, and an increased mitochondrial number were observed after overexpressing Mfns or treatment with mdivi-1. Conclusions: PRV infection impairs mitochondrial dynamics by altering mitochondrial fusion and fission proteins, and the promotion of Mfn-mediated mitochondrial fusion inhibits PRV replication.
Collapse
Affiliation(s)
- Xiuhan Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Zhao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Wen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843300, China
| |
Collapse
|
36
|
Follprecht D, Vavricka J, Johankova V, Broz P, Krouzecky A. Mitochondria in focus: From structure and function to their role in human diseases. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40237329 DOI: 10.5507/bp.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mitochondria, double-membraned organelles within all eukaryotic cells, are essential for the proper functioning of the human organism. The frequently used phrase "powerhouses of the cell" fails to adequately capture their multifaceted roles. In addition to producing energy in the form of adenosine triphosphate through oxidative phosphorylation, mitochondria are also involved in apoptosis (programmed cell death), calcium regulation, and signaling through reactive oxygen species. Recent research suggests that they can communicate with one another and influence cellular processes. Impaired mitochondrial function on the one hand, can have widespread and profound effects on cellular and organismal health, contributing to various diseases and age-related conditions. Regular exercise on the other hand, promotes mitochondrial health by enhancing their volume, density, and functionality. Although research has made significant progress in the last few decades, mainly through the use of modern technologies, there is still a need to intensify research efforts in this field. Exploring new approaches to enhance mitochondrial health could potentially impact longevity. In this review, we focus on mitochondrial research and discoveries, examine the structure and diverse roles of mitochondria in the human body, explore their influence on energy metabolism and cellular signaling and emphasize their importance in maintaining overall health.
Collapse
Affiliation(s)
- Daniel Follprecht
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakub Vavricka
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktorie Johankova
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Broz
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Clinical Biochemistry and Hematology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ales Krouzecky
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
37
|
Yan W, Saqirile, Li K, Li K, Wang C. The Role of N6-Methyladenosine in Mitochondrial Dysfunction and Pathology. Int J Mol Sci 2025; 26:3624. [PMID: 40332101 PMCID: PMC12026702 DOI: 10.3390/ijms26083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondria are indispensable in cells and play crucial roles in maintaining cellular homeostasis, energy production, and regulating cell death. Mitochondrial dysfunction has various manifestations, causing different diseases by affecting the diverse functions of mitochondria in the body. Previous studies have mainly focused on mitochondrial-related diseases caused by nuclear gene mutations or mitochondrial gene mutations, or mitochondrial dysfunction resulting from epigenetic regulation, such as DNA and histone modification. In recent years, as a popular research area, m6A has been involved in a variety of important processes under physiological and pathological conditions. However, there are few summaries on how RNA methylation, especially m6A RNA methylation, affects mitochondrial function. Additionally, the role of m6A in pathology through influencing mitochondrial function may provide us with a new perspective on disease treatment. In this review, we summarize several manifestations of mitochondrial dysfunction and compile examples from recent years of how m6A affects mitochondrial function and its role in some diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (W.Y.); (S.); (K.L.); (K.L.)
| |
Collapse
|
38
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
39
|
Song Z, Cui Y, Xin L, Xiao R, Feng J, Li C, Yin Z, Wang H, Li Q, Wang M, Lin B, Zhang Y, Zhou Y, Huang L, He Y, Li X, Liu X, Liu S, Zhou F, Liu Z, Zhou HB, Fang P, Liang K. Mechano-oncogenic cytoskeletal remodeling drives leukemic transformation with mitochondrial vesicle-mediated STING activation. Cell Stem Cell 2025; 32:581-597.e11. [PMID: 39986274 DOI: 10.1016/j.stem.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 01/25/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria are integrated within the cytoskeleton for structural integrity and functional regulation, yet the pathological exploitation of these interactions in cell fate decisions remains largely unexplored. Here, we identify a cytoskeleton-mitochondria remodeling mechanism underlying leukemic transformation by the core-binding factor subunit beta and smooth muscle myosin heavy-chain fusion (CBFβ-SMMHC). This chimera reconstructs a cytosolic filamentous cytoskeleton, inducing NMIIA phosphorylation and INF2-dependent filamentous actin (F-actin) assembly, which enhance cellular stiffness and tension, leading to calcium-mediated mitochondrial constriction, termed cytoskeletal co-option of mitochondrial constriction (CCMC). CCMC can also be triggered through diverse approaches independent of CBFβ-SMMHC, reconstructing a similar cytoskeleton and recapitulating acute myeloid leukemia (AML) with consistent immunophenotypes and inflammatory signatures. Notably, CCMC generates TOM20-PDH+mtDNA+ mitochondrial-derived vesicles that activate cGAS-STING signaling, with Sting knockout abrogating CCMC-induced leukemogenesis. Targeted inhibition of CCMC or STING suppresses AML propagation while sparing normal hematopoiesis. These findings establish CCMC as an intrinsic mechano-oncogenic process linking genetic mutations with cytoskeletal remodeling to oncogenic transformation, highlighting its promise as a therapeutic target.
Collapse
Affiliation(s)
- Zemin Song
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yali Cui
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lilan Xin
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingjing Feng
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Conghui Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxuan Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Baoyi Lin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yiming Zhang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Zhou
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Huang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanli He
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyan Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Pingping Fang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kaiwei Liang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
40
|
Guo L, Wang N, Chen J, Zhang R, Li D, Yang L. Cellular senescence and glaucoma. Exp Gerontol 2025; 202:112718. [PMID: 39983803 DOI: 10.1016/j.exger.2025.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Cellular senescence, a characteristic feature of the aging process, is induced by diverse stressors. In recent years, glaucoma has emerged as a blinding ocular disease intricately linked to cellular senescence. The principal pathways implicated are oxidative stress, mitochondrial dysfunction, DNA damage, autophagy impairment, and the secretion of various senescence- associated secretory phenotype factors. Research on glaucoma-associated cellular senescence predominantly centers around the increased resistance of the aqueous humor outflow pathway, which is attributed to the senescence of the trabecular meshwork and Schlemm's canal. Additionally, it focuses on the mechanisms underlying retinal ganglion cell senescence in glaucoma and the corresponding intervention measures. Given that cell senescence represents an irreversible phase preceding cell death, an in-depth investigation into its mechanisms in the pathogenesis and progression of glaucoma, particularly by specifically blocking the signal transduction of cell senescence, holds the potential to decrease the outflow resistance of aqueous humor. This, in turn, could provide a novel avenue for safeguarding the optic nerve in glaucoma.
Collapse
Affiliation(s)
- Liang Guo
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Na Wang
- The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Chen
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Zhang
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Li
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Yang
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
41
|
Lee HJ, Lim SH, Lee H, Han JM, Min DS. Phospholipase D6 activates Wnt/β-catenin signaling through mitochondrial metabolic reprogramming to promote tumorigenesis in colorectal cancer. Exp Mol Med 2025; 57:910-924. [PMID: 40259095 PMCID: PMC12046002 DOI: 10.1038/s12276-025-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 04/23/2025] Open
Abstract
Phospholipase D6 (PLD6) is a critical enzyme involved in mitochondrial fusion with a key role in spermatogenesis. However, the role of PLD6 in cancer remains unknown. Notably, Wnt signaling, energy metabolism and mitochondrial function show complex interactions in colorectal cancer (CRC) progression. Here we found that PLD6 is highly expressed in CRC and positively correlated with poor prognosis. We present a novel function of PLD6 in activating Wnt/β-catenin signaling by enhancing mitochondrial metabolism. PLD6 depletion suppresses the oncogenic properties of CRC cells and impairs mitochondrial respiration, leading to reduced mitochondrial length, membrane potential, calcium levels and reactive oxygen species. PLD6 depletion also disrupts mitochondrial metabolic reprogramming by inhibiting the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation, resulting in altered intracellular levels of citrate and acetyl-CoA-both key modulators of Wnt/β-catenin activation. PLD6-mediated acetyl-CoA production enhances β-catenin stability by promoting its acetylation via the acetyltransferases CREB-binding protein and P300/CREB-binding-protein-associated factor. Consequently, PLD6 ablation reduces cancer stem cell-associated gene expression downstream of Wnt/β-catenin signaling, suppressing stem-like traits and chemoresistance to 5-fluorouracil. Furthermore, PLD6 depletion attenuates CRC tumorigenesis in both subcutaneous and orthotopic tumor models. Overall, PLD6 acts as an oncogenic switch by promoting mitochondria-mediated retrograde signaling, thereby regulating Wnt signaling in CRC.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, South Korea.
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea.
| |
Collapse
|
42
|
Li L, Guo Z, Zhao Y, Liang C, Zheng W, Tian W, Chen Y, Cheng Y, Zhu F, Xiang X. The impact of oxidative stress on abnormal lipid metabolism-mediated disease development. Arch Biochem Biophys 2025; 766:110348. [PMID: 39961502 DOI: 10.1016/j.abb.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Oxidative stress arises from an imbalance between cellular oxidation and anti-oxidation mechanisms, leading to various harmful effects on physiological health. These include inflammatory neutrophil infiltration, increased secretion of proteases, and increased production of oxidative intermediates, all of which significantly contribute to aging and the onset of multiple diseases. This review explores abnormal lipid metabolism, characterized by dysregulation in lipid synthesis, catabolism, digestion, absorption, and transport, with the potential to lead to lipid droplet accumulation or deficit across tissues, thus causing adverse health outcomes. Importantly, the intricate relationship between oxidative stress and inflammation plays a central role in exacerbating metabolic disorders, including diabetes, obesity, hypertension, non-alcoholic fatty liver disease, atherosclerosis, and lung fibrosis. This review seeks to compile and integrate recent research findings on the influence of oxidative stress on abnormal lipid metabolism pathology. A deeper understanding of this connection could reveal new perspectives for advancing the treatment and management of metabolic disorders.
Collapse
Affiliation(s)
- Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Zhiliang Guo
- The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yi Zhao
- Shandong Provincial Hospital Affiliated with Shandong's First Medical University, Shandong, China
| | - Chuanjie Liang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiang Zheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yalin Chen
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Yi Cheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Fengwen Zhu
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
43
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025; 22:e00525. [PMID: 39827052 PMCID: PMC12047401 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Zhao C, Liu K, Wu Y, Yan S, He J, Fu C. The 1-acylglycerol-3-phosphate acyltransferase Slc1 is required to regulate mitochondria and lipid droplets. Microbiol Res 2025; 293:128080. [PMID: 39892319 DOI: 10.1016/j.micres.2025.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Mitochondria are organelles involved in energy metabolism and biosynthesis. As the metabolites released from mitochondria are raw materials used for lipid synthesis, mitochondria also play important roles in lipid metabolism. Here we report that Slc1, a 1-acylglycerol-3-phosphate O-acyltransferase in the fission yeast Schizosaccharomyces pombe, is required to maintain tubular mitochondrial morphology and normal mitochondrial functions. The absence of Slc1 causes mitochondrial fragmentation, increases mitochondrial fission frequency, reduces mitochondrial respiration, and slows down nitrogen starvation-induced mitophagy. In addition, the absence of Slc1 significantly increases the protein level of Ptl2, which is the triacylglycerol lipase localized on lipid droplets. The phenotypes caused by the absence of Slc1 depend on its acyltransferase enzymatic activity. Therefore, our study uncovers new roles of a lipid synthesis enzyme Slc1 in regulating mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Chenhui Zhao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shuaijie Yan
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
45
|
Yan Y, Zhang Y, Liu J, Chen B, Wang Y. Emerging magic bullet: subcellular organelle-targeted cancer therapy. MEDICAL REVIEW (2021) 2025; 5:117-138. [PMID: 40224364 PMCID: PMC11987508 DOI: 10.1515/mr-2024-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 04/15/2025]
Abstract
The therapeutic efficacy of anticancer drugs heavily relies on their concentration and retention at the corresponding target site. Hence, merely increasing the cellular concentration of drugs is insufficient to achieve satisfactory therapeutic outcomes, especially for the drugs that target specific intracellular sites. This necessitates the implementation of more precise targeting strategies to overcome the limitations posed by diffusion distribution and nonspecific interactions within cells. Consequently, subcellular organelle-targeted cancer therapy, characterized by its exceptional precision, have emerged as a promising approach to eradicate cancer cells through the specific disruption of subcellular organelles. Owing to several advantages including minimized dosage and side effect, optimized efficacy, and reversal of multidrug resistance, subcellular organelle-targeted therapies have garnered significant research interest in recent years. In this review, we comprehensively summarize the distribution of drug targets, targeted delivery strategies at various levels, and sophisticated strategies for targeting specific subcellular organelles. Additionally, we highlight the significance of subcellular targeting in cancer therapy and present essential considerations for its clinical translation.
Collapse
Affiliation(s)
- Yue Yan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yimeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
| |
Collapse
|
46
|
Zhao X, Wu G, Tao X, Dong D, Liu J. Targeted mitochondrial therapy for pancreatic cancer. Transl Oncol 2025; 54:102340. [PMID: 40048984 PMCID: PMC11928980 DOI: 10.1016/j.tranon.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/05/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor characterized by delayed diagnosis, rapid progress, and resistance to chemotherapy. Mitochondria, as the "power chamber" of cells, not only play a central role in energy metabolism but also participate in the production of reactive oxygen species (ROS), calcium signaling, regulation, and differentiation of the cell cycle. The abnormal activity of mitochondria is closely related to the development of PC. In this paper, we discussed the key role of mitochondria in PC, including mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics, metabolic regulation, ROS generation, and mitochondrial-dependent apoptosis. We elaborated on the importance of these mitochondrial mechanisms in the development of PC and emphasized the potential of targeted mitochondrial therapy strategies for these mechanisms in the treatment of PC. In addition, this article also reviews the latest developments in innovative drug carriers such as cell-penetrating peptides, nucleic acid aptamers, and nanomaterials, which can achieve precise localization of mitochondria and drug delivery. Therefore, this article comprehensively analyzed the important role of mitochondria in the treatment of PC and clarified the effectiveness and necessity of targeting mitochondria in the treatment of PC.
Collapse
Affiliation(s)
- Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
47
|
Rossi C, Macchi C, D'Alonzo C, Venturin M, Ruscica M, Corsini A, Battaglia C, Bellosta S. Simvastatin ameliorates senescence-induced mitochondrial dysfunction in vascular smooth muscle cells. Atherosclerosis 2025; 403:119176. [PMID: 40157177 DOI: 10.1016/j.atherosclerosis.2025.119176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND AND AIMS Senescence and mitochondrial dysfunction are two major indicators of aging. Mitochondria are potential drivers of aging phenotypes and dysfunctional mitochondria are associated with several age-related diseases. There is evidence that senescence induces changes in mitochondrial structure, dynamics, and function. Moreover, senescent vascular smooth muscle cells (VSMCs) are present in atherosclerotic plaques and contribute to their instability. The anti-atherosclerotic effects of simvastatin are well known, but recently other benefits, such as promoting mitochondrial quality and senostatic effects, have been hypothesized. We aimed to analyze simvastatin's senostatic effects in senescent VSMCs. METHODS We established and characterized mitochondrial dysfunction in doxorubicin-induced senescent VSMCs (doxorubicin) or VSMCs serially passaged to induce replicative senescence (old). RESULTS We observed in both senescent models few typical senescence markers such as altered cell morphology, cell cycle inhibitors, laminB1, an accumulation of dysfunctional mitochondria characterized by reduced mitochondrial membrane potential (MMP) and respiration, accumulation of reactive oxygen species (ROS), and an altered mitochondria morphology. Down-regulation of TFAM and TOM70 expression was observed only in old cells suggesting a reduction of mitochondrial biogenesis. Next, we investigated whether simvastatin could ameliorate age-associated phenotypes in senescent VSMCs. Simvastatin 0.1 μM reduces the senescence-associated secretory phenotype (SASP) and ROS production and improves mitochondrial respiration in doxorubicin and old VSMCs. Interestingly, the effects of simvastatin on mitochondrial respiration and SASP were replicated by using a siRNA for the hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, and abolished by adding mevalonic acid, suggesting that these effects are mediated through the inhibition of HMG-CoA reductase. CONCLUSIONS Our results suggest that simvastatin controls SASP and exerts potentially beneficial therapeutic effects by ameliorating senescence-induced mitochondrial dysfunction in senescent VSMCs.
Collapse
MESH Headings
- Simvastatin/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cellular Senescence/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Reactive Oxygen Species/metabolism
- Doxorubicin
- Cells, Cultured
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Humans
- Senescence-Associated Secretory Phenotype/drug effects
- Animals
- Phenotype
- Mitochondria/drug effects
- Mitochondria/metabolism
Collapse
Affiliation(s)
- C Rossi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - C Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - C D'Alonzo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - M Venturin
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - M Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy; Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | - C Battaglia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - S Bellosta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy; Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
48
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
49
|
Deng Z, Xiao S, He YY, Guo Y, Tang LJ. Sorafenib-induced cardiovascular toxicity: A cause for concern. Chem Biol Interact 2025; 410:111388. [PMID: 39889871 DOI: 10.1016/j.cbi.2025.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Sorafenib, a multi-target tyrosine kinase inhibitor, is primarily used to manage hepatocellular carcinoma, advanced renal cell carcinoma, and differentiated thyroid cancer. Although this drug extends patient survival and slows tumor progression, its cardiovascular toxicity substantially impacts of quality of life. Effective the prevention and treatment of the resulting complications are needed. The mechanisms underlying of sorafenib-induced cardiovascular toxicity are complex, and remain incompletely understood despite extensive research. In this review, we discuss the incidence of sorafenib-induced cardiovascular toxicity, including hypertension, thromboembolism, and heart failure in clinical settings. We also summarize current research on the underlying mechanisms, such as ferroptosis, necroptosis, autophagy, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we explore studies regarding the protective effects of various drugs against sorafenib-induced cardiovascular toxicity. This in-depth synthesis of data regarding the clinical manifestations and mechanisms of sorafenib-induced cardiotoxicity provides a valuable scientific foundation for developing therapeutic drugs to combat these adverse effects.
Collapse
Affiliation(s)
- Zheng Deng
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Xiao
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying-Ying He
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu Guo
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Li-Jing Tang
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
50
|
Zhang Y, Lou Q, Lian H, Yang R, Cui R, Wang L, Ma B, Hou L, Jin L, Teng W. sLithospermic acid etched ZIF-8 nanoparticles delays osteoarthritis progression by inhibiting inflammatory signaling pathways and rescuing mitochondrial damage. Mater Today Bio 2025; 31:101589. [PMID: 40104643 PMCID: PMC11919455 DOI: 10.1016/j.mtbio.2025.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
Osteoarthritis (OA) is the most common chronic inflammatory joint disease. Improving the joint inflammatory microenvironment is expected to promote early intervention and delay the progression of OA. However, effective strategies for inhibiting OA-related joint inflammation are still lacking. Lithospermic acid (LA), a polycyclic phenol carboxylic acid extracted from salvia miltiorrhiza, has strong anti-inflammatory and antioxidant effects. However, its role in the treatment of OA and the underlying mechanisms are unclear. To improve the bioavailability of LA, an LA synergistic protects etched zeolitic imidazolate framework (ZIF)-8 nanoparticles (LA@ZIF-8) was designed and developed for targeted delivery to modulate the inflammatory microenvironment in OA. This study confirmed that LA@ZIF-8 inhibits the pro-inflammatory phenotype of RAW264.7 macrophages through the NF-ĸB signaling pathway, effectively alleviates mitochondrial dysfunction, and delays articular cartilage degeneration caused by the joint inflammatory microenvironment mediated by synoval macrophages. In summary, LA@ZIF-8 delays the progression of OA by inhibiting synovial macrophage-mediated inflammatory responses, highlighting its clinical application potential.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qiqi Lou
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Hao Lian
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ran Yang
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ruolin Cui
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Leyang Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Bitao Ma
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Lingli Hou
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Lilun Jin
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Weiran Teng
- Department of Traditional Chinese Medicine, School of Medicine, Xinhua Hospital, Afffliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| |
Collapse
|