1
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
2
|
Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12:1372355. [PMID: 38745860 PMCID: PMC11091309 DOI: 10.3389/fcell.2024.1372355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the endothelial glycocalyx's role in inflammation and explores its involvement in coagulation. The glycocalyx, composed of proteins and glycosaminoglycans, interacts with von Willebrand Factor and could play a crucial role in anchoring it to the endothelium. In inflammatory conditions, glycocalyx degradation may leave P-selectin as the only attachment point for von Willebrand Factor, potentially leading to uncontrolled release of ultralong von Willebrand Factor in the bulk flow in a shear stress-dependent manner. Identifying specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor and P-selectin can offer insights into unexplored coagulation mechanisms.
Collapse
Affiliation(s)
- Guinevere Ferreira
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Alexandra Taylor
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Solomon A. Mensah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
3
|
Chen Y, Gu M, Patterson J, Zhang R, Statz JK, Reed E, Abutarboush R, Ahlers ST, Kawoos U. Temporal Alterations in Cerebrovascular Glycocalyx and Cerebral Blood Flow after Exposure to a High-Intensity Blast in Rats. Int J Mol Sci 2024; 25:3580. [PMID: 38612392 PMCID: PMC11011510 DOI: 10.3390/ijms25073580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.
Collapse
Affiliation(s)
- Ye Chen
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Ming Gu
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jacob Patterson
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Ruixuan Zhang
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jonathan K. Statz
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Eileen Reed
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Rania Abutarboush
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Stephen T. Ahlers
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
| | - Usmah Kawoos
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
4
|
Alves NG, Breslin JW. Microvascular Endothelial Glycocalyx Surface Layer Visualization and Quantification. Methods Mol Biol 2024; 2711:163-175. [PMID: 37776456 PMCID: PMC11382539 DOI: 10.1007/978-1-0716-3429-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
As a primary interface between the blood and underlying vascular wall, the endothelial glycocalyx layer is common to all blood vessels and covers the luminal surface of all endothelial cells. The endothelial glycocalyx has important roles as a regulator of microvascular endothelial functions such as mechanotransduction, leukocyte adhesion, and microvascular permeability. Disruption of the molecular structure of the endothelial glycocalyx disturbs physiological, and hemodynamic processes associated with the microvascular wall leads to microvascular hyperpermeability. Studying the glycocalyx is challenging because cultured cells present aberrant glycocalyx structure and tissue fixation techniques lead to the degradation and loss of this fine and delicate layer. Therefore, studying the glycocalyx requires in vivo imaging of the microcirculation. Here we describe two techniques for direct imaging and assessment of the glycocalyx surface layer integrity using intravital microscopy (IVM), a method widely used in the study of the dynamic changes that occur in the microcirculation during inflammation or injury.
Collapse
Affiliation(s)
- Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of Southern Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of Southern Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Li J, Lu H, Yu L, Li H, Chen X, Chen C, Tao E. Case report: Catastrophic event: neonatal gastric perforation and complication of capillary leak syndrome. Front Pediatr 2023; 11:1257491. [PMID: 37800010 PMCID: PMC10547872 DOI: 10.3389/fped.2023.1257491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Neonatal gastric perforation (NGP) is a rare, but life-threatening condition that can lead to serious conditions, such as capillary leak syndrome (CLS). Here, we present the case of a preterm male infant with NGP complicated by CLS after stomach repair. The patient was born at 33 2/7 weeks, weighed 1,770 g, and was diagnosed with respiratory distress syndrome. On the fourth day of life, the patient presented with distention and an unstable cardiovascular system. Routine blood tests revealed a white blood cell count of 2.4 × 109/L. Chest and abdominal radiography revealed a pneumoperitoneum, suggesting a gastrointestinal perforation. The patient was urgently transferred to a tertiary hospital for exploratory laparotomy, where a 2 cm diameter perforation was discovered in the stomach wall and subsequently repaired. Pathological findings indicated the absence of a muscular layer in the stomach wall. The patient unexpectedly developed CLS postoperatively, leading to multiorgan dysfunction and eventual death. The underlying pathological mechanism of NGP-induced CLS may be related to severe chemical peritonitis, sepsis, endothelial glycocalyx dysfunction, enhanced systemic inflammation, and translocation of the gut microbiota, causing endothelial hyperpermeability. Notablely, abdominal surgery itself can be a significant triggering factor for CLS occurrence. Complications of NGP and CLS are extremely dangerous. Investigating the mechanism by which NGP triggers CLS could potentially improve the prognosis. Conservative treatment for pneumoperitoneum secondary to gastric perforation may be a reasonable option, especially when the condition of the patient is unstable.
Collapse
Affiliation(s)
- Jie Li
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Hongping Lu
- Department of Neonatology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical College, Linhai, China
| | - LinJun Yu
- Department of Pediatric Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical College, Linhai, China
| | - Haiting Li
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Xiyang Chen
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Caie Chen
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
- Department of Science and Education, Wenling Maternal and Child Health Care Hospital, Wenling, China
| |
Collapse
|
6
|
Milusev A, Despont A, Shaw J, Rieben R, Sorvillo N. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses. Sci Rep 2023; 13:4483. [PMID: 36934164 PMCID: PMC10024017 DOI: 10.1038/s41598-023-31396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Jane Shaw
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland.
| |
Collapse
|
7
|
Ahn SJ, Le Master E, Granados ST, Levitan I. Impairment of endothelial glycocalyx in atherosclerosis and obesity. CURRENT TOPICS IN MEMBRANES 2023; 91:1-19. [PMID: 37080677 DOI: 10.1016/bs.ctm.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Endothelial glycocalyx is a negatively charged gel-like layer located on the apical surface of endothelial cells. It serves as a selective two-way physical barrier between the flowing blood and the endothelium, which regulates the access of macromolecules and of blood cells to the endothelial surface. In addition, endothelial glycocalyx plays a major role in sensing mechanical signals generated by the blood flow and transducing these signals to maintain endothelial functions; Thus, dysfunction or disruption of endothelial glycocalyx in pathological condition leads to endothelial dysfunction and contributes to the development of vascular diseases. In this review, we discuss the impact of atherosclerosis with the following viewpoints: (i) hypercholesterolemic effects on endothelial glycocalyx degradation in animal models and human patients, (ii) disruption of endothelial glycocalyx by atherogenic lipoproteins, (iii) proatherogenic disturbed flow effects on endothelial glycocalyx degradation, (iv) pathological consequences of the loss of glycocalyx integrity in atherogenesis, and (v) therapeutic effect of glycocalyx supplementation on atherosclerosis development. Additionally, we also discuss recent studies in pathological effects of obesity on the disruption of endothelial glycocalyx.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Elizabeth Le Master
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sara T Granados
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J 2023; 290:878-891. [PMID: 34923749 DOI: 10.1111/febs.16330] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The blood-retina barrier (BRB) is the term used to define the properties of the retinal capillaries and the retinal pigment epithelium (RPE), which separate the systemic circulation from the retina. More specifically, the inner blood-retina barrier (iBRB) is used to describe the properties of the endothelial cells that line the microvasculature of the inner retina, while the outer blood-retina barrier (oBRB) refers to the properties of the RPE cells that separate the fenestrated choriocapillaris from the retina. The BRB is not a fixed structure; rather, it is dynamic, with its components making unique contributions to its function and structural integrity, and therefore the retina. For example, while tight junction (TJ) proteins between retinal endothelial cells are the key molecular structures in the maintenance of the iBRB, other cell types surrounding endothelial cells are also important. In fact, this overall structure is termed the neurovascular unit (NVU). The integrity of the BRB is crucial in the maintenance of a 'dry', tightly regulated retinal microenvironment through the regulation of transcellular and paracellular transport. Specifically, breakdown of TJs can result in oedema formation, a hallmark feature of many retinal diseases. Here, we will describe the oBRB briefly, with a more in-depth focus on the structure and function of the iBRB in health and diseased states. Finally, the contribution of the BRB to the pathophysiology of age-related macular degeneration (AMD), diabetic retinopathy (DR) and other rarer retinal diseases will be discussed.
Collapse
Affiliation(s)
- Fionn O'Leary
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Xin C, Jin D, Li R, Wang D, Ren Z, Liu B, Chen C, Li L, Liu S, Xu B, Zhang Y, Hu Y, Li J, Zhang L, Wu D, Chu J. Rapid and Multimaterial 4D Printing of Shape-Morphing Micromachines for Narrow Micronetworks Traversing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202272. [PMID: 35983631 DOI: 10.1002/smll.202202272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Micromachines with high environmental adaptability have the potential to deliver targeted drugs in complex biological networks, such as digestive, neural, and vascular networks. However, the low processing efficiency and single processing material of current 4D printing methods often limit the development and application of shape-morphing micromachines (SMMs). Here, two 4D printing strategies are proposed to fabricate SMMs with pH-responsive hydrogels for complex micro-networks traversing. On the one hand, the 3D vortex light single exposure technique can rapidly fabricate a tubular SMM with controllable size and geometry within 0.1 s. On the other hand, the asymmetric multimaterial direct laser writing (DLW) method is used to fabricate SMMs with designable 3D structures composed of hydrogel and platinum nanoparticles (Pt NPs). Based on the presence of ferroferric oxide (Fe3 O4 ) and Pt NPs in the SMMs, efficient magnetic, bubble, and hybrid propulsion modes are achieved. Finally, it is demonstrated that the spatial shape conversion capabilities of these SMMs can be used for narrow micronetworks traversing, which will find potential applications in targeted cargo delivery in microcapillaries.
Collapse
Affiliation(s)
- Chen Xin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, 999077, China
| | - Rui Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dawei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Zhongguo Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Bingrui Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Longfu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Shunli Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yachao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, 999077, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Garcia C, Compagnon B, Poëtte M, Gratacap MP, Lapébie FX, Voisin S, Minville V, Payrastre B, Vardon-Bounes F, Ribes A. Platelet Versus Megakaryocyte: Who Is the Real Bandleader of Thromboinflammation in Sepsis? Cells 2022; 11:1507. [PMID: 35563812 PMCID: PMC9104300 DOI: 10.3390/cells11091507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are mainly known for their key role in hemostasis and thrombosis. However, studies over the last two decades have shown their strong implication in mechanisms associated with inflammation, thrombosis, and the immune system in various neoplastic, inflammatory, autoimmune, and infectious diseases. During sepsis, platelets amplify the recruitment and activation of innate immune cells at the site of infection and contribute to the elimination of pathogens. In certain conditions, these mechanisms can lead to thromboinflammation resulting in severe organ dysfunction. Here, we discuss the interactions of platelets with leukocytes, neutrophil extracellular traps (NETs), and endothelial cells during sepsis. The intrinsic properties of platelets that generate an inflammatory signal through the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome are discussed. As an example of immunothrombosis, the implication of platelets in vaccine-induced immune thrombotic thrombocytopenia is documented. Finally, we discuss the role of megakaryocytes (MKs) in thromboinflammation and their adaptive responses.
Collapse
Affiliation(s)
- Cédric Garcia
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Baptiste Compagnon
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Michaël Poëtte
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - François-Xavier Lapébie
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Sophie Voisin
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
| | - Vincent Minville
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Bernard Payrastre
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| | - Fanny Vardon-Bounes
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
- Pôle Anesthésie-Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France;
| | - Agnès Ribes
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (C.G.); (S.V.); (B.P.)
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm UMR1297 and Université Toulouse 3, 31024 Toulouse, France; (B.C.); (M.P.); (M.-P.G.); (F.V.-B.)
| |
Collapse
|
12
|
Mendelson AA, Ho E, Scott S, Vijay R, Hunter T, Milkovich S, Ellis CG, Goldman D. Capillary module hemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis. J Physiol 2022; 600:1867-1888. [DOI: 10.1113/jp282342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Asher A Mendelson
- Department of Medicine Section of Critical Care Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Edward Ho
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Shayla Scott
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Raashi Vijay
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Timothy Hunter
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Christopher G Ellis
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Daniel Goldman
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- School of Biomedical Engineering Western University London Ontario Canada
| |
Collapse
|
13
|
Pape T, Hunkemöller AM, Kümpers P, Haller H, David S, Stahl K. Targeting the "sweet spot" in septic shock - A perspective on the endothelial glycocalyx regulating proteins Heparanase-1 and -2. Matrix Biol Plus 2021; 12:100095. [PMID: 34917926 PMCID: PMC8669377 DOI: 10.1016/j.mbplus.2021.100095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening syndrome caused by a pathological host response to an infection that eventually, if uncontrolled, leads to septic shock and ultimately, death. In sepsis, a massive aggregation of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) cause a cytokine storm. The endothelial glycocalyx (eGC) is a gel like layer on the luminal side of the endothelium that consists of proteoglycans, glycosaminoglycans (GAG) and plasma proteins. It is synthesized by endothelial cells and plays an active role in the regulation of inflammation, permeability, and coagulation. In sepsis, early and profound injury of the eGC is observed and circulating eGC components correlate directly with clinical severity and outcome. The activity of the heparan sulfate (HS) specific glucuronidase Heparanase-1 (Hpa-1) is elevated in sepsis, resulting in shedding of heparan sulfate (HS), a main GAG of the eGC. HS induces endothelial barrier breakdown and accelerates systemic inflammation. Lipopolysaccharide (LPS), a PAMP mainly found on the surface of gram-negative bacteria, activates TLR-4, which results in cytokine production and further activation of Hpa-1. Hpa-1 shed HS fragments act as DAMPs themselves, leading to a vicious cycle of inflammation and end-organ dysfunction such as septic cardiomyopathy and encephalopathy. Recently, Hpa-1's natural antagonist, Heparanase-2 (Hpa-2) has been identified. It has no intrinsic enzymatic activity but instead acts by reducing inflammation. Hpa-2 levels are reduced in septic mice and patients, leading to an acquired imbalance of Hpa-1 and Hpa-2 paving the road towards a therapeutic intervention. Recently, the synthetic antimicrobial peptide 19-2.5 was described as a promising therapy protecting the eGC by inhibition of Hpa-1 activity and HS shed fragments in animal studies. However, a recombinant Hpa-2 therapy does not exist to the present time. Therapeutic plasma exchange (TPE), a modality already tested in clinical practice, effectively removes injurious mediators, e.g., Hpa-1, while replacing depleted protective molecules, e.g., Hpa-2. In critically ill patients with septic shock, TPE restores the physiological Hpa-1/Hpa-2 ratio and attenuates eGC breakdown. TPE results in a significant improvement in hemodynamic instability including reduced vasopressor requirement. Although promising, further studies are needed to determine the therapeutic impact of TPE in septic shock.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Maria Hunkemöller
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Drost CC, Rovas A, Kümpers P. Protection and rebuilding of the endothelial glycocalyx in sepsis - Science or fiction? Matrix Biol Plus 2021; 12:100091. [PMID: 34877522 PMCID: PMC8633034 DOI: 10.1016/j.mbplus.2021.100091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial glycocalyx (eGC), a delicate carbohydrate-rich structure lining the luminal surface of the vascular endothelium, is vital for maintenance of microvascular homeostasis. In sepsis, damage of the eGC triggers the development of vascular hyperpermeability with consecutive edema formation and organ failure. While there is evidence that protection or rebuilding of the eGC might counteract sepsis-induced vascular leakage and improve outcome, approved therapeutics are not yet available. This narrative review aims to outline possible therapeutic strategies to ameliorate organ dysfunction caused by eGC impairment.
Collapse
Affiliation(s)
- Carolin Christina Drost
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
15
|
Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021; 35:1291-1307. [PMID: 33637016 DOI: 10.1089/ars.2021.0027] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Under homeostatic conditions, the endothelium dynamically regulates vascular barrier function, coagulation pathways, leukocyte adhesion, and vasomotor tone. During sepsis and acute inflammation, endothelial cells (ECs) undergo multiple phenotypic and functional modifications that are initially adaptive but eventually become harmful, leading to microvascular dysfunction and multiorgan failure. Critical Issues and Recent Advances: Sepsis unbalances the redox homeostasis toward a pro-oxidant state, characterized by an excess production of reactive oxygen species and reactive nitrogen species, mitochondrial dysfunction, and a breakdown of antioxidant systems. In return, oxidative stress (OS) alters multiple EC functions and promotes a proinflammatory, procoagulant, and proadhesive phenotype. The OS also induces glycocalyx deterioration, cell death, increased permeability, and impaired vasoreactivity. Thus, during sepsis, the ECs are both a significant source and one of the main targets of OS. Future Directions: This review aims at covering the current understanding of the role of OS in the endothelial adaptive or maladaptive multifaceted response to sepsis and to outline the therapeutic potential and issues of targeting OS and endothelial dysfunction during sepsis and septic shock. One of the many challenges in the management of sepsis is now based on the detection and correction of these anomalies of endothelial function.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
16
|
Zou Z, Li L, Schäfer N, Huang Q, Maegele M, Gu Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J Neuroinflammation 2021; 18:134. [PMID: 34126995 PMCID: PMC8204552 DOI: 10.1186/s12974-021-02192-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China
| | - Nadine Schäfer
- Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany. .,Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany.
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.
| |
Collapse
|
17
|
Khoder-Agha F, Kietzmann T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol 2021; 42:101888. [PMID: 33602616 PMCID: PMC8113034 DOI: 10.1016/j.redox.2021.101888] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) carry out prime physiological roles as intracellular signaling agents, yet pathologically high concentrations of ROS cause irreversible damage to biomolecules, alter cellular programs and contribute to various diseases. While decades of intensive research have identified redox-related patterns and signaling pathways, very few addressed how the glycosylation machinery senses and responds to oxidative stress. A common trait among ROS and glycans residing on glycoconjugates is that they are both highly dynamic, as they are quickly fine-tuned in response to stressors such as inflammation, cancer and infectious diseases. On this account, the delicate balance of the redox potential, which is tightly regulated by dozens of enzymes including NOXs, and the mitochondrial electron transport chain as well as the fluidity of glycan biosynthesis resulting from the cooperation of glycosyltransferases, glycosidases, and nucleotide sugar transporters, is paramount to cell survival. Here, we review the broad spectrum of the interplay between redox changes and glycosylation with respect to their principle consequences on human physiology.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| |
Collapse
|
18
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
19
|
Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand 2021; 65:590-606. [PMID: 33595101 DOI: 10.1111/aas.13797] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium. METHODS We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions. We also searched for evidence of a relationship between plasma concentrations and the thickness of the endothelial glycocalyx layer as obtained by imaging methods. RESULTS Out of 3,454 publications, we identified 228 that met our inclusion criteria. The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and trauma are most frequently studied, and comprise approximately 40 publications. They usually report 3-4-foldt increased levels of glycocalyx degradation products, most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery and transplantations are most likely to involve elevations of glycocalyx degradation products. Structural assessment using imaging methods show thinning of the endothelial glycocalyx layer in cardiovascular conditions and during major surgery, but thinning does not always correlate with the plasma concentrations of glycocalyx products. The few structural assessments performed do not currently support that capillary permeability is increased when the plasma levels of glycocalyx fragments in plasma are increased. CONCLUSIONS Shedding of glycocalyx components is a ubiquitous process that occurs during both acute and chronic inflammation with no sensitivity or specificity for a specific disease or condition.
Collapse
Affiliation(s)
- Robert G. Hahn
- Research UnitSödertälje Hospital Södertälje Sweden
- Karolinska Institute at Danderyds Hospital (KIDS) Stockholm Sweden
| | - Vasu Patel
- Department of Internal Medicine Northwestern Medicine McHenry Hospital McHenry IL USA
| | - Randal O. Dull
- Department of Anesthesiology, Pathology, Physiology, Surgery University of ArizonaCollege of Medicine Tucson AZ USA
| |
Collapse
|
20
|
Rovas A, Sackarnd J, Rossaint J, Kampmeier S, Pavenstädt H, Vink H, Kümpers P. Identification of novel sublingual parameters to analyze and diagnose microvascular dysfunction in sepsis: the NOSTRADAMUS study. Crit Care 2021; 25:112. [PMID: 33741036 PMCID: PMC7980588 DOI: 10.1186/s13054-021-03520-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background The availability of handheld, noninvasive sublingual video-microscopes allows for visualization of the microcirculation in critically ill patients. Recent studies demonstrate that reduced numbers of blood-perfused microvessels and increased penetration of erythrocytes into the endothelial glycocalyx are essential components of microvascular dysfunction. The aim of this study was to identify novel microvascular variables to determine the level of microvascular dysfunction in sepsis and its relationship with clinical variables. Methods This observational, prospective, cross-sectional study included 51 participants, of which 34 critically ill sepsis patients were recruited from intensive care units of a university hospital. Seventeen healthy volunteers served as controls. All participants underwent sublingual videomicroscopy by sidestream darkfield imaging. A new developed version of the Glycocheck™ software was used to quantify vascular density, perfused boundary region (PBR-an inverse variable of endothelial glycocalyx dimensions), red blood cell (RBC) velocity, RBC content, and blood flow in sublingual microvessels with diameters between 4 and 25 µm. Results A detailed analysis of adjacent diameter classes (1 µm each) of vessels between 4 and 25 µm revealed a severe reduction of vascular density in very small capillaries (5–7 µm), which correlated with markers of sepsis severity. Analysis of RBC velocity (VRBC) revealed a strong dependency between capillary and feed vessel VRBC in sepsis patients (R2 = 0.63, p < 0.0001) but not in healthy controls (R2 = 0.04, p = 0.43), indicating impaired capillary (de-)recruitment in sepsis. This finding enabled the calculation of capillary recruitment and dynamic capillary blood volume (CBVdynamic). Moreover, adjustment of PBR to feed vessel VRBC further improved discrimination between sepsis patients and controls by about 50%. By combining these dynamic microvascular and glycocalyx variables, we developed the microvascular health score (MVHSdynamic™), which decreased from 7.4 [4.6–8.7] in controls to 1.8 [1.4–2.7] in sepsis patients (p < 0.0001) and correlated with sepsis severity. Conclusion We introduce new important diameter-specific quantification and differentiated analysis of RBC kinetics, a key to understand microvascular dysfunction in sepsis. MVHSdynamic, which has a broad bandwidth to detect microvascular (dys-) function, might serve as a valuable tool to detect microvascular impairment in critically ill patients. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03520-w.
Collapse
Affiliation(s)
- Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jan Sackarnd
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Stefanie Kampmeier
- Institute of Hygiene, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
21
|
Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021; 9:e14726. [PMID: 33523608 PMCID: PMC7849453 DOI: 10.14814/phy2.14726] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Leif Østergaard
- Neuroradiology Research UnitSection of NeuroradiologyDepartment of RadiologyAarhus University HospitalAarhusDenmark
- Center of Functionally Integrative NeuroscienceDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
22
|
Abstract
Endothelial cells (ECs) are vascular, nonconventional immune cells that play a major role in the systemic response after bacterial infection to limit its dissemination. Triggered by exposure to pathogens, microbial toxins, or endogenous danger signals, EC responses are polymorphous, heterogeneous, and multifaceted. During sepsis, ECs shift toward a proapoptotic, proinflammatory, proadhesive, and procoagulant phenotype. In addition, glycocalyx damage and vascular tone dysfunction impair microcirculatory blood flow, leading to organ injury and, potentially, life-threatening organ failure. This review aims to cover the current understanding of the EC adaptive or maladaptive response to acute inflammation or bacterial infection based on compelling recent basic research and therapeutic clinical trials targeting microvascular and endothelial alterations during septic shock.
Collapse
Affiliation(s)
- Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Can Ince
- Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Hafid Ait-Oufella
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,INSERM U970, Cardiovascular Research Center, Université de Paris, Paris, France
| |
Collapse
|
23
|
Alves NG, Trujillo AN, Breslin JW, Yuan SY. Sphingosine-1-Phosphate Reduces Hemorrhagic Shock and Resuscitation-Induced Microvascular Leakage by Protecting Endothelial Mitochondrial Integrity. Shock 2020; 52:423-433. [PMID: 30339634 DOI: 10.1097/shk.0000000000001280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive microvascular permeability is a serious complication following hemorrhagic shock and resuscitation (HSR). S1P has been shown to ameliorate microvascular leakage in a model of combined alcohol intoxication and HSR. In the current study, we tested the hypothesis that S1P reduces HSR-induced microvascular leakage by preserving endothelial cell junctional structure and the endothelial glycocalyx through the protection of mitochondrial function. We used an established in vivo rat model of conscious HSR and assessed microvascular leakage, endothelial glycocalyx integrity, and mitochondrial function by intravital microscopy. Junctional integrity in the mesenteric microcirculation was assessed by confocal microscopy. Cultured rat intestinal microvascular endothelial cells monolayers were used to test the ability of S1P to protect against glycocalyx shedding and endothelial barrier dysfunction caused by direct disruption of mitochondrial integrity due to inhibition of mitochondrial complex III. The results show that in vivo, S1P protects against HSR-induced hyperpermeability, preserves the expression of adherens junctional proteins, and protects against glycocalyx degradation. S1P treatment during HSR also protects against mitochondrial membrane depolarization. S1P also protects against mitochondrial dysfunction-induced endothelial barrier dysfunction and glycocalyx degradation by acting through mitochondrial complex III. Taken together, our data indicate that S1P protects against HSR-induced mitochondrial dysfunction in endothelial cells, which in turn improves the structure of the endothelial glycocalyx after HSR and allows for better junctional integrity to the prevention of excess microvascular permeability.
Collapse
Affiliation(s)
- Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | | |
Collapse
|
24
|
Protective effects of plasma products on the endothelial-glycocalyx barrier following trauma-hemorrhagic shock: Is sphingosine-1 phosphate responsible? J Trauma Acute Care Surg 2020; 87:1061-1069. [PMID: 31453986 DOI: 10.1097/ta.0000000000002446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Plasma is an important component of resuscitation after trauma and hemorrhagic shock (T/HS). The specific plasma proteins and the impact of storage conditions are uncertain. Utilizing a microfluidic device system, we studied the effect of various types of plasma on the endothelial barrier function following T/HS. METHODS Human umbilical vein endothelial cells (HUVEC) were cultured in microfluidic plates. The microfluidic plates were subjected to control or shock conditions (hypoxia/reoxygenation + epinephrine, 10 μM). Fresh plasma, 1 day thawed plasma, 5-day thawed plasma and lyophilized plasma were then added. Supplementation of sphingosine-1 phosphate (S-1P) was done in a subset of experiments. Effect on the endothelial glycocalyx was indexed by shedding of syndecan-1 and hyaluronic acid. Endothelial injury/activation was indexed by soluble thrombomodulin, tissue plasminogen activator, plasminogen activator inhibitor-1. Vascular permeability determined by the ratio of angiopoietin-2 to angiopoietin-1. Concentration of S-1P and adiponectin in the different plasma groups was measured. RESULTS Human umbilical vein endothelial cells exposed to shock conditions increased shedding of syndecan-1 and hyaluronic acid. Administration of the various types of plasma decreased shedding, except for 5-day thawed plasma. Shocked HUVEC cells demonstrated a profibrinolytic phenotype, this normalized with all plasma types except for 5-day thawed plasma. The concentration of S-1P was significantly less in the 5-day thawed plasma compared with the other plasma types. Addition of S-1P to 5-day thawed plasma returned the benefits lost with storage. CONCLUSION A biomimetic model of the microcirculation following T/HS demonstrated endothelial glycocalyx and endothelial cellular injury/activation as well as a profibrinolytic phenotype. These effects were abrogated by all plasma products except the 5-day thawed plasma. Plasma thawed longer than 5 days had diminished S1-P concentrations. Our data suggest that S1-P protein is critical to the protective effect of plasma products on the endothelial-glycocalyx barrier following T/HS.
Collapse
|
25
|
Can Endothelial Glycocalyx Be a Major Morphological Substrate in Pre-Eclampsia? Int J Mol Sci 2020; 21:ijms21093048. [PMID: 32357469 PMCID: PMC7246531 DOI: 10.3390/ijms21093048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Today pre-eclampsia (PE) is considered as a disease of various theories; still all of them agree that endothelial dysfunction is the leading pathogenic factor. Endothelial dysfunction is a sequence of permanent immune activation, resulting in the change of both the phenotype and the functions of an endothelial cell and of the extracellular layer associated with the cell membrane—endothelial glycocalyx (eGC). Numerous studies demonstrate that eGC mediates and regulates the key functions of endothelial cells including regulation of vascular tone and thromboresistance; and these functions are disrupted during PE. Taking into account that eGC and its components undergo alterations under pathological conditions leading to endothelial activation, it is supposed that eGC plays a certain role in pathogenesis of PE. Envisaging the eGC damage as a key factor of PE, might be a new approach to prevention, treatment, and rehabilitation of patients with PE. This approach could include the development of drugs protecting eGC and promoting regeneration of this structure. Since the issue of PE is far from being solved, any effort in this direction might be valuable.
Collapse
|
26
|
Abstract
BACKGROUND Endothelial cells (ECs) sense the forces from blood flow through the glycocalyx, a carbohydrate rich luminal surface layer decorating most cells, and through forces transmitted through focal adhesions (FAs) on the abluminal side of the cell. OBJECTIVES This perspective paper explores a complementary hypothesis, that glycocalyx molecules on the abluminal side of the EC between the basement membrane and the EC membrane, occupying the space outside of FAs, work in concert with FAs to sense blood flow-induced shear stress applied to the luminal surface. RESULTS First, we summarize recent studies suggesting that the glycocalyx repels the plasma membrane away from the basement membrane, while integrin molecules attach to extracellular matrix (ECM) ligands. This coordinated attraction and repulsion results in the focal nature of integrin-mediated adhesion making the abluminal glycocalyx a participant in mechanotransduction. Further, the glycocalyx mechanically links the plasma membrane to the basement membrane providing a mechanism of force transduction when the cell deforms in the peri-FA space. To determine if the membrane might deform against a restoring force of an elastic abluminal glycocalyx in the peri-FA space we present some analysis from a multicomponent elastic finite element model of a sheared and focally adhered endothelial cell whose abluminal topography was assessed using quantitative total internal reflection fluorescence microscopy with an assumption that glycocalyx fills the space between the membrane and extracellular matrix. CONCLUSIONS While requiring experimental verification, this analysis supports the hypothesis that shear on the luminal surface can be transmitted to the abluminal surface and deform the cell in the vicinity of the focal adhesions, with the magnitude of deformation depending on the abluminal glycocalyx modulus.
Collapse
Affiliation(s)
- Peter J Butler
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Amit Bhatnagar
- Department of Biomedical Engineering and Intercollege Graduate Program of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Yang J, LeBlanc ME, Cano I, Saez-Torres KL, Saint-Geniez M, Ng YS, D'Amore PA. ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface. J Biol Chem 2020; 295:6641-6651. [PMID: 32193206 DOI: 10.1074/jbc.ra119.011192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte-EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.
Collapse
Affiliation(s)
- Jinling Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Michelle E LeBlanc
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kahira L Saez-Torres
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yin-Shan Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02115 .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Arfian N, Setyaningsih WAW, Romi MM, Sari DCR. Heparanase upregulation from adipocyte associates with inflammation and endothelial injury in diabetic condition. BMC Proc 2019; 13:17. [PMID: 31890010 PMCID: PMC6912933 DOI: 10.1186/s12919-019-0181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes Mellitus (DM) is one of the metabolic diseases which leads to fatty tissue injury, and consequently inducing lipotoxicity and cellular senescence. This condition contributes to endothelial dysfunction with chronic inflammation and organ damage. Heparanase which has a role in disrupting endothelial surface layer (glycocalyx) may promote endothelial Nitric oxide synthase (eNOS) reduction and inflammation. However, its relationship with DM and organ injury has not been fully elucidated yet. This study aimed to determine how heparanase from fatty tissue may contribute to endothelial dysfunction and inflammation in patients with hyperglycemia and in a hyperglycemia model in rats. Methods This population study with a cross-sectional design was conducted with 28 subjects without diagnosis and medication of DM. Fasting blood glucose levels, lipid profile, heparanase protein, MCP-1 protein and HbA1c were quantified. In vivo study was performed with a diabetic model in Wistar rats induced with streptozotocin 60 mg/kg body weight by single intraperitoneal injection. Rats were euthanized after 1 month (DM1 group, n = 6), 2 months (DM2 group, n = 6) and 4 months (DM4 group, n = 6). White Adipose Tissue (WAT) was harvested from visceral fat. Real Time and Reverse Transcriptase-PCR (RT-PCR) was done to quantify expressions of heparanase, MCP-1, eNOS, IL-6 and p-16 (senescence). Immunostaining was performed to localize MCP-1 and macrophage (CD68). Western blot tests were used to examine eNOS, MCP-1 and heparanase protein expression. Results This study revealed associations between blood glucose levels with higher HbA1c, LDL, cholesterol, heparanase and MCP-1. The in vivo study also revealed lipid levels as the source of Heparanase and MCP-1 mRNA and protein expressions. This finding was associated with inflammation, cellular senescence and macrophage infiltration in fat tissue based on immunostaining and qRT-PCR analysis. RT-PCR revealed significantly lower expression of eNOS and higher expression of IL-6 in DM groups compared to the control group. Conclusion Heparanase upregulation in fat tissue was associated with endothelial injury and inflammation in hyperglycemia conditions.
Collapse
Affiliation(s)
- Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
29
|
Lipowsky HH. Relative shedding of glycosaminoglycans from the endothelial glycocalyx during inflammation and their contribution to stiffness of the glycocalyx. Biorheology 2019; 56:191-205. [DOI: 10.3233/bir-190225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
The protective effect of hydroxyethyl starch solution on the glycocalyx layer in an acute hemorrhage mouse model. J Anesth 2019; 34:36-46. [PMID: 31617003 PMCID: PMC6992552 DOI: 10.1007/s00540-019-02692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Fluid therapy focused on glycocalyx (GCX) protection in hemorrhagic shock is a current focus of research. Hydroxyethyl starch (HES) solution is commonly used for fluid resuscitation; however, its effects on the GCX remain unclear. The primary aim of this study was to explore the protective effect of HES130 in maintaining GCX thickness and reducing plasma syndecan-1 expression. METHODS An acute hemorrhage murine model with the dorsal skin chambers was used to measure GCX thickness and to evaluate vascular permeability. Groups of mice were treated with normal saline (NS), albumin (NS-A), HES130 (NS-V), or no exsanguination or infusion (C). We measured syndecan-1 plasma concentrations, performed blood gas analysis, and analyzed the 7-day cumulative mortality. RESULTS GCX thickness in NS mice was significantly reduced compared to that in group C, but no other groups showed a difference compared to group C. The plasma concentration of syndecan-1 was significantly higher in NS mice than in group C. There were no significant differences in the fluorescence intensity of dextran in the interstitial space. HES70 leakage was suppressed in NS-V mice compared to those in other groups. HES70 was localized to the inner vessel wall in C, NS, and NS-A mice, but not in group NS-V. Blood gas analysis indicated that pH and lactate showed the greatest improvements in NS-V mice. The 7-day cumulative mortality rate was the highest in group NS. CONCLUSION Resuscitation with HES130 protected the GCX and suppressed vascular permeability of HES70 during early stages of acute massive hemorrhage.
Collapse
|
31
|
Smart L, Macdonald SP, Bosio E, Fatovich D, Neil C, Arendts G. Bolus therapy with 3% hypertonic saline or 0.9% saline in emergency department patients with suspected sepsis: A pilot randomised controlled trial. J Crit Care 2019; 52:33-39. [DOI: 10.1016/j.jcrc.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
|
32
|
Mensah SA, Harding IC, Zhang M, Jaeggli MP, Torchilin VP, Niedre MJ, Ebong EE. Metastatic cancer cell attachment to endothelium is promoted by endothelial glycocalyx sialic acid degradation. AIChE J 2019; 65. [PMID: 31367063 PMCID: PMC6668365 DOI: 10.1002/aic.16634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While it is known that cancer cell interactions with vascular endothelial cells (ECs) drive metastatic cancer cell extravasation from blood vessels into secondary tumor sites, the mechanisms of action are still poorly understood. Here, we tested the hypothesis that neuraminidase‐induced degradation of EC surface glycocalyx (GCX), particularly the sialic acid (SA) residue components of the GCX, will substantially increase metastatic cancer cell attachment to ECs. To our knowledge, our study is the first to isolate the role of GCX SA residues in cancer cell attachment to the endothelium, which were found to be differentially affected by the presence of neuraminidase and to indeed regulate metastatic cancer cell homing to ECs. We hope that this work will eventually translate to identification of EC GCX‐based cancer markers that can be therapeutically targeted to hinder the progression of metastasis.
Collapse
Affiliation(s)
- Solomon A. Mensah
- Bioengineering Department Northeastern University Boston Massachusetts
| | - Ian C. Harding
- Bioengineering Department Northeastern University Boston Massachusetts
| | - Michelle Zhang
- Chemical Engineering Department Northeastern University Boston Massachusetts
| | | | | | - Mark J. Niedre
- Bioengineering Department Northeastern University Boston Massachusetts
- Electrical and Computer Engineering Department Northeastern University Boston Massachusetts
| | - Eno E. Ebong
- Bioengineering Department Northeastern University Boston Massachusetts
- Chemical Engineering Department Northeastern University Boston Massachusetts
- Neuroscience Department Albert Einstein College of Medicine New York New York
| |
Collapse
|
33
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
34
|
Offeddu GS, Haase K, Gillrie MR, Li R, Morozova O, Hickman D, Knutson CG, Kamm RD. An on-chip model of protein paracellular and transcellular permeability in the microcirculation. Biomaterials 2019; 212:115-125. [PMID: 31112823 DOI: 10.1016/j.biomaterials.2019.05.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Recent therapeutic success of large-molecule biologics has led to intense interest in assays to measure with precision their transport across the vascular endothelium and into the target tissue. Most current in vitro endothelial models show unrealistically large permeability coefficients due to a non-physiological paracellular transport. Thus, more advanced systems are required to better recapitulate and discern the important contribution of transcellular transport (transcytosis), particularly of pharmaceutically-relevant proteins. Here, a robust platform technology for the measurement of transport through a human endothelium is presented, which utilizes in vitro microvascular networks (MVNs). The self-assembled MVNs recapitulate the morphology and junctional complexity of in vivo capillaries, and express key endothelial vesicular transport proteins. This results in measured permeabilities to large molecules comparable to those observed in vivo, which are orders of magnitude lower than those measured in transwells. The permeability of albumin and immunoglobulin G (IgG), biopharmaceutically-relevant proteins, is shown to occur primarily via transcytosis, with passage of IgG regulated by the receptor FcRn. The physiological relevance of the MVNs make it a valuable tool to assess the distribution of biopharmaceuticals into tissues, and may be used to prioritize candidate molecules from this increasingly important class of therapeutics.
Collapse
Affiliation(s)
- Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristina Haase
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark R Gillrie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olga Morozova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Amgen Research, Amgen Inc., 360 Binney Street, Cambridge, MA, USA
| | - Dean Hickman
- Amgen Research, Amgen Inc., 360 Binney Street, Cambridge, MA, USA
| | | | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Complement-mediated Damage to the Glycocalyx Plays a Role in Renal Ischemia-reperfusion Injury in Mice. Transplant Direct 2019; 5:e341. [PMID: 30993186 PMCID: PMC6445655 DOI: 10.1097/txd.0000000000000881] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. Methods Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. Results Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. Conclusions Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.
Collapse
|
36
|
Microfluidics: A high-throughput system for the assessment of the endotheliopathy of trauma and the effect of timing of plasma administration on ameliorating shock-associated endothelial dysfunction. J Trauma Acute Care Surg 2019; 84:575-582. [PMID: 29287059 DOI: 10.1097/ta.0000000000001791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early resuscitation after trauma-hemorrhagic shock with plasma rather than crystalloid may ameliorate systemic endothelial cell (EC) injury and dysfunction (endotheliopathy of trauma). We postulated that endothelial-lined microfluidic networks would be a useful platform to study the EC activation/injury under flow conditions to mimic trauma-hemorrhagic shock. We then used the microfluidic system to further characterize the protective effects and optimal timing of plasma infusion on the development of "endotheliopathy of trauma" in our model. METHODS Human umbilical vein ECs were added to microfluidic flow channels, and after overnight perfusion, the cells were subsequently treated with epinephrine and exposed to hypoxia reoxygenation. Media alone or 5% human plasma was perfused either immediately following treatment (early plasma) or after a 3-hour delay (late plasma). Glycocalyx injury was indexed by fluorescent microscopy and shedding of syndecan 1 and hyaluronic acid. Endothelial markers of activation/injury were also measured and included soluble thrombomodulin, tissue plasminogen activator, plasminogen activator inhibitor 1, and angiopoietins 1 and 2. Sheddase activity was indexed by ADAM metallopeptidase domain 17. RESULTS Endothelial cell and glycocalyx barrier function studies using microfluidic devices are a more realistic model of the glycocalyx endothelial vascular barrier than studies performed on ECs using static (no flow) conditions. Conditions that mimic the internal milieu following hemorrhagic shock result in glycocalyx degradation and an inflammatory prothrombotic response by the endothelium. "Early" use of plasma in the microfluidic channel perfusate mitigated against these effects. Later perfusion with plasma had no protective effect. CONCLUSIONS A temporal effect to plasma administration was noted in our biomimetic model of the endothelial vascular barrier following shock. This suggests a protective role to "early" plasma administration in the severely injured patient.
Collapse
|
37
|
Ali MM, Mahmoud AM, Le Master E, Levitan I, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol 2019; 316:H647-H663. [PMID: 30632766 DOI: 10.1152/ajpheart.00090.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycocalyx is crucial for normal endothelial function. It also tethers extracellular superoxide dismutase (SOD3), which protects the endothelium against oxidative damage. Proteolytic enzymes [matrix metalloproteinases (MMPs)] are capable of disrupting endothelial cell surface proteins, such as syndecans, resulting in derangements of the endothelial glycocalyx. We sought to test the role of MMPs in oxidative stress-mediated disruption of the endothelial glycocalyx and examine the effect of pharmacological inhibition of MMPs on mitigating this detrimental effect. We also examined the role of histone deacetylase (HDAC) in the oxidative stress-mediated MMP induction and glycocalyx remodeling. Oxidative stress was experimentally induced in human adipose microvascular endothelial cells using H2O2 and buthionine sulfoximine in the presence and absence of potent MMP and HDAC inhibitors. H2O2 and buthionine sulfoximine resulted in a notable loss of the endothelial glycocalyx; they also increased the expression and proteolytic activity of MMP-2 and MMP-9 and subsequently increased the shedding of syndecan-1 and SOD3 from the endothelial cell surface. MMP upregulation was accompanied by a decline in mRNA and protein levels of their inhibitors, tissue inhibitors of metalloproteinase (TIMPs; TIMP-1 and TIMP-3). Furthermore, oxidative stress induced HDAC activity. Inhibition of MMPs and HDAC reversed syndecan-1 and SOD3 shedding and maintained endothelial glycocalyx integrity. HDAC inhibition increased TIMP expression and reduced MMP expression and activity in endothelial cells. Our findings shed light on MMPs and HDAC as therapeutically targetable mechanisms in oxidative stress-induced glycocalyx remodeling. NEW & NOTEWORTHY Oxidative stress, a hallmark of many diseases, damages the endothelial glycocalyx, resulting in vascular dysfunction. Studying the mechanistic link between oxidative stress and endothelial glycocalyx derangements might help discover new therapeutic targets to preserve vascular function. In this study, we investigated the involvement of matrix metalloproteinases and histone deacetylase in oxidative stress-induced endothelial glycocalyx degradation.
Collapse
Affiliation(s)
- Mohamed M Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Elizabeth Le Master
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
38
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
39
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
40
|
Smart L, Bosio E, Macdonald SP, Dull R, Fatovich DM, Neil C, Arendts G. Glycocalyx biomarker syndecan-1 is a stronger predictor of respiratory failure in patients with sepsis due to pneumonia, compared to endocan. J Crit Care 2018; 47:93-98. [DOI: 10.1016/j.jcrc.2018.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022]
|
41
|
Tatara T. Contrasting effects of albumin and hydroxyethyl starch solutions on physical properties of sodium hyaluronate solution. Carbohydr Polym 2018; 201:60-64. [PMID: 30241859 DOI: 10.1016/j.carbpol.2018.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023]
Abstract
Hydroxyethyl starch (HES) solution reportedly sheds the endothelial surface layer (ESL) consisting of polysaccharide glycosaminoglycans, whereas albumin stabilizes the ESL. Here we compared the effects of albumin and HES (MW 130,000) solutions on the physical properties of sodium hyaluronate (NaHA, MW 1.3 × 106) solution, a constituent of the ESL. Partial specific volumes (v) and intrinsic viscosities ([η]) of NaHA in 0.15 M NaCl solution containing albumin or HES (1-3%) were calculated from densities and viscosities extrapolated at infinite dilutions. Flow activation energy (E) of 0.2% NaHA in phosphate-buffered saline containing albumin or HES was obtained from the temperature-dependence of viscosities. A 3% albumin solution decreased v of NaHA by 3% compared to HES. A 3% HES solution, but not albumin, decreased [η] of NaHA by 34%, and decreased E values by 11% compared to albumin. These findings suggest that HES locally restricts NaHA dispersion, whereas albumin contracts NaHA structure.
Collapse
Affiliation(s)
- Tsuneo Tatara
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
42
|
|
43
|
DellaValle B, Manresa-Arraut A, Hasseldam H, Stensballe A, Rungby J, Larsen A, Hempel C. Detection of Glycan Shedding in the Blood: New Class of Multiple Sclerosis Biomarkers? Front Immunol 2018; 9:1254. [PMID: 29915593 PMCID: PMC5994890 DOI: 10.3389/fimmu.2018.01254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is a devastating autoimmune disease, afflicting people in the prime of their lives. Presently, after initial clinical presentation, there are no reliable markers for whether a patient will develop MS, or whether their prognosis will be aggressive or relapsing–remitting. Furthermore, many MS patients do not respond to treatment. Thus, markers for diagnosis, prognosis, and treatment-responsiveness are lacking for a disease, where a precision medicine approach would be valuable. The glycocalyx (GLX) is the carbohydrate-rich outer surface of the blood vessel wall and is the first interaction between the blood and the vessel. We hypothesized that cleavage of the GLX may be an early stage predictor of immune attack, blood–brain barrier (BBB) breakdown, and disease severity in MS. Methods Two experimental models of MS, experimental autoimmune encephalitis (EAE), were included in this study. EAE was induced in C57BL/6J mice and Lewis rats, which were monitored for weight loss and clinical presentation in comparison to healthy controls. Plasma samples were obtained longitudinally from mice until peak disease severity and at peak disease severity in rats. Soluble GLX-associated glycosaminoglycans (GAG) and proteoglycans (PG) were detected in plasma samples. Results All animals receiving EAE emulsion developed fulminant EAE (100% penetrance). Increased plasma levels of chondroitin sulfate were detected before the onset of clinical symptoms and remained elevated at peak disease severity. Hyaluronic acid was increased at the height of the disease, whereas heparan sulfate was transiently increased during early stages only. By contrast, syndecans 1, 3, and 4 were detected in EAE samples as well as healthy controls, with no significant differences between the two groups. Discussion In this study, we present data supporting the shedding of the GLX as a new class of biomarker for MS. In particular, soluble, sugar-based GLX components are associated with disease severity in two models of MS, molecules that would not be detected in proteomics-based screens of MS patient samples. Patient studies are presently underway.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alba Manresa-Arraut
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hasseldam
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jørgen Rungby
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Endocrinology, Bispebjerg Hospital Copenhagen, Copenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark
| | - Casper Hempel
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
44
|
Barelli S, Alberio L. The Role of Plasma Transfusion in Massive Bleeding: Protecting the Endothelial Glycocalyx? Front Med (Lausanne) 2018; 5:91. [PMID: 29721496 PMCID: PMC5915488 DOI: 10.3389/fmed.2018.00091] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Massive hemorrhage is a leading cause of death worldwide. During the last decade several retrospective and some prospective clinical studies have suggested a beneficial effect of early plasma-based resuscitation on survival in trauma patients. The underlying mechanisms are unknown but appear to involve the ability of plasma to preserve the endothelial glycocalyx. In this mini-review, we summarize current knowledge on glycocalyx structure and function, and present data describing the impact of hemorrhagic shock and resuscitation fluids on glycocalyx. Animal studies show that hemorrhagic shock leads to glycocalyx shedding, endothelial inflammatory changes, and vascular hyper-permeability. In these animal models, plasma administration preserves glycocalyx integrity and functions better than resuscitation with crystalloids or colloids. In addition, we briefly present data on the possible plasma components responsible for these effects. The endothelial glycocalyx is increasingly recognized as a critical component for the physiological vasculo-endothelial function, which is destroyed in hemorrhagic shock. Interventions for preserving an intact glycocalyx shall improve survival of trauma patients.
Collapse
Affiliation(s)
- Stefano Barelli
- Division of Haematology and Central Haematology Laboratory, CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Haematology and Central Haematology Laboratory, CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Faculté de Biologie et Médecine, UNIL, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Toikkanen V, Rinne T, Nieminen R, Moilanen E, Laurikka J, Porkkala H, Tarkka M, Mennander AA. Aprotinin Impacts 8-Isoprostane after Coronary Artery Bypass Grafting. Scand J Surg 2018; 107:329-335. [PMID: 29628009 DOI: 10.1177/1457496918766720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS: The lungs participate in the modulation of the circulating inflammatory factors induced by coronary artery bypass grafting. We investigated whether aprotinin-which has been suggested to interact with inflammation-influences lung passage of key inflammatory factors after coronary artery bypass grafting. MATERIAL AND METHODS: A total of 40 patients undergoing coronary artery bypass grafting were randomized into four groups according to aprotinin dose: (1) high dose, (2) early low dose, (3) late low dose, and (4) without aprotinin. Pulmonary artery and radial artery blood samples were collected for the evaluation of calculated lung passage (pulmonary artery/radial artery) of the pro-inflammatory factors interleukin 6 and interleukin 8, 8-isoprostane, myeloperoxidase and the anti-inflammatory interleukin 10 immediately after induction of anesthesia (T1), 1 min after releasing aortic cross clamp (T2), 15 min after releasing aortic cross clamp (T3), 1 h after releasing aortic cross clamp (T4), and 20 h after releasing aortic cross clamp (T5). RESULTS: Pulmonary artery/radial artery 8-isoprostane increased in patients with high aprotinin dose as compared with lower doses (1.1 range 0.97 vs 0.9 range 1.39, p = 0.001). The main effect comparing high aprotinin dose with lower doses was significant (F(1, 38) = 7.338, p = 0.01, partial eta squared = 0.16) further supporting difference in the effectiveness of high aprotinin dose for pulmonary artery/radial artery 8-isoprostane. CONCLUSION: According to the pulmonary artery/radial artery equation, the impact of aprotinin on 8-isoprostane after coronary artery bypass grafting is dose dependent. Aprotinin may aid the lung passage of circulating factors toward a beneficial anti-inflammatory milieu.
Collapse
Affiliation(s)
- V Toikkanen
- 1 Department of Cardiothoracic Surgery, SDSKIR Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - T Rinne
- 2 Division of Cardiac Anesthesia, Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - R Nieminen
- 3 The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - E Moilanen
- 3 The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - J Laurikka
- 1 Department of Cardiothoracic Surgery, SDSKIR Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - H Porkkala
- 2 Division of Cardiac Anesthesia, Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - M Tarkka
- 1 Department of Cardiothoracic Surgery, SDSKIR Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - A A Mennander
- 1 Department of Cardiothoracic Surgery, SDSKIR Heart Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| |
Collapse
|
46
|
Ruane-O'Hora T, Markos F. The arteriolar glycocalyx plays a role in the regulation of blood flow in the iliac of the anaesthetised pig. Physiol Res 2018; 67:41-44. [PMID: 29137486 DOI: 10.33549/physiolres.933630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of the glycocalyx of arterial resistance vessels in regulating blood flow in vivo is not fully understood. Therefore, the effect of glycocalyx damage using two separate compounds, hyaluronidase and N-Formylmethionyl-leucyl-phenylalanine (fMLP), was evaluated in the iliac artery vascular bed of the anaesthetised pig. Blood flow and pressure were measured in the iliac, an adjustable snare was applied to the iliac above the pressure and flow measurement site to induce step decreases (3 occlusions at 3-4 min intervals were performed for each infusion) in blood flow, and hence iliac pressure, and vascular conductance (flow/pressure) was calculated. Saline, hyaluronidase (14 and 28 microg/ml/min), and fMLP (1 microM/min) were infused separately, downstream of the adjustable snare and their effect on arterial conductance assessed. Hyaluronidase at the higher infusion rate and fMLP both caused a reduction in arterial conductance, and hence an increase in blood flow resistance. In conclusion, the results show that glycocalyx damage causes an increase in resistance to blood flow in the iliac artery vascular bed.
Collapse
Affiliation(s)
- T Ruane-O'Hora
- Department of Physiology, University College Cork, Cork, Ireland.
| | | |
Collapse
|
47
|
Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model. J Vasc Surg 2018; 68:209S-221S.e2. [PMID: 29395422 DOI: 10.1016/j.jvs.2017.10.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Ischemia-reperfusion (I/R) injury is a major clinical problem linked to vascular surgery. Currently, no drugs to prevent or to treat I/R injury are approved for clinical use. C1 inhibitor (C1 INH) is known to reduce activation of the plasma cascade systems that are involved in the pathophysiologic process of I/R injury. The aim of this study was therefore to investigate the effect of C1 INH on complement deposition and endothelial cell activation in a rat model of hind limb I/R injury. METHODS Male Wistar rats (wild type, bred at the central animal facility, University of Bern), weighing 250 to 320 g, were used. The rats underwent 2-hour ischemia and 24-hour reperfusion by unilateral clamping of the femoral artery and additional use of a tourniquet. Five groups were divided according to intravenous treatment 5 minutes before ischemia: 50 IU/kg C1 INH (n = 5); 100 IU/kg C1 INH (n = 7); vehicle control (n = 5); nontreated control (n = 7); and normal, healthy control without intervention (n = 4). At the end, muscle edema, tissue viability, and histologic features were assessed. Deposition of immunoglobulin M, C1r, C4d, and fibrin and expression of plasminogen activator inhibitor 1, heparan sulfate (HS), E-selectin, and vascular cell adhesion molecule 1 were evaluated by fluorescence staining. In addition, high-mobility group box 1 protein was measured in plasma. RESULTS Edema formation was reduced by C1 INH at two dosages, mirrored by improved histologic injury scores and preserved muscle viability. Deposition of immunoglobulin M, C4d, and fibrin was significantly decreased by 100 IU/kg C1 INH compared with nontreated controls. Pretreatment with 100 IU/kg C1 INH also significantly reduced HS shedding and expression of plasminogen activator inhibitor 1 as well as plasma levels of high-mobility group box 1 protein. CONCLUSIONS Pretreatment with both 50 and 100 IU/kg C1 INH attenuated reperfusion injury of rat hind limbs. Pretreatment with 100 IU/kg also preserved the endothelial HS layer as well as the natural, profibrinolytic phenotype of the endothelium. Prevention of endothelial cell activation by C1 INH may therefore be a promising strategy to prevent I/R injury in the clinical setting of peripheral vascular diseases and elective surgery on extremities.
Collapse
|
48
|
Castro-Ferreira R, Cardoso R, Leite-Moreira A, Mansilha A. The Role of Endothelial Dysfunction and Inflammation in Chronic Venous Disease. Ann Vasc Surg 2018; 46:380-393. [DOI: 10.1016/j.avsg.2017.06.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
|
49
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
50
|
Smart L, Macdonald SP, Burrows S, Bosio E, Arendts G, Fatovich DM. Endothelial glycocalyx biomarkers increase in patients with infection during Emergency Department treatment. J Crit Care 2017; 42:304-309. [DOI: 10.1016/j.jcrc.2017.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/17/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022]
|