1
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
2
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
3
|
Litvinov IK, Belyaeva TN, Salova AV, Aksenov ND, Chelushkin PS, Solomatina AI, Tunik SP, Kornilova ES. The Dual Luminescence Lifetime pH/Oxygen Sensor: Evaluation of Applicability for Intravital Analysis of 2D- and 3D-Cultivated Human Endometrial Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15606. [PMID: 37958592 PMCID: PMC10650141 DOI: 10.3390/ijms242115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygenation of cells and tissues and acidification of the cellular endolysosomal system are among the major factors that ensure normal functioning of an organism and are violated in various pathologies. Recording of these parameters and their changes under various conditions is an important task for both basic research and clinical applications. In the present work, we utilized internalizable dual pH/O2 lifetime sensor (Ir-HSA-FITC) based on the covalent conjugation of human serum albumin (HSA) with fluorescein isothiocyanate (FITC) as pH sensor and an orthometalated iridium complex as O2 sensor. The probe was tested for simultaneous detection of acidification level and oxygen concentration in endolysosomes of endometrial mesenchymal stem/stromal cells (enMSCs) cultivated as 2D monolayers and 3D spheroids. Using a combined FLIM/PLIM approach, we found that due to high autofluorescence of enMSCs FITC lifetime signal in control cells was insufficient to estimate pH changes. However, using flow cytometry and confocal microscopy, we managed to detect the FITC signal response to inhibition of endolysosomal acidification by Bafilomycin A1. The iridium chromophore phosphorescence was detected reliably by all methods used. It was demonstrated that the sensor, accumulated in endolysosomes for 24 h, disappeared from proliferating 2D enMSCs by 72 h, but can still be recorded in non-proliferating spheroids. PLIM showed high sensitivity and responsiveness of iridium chromophore phosphorescence to experimental hypoxia both in 2D and 3D cultures. In spheroids, the phosphorescence signal was detected at a depth of up to 60 μm using PLIM and showed a gradient in the intracellular O2 level towards their center.
Collapse
Affiliation(s)
- Ilia K. Litvinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Tatiana N. Belyaeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Anna V. Salova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Nikolay D. Aksenov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Elena S. Kornilova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
- Higher School of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, Khlopina Str. 11, 195251 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Argitekin E, Ersoz-Gulseven E, Cakan-Akdogan G, Akdogan Y. Dopamine-Conjugated Bovine Serum Albumin Nanoparticles Containing pH-Responsive Catechol-V(III) Coordination for In Vitro and In Vivo Drug Delivery. Biomacromolecules 2023; 24:3603-3618. [PMID: 37450837 PMCID: PMC10428161 DOI: 10.1021/acs.biomac.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/27/2023] [Indexed: 07/18/2023]
Abstract
V(III) instead of commonly used Fe(III) provided a rich tris-catechol-metal coordination at pH 7.4, which is important for slow drug release at physiological pH. Bovine serum albumin (BSA) functionalized with catechol-containing dopamine (D) and cross-linked using tris-catechol-V(III) coordination yielded pH-responsive compact D-BSA NPs (253 nm). However, conversion to bis- and/or mono-catechol-V(III) complexes in an acidic medium resulted in degradation of NPs and rapid release of doxorubicin (DOX). It was shown that D-BSA NPs entered cancerous MCF-7 cells (66%) more efficiently than non-cancerous HEK293T (33%) in 3 h. Also, DOX-loaded NPs reduced cell viability of MCF-7 by 75% and induced apoptosis in a majority of cells after 24 h. Biodegradability and lack of hemolytic activity were shown in vitro, whereas a lack of toxicity was shown in histological sections of zebrafish. Furthermore, 30% of circulating tumor cells in vasculature in 24 h were killed by DOX-loaded NPs shown with the zebrafish CTC xenograft model.
Collapse
Affiliation(s)
- Eda Argitekin
- Materials
Science and Engineering Department, Izmir
Institute of Technology, Izmir 35433, Turkey
| | | | - Gulcin Cakan-Akdogan
- Izmir
Biomedicine and Genome Center, Izmir 35340, Turkey
- Department
of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Yasar Akdogan
- Materials
Science and Engineering Department, Izmir
Institute of Technology, Izmir 35433, Turkey
| |
Collapse
|
5
|
Kryvenko V, Alberro-Brage A, Fysikopoulos A, Wessendorf M, Tello K, Morty RE, Herold S, Seeger W, Samakovlis C, Vadász I. Clathrin-Mediated Albumin Clearance in Alveolar Epithelial Cells of Murine Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24032644. [PMID: 36768968 PMCID: PMC9916738 DOI: 10.3390/ijms24032644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Andrés Alberro-Brage
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Athanasios Fysikopoulos
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rory E. Morty
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), 69120 Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-985-42354; Fax: +49-641-985-42359
| |
Collapse
|
6
|
Laube M, Thome UH. Albumin Stimulates Epithelial Na + Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway. Int J Mol Sci 2022; 23:ijms23158823. [PMID: 35955955 PMCID: PMC9368928 DOI: 10.3390/ijms23158823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Albumin is a major serum protein and is frequently used as a cell culture supplement. It is crucially involved in the regulation of osmotic pressure and distribution of fluid between different compartments. Alveolar epithelial Na+ transport drives alveolar fluid clearance (AFC), enabling air breathing. Whether or not albumin affects AFC and Na+ transport is yet unknown. We therefore determined the acute and chronic effects of albumin on Na+ transport in fetal distal lung epithelial (FDLE) cells and the involved kinase pathways. Chronic BSA treatment strongly increased epithelial Na+ transport and barrier integrity in Ussing chambers. BSA did not elevate mRNA expression of Na+ transporters in FDLE cells after 24 h. Moreover, acute BSA treatment for 45 min mimicked the chronic effects. The elevated Na+ transport was caused by an increased maximal ENaC activity, while Na,K-ATPase activity remained unchanged. Acute and chronic BSA treatment lowered membrane permeability, confirming the increased barrier integrity observed in Ussing chambers. Western blots demonstrated an increased phosphorylation of AKT and SGK1, and PI3K inhibition abolished the stimulating effect of BSA. BSA therefore enhanced epithelial Na+ transport and barrier integrity by activating the PI3K/AKT/SGK1 pathway.
Collapse
|
7
|
Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun 2022; 13:954. [PMID: 35177645 PMCID: PMC8854584 DOI: 10.1038/s41467-022-28618-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/28/2022] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) invariably exhibits inadequate O2 (hypoxia) and nutrient supply. Hypoxia-inducible factor (HIF) mediates cascades of molecular events that enable cancer cells to adapt and propagate. Macropinocytosis is an endocytic process initiated by membrane ruffling, causing the engulfment of extracellular fluids (proteins), protein digestion and subsequent incorporation into the biomass. We show that macropinocytosis occurs universally in HCC under hypoxia. HIF-1 activates the transcription of a membrane ruffling protein, EH domain-containing protein 2 (EHD2), to initiate macropinocytosis. Knockout of HIF-1 or EHD2 represses hypoxia-induced macropinocytosis and prevents hypoxic HCC cells from scavenging protein that support cell growth. Germline or somatic deletion of Ehd2 suppresses macropinocytosis and HCC development in mice. Intriguingly, EHD2 is overexpressed in HCC. Consistently, HIF-1 or macropinocytosis inhibitor suppresses macropinocytosis and HCC development. Thus, we show that hypoxia induces macropinocytosis through the HIF/EHD2 pathway in HCC cells, harnessing extracellular protein as a nutrient to survive. Cancer cells rely on macropinocytosis to scavenge extracellular proteins for growth. Here the authors show that macropinocytosis supports the survival of hypoxic hepatocellular carcinoma cells and this is dependent on HIF-1, which in turns activates the transcription of a membrane ruffling protein, EH domain-containing protein 2.
Collapse
|
8
|
High level production of stable human serum albumin in Pichia pastoris and characterization of the recombinant product. Bioprocess Biosyst Eng 2022; 45:409-424. [PMID: 34999948 DOI: 10.1007/s00449-021-02670-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is an important therapeutic used in clinical settings for restoration of blood volume and treatment of chemotherapy induced neutropenia. Currently sourced from human serum, it carries the risk of contamination with viruses. The production of stable extracellular recombinant (r)HSA was achieved at nearly 1 g/L at shake-flask level in Pichia pastoris (syn. Komagataella phaffii) containing a three-copy containing HSA expression cassette, prepared in vitro. The HSA specific transcripts were increased by 1.82- to 2.46-fold in the three-copy containing clones indicating increased transcript levels to result in enhanced production of extracellular rHSA. The purified rHSA displayed secondary structure, zeta potential, size distribution and biological efficacy that matched with that of the commercial HSA. Cultivation strategy was developed at bioreactor level for the single HSA expression cassette containing recombinant which led to productivity of 300 mg/L/d of rHSA with minimum proteolytic cleavage.
Collapse
|
9
|
Zhao L, Li H, Huang X, Liu T, Xin Y, Xiao Z, Zhao W, Miao S, Chen J, Li Z, Mi Y. The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomed Pharmacother 2021; 144:112360. [PMID: 34794242 DOI: 10.1016/j.biopha.2021.112360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, multifunctional platinum nanoclusters (Pt-NCs) as new Pt-based anti-cancer drugs exhibit a promising therapeutic efficiency for several cancer diseases, especially for human pulmonary carcinoma. However, the endocytosis behaviors (like uptake pathway, etc.) and induced apoptosis mechanism of Pt-NCs for drug-resistant non-small cell lung cancer (NSCLC), are still inconclusive. In this research, we explored the endocytic pathway of Pt-NCs in both typical NSCLC A549 cells and cisplatin-resistant A549/Cis cells through qualitative confocal laser scanning microscope (CLSM) measurement and quantitative flow cytometry (FCM) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) analysis, by the means of introducing the specific inhibitors which impede the classical ways of endocytosis. It was found that Pt-NCs dominatingly entered A549 cells via caveolin-mediated endocytosis as well as A549/Cis cells through micropinocytosis approach. Pt-NCs possessed an excellent inhibitory effect on the cell proliferation, migration and invasion, which the cell activity of A549 cells reduced to 14% and that of A549/Cis cells went down about four fifths. Moreover, Pt-NCs treatment increased caspase-3 protein levels and downregulated the expression of c-Myc and Bcl-2, proving the Pt-NCs-induced apoptosis of NSCLC cells was related to c-Myc/p53 and Bcl-2/caspase-3 signal pathways. These results demonstrate the explicit uptake pathway and apoptotic signaling pathway of Pt-NCs for NSCLC, which provides an in-depth and reasonable theoretical basis for the development of new Pt-NCs-based chemotherapeutics in future clinical practice.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Hongyun Li
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China.
| | - Xin Huang
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China.
| | - Ting Liu
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Yi Xin
- Intensive Care Unit, Zhengzhou Orthopedics Hospital, No. 56 Longhai Road, Erqi District, Zhengzhou 450052, China
| | - Zhongqing Xiao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Wenfei Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Jing Chen
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Zengbei Li
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
10
|
Hama M, Ishima Y, Chuang VTG, Ando H, Shimizu T, Ishida T. Evidence for Delivery of Abraxane via a Denatured-Albumin Transport System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19736-19744. [PMID: 33881292 DOI: 10.1021/acsami.1c03065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abraxane, an albumin-bound paclitaxel nanoparticle formulation, is superior to conventional paclitaxel preparations because it has better efficacy against unresectable pancreatic cancer. Previous reports suggest that this better efficacy of Abraxane than conventional paclitaxel preparation is probably due to its transport through Gp60, an albumin receptor on the surface of vascular endothelial cells. The increased tumor accumulation of Abraxane is also caused by the secreted protein acid and rich in cysteine in the tumor stroma. However, the uptake mechanism of Abraxane remains poorly understood. In this study, we demonstrated that the delivery of Abraxane occurred via different receptor pathways from that of endogenous albumin. Our results showed that the uptake of endogenous albumin was inhibited by a Gp60 pathway inhibitor in the process of endocytosis through endothelial cells or tumor cells. In contrast, the uptake of Abraxane-derived HSA was less affected by the Gp60 pathway inhibitor but significantly reduced by denatured albumin receptor inhibitors. In conclusion, these data indicate that Abraxane-derived HSA was taken up into endothelial cells or tumor cells by a mechanism different from normal endogenous albumin. These new data on distinct cellular transport pathways of denatured albumin via gp family proteins different from those of innate albumin shed light on the mechanisms of tumor delivery and antitumor activity of Abraxane and provide new scientific rationale for the development of a novel albumin drug delivery strategy via a denatured albumin receptor.
Collapse
Affiliation(s)
- Maichi Hama
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
11
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
12
|
Casulleras M, Flores-Costa R, Duran-Güell M, Alcaraz-Quiles J, Sanz S, Titos E, López-Vicario C, Fernández J, Horrillo R, Costa M, de la Grange P, Moreau R, Arroyo V, Clària J. Albumin internalizes and inhibits endosomal TLR signaling in leukocytes from patients with decompensated cirrhosis. Sci Transl Med 2020; 12:12/566/eaax5135. [DOI: 10.1126/scitranslmed.aax5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/02/2019] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mireia Casulleras
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - Marta Duran-Güell
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - José Alcaraz-Quiles
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - Silvia Sanz
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - Esther Titos
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina López-Vicario
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
| | - Javier Fernández
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Liver Unit, Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Centre de Recherche sur l’Inflammation (CRI), INSERM, Université Paris Diderot, CNRS, 75018 Paris, France
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF Clif), 08021 Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS-CIBERehd, 08036 Barcelona, Spain
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
13
|
Soll M, Chen QC, Zhitomirsky B, Lim PP, Termini J, Gray HB, Assaraf YG, Gross Z. Protein-coated corrole nanoparticles for the treatment of prostate cancer cells. Cell Death Discov 2020; 6:67. [PMID: 32793397 PMCID: PMC7387447 DOI: 10.1038/s41420-020-0288-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023] Open
Abstract
Development of novel therapeutic strategies to eradicate malignant tumors is of paramount importance in cancer research. In a recent study, we have introduced a facile protocol for the preparation of corrole-protein nanoparticles (NPs). These NPs consist of a corrole-core coated with protein. We now report that a novel lipophilic corrole, (2)Ga, delivered as human serum albumin (HSA)-coated NPs, displayed antineoplastic activity towards human prostate cancer DU-145 cells. Cryo-TEM analysis of these NPs revealed an average diameter of 50.2 ± 8.1 nm with a spherical architecture exhibiting low polydispersity. In vitro cellular uptake of (2)Ga/albumin NPs was attributable to rapid internalization of the corrole through ligand binding-dependent extracellular release and intercalation of the corrole cargo into the lipid bilayer of the plasma membrane. This finding is in contrast with a previously reported study on corrole-protein NPs that displayed cellular uptake via endocytosis. Investigation of the non-light-induced mechanism of action of (2)Ga suggested the induction of necrosis through plasma membrane destabilization, impairment of calcium homeostasis, lysosomal stress and rupture, as well as formation of reactive oxygen species (ROS). (2)Ga also exhibited potent light-induced cytotoxicity through ROS generation. These findings demonstrate a rapid cellular uptake of (2)Ga/protein NPs along with targeted induction of tumor cell necrosis.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Punnajit P. Lim
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Monrovia, CA 91010 USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Monrovia, CA 91010 USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125 USA
| | - Yehuda G. Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
14
|
Duffney PF, Embong AK, McGuire CC, Thatcher TH, Phipps RP, Sime PJ. Cigarette smoke increases susceptibility to infection in lung epithelial cells by upregulating caveolin-dependent endocytosis. PLoS One 2020; 15:e0232102. [PMID: 32437367 PMCID: PMC7241776 DOI: 10.1371/journal.pone.0232102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Cigarette smoke exposure is a risk factor for many pulmonary diseases, including Chronic Obstructive Pulmonary Disease (COPD). Cigarette smokers are more prone to respiratory infections with more severe symptoms. In those with COPD, viral infections can lead to acute exacerbations resulting in lung function decline and death. Epithelial cells in the lung are the first line of defense against inhaled insults such as tobacco smoke and are the target for many respiratory pathogens. Endocytosis is an essential cell function involved in nutrient uptake, cell signaling, and sensing of the extracellular environment, yet, the effect of cigarette smoke on epithelial cell endocytosis is not known. Here, we report for the first time that cigarette smoke alters the function of several important endocytic pathways in primary human small airway epithelial cells. Cigarette smoke exposure impairs clathrin-mediated endocytosis and fluid phase macropinocytosis while increasing caveolin mediated endocytosis. We also show that influenza virus uptake is enhanced by cigarette smoke exposure. These results support the concept that cigarette smoke-induced dysregulation of endocytosis contributes to lung infection in smokers. Targeting endocytosis pathways to restore normal epithelial cell function may be a new therapeutic approach to reduce respiratory infections in current and former smokers.
Collapse
Affiliation(s)
- Parker F. Duffney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - A. Karim Embong
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Connor C. McGuire
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Thomas H. Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Patricia J. Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|
15
|
Ling SC, Zhuo MQ, Zhang DG, Cui HY, Luo Z. Nano-Zn Increased Zn Accumulation and Triglyceride Content by Up-Regulating Lipogenesis in Freshwater Teleost, Yellow Catfish Pelteobagrus fulvidraco. Int J Mol Sci 2020; 21:ijms21051615. [PMID: 32120818 PMCID: PMC7084257 DOI: 10.3390/ijms21051615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
The present study was conducted to explore the mechanism of nano-Zn absorption and its influence on lipid metabolism in the intestine of yellow catfish Pelteobagrus fulvidraco. Compared to ZnSO4, dietary nano-Zn addition increased the triglyceride (TG) content, enzymatic activities of malic enzyme (ME) and fatty acid synthase (FAS), and up-regulated mRNA levels of 6pgd, fas, acca, dgat1, pparγ, and fatp4. Using primary intestinal epithelial cells of yellow catfish, compared to the ZnSO4 group, nano-Zn incubation increased the contents of TG and free fatty acids (FFA), the activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6GPD), ME, and FAS, up-regulated mRNA levels of lipogenic genes (6pgd, g6pd, fas, dgat1, and pparγ), genes of lipid transport (fatp4 and ifabp), and Zn transport genes (znt5, znt7, mt, and mtf1), and increased the protein expression of fatty acid transport protein 4 (FATP4) and peroxisome proliferator activated receptor gamma (PPARγ). Further studies found that nano-Zn absorption was via the clathrin-dependent endocytic mechanism. PPARγ mediated the nano-Zn-induced increase in TG, and nano-Zn increased Zn accumulation and induced TG accumulation by activating the PPARγ pathway and up-regulating lipogenesis.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Heng-Yang Cui
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-C.L.); (M.-Q.Z.); (D.-G.Z.); (H.-Y.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
16
|
Han HH, Sedgwick AC, Shang Y, Li N, Liu T, Li BH, Yu K, Zang Y, Brewster JT, Odyniec ML, Weber M, Bull SD, Li J, Sessler JL, James TD, He XP, Tian H. Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chem Sci 2019; 11:1107-1113. [PMID: 34084367 PMCID: PMC8145178 DOI: 10.1039/c9sc03961a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report a protein-based hybridization strategy that exploits the host-guest chemistry of HSA (human serum albumin) to solubilize the otherwise cell impermeable ONOO- fluorescent probe Pinkment-OAc. Formation of a HSA/Pinkment-OAc supramolecular hybrid was confirmed by SAXS and solution-state analyses. This HSA/Pinkment-OAc hybrid provided an enhanced fluorescence response towards ONOO- versus Pinkment-OAc alone, as determined by in vitro experiments. The HSA/Pinkment-OAc hybrid was also evaluated in RAW 264.7 macrophages and HeLa cancer cell lines, which displayed an enhanced cell permeability enabling the detection of SIN-1 and LPS generated ONOO- and the in vivo imaging of acute inflammation in LPS-treated mice. A remarkable 5.6 fold (RAW 264.7), 8.7-fold (HeLa) and 2.7-fold increased response was seen relative to Pinkment-OAc alone at the cellular level and in vivo, respectively. We anticipate that HSA/fluorescent probe hybrids will soon become ubiquitous and routinely applied to overcome solubility issues associated with hydrophobic fluorescent imaging agents designed to detect disease related biomarkers.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China .,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Adam C Sedgwick
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Ying Shang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory Shanghai 201210 P. R. China
| | - Tingting Liu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Bo-Han Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Kunqian Yu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - James T Brewster
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | | | - Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA .,Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
17
|
Zhang H, Liu Y, Li H, Li J, Luo Y, Yan X. Novel insights into the role of LRRC8A in ameliorating alveolar fluid clearance in LPS induced acute lung injury. Eur J Pharmacol 2019; 861:172613. [PMID: 31421089 DOI: 10.1016/j.ejphar.2019.172613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat-containing 8A (LRRC8A) protein was recently identified as an essential component of volume-regulated anion channel which plays a central role in maintaining cell volume. The aim of this study was to elucidate the role of LRRC8A in alveolar fluid clearance (AFC) and the effect of inflammatory cytokines on LRRC8A and the underlying mechanism. Lipopolysaccharide (LPS) was used to generate a rat acute lung injury model. The results showed that the concentrations of IL-1β, TNF-α and IL-6 in bronchoalveolar lavage fluid increased significantly, but the expression of LRRC8A in the lung tissue decreased dramatically in the acute lung injury group followed by a decline in the AFC rate. Additionally, LRRC8A knockdown reduced AFC in normal rats. However, specific overexpression of LRRC8A in the lung could increase AFC. Furthermore, we observed the effects of LPS, IL-1β, TNF-α and IL-6 on the LRRC8A current in alveolar type II (ATII) cells, and IL-1β showed the greatest inhibition among them, which was involved in phospho-p38 activation. Overall, LRRC8A plays an essential role in the progression of AFC in LPS-induced acute lung injury, and chronic treatment with IL-1β or TNF-α could inhibit the function of LRRC8A in ATII cells by targeting phospho-p38. All of the findings suggested that LRRC8A could be a new partner in AFC and a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yani Liu
- Department of pharmacology, School of pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
18
|
Wang R, Xu X, Hao Z, Zhang S, Wu D, Sun H, Mu C, Ren H, Wang G. Poly-PR in C9ORF72-Related Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Causes Neurotoxicity by Clathrin-Dependent Endocytosis. Neurosci Bull 2019; 35:889-900. [PMID: 31148094 DOI: 10.1007/s12264-019-00395-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 02/04/2023] Open
Abstract
GGGGCC repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). It has been reported that hexanucleotide repeat expansions in C9ORF72 produce five dipeptide repeat (DPR) proteins by an unconventional repeat-associated non-ATG (RAN) translation. Within the five DPR proteins, poly-PR and poly-GR that contain arginine are more toxic than the other DPRs (poly-GA, poly-GP, and poly-PA). Here, we demonstrated that poly-PR peptides transferred into cells by endocytosis in a clathrin-dependent manner, leading to endoplasmic reticulum stress and cell death. In SH-SY5Y cells and primary cortical neurons, poly-PR activated JUN amino-terminal kinase (JNK) and increased the levels of p53 and Bax. The uptake of poly-PR peptides by cells was significantly inhibited by knockdown of clathrin or by chlorpromazine, an inhibitor that blocks clathrin-mediated endocytosis. Inhibition of clathrin-dependent endocytosis by chlorpromazine significantly blocked the transfer of poly-PR peptides into cells, and attenuated poly-PR-induced JNK activation and cell death. Our data revealed that the uptake of poly-PR undergoes clathrin-dependent endocytosis and blockade of this process prevents the toxic effects of synthetic poly-PR peptides.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xingyun Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Nowroozi F, Dadashzadeh S, Soleimanjahi H, Haeri A, Shahhosseini S, Javidi J, Karimi H. Theranostic niosomes for direct intratumoral injection: marked enhancement in tumor retention and anticancer efficacy. Nanomedicine (Lond) 2018; 13:2201-2219. [PMID: 29993311 DOI: 10.2217/nnm-2018-0091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM For simultaneous bioimaging and drug delivery via direct intratumoral injection, doxorubicin and Ag2S quantum dots co-loaded multifunctional niosomes were prepared and fully characterized. MATERIALS & METHODS Various theranostic niosomes were prepared and investigated regarding cytotoxicity, in vivo imaging, drug accumulation in breast cancer tumor and antitumor activity. RESULTS Niosomes composed of Tween-60, Tween-80 or Span 60 produced strong and more durable detectable fluorescence signals. Despite a higher accumulation of Tween-60 niosomes in tumor, the Span 60 formulation showed the highest antitumor efficacy when compared with the free drug (71.7 and 20.3% inhibition in tumor growth, respectively). CONCLUSION Direct intratumoral injection of theranostic niosomes with appropriate composition could be a powerful tool for combined multimodal imaging and therapy.
Collapse
Affiliation(s)
- Fatemeh Nowroozi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences Tarbiat Modares University Tehran, 331-14115, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran
| | - Jaber Javidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14115-6153, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences Tarbiat Modares University Tehran, 331-14115, Iran
| |
Collapse
|
20
|
Neudecker V, Brodsky KS, Clambey ET, Schmidt EP, Packard TA, Davenport B, Standiford TJ, Weng T, Fletcher AA, Barthel L, Masterson JC, Furuta GT, Cai C, Blackburn MR, Ginde AA, Graner MW, Janssen WJ, Zemans RL, Evans CM, Burnham EL, Homann D, Moss M, Kreth S, Zacharowski K, Henson PM, Eltzschig HK. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci Transl Med 2018; 9:9/408/eaah5360. [PMID: 28931657 DOI: 10.1126/scitranslmed.aah5360] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Intercellular transfer of microRNAs can mediate communication between critical effector cells. We hypothesized that transfer of neutrophil-derived microRNAs to pulmonary epithelial cells could alter mucosal gene expression during acute lung injury. Pulmonary-epithelial microRNA profiling during coculture of alveolar epithelial cells with polymorphonuclear neutrophils (PMNs) revealed a selective increase in lung epithelial cell expression of microRNA-223 (miR-223). Analysis of PMN-derived supernatants showed activation-dependent release of miR-223 and subsequent transfer to alveolar epithelial cells during coculture in vitro or after ventilator-induced acute lung injury in mice. Genetic studies indicated that miR-223 deficiency was associated with severe lung inflammation, whereas pulmonary overexpression of miR-223 in mice resulted in protection during acute lung injury induced by mechanical ventilation or by infection with Staphylococcus aureus Studies of putative miR-223 gene targets implicated repression of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) in the miR-223-dependent attenuation of lung inflammation. Together, these findings suggest that intercellular transfer of miR-223 from neutrophils to pulmonary epithelial cells may dampen acute lung injury through repression of PARP-1.
Collapse
Affiliation(s)
- Viola Neudecker
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA. .,Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kelley S Brodsky
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric T Clambey
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Program in Translational Lung Research, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Bennett Davenport
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Ashley A Fletcher
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Glenn T Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Adit A Ginde
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - William J Janssen
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Christopher M Evans
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dirk Homann
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Simone Kreth
- Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter M Henson
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Schneider DJ, Speth JM, Penke LR, Wettlaufer SH, Swanson JA, Peters-Golden M. Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. J Biol Chem 2017; 292:20897-20910. [PMID: 29101235 PMCID: PMC5743066 DOI: 10.1074/jbc.m117.792416] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles, including exosomes and shed microvesicles (MVs), can be internalized by recipient cells to modulate function. Although the mechanism by which extracellular vesicles are internalized is incompletely characterized, it is generally considered to involve endocytosis and an initial surface-binding event. Furthermore, modulation of uptake by microenvironmental factors is largely unstudied. Here, we used flow cytometry, confocal microscopy, and pharmacologic and molecular targeting to address these gaps in knowledge in a model of pulmonary alveolar cell-cell communication. Alveolar macrophage-derived MVs were fully internalized by alveolar epithelial cells in a time-, dose-, and temperature-dependent manner. Uptake was dependent on dynamin and actin polymerization. However, it was neither saturable nor dependent on clathrin or receptor binding. Internalization was enhanced by extracellular proteins but was inhibited by cigarette smoke extract via oxidative disruption of actin polymerization. We conclude that MV internalization occurs via a pathway more consistent with fluid-phase than receptor-dependent endocytosis and is subject to bidirectional modulation by relevant pathologic perturbations.
Collapse
Affiliation(s)
| | | | - Loka R Penke
- From the Division of Pulmonary and Critical Care Medicine
| | | | - Joel A Swanson
- Department of Microbiology and Immunology, and
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Marc Peters-Golden
- From the Division of Pulmonary and Critical Care Medicine,
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
22
|
Vohwinkel CU, Buchäckert Y, Al-Tamari HM, Mazzocchi LC, Eltzschig HK, Mayer K, Morty RE, Herold S, Seeger W, Pullamsetti SS, Vadász I. Restoration of Megalin-Mediated Clearance of Alveolar Protein as a Novel Therapeutic Approach for Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:589-602. [PMID: 28678521 DOI: 10.1165/rcmb.2016-0358oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome constitutes a significant disease burden with regard to both morbidity and mortality. Current therapies are mostly supportive and do not address the underlying pathophysiologic mechanisms. Removal of protein-rich alveolar edema-a clinical hallmark of acute respiratory distress syndrome-is critical for survival. Here, we describe a transforming growth factor (TGF)-β-triggered mechanism, in which megalin, the primary mediator of alveolar protein transport, is negatively regulated by glycogen synthase kinase (GSK) 3β, with protein phosphatase 1 and nuclear inhibitor of protein phosphatase 1 being involved in the signaling cascade. Inhibition of GSK3β rescued transepithelial protein clearance in primary alveolar epithelial cells after TGF-β treatment. Moreover, in a bleomycin-based model of acute lung injury, megalin+/- animals (the megalin-/- variant is lethal due to postnatal respiratory failure) showed a marked increase in intra-alveolar protein and more severe lung injury compared with wild-type littermates. In contrast, wild-type mice treated with the clinically relevant GSK3β inhibitors, tideglusib and valproate, exhibited significantly decreased alveolar protein concentrations, which was associated with improved lung function and histopathology. Together, we discovered that the TGF-β-GSK3β-megalin axis is centrally involved in disturbances of alveolar protein clearance in acute lung injury and provide preclinical evidence for therapeutic efficacy of GSK3β inhibition.
Collapse
Affiliation(s)
- Christine U Vohwinkel
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,2 Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado
| | - Yasmin Buchäckert
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Hamza M Al-Tamari
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Luciana C Mazzocchi
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Holger K Eltzschig
- 4 Organ Protection Program, Department of Anesthesiology, University of Colorado at Denver, Aurora, Colorado
| | - Konstantin Mayer
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Susanne Herold
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany.,3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Soni S Pullamsetti
- 3 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - István Vadász
- 1 Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
23
|
Yoo D, Lee D. Oligochitosan-stabilized photoluminescent gold nanoconstructs for optical bioimaging. Biomater Res 2017; 21:20. [PMID: 29075509 PMCID: PMC5645806 DOI: 10.1186/s40824-017-0107-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Gold nanoclusters (AuNCs) are typically composed of several to tens of gold atoms which are stabilized with biomacromolecules such as bovine serum albumin (BSA). Au NCs fluoresces in the visible to near infrared region, in a size-dependent manner. AuNCs solutions have potential as fluorophore in a wide range of biomedical applications such as biodetection, biosensing and bioimaging in vitro and in vivo. However, their stability and harsh condition of preparation limit their biomedical application. Methods BSA stabilized AuNCs (BSA-AuNCs) were prepared by mixing HAuCl4 solution with BSA solution for 24 h at 37°C under basic condition. BSA-AuNCs were then mixed with oliogochitosan (OCS) to generate BSA-Au-OCS nanocomplexes. The physicochemical and optical properties of BSA-Au-OCS nanocomplexes were studied using a fluorospectrometer. Their potential as a bioimaging agent in vivo and in vitro was evaluated using a fluorescent imaging instrument. Results BSA-stabilized AuNCs solutions were mixed with oligochitosan (OCS) to develop BSA-Au-OCS nanocomplexes of a mean diameter of ~250 nm. BSA-Au-OCS nanocomplexes could emit light at 620 nm and the complexation with OCS did not affect the photophysical properties of BSA-AuNCs. BSA-Au-OCS nanocomplexes showed less cytotoxicity than BSA-AuNCs and was readily taken up by cells. BSA-Au-OCS nanocomplexes showed strong fluorescence in tissues. Conclusions We developed stable BSA-Au-OCS nanocomplexes which fluoresce in the near infrared region. BSA-Au-OCS nanocomplexes exhibited significantly less cytotoxicity and strong fluorescence emission, suggesting potential for biomedical applications.
Collapse
Affiliation(s)
- Donghyuck Yoo
- Department of BIN Convergence Technology, Chonbuk National University, Chonbuk, Jeonju, 567-756 South Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Chonbuk, Jeonju, 567-756 South Korea
| |
Collapse
|
24
|
Mazzocchi LC, Vohwinkel CU, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. TGF-β inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis, and transcriptional downregulation of megalin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L807-L824. [PMID: 28705909 DOI: 10.1152/ajplung.00569.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023] Open
Abstract
Disruption of the alveolar-capillary barrier is a hallmark of acute respiratory distress syndrome (ARDS) that leads to the accumulation of protein-rich edema in the alveolar space, often resulting in comparable protein concentrations in alveolar edema and plasma and causing deleterious remodeling. Patients who survive ARDS have approximately three times lower protein concentrations in the alveolar edema than nonsurvivors; thus the ability to remove excess protein from the alveolar space may be critical for a positive outcome. We have recently shown that clearance of albumin from the alveolar space is mediated by megalin, a 600-kDa transmembrane endocytic receptor and member of the low-density lipoprotein receptor superfamily. In the currents study, we investigate the molecular mechanisms by which transforming growth factor-β (TGF-β), a key molecule of ARDS pathogenesis, drives downregulation of megalin expression and function. TGF-β treatment led to shedding and regulated intramembrane proteolysis of megalin at the cell surface and to a subsequent increase in intracellular megalin COOH-terminal fragment abundance resulting in transcriptional downregulation of megalin. Activity of classical protein kinase C enzymes and γ-secretase was required for the TGF-β-induced megalin downregulation. Furthermore, TGF-β-induced shedding of megalin was mediated by matrix metalloproteinases (MMPs)-2, -9, and -14. Silencing of either of these MMPs stabilized megalin at the cell surface after TGF-β treatment and restored normal albumin transport. Moreover, a direct interaction of megalin with MMP-2 and -14 was demonstrated, suggesting that these MMPs may function as novel sheddases of megalin. Further understanding of these mechanisms may lead to novel therapeutic approaches for the treatment of ARDS.
Collapse
Affiliation(s)
- Luciana C Mazzocchi
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Christine U Vohwinkel
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado; and
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany;
| |
Collapse
|
25
|
Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18020378. [PMID: 28208642 PMCID: PMC5343913 DOI: 10.3390/ijms18020378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/02/2017] [Indexed: 11/23/2022] Open
Abstract
In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.
Collapse
|
26
|
Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther 2016; 24:49-59. [PMID: 27834949 PMCID: PMC5269444 DOI: 10.1038/gt.2016.75] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower FIX production in patients compared to the high levels observed in animal models and AAV capsid specific CTLs response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells and that the interaction of HSA with AAV doesn’t interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a 5-fold increase in vector derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.
Collapse
|
27
|
Mahmood A, Prüfert F, Efiana NA, Ashraf MI, Hermann M, Hussain S, Bernkop-Schnürch A. Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin Drug Deliv 2016; 13:1503-1512. [PMID: 27458781 DOI: 10.1080/17425247.2016.1213236] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of study was to investigate whether cell-penetrating peptides could amplify cellular uptake of plasmid DNA (pDNA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) by mucosal epithelial cells, thereby enhancing transfection efficiency. METHODS HIV-1 Tat peptide-oleoyl conjugate (TAT-OL) was synthesized through amide bond formation between HIV-1 Tat-protein 49-57 (TAT) and oleoyl-chloride (OL). SNEDDS formulation contained 29.7% each of Cremophor EL, Capmul MCM and Crodamol, 9.9% propylene glycol and 1% TAT-OL. SNEDDS with OL instead of TAT-OL served as control. RESULTS Fluorescent-microscopy demonstrated 0.5% (m/v) nanoemulsions were suitable for subsequent studies. Mucus diffusion of nanoemulsion loaded with fluorescein diacetate (FDA) was 1.5-fold increased by incorporation of TAT-OL. Confocal microscopy confirmed that droplets of nanoemulsions were successfully internalized. Furthermore, quantitative analysis showed that addition of TAT-OL increases uptake of nanoemulsions by 2.3- and 2.6-folds after 2 and 4 hours of incubation, respectively. Cellular internalization pathways were found with substantial decrease in uptake in presence of indomethacin and chlorpromazine. Transfection efficiency investigated on HEK-293-cells was found to be 1.7- and 1.8-fold higher for SNEDDS loaded with TAT-OL compared to Lipofectin and control, respectively. CONCLUSION In comparison to prevailing lipid and polymer-based delivery systems, these novel cell-penetrating SNEDDS likely represent most effective, simplistic and expedite dosage form for mucosal gene delivery.
Collapse
Affiliation(s)
- Arshad Mahmood
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Felix Prüfert
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Nuri Ari Efiana
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Muhammad Imtiaz Ashraf
- b Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery , Medical University Innsbruck , Innsbruck , Austria.,c Department for General, Visceral and Transplantation Surgery , Campus Virchow-Klinikum, Charité Universitätsmedizin , Berlin , Germany
| | - Martin Hermann
- d Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Innsbruck , Austria
| | - Shah Hussain
- e Institute of Analytical Chemistry and Radiochemistry , University of Innsbruck , Innsbruck , Austria
| | - Andreas Bernkop-Schnürch
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
28
|
Wang N, Zhang D, Sun G, Zhang H, You Q, Shao M, Yue Y. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4965-77. [PMID: 26357463 PMCID: PMC4560510 DOI: 10.2147/dddt.s77646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance decreased significantly. Moreover, PP2 and MβCD blocked LPS-induced increase in Evans Blue-labeled BSA level. Conclusion Our study demonstrates that LPS-induced Cav-1 phosphorylation may lead to the increase of transcellular permeability prior to the increase of paracellular permeability in a Src-dependent manner. Thus, LPS-induced Cav-1 phosphorylation may be a therapeutic target for the treatment of inflammatory lung disease associated with elevated microvascular permeability.
Collapse
Affiliation(s)
- Nan Wang
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China ; Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Dan Zhang
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China ; Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Gengyun Sun
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hong Zhang
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China ; Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qinghai You
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Min Shao
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yang Yue
- Department of Respiration, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
29
|
Takano M, Sugimoto N, Ehrhardt C, Yumoto R. Functional Expression of PEPT2 in the Human Distal Lung Epithelial Cell Line NCl-H441. Pharm Res 2015; 32:3916-26. [PMID: 26168863 DOI: 10.1007/s11095-015-1751-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The peptide transporter PEPT2 is expressed in alveolar type II epithelial cells. So far, however, no appropriate alveolar epithelial cell line for studying PEPT2 function has been known. In this study, we examined the functional expression of PEPT2 in the human distal lung epithelial cell line NCl-H441 (H441). METHODS Expression of PEPT2 mRNA and protein was examined in H441 cells. Transport function of PEPT2 was studied using glycylsarcosine (Gly-Sar) as a substrate. RESULTS Lamellar bodies were well developed in H441 cells and mRNA expression of type II cell markers and PEPT2 increased during time in culture. PEPT2 protein expression was confirmed in H441 cells, but not in A549 cells, by immunostaining and Western blotting. The uptake of Gly-Sar in H441 cells was inhibited by cefadroxil, and the cefadroxil-sensitive uptake was pH-dependent and peaked at pH 6.5. Gly-Sar uptake in H441 cells showed saturation kinetics with a Km value of 112.5 μM. In addition, apical-to-basal, but not basal-to-apical, transport of cephalexin across H441 cell monolayers was sensitive to cefadroxil. CONCLUSIONS PEPT2 is functionally expressed in H441 cells, making the cell line a good in vitro model to study PEPT2 function and its regulation in human distal lung.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Natsumi Sugimoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
30
|
Stan MS, Sima C, Cinteza LO, Dinischiotu A. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J 2015; 282:2914-29. [PMID: 26032556 DOI: 10.1111/febs.13330] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression.
Collapse
Affiliation(s)
- Miruna-Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Romania
| | - Cornelia Sima
- National Institute for Laser, Plasma and Radiation Physics, Bucharest-Magurele, Romania
| | | | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Romania
| |
Collapse
|
31
|
Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:793186. [PMID: 26090445 PMCID: PMC4450259 DOI: 10.1155/2015/793186] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs), which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs) are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs) and human mesothelial cells (HMCs). We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis) were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways.
Collapse
|
32
|
Studzian M, Bartosz G, Pulaski L. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1759-71. [PMID: 25918011 DOI: 10.1016/j.bbamcr.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.
Collapse
Affiliation(s)
- Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
33
|
Ben-Dov N, Korenstein R. The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:869-77. [PMID: 25542781 DOI: 10.1016/j.bbamem.2014.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/16/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic molecules, yet the identity of their uptake routes remained unclear and is still under debate. In this study we provide new insights into CPP entry routes by quantitatively measuring the intracellular uptake of FAM-labeled Tat-peptide under rigorous kinetic and thermal conditions. The uptake of Tat-peptide between 4 and 15°C corresponds to Q10=1.1, proceeding through a prompt (<5 min), temperature-independent process, suggesting direct membrane translocation. At longer durations, Tat rate of uptake shows linear dependence on temperature with Q10=1.44, accompanied by activation energy Ea=4.45 Kcal/mole. These values are significantly lower than those we found for the macropinocytosis probe dextran (Q10=2.2 and Ea=7.2 Kcal/mole) which possesses an exponential dependence on temperature, characteristic of endocytosis processes. Tat-peptide and dextran do not interfere with each other's uptake rate and the ratio of Tat-peptide uptake to its extracellular concentration is ~15 times higher than that for dextran. In addition, Phloretin, a modulator of cell membrane dipole potential, is shown to increase dextran uptake but to reduce that of Tat. We conclude that the uptake of Tat differs from that of dextran in all parameters. Tat uptake proceeds by dual entry routes which differ by their energy dependence.
Collapse
Affiliation(s)
- Nadav Ben-Dov
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel.
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel.
| |
Collapse
|
34
|
Takano M, Kawami M, Aoki A, Yumoto R. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells. Expert Opin Drug Deliv 2014; 12:813-25. [DOI: 10.1517/17425247.2015.992778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Analysis of TGF-β1- and drug-induced epithelial-mesenchymal transition in cultured alveolar epithelial cell line RLE/Abca3. Drug Metab Pharmacokinet 2014; 30:111-8. [PMID: 25760538 DOI: 10.1016/j.dmpk.2014.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/06/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022]
Abstract
In this study, we examined the induction of epithelial-mesenchymal transition (EMT) by transforming growth factor (TGF)-β1 and drugs in genetically engineered type II alveolar epithelial cell line RLE/Abca3. Treatment of RLE/Abca3 cells with TGF-β1 induced marked changes in cell morphology from epithelial-like to elongated fibroblast-like morphology. With these morphological changes, mRNA expression of epithelial markers such as cytokeratin 19 (CK19) decreased, while that of mesenchymal markers such as α-smooth muscle actin (α-SMA) increased. TGF-β1 treatment also decreased the mRNA expression of Abca3, a type II cell marker, and formation of lamellar body structures. Interestingly, the effect of TGF-β1 on Abca3 mRNA expression was observed in RLE/Abca3 cells, but not in wild-type RLE-6TN, A549, and H441 cells. Treatment of RLE/Abca3 cells with bleomycin (BLM) and methotrexate (MTX) induced similar morphological and mRNA expression changes. In addition, the increase in α-SMA and the decrease in Abca3 mRNA expression by these drugs were observed only in RLE/Abca3 cells. These findings suggest that, like TGF-β1, BLM and MTX induce EMT in RLE/Abca3 cells, and RLE/Abca3 cells would be a good model to study drug-induced EMT. The effect of pirfenidone, an antifibrotic and anti-inflammatory drug, on EMT induced by TGF-β1 was also discussed.
Collapse
|
36
|
Leung SL, Zha Z, Cohn C, Dai Z, Wu X. Anti-EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells. Colloids Surf B Biointerfaces 2014; 121:141-9. [PMID: 24967549 PMCID: PMC7038778 DOI: 10.1016/j.colsurfb.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/11/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023]
Abstract
Chemical conjugation of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to organic-inorganic hybrid liposomal immunocerasomes via maleimide-thiol coupling chemistry is explored as a mechanism for selectively targeting cancer cells. The cellular uptake and internalization of immunocerasomes are investigated in A431 cells that express an abnormally high level of EGFR, DU145 cells that overexpress EGFR, and HL-60 cells that are used as a negative control. The internalization study reveals a strong correlation between the receptor-mediated endocytosis of immunocerasomes and the membrane expression of EGFR. Further, free anti-EGFR mAbs and immunocerasomes conjugated with anti-EGFR mAbs at nanomolar doses display similar anti-proliferative effects on A431 cells. Additionally, serum proteins greatly reduce the cellular uptake of cerasomes that is mediated by non-specific receptors, but have no adverse effects on the specific EGFR-mediated delivery of immunocerasomes to A431 cells.
Collapse
Affiliation(s)
- Siu Ling Leung
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ 85721, USA
| | - Zhengbao Zha
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ 85721, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Celine Cohn
- Biomedical Engineering and Bio5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoyi Wu
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ 85721, USA; Biomedical Engineering and Bio5 Institute, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
37
|
Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 2014; 75:864-75. [PMID: 24659129 DOI: 10.1002/ana.24147] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Acquired epilepsy is frequently associated with structural lesions after trauma, stroke, and infections. Although seizures are often difficult to treat, there is no clinically applicable strategy to prevent the development of epilepsy in patients at risk. We have recently shown that vascular injury is associated with activation of albumin-mediated transforming growth factor β (TGF-β) signaling, and followed by local inflammatory response and epileptiform activity ex vivo. Here we investigated albumin-mediated TGF-β signaling and tested the efficacy of blocking the TGF-β pathway in preventing epilepsy. METHODS We addressed the role of TGF-β signaling in epileptogenesis in 2 different rat models of vascular injury, combining in vitro and in vivo biochemical assays, gene expression, and magnetic resonance and direct optical imaging for blood-brain barrier permeability and vascular reactivity. Long-term electrocorticographic recordings were acquired in freely behaving animals. RESULTS We demonstrate that serum-derived albumin preferentially induces activation of the activin receptor-like kinase 5 pathway of TGF-β receptor I in astrocytes. We further show that the angiotensin II type 1 receptor antagonist, losartan, previously identified as a blocker of peripheral TGF-β signaling, effectively blocks albumin-induced TGF-β activation in the brain. Most importantly, losartan prevents the development of delayed recurrent spontaneous seizures, an effect that persists weeks after drug withdrawal. INTERPRETATION TGF-β signaling, activated in astrocytes by serum-derived albumin, is involved in epileptogenesis. We propose losartan, a drug approved by the US Food and Drug Administration, as an efficient antiepileptogenic therapy for epilepsy associated with vascular injury.
Collapse
Affiliation(s)
- Guy Bar-Klein
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dobrinskikh E, Okamura K, Kopp JB, Doctor RB, Blaine J. Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol 2014; 306:F941-51. [PMID: 24573386 PMCID: PMC4010685 DOI: 10.1152/ajprenal.00532.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/26/2014] [Indexed: 11/22/2022] Open
Abstract
The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Div. of Renal Diseases and Hypertension, 12700 E. 19th Ave., C281, Aurora, CO 80045.
| | | | | | | | | |
Collapse
|
39
|
Prolonged activity of the pestiviral RNase Erns as an interferon antagonist after uptake by clathrin-mediated endocytosis. J Virol 2014; 88:7235-43. [PMID: 24741078 DOI: 10.1128/jvi.00672-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RNase activity of the envelope glycoprotein E(rns) of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of E(rns) is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of E(rns). Here, we show that the activity of soluble E(rns) as an IFN antagonist is not restricted to bovine cells. Extracellularly applied E(rns) protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. E(rns) mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, E(rns) remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that E(rns) acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance. IMPORTANCE The pestiviral RNase E(rns) was previously shown to inhibit viral ssRNA- and dsRNA-induced interferon (IFN) synthesis. However, the localization of E(rns) at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase E(rns) is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of E(rns) remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species.
Collapse
|
40
|
Andersen H, Parhamifar L, Moein Moghimi S. Uptake and Intracellular Trafficking of Nanocarriers. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1228-38. [PMID: 24046863 DOI: 10.1016/j.bbalip.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MbetaCD enhanced the attenuation of C(m) increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MbetaCD resulted in an immediate C(m) decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in C(m) was three-fold slower than MbetaCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MbetaCD had no effect on the specific C(m) and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MbetaCD-induced C(m) decline. Thus acute exposure to MbetaCD evokes a C(m) decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.
Collapse
|
42
|
Takano M, Horiuchi T, Sasaki Y, Kato Y, Nagai J, Yumoto R. Expression and function of PEPT2 during transdifferentiation of alveolar epithelial cells. Life Sci 2013; 93:630-6. [DOI: 10.1016/j.lfs.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/25/2023]
|
43
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
44
|
Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res 2013; 31:86-96. [PMID: 23884568 DOI: 10.1007/s11095-013-1134-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/24/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Previous research has led to the recognition of a cGMP signaling pathway governing drug transport. This study is to investigate whether inhibitors of phosphodiesterase type 5 (PDE5), which increase intracellular cGMP levels, modulate the cytotoxicity and uptake of anti-cancer drugs in cancer cells. METHODS The experiments were conducted with and without PDE5 inhibitors: dipyridamole, vardenafil, and/or sildenafil. The cytotoxicity of doxorubicin, cisplatin and oxaliplatin was determined in multiple cancer cell lines derived from different tissues. The cellular uptake of structurally diverse compounds was further examined in lung cancer cells with and without various endocytotic inhibitors. The tumor accumulation and the anti-tumor effect of trastuzumab were examined in a lung cancer xenograft mouse model. RESULTS Dipyridamole could modulate the cytotoxicity of doxorubicin, cisplatin, and oxaliplatin in cancer cells. Particularly, PDE5 inhibitors increased cellular uptake of structurally diverse compounds into lung cancer cells both in vitro and in vivo. The effect of vardenafil on drug uptake could be blocked by endocytotic inhibitors. The growth of lung cancer xenograft in nude mice was significantly suppressed by addition of vardenafil to trastuzumab treatment. CONCLUSION PDE5 inhibitors may increase the efficacy of anti-cancer drugs by increasing endocytosis-mediated cellular drug uptake, and thus serve as adjuvant therapy for certain cancers such as lung cancer.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, HSFII Room 555, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
45
|
Williams M, Catchpoole D. Sequestration of AS-DACA into acidic compartments of the membrane trafficking system as a mechanism of drug resistance in rhabdomyosarcoma. Int J Mol Sci 2013; 14:13042-62. [PMID: 23799359 PMCID: PMC3742173 DOI: 10.3390/ijms140713042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 01/22/2023] Open
Abstract
The accumulation of weakly basic drugs into acidic organelles has recently been described as a contributor to resistance in childhood cancer rhabdomyosarcoma (RMS) cell lines with differential sensitivity to a novel topoisomerase II inhibitor, AS-DACA. The current study aims to explore the contribution of the endocytic pathway to AS-DACA sequestration in RMS cell lines. A 24-fold differential in AS-DACA cytotoxicity was detected between the RMS lines RD and Rh30. The effect of inhibitors of the endocytic pathway on AS-DACA sensitivity in RMS cell lines, coupled with the variations of endosomal marker expression, indicated the late endosomal/lysosomal compartment was implicated by confounding lines of evidence. Higher expression levels of Lysosomal-Associated Membrane Protein-1 (LAMP1) in the resistant RMS cell line, RD, provided correlations between the increased amount and activity of these compartments to AS-DACA resistance. The late endosomal inhibitor 3-methyladenine increased AS-DACA sensitivity solely in RD leading to the reduction of AS-DACA in membrane trafficking organelles. Acidification inhibitors did not produce an increase in AS-DACA sensitivity nor reduce its sequestration, indicating that the pH partitioning of weakly basic drugs into acidic compartments does not likely contribute to the AS-DACA sequestering resistance mechanism evident in RMS cells.
Collapse
Affiliation(s)
- Marissa Williams
- The Tumour Bank, Children's Cancer Research Unit, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
46
|
Romero-Canelón I, Pizarro AM, Habtemariam A, Sadler PJ. Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes. Metallomics 2013; 4:1271-9. [PMID: 23138378 DOI: 10.1039/c2mt20189e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathways involved in cellular uptake and accumulation of iminopyridine complexes of general formula [Ru(η(6)-p-cymene)(N,N-dimethyl-N'-[(E)-pyridine-2-ylmethylidene]benzene-1,4-diamine)X]PF(6) bearing two different halido ligands X = Cl or I, have been explored. The ratio of passive/active cellular accumulation of Ru in A2780 human ovarian cancer cells is compared and contrasted with cisplatin. Also, saturation of cellular uptake, time-dependence of cellular influx/efflux equilibria, together with endocytotic pathways such as caveolae and facilitated diffusion are investigated and discussed. Temperature dependence studies of Ru accumulation in the A2780 cells show that in contrast to cisplatin (CDDP) and chlorido complex , which are taken up largely through active transport, the iodido complex enters cells via passive transport. The cellular efflux of Ru is slow (ca. 25% retained after 72 h) and is partially inhibited by verapamil, implicating the P-gp protein in the efflux mechanism. Ouabain inhibition experiments suggest that the cellular uptake of these ruthenium complexes relies at least in part on facilitated diffusion, and in particular is dependent on the membrane potential. In addition the finding that depletion of cellular ATP with antimycin A had little effect on cellular Ru accumulation from iodido complex is consistent with passive diffusion. In contrast, ATP depletion caused a major increase in cellular accumulation of ruthenium from chlorido complex .
Collapse
|
47
|
Absorption of proteoglycan via clathrin-mediated endocytosis in the small intestine of rats. Biosci Biotechnol Biochem 2013; 77:654-6. [PMID: 23470738 DOI: 10.1271/bbb.120773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism underlying proteoglycan (PG) absorption in the intestine is not clear. Hence we analyzed the transport of salmon PG in the rat jejunum, ileum, and colon by the everted-sac method. The jejunum showed the largest capacity for PG transport. Jejunal transport of PG was also greater than that of chondroitin A and C. An inhibitor of clathrin-mediated endocytosis reduced jejunal PG transport. We conclude that intestinal PG transport is highest in the jejunum, and is partially dependent on clathrin-mediated endocytosis.
Collapse
|
48
|
Zubkova ES, Semenkova LN, Dudich IV, Dudich EI, Khromykh LM, Makarevich PI, Parfenova EV, Men'shikov MI. [Recombinant human alpha-fetoprotein as a regulator of adipose tissue stromal cell activity]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:524-34. [PMID: 23342486 DOI: 10.1134/s1068162012050147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombinant human alpha-fetoprotein (rhAFP) expressed in yeast system as a glycoprotein, was isolated and purified to 98% by multistep method. The testing of the rhAFP in the culture of adipose tissue stromal cells (hASC) has revealed its ability to enhance hASC proliferation and migration as well as vascular endothelial growth factor production, with no significant influence on cell invasion and matrix metalloproteinase-2 and -9 secretion. It has been also estimated that rhAFP is internalized in hASC via clathrin-dependent mechanism. A study in the murine experimental model of hindlimb ischemia has shown the capability of rhAFP to enhance blood flow recovery. These data suggest that rhAFP is a promising agent for enhancement of the hASC regenerative ability.
Collapse
|
49
|
Yumoto R, Suzuka S, Nishimoto S, Nagai J, Takano M. Enhancing Effect of Poly(amino acid)s on Albumin Uptake in Human Lung Epithelial A549 Cells. Drug Metab Pharmacokinet 2013; 28:497-503. [DOI: 10.2133/dmpk.dmpk-13-rg-028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Buchäckert Y, Rummel S, Vohwinkel CU, Gabrielli NM, Grzesik BA, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs. J Physiol 2012; 590:5167-81. [PMID: 22826129 DOI: 10.1113/jphysiol.2012.233403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The alveolo-capillary barrier is effectively impermeable to large solutes such as proteins. A hallmark of acute lung injury/acute respiratory distress syndrome is the accumulation of protein-rich oedema fluid in the distal airspaces. Excess protein must be cleared from the alveolar space for recovery; however, the mechanisms of protein clearance remain incompletely understood. In intact rabbit lungs 29.8 ± 2.2% of the radio-labelled alveolar albumin was transported to the vascular compartment at 37°C within 120 min, as assessed by real-time measurement of 125I-albumin clearance from the alveolar space. At 4°C or 22°C significantly lower albumin clearance (3.7 ± 0.4 or 16.2 ± 1.1%, respectively) was observed. Deposition of a 1000-fold molar excess of unlabelled albumin into the alveolar space or inhibition of cytoskeletal rearrangement or clathrin-dependent endocytosis largely inhibited the transport of 125I-albumin to the vasculature, while administration of unlabelled albumin to the vascular space had no effect on albumin clearance. Furthermore, albumin uptake capacity was measured as about 0.37 mg ml−1 in cultured rat lung epithelial monolayers, further highlighting the (patho)physiological relevance of active alveolar epithelial protein transport. Moreover, gene silencing and pharmacological inhibition of the multi-ligand receptor megalin resulted in significantly decreased albumin binding and uptake in monolayers of primary alveolar type II and type I-like and cultured lung epithelial cells. Our data indicate that clearance of albumin from the distal air spaces is facilitated by an active, high-capacity, megalin-mediated transport process across the alveolar epithelium. Further understanding of this mechanism is of clinical importance, since an inability to clear excess protein from the alveolar space is associated with poor outcome in patients with acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yasmin Buchäckert
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|