1
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O’Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. FEBS J 2025; 292:1633-1653. [PMID: 39786847 PMCID: PMC11971028 DOI: 10.1111/febs.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its cotranscriptional activity in melanoma and breast carcinoma cells. Importantly, our study highlights the potential therapeutic significance of targeting PANX1. Pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP levels in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein and galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, Illinois, USA, 61790
| | | | - Brooke L. O’Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Matthew S. Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
2
|
Zhao Z, Wu J, Xu X, He Z, Wang X, Su J, Mayo KH, Sun L, Cui L, Zhou Y. Oligosaccharides from Stellaria dichotoma L. var. lanceolate bind to galectin-3 and ameliorate effects of colitis. Carbohydr Polym 2024; 345:122551. [PMID: 39227094 DOI: 10.1016/j.carbpol.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
Even though Stellaria dichotoma L. var. lanceolate (S. dichotoma) is a well-known medicinal plant in the family Caryophyllaceae, its oligosaccharides remain unexplored in terms of their potential as bioactive agents. Here, we isolated a mixture of oligosaccharides from S. dichotoma (Yield: 12 % w/w), that are primarily non-classical raffinose family oligosaccharides (RFOs). Nine major oligosaccharides were purified and identified from the mixture, including sucrose, raffinose, 1-planteose, lychnose, stellariose, along with four new non-classical RFOs. Two of the four new oligosaccharides are linear hexose pentamers with α-galactosyl extensions on their lychnose moieties, and the other two are branched hexose hexamers with α-galactosyl extensions on their stellariose groups. Their interactions with galectin-3 (Gal-3) revealed significant binding, with the terminal galactose providing enhanced affinity for the lectin. Notably, Gal-3 residues Arg144, His158, Asn160, Arg162, Asn174, Trp181, Glu184 and Arg186 coordinate with the lychnose. In vivo studies using the dextran sulfate sodium (DSS) mouse model for colitis demonstrated the ability of these carbohydrates in mitigating ulcerative colitis (UC). Overall, our study has provided structural information and potential applications of S. dichotoma oligosaccharides, also offers new approaches for the development of medicinal oligosaccharides.
Collapse
Affiliation(s)
- Zihan Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhen He
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
3
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O’Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611059. [PMID: 39372769 PMCID: PMC11451602 DOI: 10.1101/2024.09.03.611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, YAP, TAZ, and Hippo scaffold, IQGAP1, in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its co-transcriptional activity in both melanoma and breast carcinoma cells. Importantly, our study showcases the potential therapeutic relevance of targeting PANX1, as pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP abundance in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein, galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, Illinois, USA, 61790
| | | | - Brooke L. O’Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Matthew S. Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
4
|
Mohammed NBB, Lau LS, Souchak J, Qiu S, Ahluwalia MS, Osman I, Dimitroff CJ. Tumor-Intrinsic Galectin-3 Suppresses Melanoma Metastasis. J Invest Dermatol 2024; 144:2039-2051.e9. [PMID: 38458429 PMCID: PMC11344686 DOI: 10.1016/j.jid.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 03/10/2024]
Abstract
Melanoma poses a poor prognosis with high mortality rates upon metastasis. Exploring the molecular mechanisms governing melanoma progression paves the way for developing novel approaches to control melanoma metastasis and ultimately enhance patient survival rates. Extracellular galectin-3 (Gal-3) has emerged as a pleiotropic promoter of melanoma metastasis, exerting varying activities depending on its interacting partner. However, whether intracellular Gal-3 promotes melanoma aggressive behavior remains unknown. In this study, we explored Gal-3 expression in human melanoma tissues as well as in murine melanoma models to examine its causal role in metastatic behavior. We found that Gal-3 expression is downregulated in metastatic melanoma tissues compared with its levels in primary melanomas. Enforced silencing of Gal-3 in melanoma cells promoted migration, invasion, colony formation, in vivo xenograft growth, and metastasis and activated canonical oncogenic signaling pathways. Moreover, loss of Gal-3 in melanoma cells resulted in upregulated the expression of the prometastatic transcription factor NFAT1 and its downstream metastasis-associated proteins, matrix metalloproteinase 3, and IL-8. Overall, our findings implicate melanoma intracellular Gal-3 as a major determinant of its metastatic behavior and reveal a negative regulatory role for Gal-3 on the expression of NFAT1 in melanoma cells.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Joseph Souchak
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Shi Qiu
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Manmeet S Ahluwalia
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Oncology, Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Charles J Dimitroff
- Translational Glycobiology Institute at FIU, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
5
|
Walker NM, Ibuki Y, McLinden AP, Misumi K, Mitchell DC, Kleer GG, Lock AM, Vittal R, Sonenberg N, Garner AL, Lama VN. MNK-driven eIF4E phosphorylation regulates the fibrogenic transformation of mesenchymal cells and chronic lung allograft dysfunction. J Clin Invest 2024; 134:e168393. [PMID: 39145446 PMCID: PMC11324311 DOI: 10.1172/jci168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD). MCs from patients with CLAD demonstrated constitutively higher eIF4E phosphorylation at Ser209, and eIF4E phospho-Ser209 was found to be critical in regulating key fibrogenic protein autotaxin, leading to sustained β-catenin activation and profibrotic functions of CLAD MCs. MNK1 signaling was upregulated in CLAD MCs, and genetic or pharmacologic targeting of MNK1 activity inhibited eIF4E phospho-Ser209 and profibrotic functions of CLAD MCs in vitro. Treatment with an MNK1/2 inhibitor (eFT-508) abrogated allograft fibrosis in an orthotopic murine lung-transplant model. Together these studies identify what we believe is a previously unrecognized MNK/eIF4E/ATX/β-catenin signaling pathway of fibrotic transformation of MCs and present the first evidence, to our knowledge, for the utility of MNK inhibitors in fibrosis.
Collapse
Affiliation(s)
- Natalie M. Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuta Ibuki
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - A. Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Keizo Misumi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dylan C. Mitchell
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel G. Kleer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison M. Lock
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Amanda L. Garner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Vibha N. Lama
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
7
|
Vittal R, Walker NM, McLinden AP, Braeuer RR, Ke F, Fattahi F, Combs MP, Misumi K, Aoki Y, Wheeler DS, Wilke CA, Huang SK, Moore BB, Cao P, Lama VN. Genetic deficiency of the transcription factor NFAT1 confers protection against fibrogenic responses independent of immune influx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L39-L51. [PMID: 37933452 PMCID: PMC11279780 DOI: 10.1152/ajplung.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Natalie M Walker
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - A Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Russell R Braeuer
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fang Ke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fatemeh Fattahi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Michael P Combs
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Keizo Misumi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Yoshiro Aoki
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - David S Wheeler
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Carol A Wilke
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven K Huang
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Bethany B Moore
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Pengxiu Cao
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Vibha N Lama
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
8
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
9
|
Fan Y, Song S, Li Y, Dhar SS, Jin J, Yoshimura K, Yao X, Wang R, Scott AW, Pizzi MP, Wu J, Ma L, Calin GA, Hanash S, Wang L, Curran M, Ajani JA. Galectin-3 Cooperates with CD47 to Suppress Phagocytosis and T-cell Immunity in Gastric Cancer Peritoneal Metastases. Cancer Res 2023; 83:3726-3738. [PMID: 37738407 PMCID: PMC10843008 DOI: 10.1158/0008-5472.can-23-0783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The peritoneal cavity is a common site of gastric adenocarcinoma (GAC) metastasis. Peritoneal carcinomatosis (PC) is resistant to current therapies and confers poor prognosis, highlighting the need to identify new therapeutic targets. CD47 conveys a "don't eat me" signal to myeloid cells upon binding its receptor signal regulatory protein alpha (SIRPα), which helps tumor cells circumvent macrophage phagocytosis and evade innate immune responses. Previous studies demonstrated that the blockade of CD47 alone results in limited clinical benefits, suggesting that other target(s) might need to be inhibited simultaneously with CD47 to elicit a strong antitumor response. Here, we found that CD47 was highly expressed on malignant PC cells, and elevated CD47 was associated with poor prognosis. Galectin-3 (Gal3) expression correlated with CD47 expression, and coexpression of Gal3 and CD47 was significantly associated with diffuse type, poor differentiation, and tumor relapse. Depletion of Gal3 reduced expression of CD47 through inhibition of c-Myc binding to the CD47 promoter. Furthermore, injection of Gal3-deficient tumor cells into either wild-type and Lgals3-/- mice led to a reduction in M2 macrophages and increased T-cell responses compared with Gal3 wild-type tumor cells, indicating that tumor cell-derived Gal3 plays a more important role in GAC progression and phagocytosis than host-derived Gal3. Dual blockade of Gal3 and CD47 collaboratively suppressed tumor growth, increased phagocytosis, repolarized macrophages, and boosted T-cell immune responses. These data uncovered that Gal3 functions together with CD47 to suppress phagocytosis and orchestrate immunosuppression in GAC with PC, which supports exploring a novel combination therapy targeting Gal3 and CD47. SIGNIFICANCE Dual inhibition of CD47 and Gal3 enhances tumor cell phagocytosis and reprograms macrophages to overcome the immunosuppressive microenvironment and suppress tumor growth in peritoneal metastasis of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shilpa S Dhar
- Department of Molecular and cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingjing Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Choi JA, Kim H, Kwon H, Lee EH, Cho H, Chung JY, Kim JH. Ascitic autotaxin as a potential prognostic, diagnostic, and therapeutic target for epithelial ovarian cancer. Br J Cancer 2023; 129:1184-1194. [PMID: 37596406 PMCID: PMC10539369 DOI: 10.1038/s41416-023-02355-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Malignant ascites contributes to the metastatic process by facilitating the multifocal dissemination of ovarian tumour cells onto the peritoneal surface. However, the prognostic and diagnostic relevance of ascitic fluid remains largely unknown. Herein, we investigated the potential clinical value and therapeutic utility of ascitic autotaxin (ATX) in epithelial ovarian cancer (EOC). METHODS ATX expression was assessed in clinical samples. Spheroid-forming assay, real-time PCR, western blot analysis, invadopodia assay, and adhesion assays were performed. RESULTS Ascitic ATX expression was highly elevated in patients with ovarian cancer compared to those with benign ascites and was associated with advanced stage, high grade, and a short disease-free period in patients with EOC. Combining the diagnostic ability of ascitic ATX and serum CA-125 levels significantly improved the area under the curve (AUC) value for EOC compared to serum CA125 level alone. This marker combination showed a large odds ratio for short disease-free period in high-risk EOC groups. Functional studies revealed that ascitic ATX was required for maintaining cancer stem cell-like characteristics and invadopodia formation. CONCLUSION Ascitic ATX levels may serve as a useful prognostic indicator for predicting aggressive behaviour in EOC. ATX-linked invadopodia are a potential target to prevent peritoneal dissemination in ovarian cancer.
Collapse
Affiliation(s)
- Jung-A Choi
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyosun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunja Kwon
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Elizabeth Hyeji Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Zhao W, Zhao J, Li K, Hu Y, Yang D, Tan B, Shi J. Oncogenic Role of the NFATC2/NEDD4/FBP1 Axis in Cholangiocarcinoma. J Transl Med 2023; 103:100193. [PMID: 37285922 DOI: 10.1016/j.labinv.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Nuclear factor of activated T cells 2 (NFATC2) is reported to contribute to the initiation and progression of various cancers; however, its expression and function in cholangiocarcinoma (CCA) tissues remain elusive. Herein, we investigated the expression pattern, clinicopathologic characteristics, cell biological functions, and potential mechanisms of NFATC2 in CCA tissues. Real-time reverse-transcription PCR (RT-qPCR) and immunohistochemistry were performed to analyze the expression of NFATC2 in human CCA tissues. Cell counting kit 8, colony formation, flow cytometry, Western blotting, and Transwell assays, and in vivo xenograft and pulmonary metastasis models, were used to explore the effect of NFATC2 on the proliferation and metastasis of CCA. A dual-luciferase reporter system, oligonucleotide pull-down, chromatin immunoprecipitation, immunofluorescence, and coimmunoprecipitation were performed to reveal the potential mechanisms. We found that NFATC2 was upregulated in CCA tissues and cells, and its aberrantly high levels were associated with a poorer differentiation pattern. Functionally, NFATC2 overexpression promoted CCA cell proliferation and metastasis, whereas knockdown of NFATC2 led to opposite result. Mechanistically, NFATC2 could be enriched in the promoter region of neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4) to facilitate its expression. Furthermore, NEDD4 targeted fructose-1, 6-bisphosphatase 1 (FBP1) and inhibited FBP1 expression via ubiquitination. In addition, silencing NEDD4 rescued the effects of NFATC2 overexpression on CCA cells. NEDD4 was upregulated in human CCA tissues, and its expression levels were positively correlated with those of NFATC2. We thus conclude that NFATC2 promotes the progression of CCA via the NEDD4/FBP1 axis, emphasizing the oncogenic role of NFATC2 in CCA progression.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjiao Hu
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongxia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Tan
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Shi
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Long Y, Wang Y, Qu M, Zhang D, Zhang X, Zhang J. Combined inhibition of EZH2 and the autotaxin-LPA-LPA2 axis exerts synergistic antitumor effects on colon cancer cells. Cancer Lett 2023; 566:216226. [PMID: 37230222 DOI: 10.1016/j.canlet.2023.216226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Autotaxin (ATX), also known as ENPP2, is the key enzyme in lysophosphatidic acid (LPA) production. LPA acts on its receptors on the cell membrane to promote cell proliferation and migration, and thus, the ATX-LPA axis plays a critical role in tumorigenesis. Clinical data analysis indicated that in colon cancer, there is a strong negative correlation between the expression of ATX and EZH2, the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2). Here, we demonstrated that ATX expression was epigenetically silenced by PRC2, which was recruited by MTF2 and catalyzed H3K27me3 modification in the ATX promoter region. EZH2 inhibition is a promising strategy for cancer treatment, and ATX expression is induced in colon cancer cells by EZH2 inhibitors. With both EZH2 and ATX as targets, their combined inhibition exerted synergistic antitumor effects on colon cancer cells. In addition, LPA receptor 2 (LPA2) deficiency significantly enhanced the sensitivity to EZH2 inhibitors in colon cancer cells. In summary, our study identified ATX as a novel PRC2 target gene and found that cotargeting EZH2 and the ATX-LPA-LPA2 axis may be a potential combination therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Yang Long
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuqin Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Mengxia Qu
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Di Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
14
|
Lin KH, Lee SC, Dacheux MA, Norman DD, Balogh A, Bavaria M, Lee H, Tigyi G. E2F7 drives autotaxin/Enpp2 transcription via chromosome looping: Repression by p53 in murine but not in human carcinomas. FASEB J 2023; 37:e23058. [PMID: 37358838 PMCID: PMC10364077 DOI: 10.1096/fj.202300838r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of the autotaxin (ATX, Enpp2)-lysophosphatidic acid (LPA) signaling in cancerous cells contributes to tumorigenesis and therapy resistance. We previously found that ATX activity was elevated in p53-KO mice compared to wild-type (WT) mice. Here, we report that ATX expression was upregulated in mouse embryonic fibroblasts from p53-KO and p53R172H mutant mice. ATX promoter analysis combined with yeast one-hybrid testing revealed that WT p53 directly inhibits ATX expression via E2F7. Knockdown of E2F7 reduced ATX expression and chromosome immunoprecipitation showed that E2F7 promotes Enpp2 transcription through cooperative binding to two E2F7 sites (promoter region -1393 bp and second intron 996 bp). Using chromosome conformation capture, we found that chromosome looping brings together the two E2F7 binding sites. We discovered a p53 binding site in the first intron of murine Enpp2, but not in human ENPP2. Binding of p53 disrupted the E2F7-mediated chromosomal looping and repressed Enpp2 transcription in murine cells. In contrast, we found no disruption of E2F7-mediated ENPP2 transcription via direct p53 binding in human carcinoma cells. In summary, E2F7 is a common transcription factor that upregulates ATX in human and mouse cells but is subject to steric interference by direct intronic p53 binding only in mice.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Andrea Balogh
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mitul Bavaria
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Hsinyu Lee
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Chakraborty A, Perez M, Carroll JD, Antonopoulos A, Dell A, Ortega L, Mohammed NBB, Wells M, Staudinger C, Griswold A, Chandler KB, Marrero C, Jimenez R, Tani Y, Wilmott JS, Thompson JF, Wang W, Sackstein R, Scolyer RA, Murphy GF, Haslam SM, Dimitroff CJ. Hypoxia Controls the Glycome Signature and Galectin-8-Ligand Axis to Promote Protumorigenic Properties of Metastatic Melanoma. J Invest Dermatol 2023; 143:456-469.e8. [PMID: 36174713 PMCID: PMC10123958 DOI: 10.1016/j.jid.2022.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
The prognosis for patients with metastatic melanoma (MM) involving distant organs is grim, and treatment resistance is potentiated by tumor-initiating cells (TICs) that thrive under hypoxia. MM cells, including TICs, express a unique glycome featuring i-linear poly-N-acetyllactosamines through the loss of I-branching enzyme, β1,6 N-acetylglucosaminyltransferase 2. Whether hypoxia instructs MM TIC development by modulating the glycome signature remains unknown. In this study, we explored hypoxia-dependent alterations in MM glycome‒associated genes and found that β1,6 N-acetylglucosaminyltransferase 2 was downregulated and a galectin (Gal)-8-ligand axis, involving both extracellular and cell-intrinsic Gal-8, was induced. Low β1,6 N-acetylglucosaminyltransferase 2 levels correlated with poor patient outcomes, and patient serum samples were elevated for Gal-8. Depressed β1,6 N-acetylglucosaminyltransferase 2 in MM cells upregulated TIC marker, NGFR/CD271, whereas loss of MM cell‒intrinsic Gal-8 markedly lowered NGFR and reduced TIC activity in vivo. Extracellular Gal-8 bound preferentially to i-linear poly-N-acetyllactosamines on N-glycans of the TIC marker and prometastatic molecule CD44, among other receptors, and activated prosurvival factor protein kinase B. This study reveals the importance of hypoxia governing the MM glycome by enforcing i-linear poly-N-acetyllactosamine and Gal-8 expression. This mechanistic investigation also uncovers glycome-dependent regulation of pro-MM factor, NGFR, implicating i-linear poly-N-acetyllactosamine and Gal-8 as biomarkers and therapeutic targets of MM.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Mariana Perez
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Jordan D Carroll
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Liettel Ortega
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Norhan B B Mohammed
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Michael Wells
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caleb Staudinger
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Anthony Griswold
- John P. Hussman Institute for Human Genomics (HIHG), Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kevin B Chandler
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Cristina Marrero
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Ramon Jimenez
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Wei Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
16
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Mou K, Zhou Y, Mu X, Zhang J, Wang L, Ge R. PARP1 Is a Prognostic Marker and Targets NFATc2 to Promote Carcinogenesis in Melanoma. Genet Test Mol Biomarkers 2022; 26:503-511. [DOI: 10.1089/gtmb.2021.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
18
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
19
|
Biscaia SMP, Pires C, Lívero FAR, Bellan DL, Bini I, Bustos SO, Vasconcelos RO, Acco A, Iacomini M, Carbonero ER, Amstalden MK, Kubata FR, Cummings RD, Dias-Baruffi M, Simas FF, Oliveira CC, Freitas RA, Franco CRC, Chammas R, Trindade ES. MG-Pe: A Novel Galectin-3 Ligand with Antimelanoma Properties and Adjuvant Effects to Dacarbazine. Int J Mol Sci 2022; 23:ijms23147635. [PMID: 35886983 PMCID: PMC9317553 DOI: 10.3390/ijms23147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Stellee M. P. Biscaia
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Cassiano Pires
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Francislaine A. R. Lívero
- Post-Graduate Program in Medicinal Plants and Phytotherapics in Basic Attention, Parana University (UNIPAR), Umuarama 87502-210, Brazil;
| | - Daniel L. Bellan
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Israel Bini
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Silvina O. Bustos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Renata O. Vasconcelos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Elaine R. Carbonero
- Institute of Chemistry, Federal University of Catalão (UFCAT), Catalão 75704-020, Brazil;
| | - Martin K. Amstalden
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fábio R. Kubata
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Richard D. Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fernanda F. Simas
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Carolina C. Oliveira
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Rilton A. Freitas
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Célia Regina Cavichiolo Franco
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Roger Chammas
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
- Correspondence: (R.C.); (E.S.T.)
| | - Edvaldo S. Trindade
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
- Correspondence: (R.C.); (E.S.T.)
| |
Collapse
|
20
|
Bum-Erdene K, Collins PM, Hugo MW, Tarighat SS, Fei F, Kishor C, Leffler H, Nilsson UJ, Groffen J, Grice ID, Heisterkamp N, Blanchard H. Novel Selective Galectin-3 Antagonists Are Cytotoxic to Acute Lymphoblastic Leukemia. J Med Chem 2022; 65:5975-5989. [DOI: 10.1021/acs.jmedchem.1c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patrick M. Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Matthew W. Hugo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Ulf. J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
21
|
Liu W, Ren D, Xiong W, Jin X, Zhu L. A novel FBW7/NFAT1 axis regulates cancer immunity in sunitinib-resistant renal cancer by inducing PD-L1 expression. J Exp Clin Cancer Res 2022; 41:38. [PMID: 35081978 PMCID: PMC8790872 DOI: 10.1186/s13046-022-02253-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) alone and in combination with immune checkpoint inhibitors (ICIs) have been shown to be beneficial for the survival of metastatic renal cell carcinoma (mRCC) patients, but resistance to targeted therapy and ICIs is common in the clinic. Understanding the underlying mechanism is critical for further prolonging the survival of renal cancer patients. Nuclear factor of activated T cell 1 (NFAT1) is expressed in immune and nonimmune cells, and the dysregulation of NFAT1 contributes to the progression of various type of malignant tumors. However, the specific role of NFAT1 in RCC is elusive. As a regulator of the immune response, we would like to systemically study the role of NFAT1 in RCC. Methods TCGA-KIRC dataset analysis, Western blot analysis and RT-qPCR analysis was used to determine the clinic-pathological characteristic of NFAT1 in RCC. CCK-8 assays, colony formation assays and xenograft assays were performed to examine the biological role of NFAT1 in renal cancer cells. RNA-seq analysis was used to examine the pathways changed after NFAT1 silencing. ChIP-qPCR, coimmunoprecipitation analysis, Western blot analysis and RT-qPCR analysis were applied to explore the mechanism by NAFT1 was regulated in the renal cancer cells. Results In our study, we found that NFAT1 was abnormally overexpressed in RCC and that NFAT1 overexpression was associated with an unfavorable prognosis. Then, we showed that NFAT1 enhanced tumor growth and regulated the immune response by increasing PD-L1 expression in RCC. In addition, we demonstrated that NFAT1 was stabilized in sunitinib-resistant RCC via hyperactivation of the PI3K/AKT/GSK-3β signaling pathway. Furthermore, our study indicated that downregulation of the expression of FBW7, which promotes NFAT1 degradation, was induced by FOXA1 and SETD2 in sunitinib-resistant RCC. Finally, FBW7 was found to contribute to modulating the immune response in RCC. Conclusions Our data reveal a novel role for the FBW7/NFAT1 axis in the RCC response to TKIs and ICIs. NFAT1 and its associated signaling pathway might be therapeutic targets for RCC treatment, especially when combined with ICIs and/or TKIs. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02253-0.
Collapse
|
22
|
ENPP2 Methylation in Health and Cancer. Int J Mol Sci 2021; 22:ijms222111958. [PMID: 34769391 PMCID: PMC8585013 DOI: 10.3390/ijms222111958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant expression has been reported, ENPP2 methylation profiles in health and malignancy are not described. We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions, whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple transcription factors, suggesting involvement in gene expression. Alterations in methylation were correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas, increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX expression regulation in cancer. Our study provides an extended description of the methylation status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.
Collapse
|
23
|
Koneru JK, Sinha S, Mondal J. Molecular dynamics simulations elucidate oligosaccharide recognition pathways by galectin-3 at atomic resolution. J Biol Chem 2021; 297:101271. [PMID: 34619151 PMCID: PMC8571523 DOI: 10.1016/j.jbc.2021.101271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023] Open
Abstract
The recognition of carbohydrates by lectins plays key roles in diverse cellular processes such as cellular adhesion, proliferation, and apoptosis, which makes it a therapeutic target of significance against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity toward β-galactoside. However, despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and more significantly, the dynamic process underlying carbohydrate recognition by galectin-3 are currently elusive. To this end, we employed extensive Molecular Dynamics simulations to unravel the complete binding event of human galectin-3 with its native natural ligand N-acetyllactosamine (LacNAc) at atomic precision. The simulation trajectory demonstrates that the oligosaccharide diffuses around the protein and eventually identifies and binds to the biologically designated binding site of galectin-3 in real time. The simulated bound pose correlates with the crystallographic pose with atomic-level accuracy and recapitulates the signature stabilizing galectin-3/oligosaccharide interactions. The recognition pathway also reveals a set of transient non-native ligand poses in its course to the receptor. Interestingly, kinetic analysis in combination with a residue-level picture revealed that the key to the efficacy of a more active structural variant of the LacNAc lay in the ligand's resilience against disassociation from galectin-3. By catching the ligand in the act of finding its target, our investigations elucidate the detailed recognition mechanism of the carbohydrate-binding domain of galectin-3 and underscore the importance of ligand-target binary complex residence time in understanding the structure-activity relationship of cognate ligands.
Collapse
Affiliation(s)
- Jaya Krishna Koneru
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India
| | - Suman Sinha
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India.
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India.
| |
Collapse
|
24
|
Ozkan E, Bakar-Ates F. The Trinity of Matrix Metalloproteinases, Inflammation, and Cancer: A Literature Review of Recent Updates. Antiinflamm Antiallergy Agents Med Chem 2021; 19:206-221. [PMID: 32178620 PMCID: PMC7499348 DOI: 10.2174/1871523018666191023141807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
The critical link between cancer and inflammation has been known for many years. This complex network was further complexed by revealing the association of the matrix metalloproteinase family members with inflammatory cytokines, which were previously known to be responsible for the development of metastasis. This article summarizes the current studies which evaluate the relationship between cancer and inflammatory microenvironment as well as the roles of MMPs on invasion and metastasis together.
Collapse
Affiliation(s)
- Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Jeethy Ram T, Lekshmi A, Somanathan T, Sujathan K. Galectin-3: A factotum in carcinogenesis bestowing an archery for prevention. Tumour Biol 2021; 43:77-96. [PMID: 33998569 DOI: 10.3233/tub-200051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.
Collapse
Affiliation(s)
- T Jeethy Ram
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Asha Lekshmi
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - K Sujathan
- Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
26
|
Overexpression of miRNA-9 enhances galectin-3 levels in oral cavity cancers. Mol Biol Rep 2021; 48:3979-3989. [PMID: 34021445 DOI: 10.1007/s11033-021-06398-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Oral cavity cancer (OCC) is the predominant subtype of head and neck cancer (HNC) and has up to 50% mortality. Genome-wide microRNA (miR) sequencing data indicates overexpression of miR-9-5p in HNC tumours, however, the biological role of miR-9-5p in OCC is complex; it can either act as a tumour suppressor or an oncomir, regulating many target genes at the post-transcriptional level. We have investigated the overexpression of miR-9-5p in three OCC cell lines. We have evaluated its expression levels and Galectin-3 as potential biomarkers in saliva samples collected from controls and OCC patients. We found that over expression of miR-9-5p in OCC cell lines resulted in a significant reduction in cell proliferation and migration, and an increase in apoptosis, which was paralleled by an increase in Galectin-3 secretion and export of Galectin-3 protein. Our data are consistent with miR-9-5p being a modulator of Galectin-3 via the AKT/γ-catenin pathway. In addition, the positive correlation between the levels of miR-9-5p expression and secreted Galectin-3 in saliva reflects a similar relationship in vivo, and supports the utility of their integrative evaluation in OCC. Our findings indicate that both miR-9-5p and Galectin-3 are critical biomolecules in the progression of OCC.
Collapse
|
27
|
Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation. Proc Natl Acad Sci U S A 2021; 118:2021074118. [PMID: 33952698 DOI: 10.1073/pnas.2021074118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Galectin-3 (Gal-3) has a long, aperiodic, and dynamic proline-rich N-terminal tail (NT). The functional role of the NT with its numerous prolines has remained enigmatic since its discovery. To provide some resolution to this puzzle, we individually mutated all 14 NT prolines over the first 68 residues and assessed their effects on various Gal-3-mediated functions. Our findings show that mutation of any single proline (especially P37A, P55A, P60A, P64A/H, and P67A) dramatically and differentially inhibits Gal-3-mediated cellular activities (i.e., cell migration, activation, endocytosis, and hemagglutination). For mechanistic insight, we investigated the role of prolines in mediating Gal-3 oligomerization, a fundamental process required for these cell activities. We showed that Gal-3 oligomerization triggered by binding to glycoproteins is a dynamic process analogous to liquid-liquid phase separation (LLPS). The composition of these heterooligomers is dependent on the concentration of Gal-3 as well as on the concentration and type of glycoprotein. LLPS-like Gal-3 oligomerization/condensation was also observed on the plasma membrane and disrupted endomembranes. Molecular- and cell-based assays indicate that glycan binding-triggered Gal-3 LLPS (or LLPS-like) is driven mainly by dynamic intermolecular interactions between the Gal-3 NT and the carbohydrate recognition domain (CRD) F-face, although NT-NT interactions appear to contribute to a lesser extent. Mutation of each proline within the NT differentially controls NT-CRD interactions, consequently affecting glycan binding, LLPS, and cellular activities. Our results unveil the role of proline polymorphisms (e.g., at P64) associated with many diseases and suggest that the function of glycosylated cell surface receptors is dynamically regulated by Gal-3.
Collapse
|
28
|
Zhang X, Li M, Yin N, Zhang J. The Expression Regulation and Biological Function of Autotaxin. Cells 2021; 10:cells10040939. [PMID: 33921676 PMCID: PMC8073485 DOI: 10.3390/cells10040939] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and functions as a key enzyme to produce extracellular lysophosphatidic acid (LPA). LPA interacts with at least six G protein-coupled receptors, LPAR1-6, on the cell membrane to activate various signal transduction pathways through distinct G proteins, such as Gi/0, G12/13, Gq/11, and Gs. The ATX-LPA axis plays an important role in physiological and pathological processes, including embryogenesis, obesity, and inflammation. ATX is one of the top 40 most unregulated genes in metastatic cancer, and the ATX-LPA axis is involved in the development of different types of cancers, such as colorectal cancer, ovarian cancer, breast cancer, and glioblastoma. ATX expression is under multifaceted controls at the transcription, post-transcription, and secretion levels. ATX and LPA in the tumor microenvironment not only promote cell proliferation, migration, and survival, but also increase the expression of inflammation-related circuits, which results in poor outcomes for patients with cancer. Currently, ATX is regarded as a potential cancer therapeutic target, and an increasing number of ATX inhibitors have been developed. In this review, we focus on the mechanism of ATX expression regulation and the functions of ATX in cancer development.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Correspondence: ; Tel.: +86-10-58802137; Fax: +86-10-58807720
| |
Collapse
|
29
|
Curti BD, Koguchi Y, Leidner RS, Rolig AS, Sturgill ER, Sun Z, Wu Y, Rajamanickam V, Bernard B, Hilgart-Martiszus I, Fountain CB, Morris G, Iwamoto N, Shimada T, Chang S, Traber PG, Zomer E, Horton JR, Shlevin H, Redmond WL. Enhancing clinical and immunological effects of anti-PD-1 with belapectin, a galectin-3 inhibitor. J Immunother Cancer 2021; 9:jitc-2021-002371. [PMID: 33837055 PMCID: PMC8043038 DOI: 10.1136/jitc-2021-002371] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PD-1/PD-L1 engagement and overexpression of galectin-3 (Gal-3) are critical mechanisms of tumor-induced immune suppression that contribute to immunotherapy resistance. We hypothesized that Gal-3 blockade with belapectin (GR-MD-02) plus anti-PD-1 (pembrolizumab) would enhance tumor response in patients with metastatic melanoma (MM) and head and neck squamous cell carcinoma (HNSCC). METHODS We performed a phase I dose escalation study of belapectin+pembrolizumab in patients with advanced MM or HNSCC (NCT02575404). Belapectin was administered at 2, 4, or 8 mg/kg IV 60 min before pembrolizumab (200 mg IV every 3 weeks for five cycles). Responding patients continued pembrolizumab monotherapy for up to 17 cycles. Main eligibility requirements were a functional Eastern Cooperative Oncology Group status of 0-2, measurable or assessable disease, and no active autoimmune disease. Prior T-cell checkpoint antibody therapy was permitted. RESULTS Objective response was observed in 50% of MM (7/14) and and 33% of HNSCC (2/6) patients. Belapectin+pembrolizumab was associated with fewer immune-mediated adverse events than anticipated with pembrolizumab monotherapy. There were no dose-limiting toxicities for belapectin within the dose range investigated. Significantly increased effector memory T-cell activation and reduced monocytic myeloid-derived suppressor cells (M-MDSCs) were observed in responders compared with non-responders. Increased baseline expression of Gal-3+ tumor cells and PD-1+CD8+ T cells in the periphery correlated with response as did higher serum trough levels of pembrolizumab. CONCLUSIONS Belapectin+pembrolizumab therapy has activity in MM and HNSCC. Increased Gal-3 expression, expansion of effector memory T cells, and decreased M-MDSCs correlated with clinical response. Further investigation is planned.
Collapse
Affiliation(s)
- Brendan D Curti
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Yoshinobu Koguchi
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Rom S Leidner
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Elizabeth R Sturgill
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Yaping Wu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | | | - Brady Bernard
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Ian Hilgart-Martiszus
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | | | - George Morris
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Noriko Iwamoto
- Shimadzu Bioscience Research Partnership, Shimadzu Scientific Instruments, Bothell, Washington, USA
| | - Takashi Shimada
- Shimadzu Bioscience Research Partnership, Shimadzu Scientific Instruments, Bothell, Washington, USA
| | - ShuChing Chang
- Medical Data Research Center, Providence St Joseph Health, Portland, Oregon, USA
| | - Peter G Traber
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
30
|
Liu R, Wang G, Zhang C, Bai D. A prognostic model for hepatocellular carcinoma based on apoptosis-related genes. World J Surg Oncol 2021; 19:70. [PMID: 33712023 PMCID: PMC7955636 DOI: 10.1186/s12957-021-02175-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results Compared with normal tissues, 43 highly upregulated and 8 downregulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated 2-year or 5-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02175-9.
Collapse
Affiliation(s)
- Renjie Liu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Guifu Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Anchan A, Martin O, Hucklesby JJW, Finlay G, Johnson RH, Robilliard LD, O’Carroll SJ, Angel CE, Graham ES. Analysis of Melanoma Secretome for Factors That Directly Disrupt the Barrier Integrity of Brain Endothelial Cells. Int J Mol Sci 2020; 21:ijms21218193. [PMID: 33139674 PMCID: PMC7663570 DOI: 10.3390/ijms21218193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFβ were also produced by the melanoma cells. Whilst TGFβ-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFβ-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.
Collapse
Affiliation(s)
- Akshata Anchan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - Olivia Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - James J. W. Hucklesby
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Rebecca H. Johnson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Department of Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Laverne D. Robilliard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - Simon J. O’Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Correspondence:
| |
Collapse
|
32
|
Ge JY, Zheng YW, Tsuchida T, Furuya K, Isoda H, Taniguchi H, Ohkohchi N, Oda T. Hepatic stellate cells contribute to liver regeneration through galectins in hepatic stem cell niche. Stem Cell Res Ther 2020; 11:425. [PMID: 32993816 PMCID: PMC7526193 DOI: 10.1186/s13287-020-01942-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND As a critical cellular component in the hepatic stem cell niche, hepatic stellate cells (HSCs) play critical roles in regulating the expansion of hepatic stem cells, liver regeneration, and fibrogenesis. However, the signaling of HSCs, particularly that involved in promoting hepatic stem cell expansion, remains unclear. While the overexpression of galectins has been identified in regenerating liver tissues, their involvement in cell-cell interactions between HSCs and hepatic stem cells remains to be elucidated. METHODS To generate a liver regeneration rat model and establish a hepatic oval cell microenvironment as a stem cell niche, 2-acetylaminofluorene treatment plus partial hepatectomy was performed. Immunofluorescence staining was conducted to detect the emergence of hepatic stem cells and their niche. Liver parenchymal cells, non-parenchymal cells, and HSCs were isolated for gene and protein expression analysis by qPCR or western blotting. To evaluate the effect of galectins on the colony-forming efficiency of hepatic stem cells, c-Kit-CD29+CD49f+/lowCD45-Ter-119- cells were cultured with recombinant galectin protein, galectin antibody, galectin-producing HSCs, and galectin-knockdown HSCs. RESULTS Following liver injury, the cytokeratin 19+ ductal cells were robustly induced together with the emergence of OV6+CD44+CD133+EpCAM+ hepatic stem cells. The activated desmin+ HSCs were recruited around the periportal area and markedly enriched in the galectin-positive domain compared to the other non-parenchymal cells. Notably, the HSC fraction isolated from regenerating liver was accompanied by dramatically elevated gene and protein expression of galectins. Hepatic stem cells co-cultured with HSCs significantly enhanced colony-forming efficiency. Conversely, single or double knockdown of galectin-1 and galectin-3 led into a significant function loss, impaired the co-cultured hepatic stem cells to attenuated colony size, inhibited colony frequency, and reduced total cell numbers in colonies. On the other hand, the promotive function of galectins was further confirmed by recombinant galectin protein supplementation and galectins blocking antibodies. CONCLUSIONS Our findings, for the first time, demonstrated that galectins from activated HSCs contribute to hepatic stem cell expansion during liver regeneration, suggesting that galectins serve as important stem cell niche components.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575 Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575 Japan
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004 Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang, 212001 Jiangsu China
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
- School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004 Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575 Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004 Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575 Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575 Japan
| |
Collapse
|
33
|
Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1521-1534. [PMID: 32801345 PMCID: PMC7653936 DOI: 10.1038/s41416-020-1022-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background High probability of metastasis limited the long-term survival of patients with hepatocellular carcinoma (HCC). Our previous study revealed that Galectin-3 was closely associated with poor prognosis in HCC patients. Methods The effects of Galectin-3 on tumour metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. Results Galectin-3 showed a close correlation with vascular invasion and poor survival in a large-scale study in HCC patients from multiple sets. Galectin-3 was significantly involved in diverse metastasis-related processes in HCC cells, such as angiogenesis and epithelial-to-mesenchymal transition (EMT). Mechanistically, Galectin-3 activated the PI3K-Akt-GSK-3β-β-catenin signalling cascade; the β-catenin/TCF4 transcriptional complex directly targeted IGFBP3 and vimentin to regulate angiogenesis and EMT, respectively. In animal models, Galectin-3 enhanced the tumorigenesis and metastasis of HCC cells via β-catenin signalling. Moreover, molecular deletion of Galectin-3-β-catenin signalling synergistically improved the antitumour effect of sorafenib. Conclusions The Galectin-3-β-catenin-IGFBP3/vimentin signalling cascade was determined as a central mechanism controlling HCC metastasis, providing possible biomarkers for predicating vascular metastasis and sorafenib resistance, as well as potential therapeutic targets for the treatment of HCC patients.
Collapse
|
34
|
Kao MW, Su YC, Liang PI, Wu YY, Hong TM. Low Galectin-3 Expression Level in Primary Tumors Is Associated with Metastasis in T1 Lung Adenocarcinoma. J Clin Med 2020; 9:jcm9061990. [PMID: 32630393 PMCID: PMC7355842 DOI: 10.3390/jcm9061990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Although nodal and distant metastasis is rare in T1 lung adenocarcinoma, it is related to poor clinical prognosis. Association between galectin-3 (Gal-3) expression level, and clinical outcome of T1 lung adenocarcinoma has not been clarified. METHODS From January 2009 to December 2014, 74 patients with surgically resected T1 lung adenocarcinoma were enrolled in this retrospective cohort study. Patient outcomes were followed up until December 2019. Gal-3 expression level in primary tumors was assessed immunohistochemically and evaluated based on the staining intensity and percentage. Patient characteristics and correlation between Gal-3 expression level and clinical outcomes were reviewed. RESULTS Low Gal-3 expression was associated with increased metastatic events (p = 0.03), especially distant metastasis (p = 0.007), and mortality rate (p = 0.04). Kaplan-Meier analysis revealed that high Gal-3 expression level was associated with favorable recurrence-free survival in T1 lung adenocarcinoma (log-rank p = 0.048) and T1a (≤ 2 cm, American Joint Committee on Cancer (AJCC) 7th edition) lung adenocarcinoma (log-rank p = 0.043). Gal-3 expression along with tumor size showed a larger area under curve (AUC) than tumor size alone for predicting metastatic events (AUC = 0.747 vs. 0.681) and recurrence (AUC = 0.813 vs. 0.766) in T1a lung adenocarcinoma in the receiver-operating characteristic curve. CONCLUSION Low Gal-3 expression level in primary tumors was remarkably associated with increased metastatic events and reduced recurrence-free survival in T1 lung adenocarcinoma. We suggest that Gal-3 expression level in addition to tumor size may potentially be stronger than tumor size alone in predicting metastasis in T1a lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Ming-Wei Kao
- Division of Thoracic Surgery, Department of Surgery, E-Da Hospital, and College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yue-Chiu Su
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (Y.-C.S.); (P.-I.L.)
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (Y.-C.S.); (P.-I.L.)
| | - Yi-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 4259)
| |
Collapse
|
35
|
Liu N, Qi M, Li K, Zeng W, Li J, Yin M, Liu H, Chen X, Zhang J, Peng C. CD147 regulates melanoma metastasis via the NFAT1-MMP-9 pathway. Pigment Cell Melanoma Res 2020; 33:731-743. [PMID: 32339381 DOI: 10.1111/pcmr.12886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Although accumulating evidence had revealed that NFAT1 has oncogenic characteristics, the role of this molecule in melanoma cells remains unclear. Previous studies proved that CD147 plays a crucial function in melanoma cell metastasis and invasion through matrix metalloproteinase 9 (MMP-9) expression; however, the details of how CD147 regulates MMP-9 expression remain elusive. In this study, we demonstrated that CD147 and NFAT1 are overexpressed in the tissues of patients with primary and metastatic melanoma, which has shown a positive correlation. Further, we observed that CD147 regulates NFAT1 activation through the [Ca2+ ]i-calcineurin pathway. Knockdown of NFAT1 significantly suppresses melanoma metastasis, and we demonstrated that CD147 affects melanoma metastasis in an NFAT1-dependent manner. Moreover, we verified that NFAT1 directly binds to MMP-9 promoter. Inhibition of CD147 expression significantly abrogates MMP-9 promoter luciferase gene reporter activity as well as NFAT1 association with MMP-9 promoter. Taken together, this study demonstrated that CD147 affects MMP-9 expression through regulating NFAT1 activity and provided a novel mechanism by which NFAT1 contributes to melanoma metastasis through the regulation of MMP-9.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Keke Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Jiaoduan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Mingzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - JiangLin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Human Engineering Research Center of Skin Health and Disease, Changsha, China
| |
Collapse
|
36
|
Jalilian E, Xu Q, Horton L, Fotouhi A, Reddy S, Manwar R, Daveluy S, Mehregan D, Gelovani J, Avanaki K. Contrast-enhanced optical coherence tomography for melanoma detection: An in vitro study. JOURNAL OF BIOPHOTONICS 2020; 13:e201960097. [PMID: 32072773 DOI: 10.1002/jbio.201960097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Optical coherence tomography (OCT), with a high-spatial resolution (<10 microns), intermediate penetration depth (~1.5 mm) and volumetric imaging capability is a great candidate to be used as a diagnostic-assistant modality in dermatology. At this time, the accuracy of OCT for melanoma detection is lower than anticipated. In this letter, we studied for the first time, the use of a novel contrast agent consist of ultra-small nanoparticles conjugated to a melanoma biomarker to improve the accuracy of OCT for differentiation of melanoma cells from nonmelanoma cells, in vitro. We call this approach SMall nanoparticle Aggregation-enhanced Radiomics of Tumor (SMART)-OCT imaging. This initial proof of concept study is the first step toward the broad utilization of this method for high accuracy all types of tumor detection applications.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Luke Horton
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Audrey Fotouhi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Shriya Reddy
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Steven Daveluy
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Darius Mehregan
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kamran Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
37
|
Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB, Liu C. Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol 2020; 26:134-153. [PMID: 31969776 PMCID: PMC6962430 DOI: 10.3748/wjg.v26.i2.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis. Previous studies revealed that the tumor microenvironment (TME) plays an important role in HCC progression, recurrence, and metastasis, leading to poor prognosis. However, the effects of genes involved in TME on the prognosis of HCC patients remain unclear. Here, we investigated the HCC microenvironment to identify prognostic genes for HCC.
AIM To identify a robust gene signature associated with the HCC microenvironment to improve prognosis prediction of HCC.
METHODS We computed the immune/stromal scores of HCC patients obtained from The Cancer Genome Atlas based on the ESTIMATE algorithm. Additionally, a risk score model was established based on Differentially Expressed Genes (DEGs) between high‐ and low‐immune/stromal score patients.
RESULTS The risk score model consisting of eight genes was constructed and validated in the HCC patients. The patients were divided into high- or low-risk groups. The genes (Disabled homolog 2, Musculin, C-X-C motif chemokine ligand 8, Galectin 3, B-cell-activating transcription factor, Killer cell lectin like receptor B1, Endoglin and adenomatosis polyposis coli tumor suppressor) involved in our risk score model were considered to be potential immunotherapy targets, and they may provide better performance in combination. Functional enrichment analysis showed that the immune response and T cell receptor signaling pathway represented the major function and pathway, respectively, related to the immune-related genes in the DEGs between high- and low-risk groups. The receiver operating characteristic (ROC) curve analysis confirmed the good potency of the risk score prognostic model. Moreover, we validated the risk score model using the International Cancer Genome Consortium and the Gene Expression Omnibus database. A nomogram was established to predict the overall survival of HCC patients.
CONCLUSION The risk score model and the nomogram will benefit HCC patients through personalized immunotherapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Databases, Genetic/statistics & numerical data
- Datasets as Topic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Models, Genetic
- Neoplasm Staging
- Nomograms
- Precision Medicine/methods
- ROC Curve
- Risk Assessment/methods
- Treatment Outcome
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Fa-Peng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Yi-Pei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei-Xin Luo
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wan-Yu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- College of Life Science, Shangrao Normal University, Shangrao 334001, Jiangxi Province, China
| | - Chao-Qun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Lei-Bo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
38
|
ElBaiomy MA, Aref S, El Zaafarany M, Atwa S, Akl T, El-Beshbishi W, El-Ashwah S, Ibrahim L, El-Ghonemy M. Prognostic Impact of Lymphoid Enhancer Factor 1 Expression and Serum Galectin.3 in Egyptian AML Patients. Adv Hematol 2019; 2019:2352919. [PMID: 31929803 PMCID: PMC6935809 DOI: 10.1155/2019/2352919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Deregulation of the Wnt signaling pathway had a role in haematological malignancies. Previous studies reported that lymphoid enhancer factor 1 (LEF1) expression and serum Galectin-3 level could affect clinical parameters and outcome in acute myeloid leukemia patients, but as far as we know, no study has addressed their combined effect on AML patients. AIM We studied the expression of LEF1 by real-time qPCR and measured serum level of Gal.3 by ELISA technique in peripheral blood of 69 AML patients and correlated it with different clinicopathological criteria of patients, response, PFS and OS. RESULTS We found high expression (LEF1high) was associated with better OS (p = 0.02) and EFS (p = 0.019) compared to LEF1low, low serum Gal.3 level had better OS (p = 0.014) and EFS (p = 0.02) compared to high serum Gal.3 level. LEF1high less likely to carry a FLT3-ITD (p = 0.047) compared to LEF1low patient, also LEF1high characterized by favorable risk (p = 0.02) than LEF1low patients. While patients with higher Gal-3 levels characterized by poor risk (p = 0.02) than lower Gal.3 lels, also more likely to carry a FLT3-ITD with borderline significance (p = 0.054). Combined LEF1high/Gal.3 low patients had lower baseline blast percentages (p = 0.02), favorable risk (p = 0.01), less likely to carry FLT3-ITD (p = 0.02), higher CR rate (p = 0.055), shorter time to CR (0.001) than other groups. Among high Gal.3 level group, LEF1highexpression improved OS and EFS (20 and 15 months respectively) vs LEF1low expression (13 and 8 months respectively). CONCLUSION We conclude that high LEF1 expression was a favorable prognostic marker which can define AML patient risk and outcome independent from assessing the serum galectin.3 level.
Collapse
Affiliation(s)
- M. A. ElBaiomy
- Medical Oncology Unit, Mansoura University Oncology Center, Mansoura, Egypt
| | - S. Aref
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| | - M. El Zaafarany
- Medical Oncology Unit, Mansoura University Oncology Center, Mansoura, Egypt
| | - Sara Atwa
- Medical Oncology Unit, Mansoura University Oncology Center, Mansoura, Egypt
| | - Tamer Akl
- Medical Oncology Unit, Mansoura University Oncology Center, Mansoura, Egypt
| | - Wafaa El-Beshbishi
- Clinical Oncology and Nuclear Medicine Department, Mansoura University, Egypt
| | - Shaimaa El-Ashwah
- Clinical Hematology Unit, Mansoura University Oncology Center, Mansoura, Egypt
| | - L. Ibrahim
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| | - M. El-Ghonemy
- Hematology Unit, Clinical Pathology Department, Mansoura University, Egypt
| |
Collapse
|
39
|
Vargas THM, Pulz LH, Ferro DG, Sobral RA, Venturini MAFA, Corrêa HL, Strefezzi RF. Galectin-3 Expression Correlates with Post-surgical Survival in Canine Oral Melanomas. J Comp Pathol 2019; 173:49-57. [PMID: 31812173 DOI: 10.1016/j.jcpa.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023]
Abstract
Malignant melanomas (MMs) represent 7% of all malignant neoplasms in dogs. Oral melanocytic neoplasms are often malignant and associated with poor prognosis. There are no universally accepted prognostic markers for canine oral melanoma. Galectin (Gal)-3 is a prognostic marker for human neoplasms such as thyroid, gastric, colorectal and prostate cancers. The protein is related to processes that favour cancer progression, such as angiogenesis, proliferation and apoptosis. The aim of the present study was to characterize the immunohistochemical expression of Gal-3 in canine oral melanomas and to compare it with post-surgical survival, the expression of apoptosis-related proteins and other known prognostic tools. Twenty-seven samples of canine oral melanomas were evaluated for Gal-3, B-cell lymphoma (BCL) 2, caspase (CASP) 3 and Ki67 expression, mitotic index and degree of nuclear atypia. Gal-3 cytoplasmic positivity was correlated positively, while nuclear positivity was correlated negatively, with survival. The intensity of BCL2 labelling was also correlated positively with Gal-3 cytoplasmic positivity. Higher nuclear atypia was observed in dogs with melanoma that died due to the tumour, as well as in dogs that survived for <1 year after surgery. We have confirmed the importance of nuclear atypia for MMs and suggest that Gal-3 is a valuable prognostic indicator for this neoplasm. More in-depth studies are needed to unveil Gal-3 functions in canine MMs using larger sample sizes.
Collapse
Affiliation(s)
- T H M Vargas
- Laboratório de Oncologia Comparada e Translacional, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - L H Pulz
- Laboratório de Oncologia Comparada e Translacional, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil; Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - D G Ferro
- Odontovet - Centro Odontológico Veterinário, São Paulo, Brazil
| | - R A Sobral
- Onco Cane Veterinária, São Paulo, São Paulo, Brazil
| | | | - H L Corrêa
- Odontovet - Centro Odontológico Veterinário, São Paulo, Brazil
| | - R F Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
40
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
41
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
42
|
Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol 2019; 27:217-226. [PMID: 29427464 DOI: 10.1111/exd.13512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 01/01/2023]
Abstract
The galectin family comprises β-galactoside-binding proteins widely expressed in many organisms. There are at least 16 family members, which can be classified into three groups based on their carbohydrate-recognition domains. Pleiotropic functions of different galectins in physiological and pathological processes through extracellular or intracellular actions have been revealed. In the skin, galectins are expressed in a variety of cells, including keratinocytes, melanocytes, fibroblasts, dendritic cells, lymphocytes, macrophages and endothelial cells. Expression of specific galectins is reported to affect cell status, such as activation or death, and regulate the interaction between different cell types or between cells and the extracellular matrix. In vitro cellular studies, in vivo animal studies and studies of human clinical material have revealed the pathophysiologic roles of galectins in the skin. The pathogenesis of diverse non-malignant skin disorders, such as atopic dermatitis, psoriasis, contact dermatitis and wound healing, as well as skin cancers, such as melanoma, squamous cell carcinoma, basal cell carcinoma and cutaneous haematologic malignancy can be regulated by different galectins. Revelation of biological roles of galectins in skin may pave the way to future development of galectin-based therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
43
|
Hayashi Y, Jia W, Kidoya H, Muramatsu F, Tsukada Y, Takakura N. Galectin-3 Inhibits Cancer Metastasis by Negatively Regulating Integrin β3 Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:900-910. [PMID: 30653955 DOI: 10.1016/j.ajpath.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023]
Abstract
Galectin-3 (Gal-3; gene LGALS3) is a member of the β-galactose-binding lectin family. Previous studies showed that Gal-3 is expressed in several tissues across species and functions as a regulator of cell proliferation, apoptosis, adhesion, and migration, thus affecting many aspects of events, such as angiogenesis and tumorigenesis. Although several reports have suggested that the level of Gal-3 expression correlates positively with tumor progression, herein we show that highly metastatic mouse melanoma B16/BL6 cells express less Gal-3 than B16 cells with a lower metastatic potential. It was found that overexpression of Gal-3 in melanoma cells in fact suppresses metastasis. In contrast, knocking out Gal-3 expression in cancer cells promoted cell aggregation mediated through interactions with platelets and fibrinogen in vitro and increased the number of metastatic foci in vivo. Thus, reduced Gal-3 expression results in the up-regulation of β3 integrin expression, and this contributes to metastatic potential. These findings indicate that changes of Gal-3 expression in cancer cells during tumor progression influence the characteristics of metastatic cells.
Collapse
Affiliation(s)
- Yumiko Hayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yohei Tsukada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Signal Transduction, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
44
|
Liu H, Yang L, Qi M, Zhang J. NFAT1 enhances the effects of tumor-associated macrophages on promoting malignant melanoma growth and metastasis. Biosci Rep 2018; 38:BSR20181604. [PMID: 30459241 PMCID: PMC6435508 DOI: 10.1042/bsr20181604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play substantial roles in tumor growth, invasion, and metastasis. Nuclear factor of activated T cell (NFAT1) has been shown to promote melanoma growth and metastasis in vivo We herein aim to investigate whether NFAT1 is capable to promote melanoma growth and metastasis by influencing TAM properties. Melanoma-conditioned TAMs were obtained from human monocytes after incubation with conditioned medium from A375 cell culture. The phenotype of the macrophages was detected. Cell proliferation, migration, and invasion were evaluated. Human malignant melanoma tissues exhibited increased CD68+-macrophage infiltration and NFAT1 expression compared with the normal pigmented nevus tissues. Melanoma-conditioned TAMs displayed M2-like phenotype. Melanoma-conditioned TAMs also promoted proliferation, migration, and invasion of human malignant melanoma cell lines A375 and WM451. Furthermore, NFAT1 expression in TAMs was significantly increased compared with the M0 group. NFAT1 overexpression significantly strengthened the melanoma-conditioned TAM-mediated promotion of cell migration and invasion in A375 and WM451 cells, whereas NFAT1 knockdown exerted the opposite effects. Moreover, NFAT1 overexpression in melanoma-conditioned TAMs promoted CD68+-macrophage infiltration, tumor growth, and metastasis in vivo NFAT1 may play a critical role in enhancing the TAM-mediated promotion of growth and metastasis in malignant melanoma.
Collapse
Affiliation(s)
- Hao Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, P.R. China
| | - Liping Yang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan Province 410006, P.R. China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, P.R. China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, P.R. China
| |
Collapse
|
45
|
Elia AR, Caputo S, Bellone M. Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma. Front Immunol 2018; 9:1786. [PMID: 30108594 PMCID: PMC6079266 DOI: 10.3389/fimmu.2018.01786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023] Open
Abstract
Prostate adenocarcinoma (PCa) and melanoma are paradigmatic examples of tumors that are either poorly or highly sensitive to therapies based on monoclonal antibodies directed against regulatory pathways in T lymphocytes [i.e., immune checkpoint blockade (ICB)]. Yet, approximately 40% of melanoma patients are resistant or acquire resistance to ICB. What characterize the microenvironment of PCa and ICB-resistant melanoma are a scanty cytotoxic T cell infiltrate and a strong immune suppression, respectively. Here, we compare the tumor microenvironment in these two subgroups of cancer patients, focusing on some among the most represented immune checkpoint molecules: cytotoxic T lymphocyte-associated antigen-4, programmed death-1, lymphocyte activation gene-3, and T cell immunoglobulin and mucin-domain containing-3. We also report on several examples of crosstalk between cancer and immune cells that are mediated by inhibitory immune checkpoints and identify promising strategies aimed at overcoming ICB resistance both in PCa and melanoma.
Collapse
Affiliation(s)
- Angela Rita Elia
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Sara Caputo
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Ninou I, Magkrioti C, Aidinis V. Autotaxin in Pathophysiology and Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:180. [PMID: 29951481 PMCID: PMC6008954 DOI: 10.3389/fmed.2018.00180] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.
Collapse
Affiliation(s)
- Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| |
Collapse
|
47
|
Galectin-3 Expression in Benign and Malignant Skin Diseases With Epidermal Hyperplasia. Am J Dermatopathol 2018; 39:738-741. [PMID: 27922892 DOI: 10.1097/dad.0000000000000781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Galectin-3 has been suggested relative to tumor genesis, progression, and metastasis in basal cell carcinoma and squamous cell carcinoma that are the most common skin cancers characterized by malignant epidermal proliferation. In this study, we evaluated galectin-3 expression in seborrheic keratosis, keratoacanthoma, and infectious diseases including verruca vulgaris, condyloma acuminatum, and chromoblastomycosis that are pathologically featured by benign epidermal proliferation. Galectin-3 expression was shown by immunohistochemical staining and quantified using the Image Pro Plus V6.0. We found that galectin-3 distributed evenly in normal skin around the body decreased significantly in all selected diseases compared with healthy controls, but it was comparable among each disease. These findings imply that galectin-3 do not differentiate between benign and malignant proliferation of keratinocytes.
Collapse
|
48
|
Zhao W, Ajani JA, Sushovan G, Ochi N, Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z, Song S. Galectin-3 Mediates Tumor Cell-Stroma Interactions by Activating Pancreatic Stellate Cells to Produce Cytokines via Integrin Signaling. Gastroenterology 2018; 154:1524-1537.e6. [PMID: 29274868 DOI: 10.1053/j.gastro.2017.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by activated pancreatic stellate cells (PSCs), abundance of extracellular matrix (ECM), and production of cytokines and chemokines. Galectin 3 (GAL3), a β-galactoside-specific lectin, contributes to PDAC development but its effects on the stroma and cytokine production are unclear. METHODS The effect of recombinant human GAL3 (rGAL3) on activation of PSCs, production of cytokines, and ECM proteins was determined by proliferation, invasion, cytokine array, and quantitative polymerase chain reaction. We assessed co-cultures of PDAC cells with GAL3 genetic alterations with PSCs. Production of interleukin 8 (IL8) and activities of nuclear factor (NF)-κB were determined by enzyme-linked immunosorbent assay and luciferase reporter analyses. We studied the effects of inhibitors of NF-κB and integrin-linked kinase (ILK) on pathways activated by rGAL3. RESULTS In analyses of the Gene Expression Omnibus database and our dataset, we observed higher levels of GAL3, IL8, and other cytokines in PDAC than in nontumor tissues. Production of IL8, granulocyte-macrophage colony-stimulating factor, chemokine ligand 1, and C-C motif chemokine ligand 2 increased in PSCs exposed to rGAL3 compared with controls. Culture of PSCs with PDAC cells that express different levels of GAL3 resulted in proliferation and invasion of PSCs that increased with level of GAL3. GAL3 stimulated transcription of IL8 through integrin subunit beta 1 (ITGB1) on PSCs, which activates NF-κB through ILK. Inhibitors of ILK or NF-κB or a neutralizing antibody against ITGB1 blocked transcription and production of IL8 from PSCs induced by rGAL3. The GAL3 inhibitor significantly reduced growth and metastases of orthotopic tumors that formed from PDAC and PSC cells co-implanted in mice. CONCLUSION GAL3 activates PSC cells to produce inflammatory cytokines via ITGB1signaling to ILK and activation of NF-κB. Inhibition of this pathway reduced growth and metastases of pancreatic orthotopic tumors in mice.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China; Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Guha Sushovan
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Nobuo Ochi
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rosa Hwang
- Department of Breast Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Margarete Hafley
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
49
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
50
|
Gordon-Alonso M, Hirsch T, Wildmann C, van der Bruggen P. Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat Commun 2017; 8:793. [PMID: 28986561 PMCID: PMC5630615 DOI: 10.1038/s41467-017-00925-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/07/2017] [Indexed: 01/15/2023] Open
Abstract
The presence of T cells in tumors predicts overall survival for cancer patients. However, why most tumors are poorly infiltrated by T cells is barely understood. T-cell recruitment towards the tumor requires a chemokine gradient of the critical IFNγ-induced chemokines CXCL9/10/11. Here, we describe how tumors can abolish IFNγ-induced chemokines, thereby reducing T-cell attraction. This mechanism requires extracellular galectin-3, a lectin secreted by tumors. Galectins bind the glycans of glycoproteins and form lattices by oligomerization. We demonstrate that galectin-3 binds the glycans of the extracellular matrix and those decorating IFNγ. In mice bearing human tumors, galectin-3 reduces IFNγ diffusion through the tumor matrix. Galectin antagonists increase intratumoral IFNγ diffusion, CXCL9 gradient and tumor recruitment of adoptively transferred human CD8+ T cells specific for a tumor antigen. Transfer of T cells reduces tumor growth only if galectin antagonists are injected. Considering that most human cytokines are glycosylated, galectin secretion could be a general strategy for tumor immune evasion. Most tumours are poorly infiltrated by T cells. Here the authors show that galectin-3 secreted by tumours binds both glycosylated IFNγ and glycoproteins of the tumour extracellular matrix, thus avoiding IFNγ diffusion and the formation of an IFNγ-induced chemokine gradient required for T cell infiltration.
Collapse
Affiliation(s)
- Monica Gordon-Alonso
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium. .,WELBIO, Avenue Hippocrate 74, 1200, Brussels, Belgium.
| | - Thibault Hirsch
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Claude Wildmann
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium.,WELBIO, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium. .,WELBIO, Avenue Hippocrate 74, 1200, Brussels, Belgium.
| |
Collapse
|