1
|
Aguilar R, Rosenberg M, Levy V, Lee JT. An evolving landscape of PRC2-RNA interactions in chromatin regulation. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00850-3. [PMID: 40307460 DOI: 10.1038/s41580-025-00850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
A major unsolved problem in epigenetics is how RNA regulates Polycomb repressive complex 2 (PRC2), a complex that trimethylates histone H3 Lys27 (H3K27me3) to form repressive chromatin. Key questions include how PRC2 binds RNA in vivo and what the functional consequences of binding are. In this Perspective, we expound on the viewpoint that RNA is integral to the stepwise regulation of PRC2 activity. Using the long non-coding RNA XIST and X chromosome inactivation as a model, we discuss evidence indicating that RNA is involved in PRC2 recruitment onto chromatin, in induction of its catalytic activity and in its eviction from chromatin. Studies have also implicated RNA in controlling promoter-proximal pausing of RNA polymerase II. The cumulative data argue that the functional consequences of PRC2-RNA interactions crucially depend on RNA conformation. We recognize that alternative hypotheses exist and therefore we attempt to integrate contrary data. Thus, although an RNA-rich landscape is emerging for Polycomb complexes, additional work is required to resolve a broad range of data interpretations.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Levy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ghorbani V, Ghorbian S. Gene expression profiling of lncRNA-HOTAIR and lncRNA-MALAT1 in esophageal cancer: uncovering links to lifestyle factors and diagnostic significance. Discov Oncol 2025; 16:630. [PMID: 40295320 PMCID: PMC12037955 DOI: 10.1007/s12672-025-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Esophageal cancer (EC) is the sixth most common cause of cancer-related deaths globally. Genetic and environmental factors could be affected in EC's onset and development. The potential involvement of lncRNA-HOTAIR and lncRNA-MALAT1 in EC has garnered significant attention in recent studies. Our investigation aimed to examine lncRNA-HOTAIR and lncRNA-MALAT1 gene expression changes in EC patients. MATERIALS AND METHODS Our experimental study focused on 140 patients with malignant EC, comprising 70 paraffin-embedded tumor tissues (FFPE) blocks and 70 FFPE blocks with marginal tissue samples. The relative gene expression levels of lncRNA-HOTAIR and lncRNA-MALAT1 were measured using Real-Time PCR. The data were analyzed using ANOVA and 2-△△CT tests. RESULTS Our analysis revealed a significant increase in tumor expression compared to marginal tissues (P < 0.05). Besides, our research revealed a significant correlation between lncRNA-HOTAIR expression and hot drinks (P = 0.019), metastasis (P = 0.001), and the 5-year survival rate (P = 0.001). We found a significant correlation between lncRNA-MALAT1 expression and alcohol abuse (P = 0.039), hot drinks (P = 0.001), and metastasis (P = 0.039). CONCLUSION The findings indicate a potential carcinogenic effect of lncRNA-HOTAIR and lncRNA-MALAT1 gene expression alterations in EC patients. Also, studying the lncRNA genes can help us identify biomarkers, emphasizing the significance of early diagnosis and treatment.
Collapse
Affiliation(s)
- Vahid Ghorbani
- Department of Biology, Ah.C., Islamic Azad University, Ahar, Iran
| | - Saeid Ghorbian
- Department of Biology, Ta.C., Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
3
|
Puri B, Majumder S, Gaikwad AB. LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases. Pathol Res Pract 2025; 266:155783. [PMID: 39724850 DOI: 10.1016/j.prp.2024.155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases. Overexpression of lncRNA MALAT1 has been consistently observed in kidney tissue, correlating with the severity and progression of kidney disease. In AKI, lncRNA MALAT1 exacerbates inflammation and tissue damage, contributing to disease progression. In CKD and DKD, lncRNA MALAT1 is implicated in the regulation of fibrosis by modulating key pathways, including focal adhesion kinase (FAK), toll-like receptor 4 (TLR4), NOD-like receptor protein3 (NLRP3), and nuclear factor kappa B (NF-κB), play pivotal roles in promoting disease progression. In LN, lncRNA MALAT1 has been linked to immune regulation and kidney damage, while in RCC, its role in promoting tumor growth and metastasis has been well documented. Preclinical research has demonstrated that therapeutic strategies targeting lncRNA MALAT1, such as knockdown and knockout, can reduce inflammation and fibrosis while improving kidney function. The fundamental role of lncRNA MALAT1 in kidney disease progression is yet to be fully understood. However, lncRNA MALAT1 has shown promise as a biomarker and therapeutic target to mitigate kidney disease development. This review highlights the potential of lncRNAs MALAT1 as diagnostic biomarkers and therapeutic targets, offering insights into a comprehensive approach to managing kidney diseases in the future.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Wu CM, Chen CH, Tsai KW, Tan MC, Tsai FY, Jiang SS, Chen SH, Chen WS, Wang HD, Huang TS. TCF12 and LncRNA MALAT1 Cooperatively Harness High Cyclin D1 but Low β-Catenin Gene Expression to Exacerbate Colorectal Cancer Prognosis Independently of Metastasis. Cells 2024; 13:2035. [PMID: 39768127 PMCID: PMC11674632 DOI: 10.3390/cells13242035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Metastasis is a well-known factor worsening colorectal cancer (CRC) prognosis, but mortality mechanisms in non-metastatic patients with poor outcomes are less understood. TCF12 is a transcription factor that can be physically associated with the long non-coding RNA MALAT1, creating an alliance with correlated expression levels in CRC patients. This TCF12-MALAT1 alliance is linked to poorer prognosis independently of age and metastasis. To identify the downstream effects responsible for this outcome, we analyzed 2312 common target genes of TCF12 and MALAT1, finding involvement in pathways like Aurora B, ATM, PLK1, and non-canonical WNT. We investigated the impact of WNT downstream genes CTNNB1 and CCND1, encoding β-catenin and cyclin D1, respectively, on survival in CRC patients with this alliance. Tumors with higher TCF12 and MALAT1 gene expressions alongside increased β-catenin gene expressions were classified as having a "Pan-CMS-2 pattern", showing relatively better prognoses. Conversely, tumors with high TCF12, MALAT1, and cyclin D1 gene expressions but low β-catenin expression were categorized as "TMBC pattern", associated with poor survival, with survival rates dropping sharply from 60% at one year to 30% at three years. This suggests that targeting cyclin D1-associated CDK4/6 could potentially reduce early mortality risks in TMBC patients, supporting personalized medicine approaches.
Collapse
Affiliation(s)
- Chia-Ming Wu
- Graduate Program of Biotechnology in Medicine, National Health Research Institutes, National Tsing Hua University, Hsinchu City 300, Taiwan;
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
- Department of Mathematics, University of Taipei, Taipei City 100, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Mei-Chen Tan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City 112, Taiwan;
| | - Horng-Dar Wang
- Graduate Program of Biotechnology in Medicine, National Health Research Institutes, National Tsing Hua University, Hsinchu City 300, Taiwan;
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Tze-Sing Huang
- Graduate Program of Biotechnology in Medicine, National Health Research Institutes, National Tsing Hua University, Hsinchu City 300, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan; (C.-H.C.); (M.-C.T.); (F.-Y.T.); (S.-S.J.); (S.-H.C.)
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
5
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Taghavinia F, Akhlaghipour I, Golshan A, Aarabi A, Abbaszadegan MR, Moghbeli M. LINC00365 as a potential biomarker for total nephrectomy in advanced-stage renal cell carcinoma patients. Pathol Res Pract 2024; 263:155630. [PMID: 39353324 DOI: 10.1016/j.prp.2024.155630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most frequent urological cancers globally that has a good prognosis in the early tumor stages. However, there is a poor prognosis in metastatic RCC patients. Therefore, it is needed to evaluate the molecular biology of RCC progression to introduce the efficient diagnostic and therapeutic markers in these patients. Long non-coding RNAs (lncRNAs) have key roles in regulation of molecular mechanisms during RCC progression. In the present study, we assessed the levels of LINC00365 expressions in RCC patients to suggest that as a tumor marker in these patients. METHODS Fifty fresh RCC tumor tissues and their normal margins were collected to assess the levels of LINC00365 expressions and probable correlations with clinicopathological features of RCC patients. RESULTS There was significant LINC00365 up regulation in females compared with males (p=0.050). Among the RCC patients with total nephrectomy, there was a significant LINC00365 up regulation in advanced stage compared with primary stage tumors (p=0.035). RCC patients older than 60 years old who were undergone the total nephrectomy had also significant LINC00365 up regulation compared with RCC patients younger than 60 years old (p=0.039). CONCLUSIONS given the significant increase in LINC00365 expression in advanced stage RCC tumors and patients over 60 years old who had total nephrectomy; it could serve as a useful diagnostic marker in screening programs for old high-risk individuals. It was also noticed that female RCC patients had elevated levels of LINC00365 expressions in their tumor samples, suggesting its potential use as a gender-specific diagnostic marker for high-risk females. Nevertheless, evaluating the levels of LINC00365 in serum samples of RCC patients is necessary to suggest that as a reliable diagnostic marker in clinical settings.
Collapse
Affiliation(s)
- Fatemeh Taghavinia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Golshan
- Department of Urology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Aarabi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Devarajan E, Davis RE, Beird HC, Wang WL, Jensen VB, Jayakumar A, Leung CH, Lin HY, Wu CC, Ihezie SA, Tsai JW, Futreal PA, Lewis VO. Targeting IL-11R/EZH2 signaling axis as a therapeutic strategy for osteosarcoma lung metastases. Discov Oncol 2024; 15:232. [PMID: 38886296 PMCID: PMC11183017 DOI: 10.1007/s12672-024-01056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Lung metastases are the primary cause of death for osteosarcoma (OS) patients. We recently validated interleukin-11 receptor α (IL-11Rα) as a molecular target for the inhibition of OS lung metastases. Since there is no clinically approved antibody against this receptor, we sought to identify downstream targets that mediate the effects of IL-11Rα signaling. We used shRNA to deplete IL-11Rα from OS cells; as a complementary approach, we added IL-11 exogenously to OS cells. The resulting changes in gene expression identified EZH2 as a downstream candidate. This was confirmed by knockdown of IL-11Rα in OS cells, which led to increased expression of genes repressed by histone methyltransferase EZH2, including members of the WNT pathway, a known target pathway of EZH2. Exogenous IL-11 increased the global levels of histone H3 lysine 27 trimethylation, evidence of EZH2 activation. Treatment with the EZH2 inhibitor GSK126 significantly reduced in vitro proliferation and increased cell-cycle arrest and apoptosis, which were partially mediated through the WNT pathway. In vivo, treatment of an orthotopic nude mouse model of OS with GSK126 inhibited lung metastatic growth and prolonged survival. In addition, significantly shorter recurrence-free survival was seen in OS patients with high levels of EZH2 in their primary tumors (P < .05). This suggests that IL-11Rα promotes OS lung metastasis via activation of EZH2. Thus, blocking EZH2 activity may be an effective strategy for inhibiting OS lung metastasis and improving prognosis.
Collapse
Affiliation(s)
- Eswaran Devarajan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1448, Houston, TX, 77030, USA
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arumugam Jayakumar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Y Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Ihezie
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jen-Wei Tsai
- Department of Anatomic Pathology, E-Da Hospital, Kaohsiung, Taiwan
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1448, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Aslanzadeh M, Stanicek L, Tarbier M, Mármol-Sánchez E, Biryukova I, Friedländer M. Malat1 affects transcription and splicing through distinct pathways in mouse embryonic stem cells. NAR Genom Bioinform 2024; 6:lqae045. [PMID: 38711862 PMCID: PMC11071118 DOI: 10.1093/nargab/lqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Malat1 is a long-noncoding RNA with critical roles in gene regulation and cancer metastasis, however its functional role in stem cells is largely unexplored. We here perform a nuclear knockdown of Malat1 in mouse embryonic stem cells, causing the de-regulation of 320 genes and aberrant splicing of 90 transcripts, some of which potentially affecting the translated protein sequence. We find evidence that Malat1 directly interacts with gene bodies and aberrantly spliced transcripts, and that it locates upstream of down-regulated genes at their putative enhancer regions, in agreement with functional genomics data. Consistent with this, we find these genes affected at both exon and intron levels, suggesting that they are transcriptionally regulated by Malat1. Besides, the down-regulated genes are regulated by specific transcription factors and bear both activating and repressive chromatin marks, suggesting that some of them might be regulated by bivalent promoters. We propose a model in which Malat1 facilitates the transcription of genes involved in chromatid dynamics and mitosis in one pathway, and affects the splicing of transcripts that are themselves involved in RNA processing in a distinct pathway. Lastly, we compare our findings with Malat1 perturbation studies performed in other cell systems and in vivo.
Collapse
Affiliation(s)
- Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory and Center for Palaeogenetics. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
9
|
Elfstrum AK, Rumahorbo AH, Reese LE, Nelson EV, McCluskey BM, Schwertfeger KL. LYVE-1-expressing Macrophages Modulate the Hyaluronan-containing Extracellular Matrix in the Mammary Stroma and Contribute to Mammary Tumor Growth. CANCER RESEARCH COMMUNICATIONS 2024; 4:1380-1397. [PMID: 38717149 PMCID: PMC11141485 DOI: 10.1158/2767-9764.crc-24-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota
| | - Annisa H. Rumahorbo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Lyndsay E. Reese
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Emma V. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Braedan M. McCluskey
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Hussain MS, Agrawal M, Shaikh NK, Saraswat N, Bahl G, Maqbool Bhat M, Khurana N, Bisht AS, Tufail M, Kumar R. Beyond the Genome: Deciphering the Role of MALAT1 in Breast Cancer Progression. Curr Genomics 2024; 25:343-357. [PMID: 39323624 PMCID: PMC11420562 DOI: 10.2174/0113892029305656240503045154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 09/27/2024] Open
Abstract
The MALAT1, a huge non-coding RNA, recently came to light as a multifaceted regulator in the intricate landscape of breast cancer (BC) progression. This review explores the multifaceted functions and molecular interactions of MALAT1, shedding light on its profound implications for understanding BC pathogenesis and advancing therapeutic strategies. The article commences by acknowledging the global impact of BC and the pressing need for insights into its molecular underpinnings. It is stated that the core lncRNA MALAT1 has a range of roles in both healthy and diseased cell functions. The core of this review unravels MALAT1's multifaceted role in BC progression, elucidating its participation in critical processes like resistance, invasion, relocation, and proliferating cells to therapy. It explores the intricate mechanisms through which MALAT1 modulates gene expression, interacts with other molecules, and influences signalling pathways. Furthermore, the paper emphasizes MALAT1's clinical significance as a possible prognostic and diagnostic biomarker. Concluding on a forward-looking note, the review highlights the broader implications of MALAT1 in BC biology, such as its connections to therapy resistance and metastasis. It underscores the significance of deeper investigations into these intricate molecular interactions to pave the way for precision medicine approaches. This review highlights the pivotal role of MALAT1 in BC progression by deciphering its multifaceted functions beyond the genome, offering profound insights into its implications for disease understanding and the potential for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Nusratbanu K. Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210, Gujarat, India
| | - Nikita Saraswat
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand (248001), India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
11
|
Khan MM, Kirabo A. Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension. Int J Mol Sci 2024; 25:5507. [PMID: 38791545 PMCID: PMC11122212 DOI: 10.3390/ijms25105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Preston Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Li H, Han X, Song L, Li X, Zhang L, Jin Z, Zhang Y, Wang T, Huang Z, Jia Z, Yang J. LINC00645 inhibits renal cell carcinoma progression by interacting with HNRNPA2B1 to regulate the ROCK1 mRNA stability. Gene 2024; 905:148232. [PMID: 38309317 DOI: 10.1016/j.gene.2024.148232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xu Han
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liang Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
13
|
Shalaby R, Ibrahim S, Kotb AAW, Baz S, Hafed L, Shaker O, Afifi S. MALAT1 as a potential salivary biomarker in oral squamous cell carcinoma through targeting miRNA-124. Oral Dis 2024; 30:2075-2083. [PMID: 37703315 DOI: 10.1111/odi.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES To determine the diagnostic accuracy of the long non-coding RNA "MALAT1" measured in the saliva of patients with oral squamous cell carcinoma (OSCC) and assess the salivary expression of microRNA-124, which MALAT1 targets. SUBJECTS AND METHODS Forty subjects were collected in a consecutive pattern and allocated into two groups. Group A included 20 patients with OSCC, while Group B included 20 healthy subjects. Salivary expression of MALAT1 and microRNA (miRNA)-124 was evaluated in the two study groups using quantitative real-time polymerase chain reaction and correlated with histopathological examination of OSCC subjects. RESULTS OSCC yielded a statistically significant higher expression of MALAT1 than healthy controls and a lower expression of miRNA-124 in OSCC than controls. There is a statistically significant inverse relationship between salivary MALAT1 and miRNA-124. Moreover, there is a statistically significant difference in the MALAT1 expression in saliva samples from metastatic cases compared with non-metastatic cases, as well as in patients with lymph node involvement compared with those without involvement. At a cut-off value of 2.24, salivary MALAT1 exhibited 95% sensitivity and 90% specificity in differentiating OSCC from healthy subjects. CONCLUSION Salivary MALAT1 acts as a sponge for miRNA-124 and could be a potential salivary biomarker for OSCC.
Collapse
Affiliation(s)
- Rania Shalaby
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Sally Ibrahim
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Ali A W Kotb
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Safaa Baz
- Oral Pathology, Faculty of Dentistry, The British University in Egypt, El Shorouk City, Egypt
| | - Layla Hafed
- Oral and Maxillofacial Pathology, Al-Mamoon Diagnostic Medical Center, Sana'a, Yemen
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Salsabeel Afifi
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
14
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Jani Y, Jansen CS, Gerke MB, Bilen MA. Established and emerging biomarkers of immunotherapy in renal cell carcinoma. Immunotherapy 2024; 16:405-426. [PMID: 38264827 PMCID: PMC11913054 DOI: 10.2217/imt-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors, have heralded impressive progress for patient care in renal cell carcinoma (RCC). Despite this success, some patients' disease fails to respond, and other patients experience significant side effects. Thus, development of biomarkers is needed to ensure that patients can be selected to maximize benefit from immunotherapies. Improving clinicians' ability to predict which patients will respond to immunotherapy and which are most at risk of adverse events - namely through clinical biomarkers - is indispensable for patient safety and therapeutic efficacy. Accordingly, an evolving suite of therapeutic biomarkers continues to be investigated. This review discusses biomarkers for immunotherapy in RCC, highlighting current practices and emerging innovations, aiming to contribute to improved outcomes for patients with RCC.
Collapse
Affiliation(s)
- Yash Jani
- Mercer University, Macon, GA31207, USA
| | - Caroline S Jansen
- Emory University School of Medicine, Atlanta, GA30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA30322, USA
| | - Margo B Gerke
- Emory University School of Medicine, Atlanta, GA30322, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA30322, USA
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA30322, USA
| |
Collapse
|
16
|
Zheng L, Yang Z, Xue Z, Chen M, Zhang Y, Cai S, Zheng K, Dai B, Liu S, Zhuang S, Sui G, Zhang D. Air-Liquid Interface Microfluidic Monitoring Sensor Platform for Studying Autophagy Regulation after PM2.5 Exposure. ACS Sens 2024; 9:1178-1187. [PMID: 38437216 DOI: 10.1021/acssensors.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Undoubtedly, a deep understanding of PM2.5-induced tumor metastasis at the molecular level can contribute to improving the therapeutic effects of related diseases. However, the underlying molecular mechanism of fine particle exposure through long noncoding RNA (lncRNA) regulation in autophagy and, ultimately, lung cancer (LC) metastasis remains elusive; on the other hand, the related monitoring sensor platform used to investigate autophagy and cell migration is lacking. Herein, this study performed an air-liquid interface microfluidic monitoring sensor (AIMMS) platform to analyze human bronchial epithelial cells after PM2.5 stimulation. The multiomics analysis [RNA sequencing (RNA-seq) on lncRNA and mRNA expressions separately] showed that MALAT1 was highly expressed in the PM2.5 treatment group. Furthermore, RNA-seq analysis demonstrated that autophagy-related pathways were activated. Notably, the main mRNAs associated with autophagy regulation, including ATG4D, ATG12, ATG7, and ATG3, were upregulated. Inhibition or downregulation of MALAT1 inhibited autophagy via the ATG4D/ATG12/ATG7/ATG3 pathway after PM2.5 exposure and ultimately suppressed LC metastasis. Thus, based on the AIMMS platform, we found that MALAT1 might become a promising therapeutic target. Furthermore, this low-cost AIMMS system as a fluorescence sensor integrated with the cell-monitor module could be employed to study LC migration after PM2.5 exposure. With the fluorescence cell-monitoring module, the platform could be used to observe the migration of LC cells and construct the tumor metastasis model. In the future, several fluorescence probes, including nanoprobes, could be used in the AIMMS platform to investigate many other biological processes, especially cell interaction and migration, in the fields of toxicology and pharmacology.
Collapse
Affiliation(s)
- Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhiwei Xue
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuqi Cai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Kejie Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
17
|
Zhu Z, Wang Q, Zeng X, Zhu S, Chen J. Validation and identification of anoikis-related lncRNA signatures for improving prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3915-3933. [PMID: 38385949 PMCID: PMC10929799 DOI: 10.18632/aging.205568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.
Collapse
Affiliation(s)
- Zhenjie Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qibo Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaowei Zeng
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shaoxing Zhu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinchao Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
18
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
19
|
Jiang X, Lan Y, Zhang Y, Dong Y, Song T. LncRNA FAM83H-AS1 Contributes to the Radio-resistance and Proliferation in Liver Cancer through Stability FAM83H Protein. Recent Pat Anticancer Drug Discov 2024; 19:316-327. [PMID: 37132310 DOI: 10.2174/1574892818666230427164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Liver cancer (LC) is one of China's most common malignant tumors, with a high mortality rate, ranking third leading cause of death after gastric and esophageal cancer. Recent patents propose the LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. However, the concrete mechanism remains to be pending further investigation. OBJECTIVE This study aimed to explore the embedding mechanism of FAM83H-AS1 molecules in terms of radio sensitivity of LC and provide potentially effective therapeutic targets for LC therapy. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the transcription levels of genes. Proliferation was determined via CCK8 and colony formation assays. Western blot was carried out to detect the relative protein expression. A xenograft mouse model was constructed to investigate the effect of LncRNA FAM83H-AS1 on tumor growth and radio-sensitivity in vivo. RESULTS The levels of lncRNA FAM83H-AS1 were remarkably increased in LC. Knockdown of FAM83H-AS1 inhibited LC cell proliferation and colony survival fraction. Deletion of FAM83H-AS1 increased the sensitivity of LC cells to 4 Gy of X-ray radiation. In the xenograft model, radiotherapy combined with FAM83H-AS1 silencing significantly reduced tumor volume and weight. Overexpression of FAM83H reversed the effects of FAM83H-AS1 deletion on proliferation and colony survival fraction in LC cells. Moreover, the over-expressing of FAM83H also restored the tumor volume and weight reduction caused by the knockdown of FAM83H-AS1 or radiation in the xenograft model. CONCLUSION Knockdown of lncRNA FAM83H-AS1 inhibited LC growth and enhanced radiosensitivity in LC. It has the potential to be a promising target for LC therapy.
Collapse
Affiliation(s)
- Xiaocong Jiang
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yuhong Lan
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yingchun Zhang
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Yuhong Dong
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| |
Collapse
|
20
|
Anbiyaee O, Moalemnia A, Ghaedrahmati F, Shooshtari MK, Khoshnam SE, Kempisty B, Halili SA, Farzaneh M, Morenikeji OB. The functions of long non-coding RNA (lncRNA)-MALAT-1 in the pathogenesis of renal cell carcinoma. BMC Nephrol 2023; 24:380. [PMID: 38124072 PMCID: PMC10731893 DOI: 10.1186/s12882-023-03438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.
Collapse
Affiliation(s)
- Omid Anbiyaee
- Cardiovascular Research Center, School of Medicine, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khombi Shooshtari
- Chronic Renal Failure Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology Division of Anatomy, Wrocław Medical University, Wrocław, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, US
- Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Shahla Ahmadi Halili
- Department of Internal Medicine, School of Science, Chronic Renal Failure Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, USA.
| |
Collapse
|
21
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
22
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
23
|
Sun M, Li K, Li X, Wang H, Li L, Zheng G. lncRNA TUG1 regulates Smac/DIABLO expression by competitively inhibiting miR-29b and modulates the apoptosis of lens epithelial cells in age-related cataracts. Chin Med J (Engl) 2023; 136:2340-2350. [PMID: 37185343 PMCID: PMC10538928 DOI: 10.1097/cm9.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND As one of the early discovered long non-coding RNAs (lncRNA), taurine upregulation gene 1 ( TUG1 ) has been widely expressed in a variety of tumors. Moreover, it promotes cell proliferation, differentiation, apoptosis, and migration. However, our understanding of its importance in the pathogenesis of cataracts remains limited. This study aimed to explore the mechanism by which lncRNA TUG1 mediates lens epithelial cell apoptosis in age-related cataracts (ARC) by regulating the microRNAs (miR-29b)/second mitochondria-derived activator of caspases axis, and to identify more non-surgical strategies for cataract treatment. METHODS The messenger RNA expression levels of TUG1 , miR-29b, and Smac were detected using quantitative real-time polymerase chain reaction in vivo and in vitro . The expression of the Smac protein was analyzed by Western blotting and immunofluorescence. Flow cytometry and cell counting kit-8 assays were used to detect the cell apoptosis and proliferation rates, respectively. The targeted regulatory relationship between lncRNA TUG1 , miR-29b, and Smac was verified by viral vector construction, co-transfection, nuclear and cytoplasmic separation, luciferase reporter assays, and RNA immunoprecipitation. RESULTS TUG1 and Smac were expressed at high levels in ARC and HLE-B3 cells treated with 200 μmol/L H 2 O 2 , whereas miR-29b expression was decreased. In vitro cell experiments confirmed that down-regulation of TUG1 could inhibit the apoptosis of lens epithelial cells. Mechanistically, Smac expression was negatively regulated by miR-29b. TUG1 competitively inhibited miR-29b expression and caused greater release of Smac. In addition, miR-29b partially reversed the effects of TUG1 on human lens epithelial cell line cells. CONCLUSIONS lncRNA TUG1 increases Smac expression and promotes apoptosis of lens epithelial cells in ARC by competitively inhibiting miR-29b. This mechanism is the cytological basis for ARC formation. Based on these results, the lncRNA TUG1/miR29b/Smac axis may be a new molecular pathway that regulates ARC development.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Department of Ophthalmology, Luohe City Central Hospital, Luohe, Henan 462000, China
| | - Ke Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
24
|
Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023; 12:20365-20379. [PMID: 37795578 PMCID: PMC10652353 DOI: 10.1002/cam4.6600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| | - Ayesha Siddika
- Institute of Tissue Banking & Biomaterial Research, Atomic Energy Research Establishment (AERE) SavarDhakaBangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Abdul Auwal
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Kazi Soha
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Arifur Rahman
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Suja Pillai
- School of Biomedical SciencesUniversity of QueenslandSaint LuciaAustralia
| | - Farhadul Islam
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| |
Collapse
|
25
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
26
|
Ataei A, Tahsili M, Hayadokht G, Daneshvar M, Mohammadi Nour S, Soofi A, Masoudi A, Kabiri M, Natami M. Targeting long noncoding RNAs in neuroblastoma: Progress and prospects. Chem Biol Drug Des 2023; 102:640-652. [PMID: 37291742 DOI: 10.1111/cbdd.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023]
Abstract
Neuroblastoma (NB) is the third most prevalent tumor that mostly influences infants and young children. Although different treatments have been developed for the treatment of NB, high-risk patients have been reported to have low survival rates. Currently, long noncoding RNAs (lncRNAs) have shown an attractive potential in cancer research and a party of investigations have been performed to understand mechanisms underlying tumor development through lncRNA dysregulation. Researchers have just newly initiated to exhibit the involvement of lncRNAs in NB pathogenesis. In this review article, we tried to clarify the point we stand with respect to the involvement of lncRNAs in NB. Moreover, implications for the pathologic roles of lncRNAs in the development of NB have been discussed. It seems that some of these lncRNAs have promising potential to be applied as biomarkers for NB prognosis and treatment.
Collapse
Affiliation(s)
- Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Golsa Hayadokht
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Kabiri
- Faculty of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Qiu T, Zhou J, Ji B, Yuan L, Weng T, Liu H. Transcription factor c-fos induces the development of premature ovarian insufficiency by regulating MALAT1/miR-22-3p/STAT1 network. J Ovarian Res 2023; 16:144. [PMID: 37480147 PMCID: PMC10362627 DOI: 10.1186/s13048-023-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The current study attempted to investigate the role of transcription factor c-fos in the development of premature ovarian insufficiency (POI) as well as the underlying mechanism involving the MALAT1/miR-22-3p/STAT1 ceRNA network. METHODS Bioinformatics analysis was performed to extract POI-related microarray dataset for identifying the target genes. Interaction among c-fos, MALAT1, miR-22-3p, and STAT1 was analyzed. An in vivo POI mouse model was prepared followed by injection of sh-c-fos and sh-STAT1 lentiviruses. Besides, an in vitro POI cell model was constructed to study the regulatory roles of c-fos, MALAT1, miR-22-3p, and STAT1. RESULTS c-fos, MALAT1, and STAT1 were highly expressed in ovarian tissues from POI mice and CTX-induced KGN cells, while miR-22-3p was poorly expressed. c-fos targeted MALAT1 and promoted MALAT1 transcription. MALAT1 competitively bound to miR-22-3p and miR-22-3p could suppress STAT1 expression. Mechanically, c-fos aggravated ovarian function impairment in POI mice and inhibited KGN cell proliferation through regulation of the MALAT1/miR-22-3p/STAT1 regulatory network. CONCLUSION Our findings highlighted inducing role of the transcription factor c-fos in POI through modulation of the MALAT1/miR-22-3p/STAT1 ceRNA network.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong Province, 510630, P.R. China
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Bing Ji
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Liuyang Yuan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Tingsong Weng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China
| | - Huishu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong Province, 510630, P.R. China.
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, No. 9, Jinsui Road, Guangzhou, Guangdong Province, 510623, P.R. China.
| |
Collapse
|
28
|
Yuan Z, Huang Y, Sadikot RT. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes HIV-1 Replication through Modulating microRNAs in Macrophages. J Virol 2023; 97:e0005323. [PMID: 37255470 PMCID: PMC10308927 DOI: 10.1128/jvi.00053-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.
Collapse
Affiliation(s)
- Zhihong Yuan
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yunlong Huang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
29
|
Shen S, Jin H, Zhang X, Zhang Y, Li X, Yan W, Xie S, Yu B, Hu J, Liu H, Chen X, Nie Y, Liu F, Tang M, Gu Y, Wang S. LINC00426, a novel m 6A-regulated long non-coding RNA, induces EMT in cervical cancer by binding to ZEB1. Cell Signal 2023:110788. [PMID: 37392859 DOI: 10.1016/j.cellsig.2023.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE To explore the function and molecular mechanism of LINC00426 in Cervical Cancer (CC), and to explore the clinical treatment strategy of LINC00426 for CC. METHODS Bioinformatics analysis was used to explore the expression of LINC00426 and patient prognosis of CC. Cell function experiments were conducted to explore the potential effect of LINC00426 on CC malignant phenotypes. The difference in m6A modification level between the high and low expression groups of LINC00426 was analyzed by detecting the total m6A level. The luciferase reporter assay was used to confirm the binding of miR-200a-3p to LINC00426. The RIP assay was used to confirm the binding of LINC00426 to ZEB1. Cell viability assay was performed to detect the effect of LINC00426 on cellular drug resistance. RESULTS LINC00426 is up-regulated in CC, which can enhance the proliferation, migration and invasion of CC cells. METTL3 promotes the expression of LINC00426 by m6A methylation modification. In addition, the LINC00426/miR-200a-3p/ZEB1 axis affects the proliferation, migration, and invasion of CC by regulating the expression of EMT markers. Through the detection of cell viability, we observed that overexpression LINC00426 in cells resulted in resistance to cisplatin and bleomycin, and more sensitive to imatinib. CONCLUSION LINC00426 is a cancer-promoting lncRNA related to m6A modification. The process of EMT in CC is regulated by the LINC00426/miR-200a/3p/ZEB1 axis. LINC00426 can affect the sensitivity of CC cells to chemotherapy drugs, and is expected to become a therapeutic target for CC.
Collapse
Affiliation(s)
- Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yan Zhang
- Shihezi University, School of Medicine, Department of Preventive Medicine, Shihezi, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Min Tang
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Yun Gu
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
30
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
31
|
The role of histone methylation in renal cell cancer: an update. Mol Biol Rep 2023; 50:2735-2742. [PMID: 36575323 DOI: 10.1007/s11033-022-08124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Renal cell carcinoma accounts for 2-3% of all cancers. It is difficult to diagnose early. Recently, genome-wide studies have identified that histone methylation was one of the functional classes that is most frequently dysregulated in renal cell cancer. Mutation or mis-regulation of histone methylation, methyltransferases, demethylases are associated with gene expression and tumor progression in renal cell cancer. Herein, we summarize histone methylations, demethylases and their alterations and mechanisms in renal cell cancer.
Collapse
|
32
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
33
|
Duan Y, Yue K, Ye B, Chen P, Zhang J, He Q, Wu Y, Lai Q, Li H, Wu Y, Jing C, Wang X. LncRNA MALAT1 promotes growth and metastasis of head and neck squamous cell carcinoma by repressing VHL through a non-canonical function of EZH2. Cell Death Dis 2023; 14:149. [PMID: 36813772 PMCID: PMC9946937 DOI: 10.1038/s41419-023-05667-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Long non-coding RNAs (LncRNAs) are implicated in malignant progression of human cancers. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-known lncRNA, has been reported to play crucial roles in multiple malignancies including head and neck squamous cell carcinoma (HNSCC). However, the underlying mechanisms of MALAT1 in HNSCC progression remain to be further investigated. Here, we elucidated that compared with normal squamous epithelium, MALAT1 was notably upregulated in HNSCC tissues, especially in which was poorly differentiated or with lymph nodes metastasis. Moreover, elevated MALAT1 predicted unfavorable prognosis of HNSCC patients. The results of in vitro and in vivo assays showed that targeting MALAT1 could significantly weaken the capacities of proliferation and metastasis in HNSCC. Mechanistically, MALAT1 inhibited von Hippel-Lindau tumor suppressor (VHL) by activating EZH2/STAT3/Akt axis, then promoted the stabilization and activation of β-catenin and NF-κB which could play crucial roles in HNSCC growth and metastasis. In conclusion, our findings reveal a novel mechanism for malignant progression of HNSCC and suggest that MALAT1 might be a promising therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qinghua He
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
34
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
35
|
Li Z, Fang Y, Zhang Y, Zhou X. RNA-seq analysis of differentially expressed LncRNAs from leishmaniasis patients compared to uninfected humans. Acta Trop 2023; 238:106738. [PMID: 36379256 DOI: 10.1016/j.actatropica.2022.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a parasitic disease that seriously endangers human health. Furthermore, among the parasitic diseases, leishmaniasis is the third most common cause of death after malaria and schistosomiasis. However, the potential function of LncRNAs in leishmaniasis remain unclear. This study aimed to explore the differentially expressed LncRNAs in leishmaniasis. The sera of leishmaniasis patients and uninfected persons for controls were obtained and analyzed by high-throughput sequencing. Moreover, the expression of key LncRNAs was detected by qPCR. The results showed that 970 differentially expressed LncRNAs and 1692 differentially expressed mRNAs were screened compared to control groups. Then, 520 target genes were identified by using bioinformation analysis and the ENCORI database. The bioinformatics analysis revealed that the differentially expressed target genes were enriched in autophagy animal, FoxO signaling pathway, mTOR signaling pathway, and apoptosis, et al. Among those differentially expressed LncRNAs, nine key LncRNAs were selected (MALAT1, NUTM2A-AS1, and LINC00963 had high expression; LINC00622, MAPKAPK5-AS1, LINC02289, XPC-AS1, ZFAS1 and SNHG5 had low expression) by qPCR. This study suggests that different expressions of LncRNAs may involve in the potential function in leishmaniasis and provide a novel insight for diagnosis of this zoonotic disease.
Collapse
Affiliation(s)
- Zhongqiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
36
|
Grammatikaki S, Katifelis H, Farooqi AA, Stravodimos K, Karamouzis MV, Souliotis K, Varvaras D, Gazouli M. An Overview of Epigenetics in Clear Cell Renal Cell Carcinoma. In Vivo 2023; 37:1-10. [PMID: 36593023 PMCID: PMC9843790 DOI: 10.21873/invivo.13049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Konstantinos Stravodimos
- 1 Department of Urology, National & Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, Corinth, Greece
- Health Policy Institute, Athens, Greece
| | - Dimitrios Varvaras
- Health Policy Institute, Athens, Greece
- Tiberia Hospital-GMV Care & Research, Rome, Italy
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
37
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
39
|
Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q, Liang ZX. Non-coding RNAs: Role in diabetic foot and wound healing. World J Diabetes 2022; 13:1001-1013. [PMID: 36578864 PMCID: PMC9791568 DOI: 10.4239/wjd.v13.i12.1001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in patients with diabetes. The increasing incidence of DFU has resulted in huge pressure worldwide. Diagnosing and treating this condition are therefore of great importance to control morbidity and improve prognosis. Finding new markers with potential diagnostic and therapeutic utility in DFU has gathered increasing interest. Wound healing is a process divided into three stages: Inflammation, proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small protected molecules transcribed from the genome without protein translation function, have emerged as important regulators of diabetes complications. The deregulation of ncRNAs may be linked to accelerated DFU development and delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes in diabetic wound healing. Herein, we summarize the role of microRNAs, long ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their potential use as novel therapeutic targets.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Muhuza Marie Parfaite Uwimana
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Shu-Qi Zhu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
40
|
Su Z, Ao J, Zhao F, Xu G, Chen H, Gao C. The roles of long non‑coding RNAs in renal cell carcinoma (Review). Mol Clin Oncol 2022; 18:4. [PMID: 36591597 PMCID: PMC9780631 DOI: 10.3892/mco.2022.2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the gene expression regulation and usually play important roles in various human cancers, including the renal cell carcinoma (RCC). Dysregulation of certain lncRNAs are associated with the prognosis of patients with RCC. In the present review, several recently studied lncRNAs were discussed and their critical roles in proliferation, migration, invasion, apoptosis and drug resistance of renal cancer cells were revealed. The research on lncRNAs further increases our understanding on the development and progression of RCC. It is suggested that lncRNAs can be used as biomarkers or therapeutic targets for diagnosis or treatment of renal cancer.
Collapse
Affiliation(s)
- Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jian Ao
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fengjin Zhao
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Huihua Chen
- Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| | - Chen Gao
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
41
|
A Computationally Constructed lncRNA-Associated Competing Triplet Network in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:8928282. [DOI: 10.1155/2022/8928282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed “RNA language.” However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found between normal renal tissues and ccRCC (fold
and false discovery
). A ceRNA network that comprised of 46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients’ clinical characteristics and overall survival (log-rank
), indicating their potential important roles in ccRCC. HOTTIP may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and prognosis biomarkers for ccRCC.
Collapse
|
42
|
Liu T, Zhao H. Long Non-Coding RNAs: A Double-Edged Sword in Renal Cell Carcinoma Carcinogenesis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1537.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
44
|
Mao W, Wang K, Zhang W, Chen S, Xie J, Zheng Z, Li X, Zhang N, Zhang Y, Zhang H, Peng B, Yao X, Che J, Zheng J, Chen M, Li W. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:252. [PMID: 35986402 PMCID: PMC9389749 DOI: 10.1186/s13046-022-02467-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background The accumulating evidence confirms that long non-coding RNAs (lncRNAs) play a critical regulatory role in the progression of renal cell carcinoma (RCC). But, the application of lncRNAs in gene therapy remains scarce. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA-SLERCC (SLERCC) in RCC cells. Methods We performed lncRNAs expression profiling in paired cancer and normal tissues through microarray and validated in our clinical data and TCGA dataset. The Plasmid-SLERCC@PDA@MUC12 nanoparticles (PSPM-NPs) were tested in vivo and in vitro, including cellular uptake, entry, CCK-8 assay, tumor growth inhibition, histological assessment, and safety evaluations. Furthermore, experiments with nude mice xenografts model were performed to evaluate the therapeutic effect of PSPM-NPs nanotherapeutic system specific to the SLERCC. Results We found that the expression of SLERCC was downregulated in RCC tissues, and exogenous upregulation of SLERCC could suppress metastasis of RCC cells. Furthermore, high expression DNMT3A was recruited at the SLERCC promoter, which induced aberrant hypermethylation, eventually leading to downregulation of SLERCC expression in RCC. Mechanistically, SLERCC could directly bind to UPF1 and exert tumor-suppressive effects through the Wnt/β-catenin signaling pathway, thereby inhibiting progression and metastasis in RCC. Subsequently, the PSPM-NPs nanotherapeutic system can effectively inhibit the growth of RCC metastases in vivo. Conclusions Our findings suggested that SLERCC is a promising therapeutic target and that plasmid-encapsulated nanomaterials targeting transmembrane metastasis markers may open a new avenue for the treatment in RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02467-2.
Collapse
|
45
|
Tong F, Xu L, Xu S, Zhang M. Identification of an autophagy-related 12-lncRNA signature and evaluation of NFYC-AS1 as a pro-cancer factor in lung adenocarcinoma. Front Genet 2022; 13:834935. [PMID: 36105077 PMCID: PMC9466988 DOI: 10.3389/fgene.2022.834935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To develop an autophagy-related lncRNA-based risk signature and corresponding nomogram to predict overall survival (OS) for LUAD patients and investigate the possible meaning of screened factors.Methods: Differentially expressed lncRNAs and autophagy genes were screened between normal and LUAD tumor samples from the TCGA LUAD dataset. Univariate and multivariate Cox regression analyses were performed to construct the lncRNA-based risk signature and nomogram incorporating clinical information. Then, the accuracy and sensitivity were confirmed by the AUC of ROC curves in both training and validation cohorts. qPCR, immunoblot, shRNA, and ectopic expression were used to verify the positive regulation of NFYC-AS1 on BIRC6. CCK-8, immunofluorescence, and flow cytometry were used to confirm the influence of NFYC-AS1 on cell proliferation, autophagy, and apoptosis via BIRC6.Results: A 12-lncRNA risk signature and a nomogram combining related clinical information were constructed. Furthermore, the abnormal increase of NFYC-AS1 may promote LUAD progression through the autophagy-related gene BIRC6.Conclusion: 12-lncRNA signature may function as a predictive marker for LUAD patients, and NFYC-AS1 along with BIRC6 may function as carcinogenic factors in a combinatorial manner.
Collapse
Affiliation(s)
- Fang Tong
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Anhui, China
| | - Lifa Xu
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
| | - Sheng Xu
- The First Affiliated Hospital, Anhui University of Science and Technology, Anhui, China
| | - Mingming Zhang
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Anhui, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Mingming Zhang,
| |
Collapse
|
46
|
Bhattacharya S, Reddy D, Zhang N, Li H, Workman JL. Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes. Front Cell Dev Biol 2022; 10:945668. [PMID: 36035998 PMCID: PMC9399737 DOI: 10.3389/fcell.2022.945668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The methyltransferase SETD2 regulates cryptic transcription, alternative splicing, and the DNA damage response. It is mutated in a variety of cancers and is believed to be a tumor suppressor. Counterintuitively, despite its important role, SETD2 is robustly degraded by the proteasome keeping its levels low. Here we show that SETD2 accumulation results in a non-canonical deposition of the functionally important H3K36me3 histone mark, which includes its reduced enrichment over gene bodies and exons. This perturbed epigenetic landscape is associated with widespread changes in transcription and alternative splicing. Strikingly, contrary to its role as a tumor suppressor, excessive SETD2 results in the upregulation of cell cycle-associated pathways. This is also reflected in phenotypes of increased cell proliferation and migration. Thus, the regulation of SETD2 levels through its proteolysis is important to maintain its appropriate function, which in turn regulates the fidelity of transcription and splicing-related processes.
Collapse
Affiliation(s)
| | | | | | | | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, MO, United States
| |
Collapse
|
47
|
Non-Coding RNAs and Prediction of Preeclampsia in the First Trimester of Pregnancy. Cells 2022; 11:cells11152428. [PMID: 35954272 PMCID: PMC9368389 DOI: 10.3390/cells11152428] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) is a major cause of maternal and perinatal morbidity and mortality. The only fundamental treatment for PE is the termination of pregnancy. Therefore, not only severe maternal complications but also perinatal complications due to immaturity of the infant associated with early delivery are serious issues. The treatment and prevention of preterm onset preeclampsia (POPE) are challenging. In 2017, the ASPRE trial showed that a low oral dose of aspirin administered to POPE high-risk women in early pregnancy reduced POPE by 62%. A prediction algorithm at 11–13 weeks of gestation identifies POPE with 75% sensitivity when the false positive rate is set at 10%. New biomarkers to increase the accuracy of the prediction model for POPE high-risk women in early pregnancy are needed. In this review, we focused on non-coding RNAs (ncRNAs) as potential biomarkers for the prediction of POPE. Highly expressed ncRNAs in the placenta in early pregnancy may play crucial roles in placentation. Furthermore, placenta-specific ncRNAs have been detected in maternal blood. In this review, we summarized ncRNAs that were highly expressed in the primary human placenta in early pregnancy. We also presented highly expressed ncRNAs in the placenta that were associated with or predictive of the development of PE in an expression analysis of maternal blood during the first trimester of pregnancy. These previous studies showed that the chromosome 19 microRNA (miRNA) -derived miRNAs (e.g., miR-517-5p, miR-518b, and miR-520h), the hypoxia-inducible miRNA (miR-210), and long non-coding RNA H19, were not only highly expressed in the early placenta but were also significantly up-regulated in the blood at early gestation in pregnant women who later developed PE. These maternal circulating ncRNAs in early pregnancy are expected to be possible biomarkers for POPE.
Collapse
|
48
|
Novel Prognosis and Therapeutic Response Model of Immune-Related lncRNA Pairs in Clear Cell Renal Cell Carcinoma. Vaccines (Basel) 2022; 10:vaccines10071161. [PMID: 35891325 PMCID: PMC9325030 DOI: 10.3390/vaccines10071161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma. It is particularly important to accurately judge the prognosis of patients. Since most tumor prediction models depend on the specific expression level of related genes, a better model therefore needs to be constructed. To provide an immune-related lncRNA (irlncRNAs) tumor prognosis model that is independent of the specific gene expression levels, we first downloaded and sorted out the data on ccRCC in the TCGA database and screened irlncRNAs using co-expression analysis and then obtained the differently expressed irlncRNA (DEirlncRNA) pairs by means of univariate analysis. In addition, we modified LASSO penalized regression. Subsequently, the ROC curve was drawn, and we compared the area under the curve, calculated the Akaike information standard value of the 5-year receiver operating characteristic curve, and determined the cut-off point to establish the best model to distinguish the high- or low-disease-risk group of ccRCC. Subsequently, we reassessed the model from the perspectives of survival, clinic-pathological characteristics, tumor-infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. A total of 17 DEirlncRNAs pairs (AL031710.1|AC104984.5, AC020907.4|AC127-24.4,AC091185.1|AC005104.1, AL513218.1|AC079015.1, AC104564.3|HOXB-AS3, AC003070.1|LINC01355, SEMA6A-AS1|CR936218.1, AL513327.1|AS005785.1, AC084876.1|AC009704.2, IGFL2-AS1|PRDM16-DT, AC011462.4|MMP25-AS1, AL662844.3I|TGB2-AS1, ARHGAP27P1|AC116914.2, AC093788.1|AC007098.1, MCF2L-AS1|AC093001.1, SMIM25|AC008870.2, and AC027796.4|LINC00893) were identified, all of which were included in the Cox regression model. Using the cut-off point, we can better distinguish patients according to different factors, such as survival status, invasive clinic-pathological features, tumor immune infiltration, whether they are sensitive to chemotherapy or not, and expression of immunosuppressive biomarkers. We constructed the irlncRNA model by means of pairing, which can better eliminate the dependence on the expression level of the target genes. In other words, the signature established by pairing irlncRNA regardless of expression levels showed promising clinical prediction value.
Collapse
|
49
|
Restoring the epigenetically silenced lncRNA COL18A1-AS1 represses ccRCC progression by lipid browning via miR-1286/KLF12 axis. Cell Death Dis 2022; 13:578. [PMID: 35787628 PMCID: PMC9253045 DOI: 10.1038/s41419-022-04996-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023]
Abstract
Abnormal accumulation of lipids has been highlighted in the progression of clear cell renal cell carcinoma (ccRCC). However, the underlying mechanism remains unclear. Emerging evidence suggests long noncoding RNAs (lncRNAs) participate in the regulation of lipid metabolism. In this study, we found lncRNA COL18A1-AS1 was downregulated in ccRCC and that higher COL18A1-AS1 expression indicated better prognosis. Decreased COL18A1-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. Restoring the epigenetically silenced COL18A1-AS1 repressed tumor progression, promoted lipid browning and consumption in vitro and in vivo. Mechanistically, COL18A1-AS1 could competitively bind miR-1286 to increase the expression of Krüppel-like factor 12 (KLF12). Downregulation of COL18A1-AS1 in ccRCC resulted in the low expression of KLF12. COL18A1-AS1/KLF12 positively regulated uncoupling protein 1 (UCP1)-mediated lipid browning, which promotes tumor cell "slimming" and inhibits tumor progression. When tumor cell "slimming" occurred, lipid droplets turned into tiny pieces, and lipids were consumed without producing ATP energy. Taken together, our findings on COL18A1-AS1-miR-1286/KLF12 axis revealed a potential mechanism of abnormal accumulation of lipids in ccRCC and could be a promising therapeutic target for ccRCC patients.
Collapse
|
50
|
Huang J, Fang J, Chen Q, Chen J, Shen J. Epigenetic silencing of E-cadherin gene induced by lncRNA MALAT-1 in acute myeloid leukaemia. J Clin Lab Anal 2022; 36:e24556. [PMID: 35747989 PMCID: PMC9396179 DOI: 10.1002/jcla.24556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Epigenetic abnormalities in acute myeloid leukaemia provide us with a target for novel therapeutic strategies. The aim of the study was to verify the epigenetic regulatory mechanism of E‐cadherin gene silencing induced by long non‐coding RNA MALAT‐1 in AML. Methods Expression of MALAT‐1, E‐cadherin, EZH2, SUZ12 and EED genes in AML patients was detected by RT‐qPCR. After MALAT‐1 silencing in AML cell lines, levels of the E‐cadherin, EZH2, SUZ12, EED, DNMT1, DNMT3A and DNMT3B genes and encoded proteins were detected by RT‐qPCR and Western blotting. The level of CpG island methylation and trimethylation modification of histone H3K27 in the promoter region of E‐cadherin was detected by pyrosequencing and ChIP‐qPCR. RIP‐qPCR was used to detect the interaction between MALAT‐1 and proteins. Results MALAT‐1, EZH2 and EED gene expression was markedly increased in AML patients with E‐cadherin down‐regulation. A positive correlation between EZH2 or SUZ12 and MALAT‐1 expression was observed. After MALAT‐1 silencing, the expression of E‐cadherin was up‐regulated, whereas the expression of EZH2, SUZ12, DNMT1, DNMT3A and DNMT3B was down‐regulated. Results of Western blotting were consistent with those of RT‐qPCR. Methylation levels of E‐cadherin in AML patients were higher than that in normal controls, which appeared to increase with age. Methylation of the CpG island and H3K27 trimethylation of E‐cadherin were decreased after MALAT‐1 silencing. RIP‐qPCR suggested that MALAT‐1 might be enriched by EZH2 and SUZ12. Conclusion Our findings verified that MALAT‐1 might lead to the transcriptional silencing of E‐cadherin gene through the trimethylation of H3K27 mediated by recruiting EZH2 and SUZ12.
Collapse
Affiliation(s)
- Jinlong Huang
- Department of Hematology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jinyuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|