1
|
Song P, Pan G, Zhang Y, Ni Y, Wang Q, Shi J, Peng Y, Jing R, Luo D. Prospects and Challenges of Immunotherapy for Thyroid Cancer. Endocr Pract 2024:S1530-891X(24)00840-1. [PMID: 39631664 DOI: 10.1016/j.eprac.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Thyroid cancer generally boasts a favorable prognosis; however, advanced and refractory cases exhibit aggressive characteristics and resistance to conventional therapies, necessitating the investigation of innovative treatment modalities. Immunotherapy, which harnesses the body's immune system to target cancer cells, has shown considerable promise for specific thyroid cancer subtypes. OBJECTIVE This review article aims to encapsulate the latest advancements in immunotherapy for thyroid cancer, examining its mechanisms, therapeutic efficacy, ongoing challenges, and the potential benefits of combination therapy approaches. METHODS An extensive literature review and critical analysis of clinical trial data were conducted to inform this synthesis. RESULTS The review reveals that immunotherapy strategies, encompassing immune checkpoint inhibitors, CAR-T cell therapy, tumor vaccines, and immunomodulators, are demonstrating efficacy in the treatment of thyroid cancer. Notably, checkpoint inhibitors have been particularly effective in anaplastic and poorly differentiated thyroid cancers, albeit with challenges such as treatment resistance and adverse effects. The application of CAR-T cell therapy, successful in hematologic cancers, provides a novel perspective for thyroid cancer treatment, although its efficacy in solid tumors requires further study. Additionally, research into tumor vaccines and immunomodulators is advancing, with preliminary evidence suggesting their therapeutic potential for thyroid cancer patients. CONCLUSION The recognition of the immune microenvironment's role in treatment responsiveness is pivotal for enhancing the care of thyroid cancer patients. This review underscores the significance of combination therapy as a means to optimize treatment outcomes and charts a course for future research endeavors to broaden the spectrum of effective treatment options available to thyroid cancer patients.
Collapse
Affiliation(s)
- Ping Song
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Gang Pan
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yeqin Ni
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianyu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingjng Shi
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - You Peng
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruirui Jing
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Dingcun Luo
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China; The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
2
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
3
|
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Zheng W, Zhang X, Lu Z, Gao L, Hu Y. Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Anticancer Drugs 2023; 34:1018-1024. [PMID: 36473020 DOI: 10.1097/cad.0000000000001481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By exploring the effects of an antiangiogenic small molecule drug named anlotinib on the levels of myeloid-derived suppressor cells (MDSCs) in a mouse xenograft model of lung cancer, the role of anti-angiogenesis in remodeling the immune microenvironment was discussed. In addition, the impact of anlotinib on the normalization of the immune microenvironment and time window was examined, providing a theoretical basis for the optimization of clinical strategies applying anlotinib combined with PD-1 inhibitors. On the basis of the LLC mouse xenograft model, MDSCs and MDSCs + immune microenvironment were examined in tissues, respectively, according to different samples. The former observation included the control (group A) and anlotinib monotherapy (group B) groups; the latter also included the control (group C) and anlotinib monotherapy (group D) groups. The levels of MDSCs in peripheral blood at different time points were analyzed by flow cytometry, and the levels of MDSCs in tissue samples at different time points were evaluated by immunofluorescence and immunohistochemistry. The volumes of subcutaneous xenografts were significantly smaller in the anlotinib treatment group compared with the control group ( P < 0.005). Flow cytometry showed that compared with the control group, the intratumoral percentages of total MDSCs ( P < 0.01) and mononuclear-MDSCs ( P < 0.05) were significantly decreased on days 3 and 17 after anlotinib treatment in peripheral blood samples; however, there was no significant difference in granulocytic-MDSCs changes between the experimental and control groups. Immunofluorescence showed that the levels of MDSCs in both the experimental and control groups reached the lowest points 10 days after drug administration, and were significantly lower in the experimental group than in the control group ( P < 0.05). Anlotinib reduces the levels of MDSCs in the mouse xenograft model of lung cancer, with the characteristics of time window. This study provides a basis for further exploring strategies for anti-angiogenic treatment combined with immunotherapy in lung cancer based on time-window dosing.
Collapse
Affiliation(s)
- XiangFei Zhao
- Department of Oncology, 5th medical center of Chinese PLA General Hospital
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
5
|
Williams CD, Allo MA, Gu L, Vashistha V, Press A, Kelley M. Health outcomes and healthcare resource utilization among Veterans with stage IV non-small cell lung cancer treated with second-line chemotherapy versus immunotherapy. PLoS One 2023; 18:e0282020. [PMID: 36809528 PMCID: PMC9942992 DOI: 10.1371/journal.pone.0282020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Until recently, multi-agent chemotherapy (CT) was the standard of care for patients with advanced non-small cell lung cancer (NSCLC). Clinical trials have confirmed benefits in overall survival (OS) and progression-free survival with immunotherapy (IO) compared to CT. This study compares real-world treatment patterns and outcomes between CT and IO administrations in second-line (2L) settings for patients with stage IV NSCLC. MATERIALS AND METHODS This retrospective study included patients in the United States Department of Veterans Affairs healthcare system diagnosed with stage IV NSCLC during 2012-2017 and receiving IO or CT in the 2L. Patient demographics and clinical characteristics, healthcare resource utilization (HCRU), and adverse events (AEs) were compared between treatment groups. Logistic regression was used to examine differences in baseline characteristics between groups, and inverse probability weighting multivariable Cox proportional hazard regression was used to analyze OS. RESULTS Among 4,609 Veterans who received first-line (1L) therapy for stage IV NSCLC, 96% received 1L CT alone. A total of 1,630 (35%) were administered 2L systemic therapy, with 695 (43%) receiving IO and 935 (57%) receiving CT. Median age was 67 years (IO group) and 65 years (CT group); most patients were male (97%) and white (76-77%). Patients administered 2L IO had a higher Charlson Comorbidity Index than those administered CT (p = 0.0002). 2L IO was associated with significantly longer OS compared with CT (hazard ratio 0.84, 95% CI 0.75-0.94). IO was more frequently prescribed during the study period (p < 0.0001). No difference in rate of hospitalizations was observed between the two groups. CONCLUSIONS Overall, the proportion of advanced NSCLC patients receiving 2L systemic therapy is low. Among patients treated with 1L CT and without IO contraindications, 2L IO should be considered, as this supports potential benefit of IO for advanced NSCLC. The increasing availability and indications for IO will likely increase the administration of 2L therapy to NSCLC patients.
Collapse
Affiliation(s)
- Christina D. Williams
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
- Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Mina A. Allo
- Bristol-Myers Squibb Company, US Health Economics and Outcomes Research, Princeton, New Jersey, United States of America
| | - Lin Gu
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
- Duke Cancer Institute, Biostatistics Shared Resource, Duke University, Durham, North Carolina, United States of America
| | - Vishal Vashistha
- Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Division of Hematology-Oncology, Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
| | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
| | - Michael Kelley
- Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Division of Hematology-Oncology, Medical Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, United States of America
| |
Collapse
|
6
|
Song Z, Zou K, Zou L. Immune checkpoint blockade for locally advanced or recurrent/metastatic cervical cancer: An update on clinical data. Front Oncol 2022; 12:1045481. [PMID: 36644634 PMCID: PMC9832370 DOI: 10.3389/fonc.2022.1045481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has shown great promise in the field of oncology, and recent clinical trials have illustrated that immune checkpoint blockade (ICB) is safe and effective at treating a range of tumor types. Cervical cancer (CC) is the fourth most common malignancy in women. However, first-line treatments for locally advanced cervical cancer (LACC) and recurrent/metastatic (R/M) CC have limited efficacy. Thus, it is necessary to explore new treatment approaches. The National Comprehensive Cancer Network (NCCN) currently recommends pembrolizumab, a programmed cell death protein 1 (PD-1) monoclonal antibody, as a first line therapy for individuals with R/M CC. This study reviews the progress of ICB therapy for LACC and R/M CC and describes the current status of the combination of ICB therapy and other therapeutic modalities, including radiotherapy, chemotherapy, targeted therapy, and other immunotherapies. The focus is placed on studies published since 2018 with the aim of highlighting novel CC-specific immunotherapeutic approaches and treatment targets.
Collapse
Affiliation(s)
- Zhuo Song
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Low-dose anti-VEGFR2 therapy promotes anti-tumor immunity in lung adenocarcinoma by down-regulating the expression of layilin on tumor-infiltrating CD8 +T cells. Cell Oncol 2022; 45:1297-1309. [PMID: 36260222 DOI: 10.1007/s13402-022-00718-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Our study intended to explore how low-dose anti-angiogenic drugs affected anti-tumor immunity of tumor-infiltrating exhausted CD8+T cells and achieved better clinical response when combined with immunotherapy. We set out to find potential targets or predictive biomarker on CD8+T cells for immunotherapy. METHODS We tested different doses of anti-VEGFR2 antibody combined with anti-PD1 antibody to treat LUAD in vivo and analyzed tumor-infiltrating CD8+T cells by flow cytometry. CD8+T cells overexpressing LAYN were co-cultured with LA795 cell lines to identify the function of LAYN in CD8+T cells. We also analyzed clinical samples from advanced LUAD patients treated with anti-angiogenesis therapy combined with immunotherapy. RESULTS Low-dose anti-VEGFR2 antibody combined with anti-PD1 antibody treatment delayed tumor growth and prolonged the survival time of tumor-bearing mice. The number of tumor-infiltrating CD8+T cells was reduced and the expression of LAYN was down-regulated in tumor-infiltrating CD8+T cells in the low-dose anti-VEGFR2 combination group. It was found that LAYN inhibited the killing function of CD8+T cells. In patients with advanced LUAD who received anti-angiogenesis therapy combined with immunotherapy, the LAYN+CD8+T cell subpopulation in good responders was significantly higher than that in poor responders. Furthermore, we demonstrated the expression of LAYN was regulated by upstream transcription factor NR4A1. CONCLUSION Low-dose anti-VEGFR2 antibody combined with anti-PD1 antibody therapy promoted anti-tumor immunity and the downregulation of LAYN in tumor-infiltrating CD8+T cells played an important role in this process. These findings had implications for improving the efficacy of immune checkpoint blockade therapy and further optimized clinical treatment guidelines in advanced LUAD.
Collapse
|
8
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
10
|
Zhang X, Wang Y, Xiang J, Zhao P, Xun Y, Zhang S, Xu N. Association between plasma somatic copy number variations and response to immunotherapy in patients with programmed death-ligand 1-negative non-small cell lung cancer. J Int Med Res 2022; 50:3000605221093222. [PMID: 35466753 PMCID: PMC9047987 DOI: 10.1177/03000605221093222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To determine how patients with non-small cell lung cancer (NSCLC) with programmed death-ligand 1 (PD-L1)-negative and/or a low tumor mutation burden status benefit from immune checkpoint inhibitors (ICI). Methods We determined the plasma cell-free DNA profiles of 25 patients with PD-L1-negative advanced NSCLC before ICI therapy using low-coverage whole-genome sequencing. Results Elevated cell-free copy number variations (CNVs) were associated with progressive disease, with a cutoff CNV score of 0.10 evaluated with an area under the curve of 0.790 in PD-L1-negative NSCLC. CNV changes were also correlated with poor survival. Progression-free survival and overall survival were both significantly shorter in CNVhigh compared with CNVlow patients. Conclusions Cell-free CNV may be a useful peripheral blood biomarker for predicting the response to ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yina Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Zhao
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Xun
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shirong Zhang
- Department of Translation Medicine Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Miao K, Zhang X, Wang H, Si X, Ni J, Zhong W, Zhao J, Xu Y, Chen M, Pan R, Wang M, Zhang L. Real-World Data of Different Immune Checkpoint Inhibitors for Non-Small Cell Lung Cancer in China. Front Oncol 2022; 12:859938. [PMID: 35392244 PMCID: PMC8982065 DOI: 10.3389/fonc.2022.859938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
Background Patients treated with immunotherapy in the real-world may have significantly different responses to those meeting inclusion criteria for random controlled clinical studies. There is a partial overlap in approved indications for the use of the different immune checkpoint inhibitors (ICIs) currently available. A comprehensive assessment of the efficacy, safety and economic effects of various ICIs is a problem that clinicians need to address. Methods Analyzed real-world data was collected from non-small cell lung cancer (NSCLC) patients who were treated with ICIs from hospitalized patients in the Lung Cancer Center of Peking Union Medical College Hospital between 2018 and 2021. The objectives were to evaluate the efficacy and safety of different ICIs for the treatment of NSCLC in China and to investigate the factors affecting their curative effects. Results Overall, 351 patients were included in the retrospective study. The median PFS for the NSCLC patient cohort treated with medication regimens that included ICIs was 9.5 months, with an ORR of 47.3%. There were no significant discrepancies in efficacy and safety between the different ICIs administered. Factors that had the greatest impact on the efficacy of ICIs were the disease stage, ECOG-PS scores and treatment lines. Gender, age, smoking history, PD-L1 TPS expression, history of targeted therapy and irAEs all had a degree of influence on patient prognosis. Conclusions The study reports the experience of real-world usage of ICIs for the treatment of NSCLC patients in China. The results were generally consistent with those of clinical trials, while the efficacy and safety of different ICIs exhibited no statistically significant differences. Therefore, physicians can make a comprehensive choice based on the indications and cost of different ICIs and the preferences of patients.
Collapse
Affiliation(s)
- Kang Miao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaotong Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanping Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Si
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Zhong
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruili Pan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Health-related quality of life in cancer immunotherapy: a systematic perspective, using causal loop diagrams. Qual Life Res 2022; 31:2357-2366. [PMID: 35298735 PMCID: PMC8929267 DOI: 10.1007/s11136-022-03110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Purpose System science offers a unique set of tools, including causal loop diagrams (CLDs), for stakeholders to better grasp the complexity of factors surrounding quality of life. Because the health-related quality of life (HRQoL) of cancer immunotherapy patients exists within an intricate system affected by and affecting many factors across multiple dimensions, the development of a systems-level model can provide a powerful framework to aid the understanding of this complexity. We developed a CLD for HRQoL of cancer immunotherapy patients. Methods We first applied a literature-based approach to construct a CLD for patients following immunotherapy. We then iteratively reviewed and enhanced the CLD through interviews with subject matter experts. Results Based on the reviewed literature and subject matter expert input, we produced a CLD representing the system surrounding cancer immunotherapy patients’ HRQoL. Several feedback loops are identified that span clinical experiences, oncology teams’ perceptions about immunotherapy, social support structures, and further research and development in cancer immunotherapy, in addition to other components. The CLD enables visualization of thought experiments regarding how a change anywhere in the system can ultimately worsen or improve patients’ HRQoL. Conclusion The CLD illustrates the valuable contribution of a systems perspective to quality-of-life research. This systems-based qualitative representation gives insight on strategies to inhibit harmful effects, enhance beneficial effects, and inherent tradeoffs within the system. The CLD identifies gaps in the literature and offers a communication tool for diverse stakeholders. Our research method provides an example for studying the complexities of quality of life in other health domains. Supplementary Information The online version contains supplementary material available at 10.1007/s11136-022-03110-5.
Collapse
|
13
|
Karaboué A, Collon T, Pavese I, Bodiguel V, Cucherousset J, Zakine E, Innominato PF, Bouchahda M, Adam R, Lévi F. Time-Dependent Efficacy of Checkpoint Inhibitor Nivolumab: Results from a Pilot Study in Patients with Metastatic Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:896. [PMID: 35205644 PMCID: PMC8870559 DOI: 10.3390/cancers14040896] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
HYPOTHESIS Prior experimental and human studies have demonstrated the circadian organization of immune cells' proliferation, trafficking, and antigen recognition and destruction. Nivolumab targets T(CD8) cells, the functions, and trafficking of which are regulated by circadian clocks, hence suggesting possible daily changes in nivolumab's efficacy. Worse progression-free survival (PFS), and overall survival (OS) were reported for malignant melanoma patients receiving more than 20% of their immune checkpoint inhibitor infusions after 16:30 as compared to earlier in the day. METHODS Consecutive metastatic non-small-cell cancer (NSCLC) patients received nivolumab (240 mg iv q 2 weeks) at a daily time that was 'randomly' allocated for each course on a logistical basis by the day-hospital coordinators. The median time of all nivolumab administrations was computed for each patient. The study population was split into two timing groups based upon the median value of the median treatment times of all patients. CTCAE-toxicity rates, iRECIST-tumor responses, PFS and OS were computed according to nivolumab timing. PFS and OS curves were compared and hazard ratios (HR) were computed for all major categories of characteristics. Multivariable and sensitivity analyses were also performed. RESULTS The study accrued 95 stage-IV NSCLC patients (PS 0-1, 96%), aged 41-83 years. The majority of nivolumab administrations occurred between 9:27 and 12:54 for 48 patients ('morning' group) and between 12:55 and 17:14 for the other 47 ('afternoon' group). Median PFS (95% CL) was 11.3 months (5.5-17.1) for the 'morning' group and 3.1 months (1.5-4.6) for the 'afternoon' one (p < 0.001). Median OS was 34.2 months (15.1-53.3) and 9.6 months (4.9-14.4) for the 'morning' group and the 'afternoon' one, respectively (p < 0.001). Multivariable analyses identified 'morning' timing as a significant predictor of longer PFS and OS, with respective HR values of 0.26 (0.11-0.58) and 0.17 (0.08-0.37). The timing effect was consistent across all patient subgroups tested. CONCLUSIONS Nivolumab was nearly four times as effective following 'morning' as compared to 'afternoon' dosing in this cohort of NSCLC patients. Prospective timing-studies are needed to minimize the risk of resistance and to maximize the benefits from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
| | - Thierry Collon
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
| | - Ida Pavese
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770 Montfermeil, France; (T.C.); (I.P.)
| | - Viviane Bodiguel
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Joel Cucherousset
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Elda Zakine
- Pathology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93370 Montfermeil, France; (V.B.); (J.C.); (E.Z.)
| | - Pasquale F. Innominato
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor LL57 2PW, UK
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
| | - Mohamed Bouchahda
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Medical Oncology Department, Paul Brousse Hospital, 94800 Villejuif, France
- Medical Oncology Unit, Clinique Saint Jean L’Ermitage, 77000 Melun, France
- Medical Oncology Unit, Clinique du Mousseau, 91000 Evry, France
| | - René Adam
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Centre Hépato Biliaire, AP-HP, Hôpital Paul Brousse (APHP), 94800 Villejuif, France
| | - Francis Lévi
- UPR “Chronotherapy, Cancer and Transplantation”, Medical School, Paris-Saclay University, 94800 Villejuif, France; (P.F.I.); (M.B.); (R.A.)
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
- Centre Hépato Biliaire, AP-HP, Hôpital Paul Brousse (APHP), 94800 Villejuif, France
| |
Collapse
|
14
|
Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N. The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 2021; 22:65-81. [PMID: 34821533 DOI: 10.1080/14737140.2022.2011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is the deadliest cancer in both sexes combined globally due to significant delays in diagnosis and poor survival. Despite advances in the treatment of lung cancer, the overall outcomes remain poor and traditional chemotherapy fails to provide long-term benefits for many patients. Therefore, new treatment strategies are needed to increase overall survival. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells taking part in lung cancer, as has been described in other types of tumors. MDSCs immunosuppressive activity is mediated by arginases (ARG-1 and ARG-2), nitric oxide (NO), reactive oxygen species (ROS), peroxynitrite, PD-1/PD-L1 axis, and different cytokines. MDSCs can be a target for lung cancer immunotherapy by inducing their differentiation into mature myeloid cells, elimination, attenuation of their function, and inhibition of their accumulation. AREAS COVERED In this review, the immunosuppressive function of MDSCs, their role in lung cancer, and strategies to target them, which could result in increased efficacy of immunotherapy in patients with lung cancer, are discussed. EXPERT OPINION Identification of important mechanisms and upstream pathways involved in MDSCs functions paves the way for further preclinical and clinical lung cancer research, which could lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fateme Sheida
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
15
|
Kinoshita T, Terai H, Yaguchi T. Clinical Efficacy and Future Prospects of Immunotherapy in Lung Cancer. Life (Basel) 2021; 11:life11101029. [PMID: 34685400 PMCID: PMC8540292 DOI: 10.3390/life11101029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
The three major conventional treatments: surgery, chemotherapy, and radiation therapy, have been commonly performed for lung cancer. However, lung cancer is still the leading cause of cancer-related mortality. Immunotherapy has recently emerged as a very effective new treatment modality, and there is now growing enthusiasm for cancer immunotherapy worldwide. However, the results of clinical studies using immunotherapy are not always favorable. Understanding the steps involved in the recognition and eradication of cancer cells by the immune system seems essential to understanding why past immunotherapies have failed and how current therapies can be optimally utilized. In addition, the combination of immunotherapies, such as cancer vaccines and immune checkpoint inhibitors, as well as the combination of these therapies with three conventional therapies, may pave the way for personalized immunotherapy. In this review, we summarize the results of immunotherapies used in phase III clinical trials, including immune checkpoint inhibitors, and discuss the future prospects of immunotherapies in lung cancer treatment.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-3-5363-3806
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | - Tomonori Yaguchi
- Center for Cancer Immunotherapy and Immunobiology, Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
16
|
Zhou L, Wei X. Ocular Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Lung Cancer. Front Immunol 2021; 12:701951. [PMID: 34504488 PMCID: PMC8421677 DOI: 10.3389/fimmu.2021.701951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are novel immunotherapy-based drugs that have become increasingly popular in the treatment of lung cancer. Researchers have recognized ocular immune-related adverse events (irAEs) secondary to ICIs because of their vision-threatening characteristics. However, they are incompletely characterized and no studies have reported the ICI-related ocular irAEs in lung cancer. Therefore, we aimed to comprehensively illustrate the clinical characteristics, contributory factors, diagnosis, and management of ICI-related ocular irAEs in lung cancer, based on previously reported 79 patients. Ophthalmoplegia (40.51%), uveitis (20.25%), and dry eye (17.72%) were the most common ICI-related ocular irAEs in lung cancer. Ptosis was the most common (36.71%) and the highest mortality (23.33%) of ophthalmoplegia. Patients in Asia and patients who underwent combination therapy with programmed cell death-1 and cytotoxic T-lymphocyte-associated antigen 4 inhibitors demonstrated significantly higher frequency of ophthalmoplegia than other ocular irAEs. Most ICI-related ophthalmoplegia and uveitis in lung cancer were observed in the first 10 weeks following the initiation of ICIs. Furthermore, the onset time of dry eye and other ocular irAEs was much longer. In addition, 92.31% of the patients with ocular irAEs other than ophthalmoplegia could be remised. In conclusion, ocular irAEs secondary to ICIs in lung cancer are non-negligible, particularly ophthalmoplegia. Ethnicity and the type of ICIs play important roles in the distribution of ocular irAEs. ICI-related ophthalmoplegia in lung cancer presented with early onset and worse prognosis features, thus necessitating further attention.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Fan TW, Higashi RM, Song H, Daneshmandi S, Mahan AL, Purdom MS, Bocklage TJ, Pittman TA, He D, Wang C, Lane AN. Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues. eLife 2021; 10:69578. [PMID: 34406120 PMCID: PMC8476122 DOI: 10.7554/elife.69578] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug’s action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients’ TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients’ native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence, and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In-depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.
Collapse
Affiliation(s)
- Teresa Wm Fan
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Huan Song
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Saeed Daneshmandi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Angela L Mahan
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Surgery, University of Kentucky, Lexington, United States
| | - Matthew S Purdom
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Therese J Bocklage
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Thomas A Pittman
- Department of Neurosurgery, University of Kentucky, Lexington, United States
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| |
Collapse
|
18
|
Sanaei MJ, Pourbagheri-Sigaroodi A, Kaveh V, Abolghasemi H, Ghaffari SH, Momeny M, Bashash D. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy. Eur J Pharmacol 2021; 909:174404. [PMID: 34363829 DOI: 10.1016/j.ejphar.2021.174404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with the highest mortality rate and a poor 5-year survival rate. The majority of the cases are diagnosed in advanced stages when the disease has spread, which makes the tumor inoperable. Due to the antigenic essence of lung tumor cells, immunotherapy is a novel area and has exhibited remarkable results in this malignancy. Immune checkpoint inhibitors are inhibitory molecules that disrupt immune checkpoint signaling pathways whether in the immune cells or tumor cells. Tremelimumab and ipilimumab (CTLA-4 blockers), pembrolizumab and nivolumab (PD-1 blockers), and durvalumab, avelumab, and atezolizumab (PD-L1 blockers) are FDA-approved and improve the survival and objective response of NSCLC patients. Despite this, over-stimulation of the immune system via the immune checkpoint therapy is a double-edged sword that causes a spectrum of adverse events from moderate to life-threatening. Nanomedicine considerably impacts the way of diagnosis and treatment of tumors to overcome treatment-related challenges. Accordingly, nanoparticle-based immune checkpoint inhibitor therapy increases the local concentration of immune checkpoint inhibitors while reduces the side effects, which result in boosting the anti-tumor immunity against various types of malignancies, including NSCLC. The current review provides comprehensive information about immune checkpoint therapy in NSCLC, their efficacy, and their safety profile. Besides, recent advances in nanoparticle-based immune checkpoint therapy and its limitation are discussed.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kaveh
- Department of Medical Oncology and Hematology, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Mofid Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Chen Y, Huang H, Liu Y, Wang Z, Wang L, Wang Q, Zhang Y, Wang H. Engineering a High-Affinity PD-1 Peptide for Optimized Immune Cell-Mediated Tumor Therapy. Cancer Res Treat 2021; 54:362-374. [PMID: 34352997 PMCID: PMC9016318 DOI: 10.4143/crt.2021.424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose The purpose of this study was to optimize a peptide (nABP284) that binds to PD-1 by a computer-based protocol in order to increase its affinity. Then, this study aimed to determine the inhibitory effects of this peptide on cancer immune escape by coculturing improving cytokine-induced killer (ICIK) cells with cancer cells. Materials and Methods nABP284 that binds to PD-1 was identified by phage display technology in our previous study. AutoDock and PyMOL were used to optimize the sequence of nABP284 to design a new peptide (nABPD1). Immunofluorescence was used to demonstrate that the peptides bound to PD-1. Surface plasmon resonance (SPR) was used to measure the binding affinity of the peptides. The blocking effect of the peptides on PD-1 was evaluated by a neutralization experiment with human recombinant PD-L1 protein. The inhibition of activated lymphocytes by cancer cells was simulated by coculturing of human acute T lymphocytic leukemia cells (Jurkat T cells) with human tongue squamous cell carcinoma cells (Cal27 cells). The anticancer activities were determined by coculturing ICIK cells with Cal27 cells in vitro. Results A high-affinity peptide (nABPD1, KD=11.9 nM) for PD-1 was obtained by optimizing the nABP284 peptide (KD=11.8 µM). nABPD1 showed better efficacy than nABP284 in terms of increasing the secretion of IL-2 by Jurkat T cells and enhancing the in vitro antitumor activity of ICIK cells. Conclusion nABPD1 possesses higher affinity for PD-1 than nABP284, which significantly enhances its ability to block the PD-1/PD-L1 interaction and to increase ICIK cell-mediated antitumor activity by armoring ICIK cells.
Collapse
Affiliation(s)
- Yilei Chen
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongxing Huang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yin Liu
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhanghao Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lili Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Quanxiao Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Chen B, Yang M, Li K, Li J, Xu L, Xu F, Xu Y, Ren D, Zhang J, Liu L. Immune-related genes and gene sets for predicting the response to anti-programmed death 1 therapy in patients with primary or metastatic non-small cell lung cancer. Oncol Lett 2021; 22:540. [PMID: 34084219 PMCID: PMC8161458 DOI: 10.3892/ol.2021.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although antibodies targeting the immune checkpoint protein programmed death-1 (PD-1) exert therapeutic effects in patients with primary or metastatic non-small cell lung cancer (NSCLC), the majority of patients exhibit partial or complete resistance to anti-PD1 treatment. Thus, the aim of the present study was to identify reliable biomarkers for predicting the response to anti-PD-1 therapy. The present study analyzed tumor specimens isolated from 24 patients (13 with primary and 11 with metastatic NSCLC) prior to treatment with approved PD1-targeting antibodies. The expression profile of 395 immune-related genes was examined using RNA immune-oncology panel sequencing. The results demonstrated that six immune-related differently expressed genes (DEGs), including HLA-F-AS1, NCF1, RORC, DMBT1, KLRF1 and IL-18, and five DEGs, including HLA-A, HLA-DPA1, TNFSF18, IFI6 and PTK7, may be used as single biomarkers for predicting the efficacy of anti-PD-1 treatment in patients with primary and with metastatic NSCLC, respectively. In addition, two DEG sets comprising either six (HLA-F-AS1, NCF1, RORC, DMBT1, KLRF and IL-18) or two (HLA-A and TNFSF18) DEGs as potential combination biomarkers for predicting the efficacy of anti-PD-1 therapy in patients with NSCLC. Patients with a calculated expression level of the DEG sets >6.501 (primary NSCLC) or >6.741 (metastatic NSCLC) may benefit from the anti-PD-1 therapy. Overall, these findings provided a basis for the identification of additional biomarkers for predicting the response to anti-PD-1 treatment.
Collapse
Affiliation(s)
- Bolin Chen
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min Yang
- Department of Respiratory Disease, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Kang Li
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Li
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Li Xu
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang Xu
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yan Xu
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dandan Ren
- Genecast Biotechnology Co., Ltd., Beijing 100089, P.R. China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd., Beijing 100089, P.R. China
| | - Liyu Liu
- Thoracic Medicine Department 2, Cancer Hospital Affiliated to Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
21
|
Zhang R, Zhu J, Liu Y, Xin Y, Wang Y, Niu K, Wei H. Efficacy of immune checkpoint inhibitors in the treatment of non-small cell lung cancer patients with different genes mutation: A meta-analysis. Medicine (Baltimore) 2021; 100:e19713. [PMID: 33725808 PMCID: PMC7969231 DOI: 10.1097/md.0000000000019713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Latest clinical trials have proved the better overall survival (OS) for the use of immune checkpoint inhibitors verse chemotherapy in non-small cell lung cancer (NSCLC) patients. However, we still have no clear ideas of the factors which could affect the efficacy of immune checkpoint inhibitors. Cancer, essentially, is a disease related to genes mutation. Therefore, we conducted a systematic review and meta-analysis to compare efficacy of immune checkpoint inhibitors for NSCLC patients with different genes mutation. METHODS PubMed, EMBASE, Web of Science, and the Cochrane Library databases were searched for all clinical trials in NSCLC until December 16, 2019. The hazard ratio (HR) and 95% confidence intervals (CIs) of OS or progression-free survival (PFS) were used. RESULTS A total of 4453 patients from 7 randomized controlled trials (RCTs) were included. Immune checkpoint inhibitors significantly prolonged the OS (HR, 0.67; 95% CI, 0.60-0.67) in NSCLC patients having epidermal growth factor receptor (EGFR) wild-type versus chemotherapy. Meanwhile, they prolonged the OS (HR, 0.61; 95% CI, 0.39-0.94) in NSCLC patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation. No matter PD-L1 tumor proportion scores were >1% or <1%, immune checkpoint inhibitors were more effective than chemotherapy (HR, 0.64; 95% CI, 0.55-0.75). CONCLUSION Immune checkpoint inhibitors are more efficacious than chemotherapy in NSCLC patients with EGFR wild-type, KRAS mutation, and any PD-L1 tumor proportion scores.
Collapse
|
22
|
Yu S, Zhao Z, Chen L, Gu T, Yu H, Tang H, Wang Q, Wu Y. HLA loss of heterozygosity-mediated discordant responses to immune checkpoint blockade in squamous cell lung cancer with renal metastasis. Immunotherapy 2020; 13:195-200. [PMID: 33238795 DOI: 10.2217/imt-2020-0173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the significant success of immune checkpoint blockade therapy in advanced non-small-cell lung cancer compared with chemotherapy, efficacy varies greatly across patients, and acquired resistance frequently occurs. In particular, during immunotherapy, the dynamic changes in molecular events have not been characterized. The authors report a case of squamous cell lung carcinoma with renal metastasis, treated with pembrolizumab, in which the primary tumor and rare renal metastases showed different responses. Using whole-exome sequencing, the authors found loss of heterogeneity in HLA genes in all tumors and high levels of intratumor heterogeneity in metastases. The increased levels of HLA loss led to therapy resistance during tumor evolution. In addition to tumor mutational burden and PD-L1, HLA loss of heterozygosity and intratumor heterogeneity should be taken into consideration during immunotherapy.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Zhikun Zhao
- YuceBio Technology Co., Ltd, Shenzhen 51800, China
| | - Longyun Chen
- YuceBio Technology Co., Ltd, Shenzhen 51800, China
| | - Tiantian Gu
- YuceBio Technology Co., Ltd, Shenzhen 51800, China
| | - Hui Yu
- YuceBio Technology Co., Ltd, Shenzhen 51800, China
| | - Hong Tang
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Qiming Wang
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Yufeng Wu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
23
|
Han J, Tian K, Yang J, Gong Y. Durvalumab vs placebo consolidation therapy after chemoradiotherapy in stage III non-small-cell lung cancer: An updated PACIFIC trial-based cost-effectiveness analysis. Lung Cancer 2020; 146:42-49. [DOI: 10.1016/j.lungcan.2020.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022]
|
24
|
Li JX, Huang JM, Jiang ZB, Li RZ, Sun A, Lai-Han Leung E, Yan PY. Current Clinical Progress of PD-1/PD-L1 Immunotherapy and Potential Combination Treatment in Non-Small Cell Lung Cancer. Integr Cancer Ther 2020; 18:1534735419890020. [PMID: 31838881 PMCID: PMC7242804 DOI: 10.1177/1534735419890020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conventional methods in treating non–small cell lung cancer contain surgery,
chemotherapy, radiotherapy, and targeted therapy, which have various defects.
Recently, with the deeper research on tumor immunity, immunotherapy has made the
breakthrough in the treatment of cancers. Especially developments of programmed
cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors bring the
therapy into a new stage. This review mainly focuses on introducing existing
monoclonal antibodies containing nivolumab, pembrolizumab, atezolizumab,
avelumab, and durvalumab, along with 3 ordinary biomarkers such as PD-L1
expression, tumor mutation burden, and microsatellite instability. By
understanding the resistance mechanism of anti-PD-1/L1 blockade, research is
further improving the survival benefit and expanding the benefit population. So,
PD-1/PD-L1 inhibitors begin to be combined with various therapeutic strategies
clinically. Discussion and comparison of their effectiveness and safety are also
comprehensively reviewed. Meanwhile, we explore the potential, the impact, and
mechanisms of combining traditional Chinese medicine with immunotherapy.
Collapse
Affiliation(s)
- Jia-Xin Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ju-Min Huang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ze-Bo Jiang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Run-Ze Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ao Sun
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Elaine Lai-Han Leung
- Macau University of Science and Technology, Macau, People's Republic of China.,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| | - Pei-Yu Yan
- Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
25
|
Tao X, Wu X, Huang T, Mu D. Identification and Analysis of Dysfunctional Genes and Pathways in CD8 + T Cells of Non-Small Cell Lung Cancer Based on RNA Sequencing. Front Genet 2020; 11:352. [PMID: 32457792 PMCID: PMC7227791 DOI: 10.3389/fgene.2020.00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer, the most common of malignant tumors, is typically of the non-small cell (NSCLC) type. T-cell-based immunotherapies are a promising and powerful approach to treating NSCLCs. To characterize the CD8+ T cells of non-small cell lung cancer, we re-analyzed the published RNA-Seq gene expression profiles of 36 CD8+ T cell isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples. With an advanced Monte Carlo method of feature selection, we identified the CD8+ TIL specific expression patterns. These patterns revealed the key dysfunctional genes and pathways in CD8+ TIL and shed light on the molecular mechanisms of immunity and use of immunotherapy.
Collapse
Affiliation(s)
- Xuefang Tao
- Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Sun J, Qiu MZ, Mei T, Gao Y, Chang B, Zhang Y, Wang FH, Li S. Dynamic monitoring of serum soluble programmed cell death ligand 1 as a response predictor to chemotherapy in metastatic or recurrent gastrointestinal cancer. Transl Cancer Res 2020; 9:2434-2448. [PMID: 35117603 PMCID: PMC8798804 DOI: 10.21037/tcr.2020.03.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Background Biomarkers in serum may have important clinical implications for personalized medicine, including therapeutic guidance, and monitoring of recurrence. The role of programmed cell death ligand 1 (PD-L1) expression as a tumor biomarker remains controversial. In this study, we aimed at determining the changes of soluble PD-L1 (sPD-L1) during first-line chemotherapy and assessing the association with treatment response and progression-free survival (PFS) of patients with advanced gastrointestinal cancer. Methods Blood samples from 115 gastrointestinal cancer patients who have not received any previous systemic chemotherapy for recurrent or metastatic disease were collected at the time of diagnosis and each response evaluation. Serum of sPD-L1 expression was tested by enzyme-linked immunosorbent assay (ELISA). The associations between the baseline level of serum sPD-L1 and clinical-pathological characteristics and prognosis were analyzed. we further dynamically monitored the level change of serum sPD-L1 during treatment and analyzed its relationship with clinical-pathological characteristics, chemotherapy response and prognosis. Results Among 115 metastatic gastrointestinal patients, the median serum sPD-L1 level was 0.777 (range, <0.156–6.680) ng/mL. In most cases, changes in sPD-L1 level correlated with treatment response. Patients with values of serum sPD-L1 decreasing after chemotherapy had better tumor response and median PFS compared with patients with values increasing after chemotherapy (ORR, 88.3% vs. 54.0% P=0.000005 and PFS, not reached vs. 27 months, P=0.00026). D-values of sPD-L1 in patients with progressive disease (PD) were observed increasing from 0.406 to 1.097 ng/mL between pre- and post-chemotherapy, while in those with better tumor response D-values decreased from 1.153 to 0.791 ng/mL after chemotherapy compared with baseline. In the logistic regression analysis, the change of sPD-L1 levels in serum after chemotherapy were found to be a prognostic factor for treatment response and PFS in the multivariate analysis. Conclusions These results showed for the first time that sPD-L1 in serum samples of patients with advanced gastrointestinal cancer were changed after chemotherapy and increased serum sPD-L1 levels were poor prognostic factors for both tumor response and PFS of patients. Dynamic monitoring of serum sPDL1 after treatment may be served as a potential predictor to treatment response in gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Jin Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of GCP, Clinical Research Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.,Department of Medical Oncology, Anhui Provincial Hospital, Hefei 230001, China
| | - Miao-Zhen Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ting Mei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of GCP, Clinical Research Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Yuan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Boyang Chang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuxin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Su Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of GCP, Clinical Research Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
27
|
Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer. Int Immunopharmacol 2020; 79:106088. [DOI: 10.1016/j.intimp.2019.106088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
|
28
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1240] [Impact Index Per Article: 248.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
29
|
Chen H, Zhao L, Fu K, Lin Q, Wen X, Jacobson O, Sun L, Wu H, Zhang X, Guo Z, Lin Q, Chen X. Integrin α vβ 3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Am J Cancer Res 2019; 9:7948-7960. [PMID: 31695808 PMCID: PMC6831469 DOI: 10.7150/thno.39203] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Radiotherapy combined with immunotherapy has revealed promising outcomes in both preclinical studies and ongoing clinical trials. Targeted radionuclide therapy (TRT) is a branch of radiotherapy concerned with the use of radioisotopes, radiolabeled molecules or nanoparticles that deliver particulate radiation to cancer cells. TRT is a promising approach in cases of metastatic disease where conventional treatments are no longer effective. The increasing use of TRT raises the question of how to best integrate TRT with immunotherapy. In this study, we proposed a novel therapeutic regimen that combined programmed death ligand 1 (PD-L1)-based immunotherapy with peptide-based TRT (177Lu as the radionuclide) in the murine colon cancer model. Methods: To explore the most appropriate timing of immunotherapy after radionuclide therapy, the anti-PD-L1 antibody (αPD-L1 mAb) was delivered in a concurrent or sequential manner when 177Lu TRT was given. Results: The results demonstrated that TRT led to an acute increase in PD-L1 expression on T cells, and TRT in combination with αPD-L1 mAb stimulated the infiltration of CD8+ T cells, which improved local tumor control, overall survival and protection against tumor rechallenge. Moreover, our data revealed that the time window for this combination therapy may be critical to outcome. Conclusions: This therapeutic combination may be a promising approach to treating metastatic tumors in which TRT can be used. Clinical translation of the result would suggest that concurrent rather than sequential blockade of the PD-1/PD-L1 axis combined with TRT improves overall survival and long-term tumor control.
Collapse
|
30
|
Motta G, Vigneri P. Current strategies incorporating immune checkpoint inhibitors for the treatment of advanced or metastatic non-small-cell lung cancers. Future Oncol 2019; 15:3097-3101. [PMID: 31573839 DOI: 10.2217/fon-2018-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gianmarco Motta
- Department of Clinical & Experimental Medicine, University of Catania, 95123 Catania, Italy.,Division of Medical Oncology, AOU Policlinico-Vittorio Emanuele
| | - Paolo Vigneri
- Department of Clinical & Experimental Medicine, University of Catania, 95123 Catania, Italy.,Division of Medical Oncology, AOU Policlinico-Vittorio Emanuele.,Center of Experimental Oncology & Hematology, AOU Policlinico-Vittorio Emanuele
| |
Collapse
|
31
|
Wang G, Zhao J, Zhang M, Wang Q, Chen B, Hou Y, Lu K. Ferumoxytol and CpG oligodeoxynucleotide 2395 synergistically enhance antitumor activity of macrophages against NSCLC with EGFR L858R/T790M mutation. Int J Nanomedicine 2019; 14:4503-4515. [PMID: 31417255 PMCID: PMC6599896 DOI: 10.2147/ijn.s193583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Drug resistance is a major challenge for epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) treatment of lung cancer. Ferumoxytol (FMT) drives macrophage (MΦ) transformation towards a M1-like phenotype and thereby inhibits tumor growth. CpG oligodeoxynucleotide 2395 (CpG), a toll-like receptor 9 (TLR9) agonist, is an effective therapeutic agent to induce anticancer immune responses. Herein, the effect of co-administered FMT and CpG on MΦ activation for treating non-small cell lung cancer (NSCLC) was explored. Methods: The mRNA expression levels of M1-like genes in RAW 264.7 MΦ cells stimulated by FMT, CpG and FMT and CpG (FMT/CpG) were evaluated by quantitative reverse transcription PCR (qRT-PCR). Then, the effects of FMT/CpG-pretreated MΦ supernatant on apoptosis and proliferation of H1975 cells were detected by flow cytometry, and the expression of EGFR and its downstream signaling pathway in H1975 cells were explored by western blotting. Finally, a H1975 cell xenograft mouse model was used to study the anti-tumor effect of the combination of FMT and CpG in vivo. Results: FMT and CpG synergistically enhanced M1-like gene expression in MΦ, including tumor necrosis factor-α, interleukin (IL)-12, IL-1α, IL-1β, IL-6 and inducible nitric oxide synthase (iNOS). FMT/CpG-pretreated MΦ supernatant inhibited proliferation and induced apoptosis of H1975 cells, accompanied by down-regulation of cell cycle-associated proteins and up-regulation of apoptosis-related proteins. Further studies indicated that the FMT/CpG-pretreated MΦ supernatant suppressed p-EGFR and its downstream AKT/mammalian target of rapamycin signaling pathway in H1975 cells. Furthermore, FMT/CpG suppressed tumor growth in mice accompanied by a decline in the EGFR-positive tumor cell fraction and increased M1 phenotype macrophage infiltration. Conclusion: FMT acted synergistically with CpG to activate MΦ for suppressed proliferation and promoted apoptosis of NSCLC cells via EGFR signaling. Thus, combining FMT and CpG is an effective strategy for the treatment of NSCLC with EGFRL858R/T790M mutation.
Collapse
Affiliation(s)
- Guoqun Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jiaojiao Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Meiling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Bo Chen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, People's Republic of China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
32
|
Sandler JE, D'Aiello A, Halmos B. Changes in store for early-stage non-small cell lung cancer. J Thorac Dis 2019; 11:2117-2125. [PMID: 31285907 DOI: 10.21037/jtd.2019.05.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The management of advanced non-small cell lung cancer (NSCLC) has been revolutionized in recent years with the introduction of biomarker-targeted molecular therapies and immune checkpoint inhibitors. In contrast, since adjuvant chemotherapy was first established twenty years ago as the standard of care, little has changed for resected early-stage (IB-IIIA) patients for whom the potential for cure is greatest. In this manuscript we will review recently presented data as well as ongoing/planned studies in this arena. So far, investigative efforts have yielded mixed results regarding the use of tyrosine kinase inhibitors (TKIs) in early-stage NSCLC, though a series of now better planned, biomarker-driven ongoing phase III trials may be more informative. Several innovative immunotherapy studies have already shown promising results principally in the neoadjuvant setting with a large number of pivotal neo-adjuvant and adjuvant trials now in progress. Given the more robust design and biomarker-focused approach of the new generation of studies, significant advances in the optimal curative treatment of early stage NSCLC are anticipated.
Collapse
Affiliation(s)
- Jason E Sandler
- Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Angelica D'Aiello
- Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Balazs Halmos
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
33
|
Marvisi M, Ramponi S, Balzarini L, Mancini C. A "Crazy Paving" Pattern on CT Scan in a Patient Treated with Pembrolizumab. Curr Drug Saf 2019; 14:242-245. [PMID: 30864509 PMCID: PMC6876257 DOI: 10.2174/1574886314666190312115648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
Abstract
Background: Programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have shown great promise in clinical practice and have been incorporated into standard management of NSCLC. Pneumonitis is a serious autoimmune toxicity associated with the use of anti-PD-1/PD-L1 antibodies, resulting in significant morbidity and mortality. Methods: We described the case of a 73-year-old woman with no history of smoking developing exertional dyspnea four months after taking Pembrolizumab. Results: High resolution contrast CT scan (HRCT) presented a unilateral “crazy paving” pattern, and bronchoalveolar lavage (BAL) an important lymphocytosis (20% of total cell count). The patient reached clinical stability after the administration of systemic steroids (2mg\Kg\die) and was discharged with long term oxygen therapy. Discussion: Pulmonary toxicity is frequent when using PD-1 inhibitors, resulting in significant morbidity and mortality, often leading to the discontinuation of therapy. Clinical presentation is usually protean and HRCT pattern is nonspecific. This is the first case presenting a “crazy paving” pattern associated with BAL lymphocytosis. Conclusion: Oncologists, pulmonologists, radiologists and general practitioners have to consider PD-1 and PD-L1 inhibitor pneumonitis as a potentially disabling and fatal event.
Collapse
Affiliation(s)
- Maurizio Marvisi
- Depertment of Internal Medicine, Istituto Figlie di San Camillo, Cremona, Italy
| | - Sara Ramponi
- Depertment of Internal Medicine, Istituto Figlie di San Camillo, Cremona, Italy
| | - Laura Balzarini
- Depertment of Internal Medicine, Istituto Figlie di San Camillo, Cremona, Italy
| | - Chiara Mancini
- Depertment of Internal Medicine, Istituto Figlie di San Camillo, Cremona, Italy
| |
Collapse
|
34
|
Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, Jia Y, Shi J, Zhang L, Liu X, Qiao M, Chen X, Su C, Yu H, Zhou C, Zhang J, Camidge DR, Hirsch FR. Low-Dose Apatinib Optimizes Tumor Microenvironment and Potentiates Antitumor Effect of PD-1/PD-L1 Blockade in Lung Cancer. Cancer Immunol Res 2019; 7:630-643. [PMID: 30755403 DOI: 10.1158/2326-6066.cir-17-0640] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/04/2018] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
The lack of response to treatment in most lung cancer patients suggests the value of broadening the benefit of anti-PD-1/PD-L1 monotherapy. Judicious dosing of antiangiogenic agents such as apatinib (VEGFR2-TKI) can modulate the tumor immunosuppressive microenvironment, which contributes to resistance to anti-PD-1/PD-L1 treatment. We therefore hypothesized that inhibiting angiogenesis could enhance the therapeutic efficacy of PD-1/PD-L1 blockade. Here, using a syngeneic lung cancer mouse model, we demonstrated that low-dose apatinib alleviated hypoxia, increased infiltration of CD8+ T cells, reduced recruitment of tumor-associated macrophages in tumor and decreased TGFβ amounts in both tumor and serum. Combining low-dose apatinib with anti-PD-L1 significantly retarded tumor growth, reduced the number of metastases, and prolonged survival in mouse models. Anticancer activity was evident after coadministration of low-dose apatinib and anti-PD-1 in a small cohort of patients with pretreated advanced non-small cell lung cancer. Overall, our work shows the rationale for the treatment of lung cancer with a combination of PD-1/PD-L1 blockade and low-dose apatinib.
Collapse
Affiliation(s)
- Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Limin Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China.
| | - Jun Zhang
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Fred R Hirsch
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado.,Clinical Institute for Lung Cancer, Mount Sinai Cancer, Mount Sinai Health System, Tisch Cancer Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
35
|
Miret JJ, Kirschmeier P, Koyama S, Zhu M, Li YY, Naito Y, Wu M, Malladi VS, Huang W, Walker W, Palakurthi S, Dranoff G, Hammerman PS, Pecot CV, Wong KK, Akbay EA. Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity. J Immunother Cancer 2019; 7:32. [PMID: 30728077 PMCID: PMC6366094 DOI: 10.1186/s40425-019-0504-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tumor orchestrated metabolic changes in the microenvironment limit generation of anti-tumor immune responses. Availability of arginine, a semi-essential amino acid, is critical for lymphocyte proliferation and function. Levels of arginine are regulated by the enzymes arginase 1,2 and nitric oxide synthase (NOS). However, the role of arginase activity in lung tumor maintenance has not been investigated in clinically relevant orthotopic tumor models. METHODS RNA sequencing (RNA-seq) of sorted cell populations from mouse lung adenocarcinomas derived from immunocompetent genetically engineered mouse models (GEMM)s was performed. To complement mouse studies, a patient tissue microarray consisting of 150 lung adenocarcinomas, 103 squamous tumors, and 54 matched normal tissue were stained for arginase, CD3, and CD66b by multiplex immunohistochemistry. Efficacy of a novel arginase inhibitor compound 9 in reversing arginase mediated T cell suppression was determined in splenocyte ex vivo assays. Additionally, the anti-tumor activity of this compound was determined in vitro and in an autochthonous immunocompetent KrasG12D GEMM of lung adenocarcinoma model. RESULTS Analysis of RNA-seq of sorted myeloid cells suggested that arginase expression is elevated in myeloid cells in the tumor as compared to the normal lung tissue. Accordingly, in the patient samples arginase 1 expression was mainly localized in the granulocytic myeloid cells and significantly elevated in both lung adenocarcinoma and squamous tumors as compared to the controls. Our ex vivo analysis demonstrated that myeloid derived suppressor cell (MDSC)s cause T cell suppression by arginine depletion, and suppression of arginase activity by a novel ARG1/2 inhibitor, compound 9, led to restoration of T cell function by increasing arginine. Treatment of KrasG12D GEMM of lung cancer model with compound 9 led to a significant tumor regression associated with increased T cell numbers and function, while it had no activity across several murine and human non-small cell (NSCLC) lung cancer lines in vitro. CONCLUSIONS We show that arginase expression is elevated in mouse and patient lung tumors. In a KRASG12D GEMM arginase inhibition diminished growth of established tumors. Our data suggest arginase as an immunomodulatory target that should further be investigated in lung tumors with high arginase activity.
Collapse
Affiliation(s)
- Juan J Miret
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
| | - Paul Kirschmeier
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Osaka, Japan
| | - Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, Esra Akbay, PhD, Address: 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Yvonne Y Li
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Osaka, Japan
| | - Min Wu
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
| | - Venkat S Malladi
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Huang
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
- Elstar Therapeutics, Cambridge, MA, USA
| | - William Walker
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
| | - Sangeetha Palakurthi
- Dana Farber Cancer Institute, Belfer Institute of Cancer Science, Boston, MA, USA
- Elstar Therapeutics, Cambridge, MA, USA
| | - Glenn Dranoff
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chad V Pecot
- University of North Carolina Chapel Hill, Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, Esra Akbay, PhD, Address: 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
36
|
Fan Y, Che X, Hou K, Zhang M, Wen T, Qu X, Liu Y. MiR-940 promotes the proliferation and migration of gastric cancer cells through up-regulation of programmed death ligand-1 expression. Exp Cell Res 2018; 373:180-187. [DOI: 10.1016/j.yexcr.2018.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
|
37
|
Suresh K, Voong KR, Shankar B, Forde PM, Ettinger DS, Marrone KA, Kelly RJ, Hann CL, Levy B, Feliciano JL, Brahmer JR, Feller-Kopman D, Lerner AD, Lee H, Yarmus L, D'Alessio F, Hales RK, Lin CT, Psoter KJ, Danoff SK, Naidoo J. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors. J Thorac Oncol 2018; 13:1930-1939. [PMID: 30267842 DOI: 10.1016/j.jtho.2018.08.2035] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
Checkpoint inhibitor pneumonitis (CIP) is an immune-related adverse event that can occur after initiation of anti-programmed death 1/programmed death ligand 1 immune checkpoint inhibitor (ICI) therapy for the treatment of multiple malignancies, including NSCLC. However, the incidence of CIP has not been previously examined in a population that included both trial-enrolled and non-trial-enrolled patients with advanced NSCLC. Furthermore, risk factors and other clinical characteristics associated with CIP severity are not known. In this study, we retrospectively examined clinical characteristics, incidence, and risk factors for CIP in a cohort of 205 patients with NSCLC, all of whom received anti-programmed death 1/programmed death ligand 1 ICIs. Our results demonstrate a higher incidence of CIP (19%) than previously reported in clinical trials (3%-5%). Our data also suggest that tumor histologic type may be a risk factor for CIP development. We observed a wide range of time to onset of CIP (median 82 days), with high morbidity and mortality associated with higher-grade CIP regardless of degree of immunosuppression. Our data provide new insight into the epidemiology and clinical characteristics of CIP. Further studies are needed to increase CIP pharmacovigilance, improve risk stratification, and refine diagnostic algorithms for the diagnosis and management of this potential life-threatening complication of ICI therapy.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Khinh Ranh Voong
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bairavi Shankar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - David S Ettinger
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristen A Marrone
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - Ronan J Kelly
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - Benjamin Levy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - Josephine L Feliciano
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - Julie R Brahmer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| | - David Feller-Kopman
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew D Lerner
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hans Lee
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lonny Yarmus
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Franco D'Alessio
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell K Hales
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cheng Ting Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin J Psoter
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonye K Danoff
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Suresh K, Naidoo J, Lin CT, Danoff S. Immune Checkpoint Immunotherapy for Non-Small Cell Lung Cancer: Benefits and Pulmonary Toxicities. Chest 2018; 154:1416-1423. [PMID: 30189190 DOI: 10.1016/j.chest.2018.08.1048] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are newer, immunotherapy-based drugs that have been shown to improve survival in advanced non-small cell lung cancer (NSCLC). Unlike traditional chemotherapeutic agents, ICIs work by boosting the body's natural tumor killing response. However, this unique mechanism of action has also led to the recognition of class-specific side effects. Labeled immune-related adverse events, these toxicities can affect multiple organ systems including the lungs. Immune-mediated lung injury because of ICI use, termed checkpoint inhibitor pneumonitis (CIP), occurs in about 3% to 5% of patients receiving ICIs; however, the real-world incidence of this entity may be higher, especially now that ICIs are being used in nonclinical trial settings. In this review, we briefly introduce the biology of ICIs and the indications for ICI use in NSCLC and then discuss the epidemiology and clinical and radiologic manifestations of CIP. Next, we discuss management strategies for CIP, including the current consensus on management of steroid-refractory CIP. Given the nascent nature of this field, we highlight areas of uncertainty and emerging research questions in the burgeoning field of checkpoint inhibitor pulmonary toxicity.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cheng Ting Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sonye Danoff
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
39
|
Zhou F, Zhou C. Lung cancer in never smokers-the East Asian experience. Transl Lung Cancer Res 2018; 7:450-463. [PMID: 30225210 PMCID: PMC6131183 DOI: 10.21037/tlcr.2018.05.14] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Abstract
Approximately one third of all lung cancer patients in East Asia are never-smokers. Furthermore, the proportion of lung cancer in never smokers (LCINS) has been increasing over time. Never-smokers are more often diagnosed with adenocarcinoma in East Asia, a subtype largely defined by oncogenic drivers. In this subgroup of patients, as high as 90% of patients have been found to harbor well-known oncogenic mutations and can be successfully managed with targeted therapies inhibiting specific oncogenic mutant kinases. EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment has been the most important targeted therapy in lung adenocarcinoma from East Asian never-smokers as approximately 70% of these patients have the opportunity to receive EGFR-TKI treatment. Lung squamous cell carcinoma (SQCC) and small cell lung cancer (SCLC) are two common histologic types of smoking-related non-small cell lung cancer (NSCLC). The proportion of never-smokers with SQCC and SCLC in East Asian patients seems to be higher than that in Caucasian patients. Recent studies also suggest that lung SQCC and SCLC in never-smokers may be distinct subtypes. Therefore, better understanding of the biologic characteristics of these subtypes of patients may provide new insights for the treatment. In this review, we will provide an overview of East Asian experience in the treatment of advanced, never-smoking lung cancer, focusing on etiologic factors in the development of LCINS, targeted therapy for never-smokers with adenocarcinoma, distinct characteristics of never-smokers with lung SQCC and SCLC, and the role of immunotherapy in never-smokers with NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
40
|
Chu W, Zhou Y, Tang Q, Wang M, Ji Y, Yan J, Yin D, Zhang S, Lu H, Shen J. Bi-specific ligand-controlled chimeric antigen receptor T-cell therapy for non-small cell lung cancer. Biosci Trends 2018; 12:298-308. [PMID: 29899195 DOI: 10.5582/bst.2018.01048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our goal is to develop a switch-controlled approach to enable better control of reactivity and safety of chimeric antigen receptor (CAR)-T therapy for non-small-cell lung cancer (NSCLC). Lentiviral transduction was performed to generate anti-FITC CAR-T cells and target cells stably expressing either isoform of the folate receptor. Colorimetric-based cytotoxic assay, enzyme-linked immunosorbent assay, and multiparametric flow cytometry analysis were used to evaluate the specificity and activity of CAR-T cells in vitro. Human primary T cells stably expressing the fully human anti-FITC CAR were generated. Anti-FITC CAR-T cells displayed antigen-specific and folate-FTIC dependent reactivity against engineered A549-FRα and THP-1-FRβ. The selective activation and proliferation of anti-FITC CAR-T cells in vitro stringently relied on the co-existence of folate-FITC and FR- expressing target cells and was dose-titratable with the folate-FITC switch. The excellent in vitro efficacy and specificity of an adaptor-controlled CAR-T therapy to target both tumor cells and tumor-associated macrophages in NSCLCs were validated.
Collapse
Affiliation(s)
- Wenqi Chu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Yixiong Zhou
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Qi Tang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Min Wang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Yongjia Ji
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Jingjing Yan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Dan Yin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Shuye Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University.,Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University
| | - Jiayin Shen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| |
Collapse
|
41
|
La Fleur L, Boura VF, Alexeyenko A, Berglund A, Pontén V, Mattsson JSM, Djureinovic D, Persson J, Brunnström H, Isaksson J, Brandén E, Koyi H, Micke P, Karlsson MCI, Botling J. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer 2018; 143:1741-1752. [PMID: 29667169 DOI: 10.1002/ijc.31545] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are attractive targets for immunotherapy. Recently, studies in animal models showed that treatment with an anti-TAM antibody directed against the scavenger receptor MARCO resulted in suppression of tumor growth and metastatic dissemination. Here we investigated the expression of MARCO in relation to other macrophage markers and immune pathways in a non-small cell lung cancer (NSCLC) cohort (n = 352). MARCO, CD68, CD163, MSR1 and programmed death ligand-1 (PD-L1) were analyzed by immunohistochemistry and immunofluorescence, and associations to other immune cells and regulatory pathways were studied in a subset of cases (n = 199) with available RNA-seq data. We observed a large variation in macrophage density between cases and a strong correlation between CD68 and CD163, suggesting that the majority of TAMs present in NSCLC exhibit a protumor phenotype. Correlation to clinical data only showed a weak trend toward worse survival for patients with high macrophage infiltration. Interestingly, MARCO was expressed on a distinct subpopulation of TAMs, which tended to aggregate in close proximity to tumor cell nests. On the transcriptomic level, we found a positive association between MARCO gene expression and general immune response pathways including strong links to immunosuppressive TAMs, T-cell infiltration and immune checkpoint molecules. Indeed, a higher macrophage infiltration was seen in tumors expressing PD-L1, and macrophages residing within tumor cell nests co-expressed MARCO and PD-L1. Thus, MARCO is a potential new immune target for anti-TAM treatment in a subset of NSCLC patients, possibly in combination with available immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Linnéa La Fleur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vanessa F Boura
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden.,Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Solna, Sweden
| | | | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Persson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden.,Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
42
|
Feigman MJS, Pires MM. Synthetic Immunobiotics: A Future Success Story in Small Molecule-Based Immunotherapy? ACS Infect Dis 2018; 4:664-672. [PMID: 29431421 DOI: 10.1021/acsinfecdis.7b00261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance to our current stock of antibiotics is projected to increase to levels that threaten our ability to reduce and eliminate bacterial infections, which is now considered one of the primary health care crises of the 21st century. Traditional antibiotic agents (e.g., penicillin) paved the way for massive advances in human health, but we need novel strategies to maintain the upper hand in the battle against pathogenic bacteria. Nontraditional strategies, such as targeted immunotherapies, could prove fruitful in complementing our antibiotic arsenal.
Collapse
Affiliation(s)
- Mary J. Sabulski Feigman
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
43
|
Sandler JE, Kaumaya M, Halmos B. Biomarker use in lung cancer management: expanding horizons. Biomark Med 2018; 12:315-320. [PMID: 29569465 DOI: 10.2217/bmm-2018-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jason E Sandler
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Meghan Kaumaya
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Lee DH, Isobe H, Wirtz H, Aleixo SB, Parente P, de Marinis F, Huang M, Arunachalam A, Kothari S, Cao X, Donnini N, Woodgate AM, de Castro J. Health care resource use among patients with advanced non-small cell lung cancer: the PIvOTAL retrospective observational study. BMC Health Serv Res 2018; 18:147. [PMID: 29490654 PMCID: PMC5831211 DOI: 10.1186/s12913-018-2946-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 02/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background Data are scarce regarding real-world health care resource use (HCRU) for non-small cell lung cancer (NSCLC). An understanding of current clinical practices and HCRU is needed to provide a benchmark for rapidly evolving NSCLC management recommendations and therapeutic options. The objective of this study was to describe real-world HCRU for patients with advanced NSCLC. Methods This multinational, retrospective chart review study was conducted at academic and community oncology sites in Italy, Spain, Germany, Australia, Japan, South Korea, Taiwan, and Brazil. Deidentified data were drawn from medical records of 1440 adults (≥18 years old) who initiated systemic therapy (2011 to mid-2013) for a new, confirmed diagnosis of advanced or metastatic (stage IIIB or IV) NSCLC. We summarized HCRU associated with first and subsequent lines of systemic therapy for advanced/metastatic NSCLC. Results The proportion of patients who were hospitalized at least once varied by country from 24% in Italy to 81% in Japan during first-line therapy and from 22% in Italy to 84% in Japan during second-line therapy; overall hospitalization frequency was 2.5–11.1 per 100 patient-weeks, depending on country. Emergency visit frequency also varied among countries (overall from 0.3–5.9 per 100 patient-weeks), increasing consistently from first- through third-line therapy in each country. The outpatient setting was the most common setting of resource use. Most patients in the study had multiple outpatient visits in association with each line of therapy (overall from 21.1 to 59.0 outpatient visits per 100 patient-weeks, depending on country). The use of health care resources showed no regular pattern associated with results of tests for activating mutations of the epidermal growth factor receptor (EGFR) gene or anaplastic lymphoma kinase (ALK) gene rearrangements. Conclusions HCRU varied across countries. These findings suggest differing approaches to the clinical management of advanced NSCLC among the eight countries. Comparative findings and an understanding of country-specific clinical practices can help to identify areas of need and guide future resource allocation for patients with advanced NSCLC. Further studies evaluating the costs associated with resource use are warranted. Electronic supplementary material The online version of this article (10.1186/s12913-018-2946-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dae Ho Lee
- Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | - Phillip Parente
- Cancer Services, Box Hill Hospital, and Monash University, Victoria, Australia
| | - Filippo de Marinis
- Thoracic Oncology Division, European Institute of Oncology (IEO), Milan, Italy
| | - Min Huang
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., North Wales, PA, USA
| | - Ashwini Arunachalam
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Smita Kothari
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xiting Cao
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | | | | | - Javier de Castro
- Medical Oncology Service, Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
45
|
|
46
|
Xu S, Zhou Y, Geng H, Song D, Tang J, Zhu X, Yu D, Hu S, Cui Y. Serum Metabolic Profile Alteration Reveals Response to Platinum-Based Combination Chemotherapy for Lung Cancer: Sensitive Patients Distinguished from Insensitive ones. Sci Rep 2017; 7:17524. [PMID: 29235457 PMCID: PMC5727535 DOI: 10.1038/s41598-017-16085-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Most lung cancers are diagnosed at fairly advanced stages due to limited clinical symptoms. Platinum-based chemotherapy, either as single regimen or in combination with radiation, is one of the major recommendations for the patients. Earlier evaluation of the effectiveness of the chemotherapies is critical for developing better treatment plan given the toxicity of the chemotherapeutic reagents. Drug efficacy could be reflected in the systemic metabolism characteristics though knowledge about which remains scarce. In this study, serum metabolism influence of three types of commonly used platinum-based combination chemotherapy regimens, namely cisplatin with gemcitabine, vinorelbine or docetaxel, were studied using pattern recognition coupled with nuclear magnetic resonance techniques. The treated patients were divided into sensitive or insensitive subgroups according to their response to the treatments. We found that insensitive subjects can be identified from the sensitive ones with up-regulation of glucose and taurine but reduced alanine and lactate concentrations in serum. The combination chemotherapy of lung cancer is accompanied by disturbances of multiple metabolic pathways such as energy metabolism, phosphatidylcholine biosynthesis, so that the treated patients were marginally discriminated from the untreated. Serum metabolic profile of patients shows potential as an indicator of their response to platinum-based combination chemotherapy.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, P. R. China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanping Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Geng
- Department of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Dandan Song
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jing Tang
- Department of Medical Oncology, Hubei Province Tumor Hospital, Wuhan, 430079, P.R. China
| | - Xianmin Zhu
- Department of Medical Oncology, Hubei Province Tumor Hospital, Wuhan, 430079, P.R. China
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| | - Sheng Hu
- Department of Medical Oncology, Hubei Province Tumor Hospital, Wuhan, 430079, P.R. China.
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, P. R. China. .,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
47
|
Assi HI, Kamphorst AO, Moukalled NM, Ramalingam SS. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer 2017; 124:248-261. [PMID: 29211297 DOI: 10.1002/cncr.31105] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
The emergence of immune checkpoint inhibitors for the treatment of cancer has led to major changes to the therapeutic landscape of lung cancer. Improvements in overall survival relative to standard chemotherapy have been observed in the first-line and second-line therapy settings for patients with advanced non-small cell lung cancer (NSCLC) who are treated with immune checkpoint inhibitors. Consequently, every patient with advanced-stage NSCLC is now a candidate for immune checkpoint inhibitor therapy. However, it is clear that the benefit from therapy is not universal, and identification of biomarkers to select therapy has assumed importance. In addition to programmed cell death receptor ligand 1 expression, both tissue-based and blood-based markers are under evaluation to select patients. In an era of increasing costs of care and potential for toxicities related to immune checkpoint inhibition, proper patient selection is critical to the optimal use of this new class of agents. In addition, development of novel combination approaches has also emerged as an important way to improve the efficacy of immune checkpoint inhibition. Studies in earlier stages of NSCLC are already underway with the hope of improving the cure rate. In this article, the authors review the current landscape of immune checkpoint inhibitors in the treatment of advanced NSCLC. Cancer 2018;124:248-61. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Hazem I Assi
- Department of Internal Medicine, Naef K. Bassile Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Alice O Kamphorst
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Nour M Moukalled
- Department of Internal Medicine, Naef K. Bassile Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
48
|
Shen T, Chen Z, Zhao ZJ, Wu J. Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer. Oncotarget 2017; 8:60975-60986. [PMID: 28977839 PMCID: PMC5617399 DOI: 10.18632/oncotarget.17689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/06/2017] [Indexed: 01/05/2023] Open
Abstract
Recognition of major histocompatibility complex (MHC) class I antigens on tumor cells by cytotoxic T cells is involved in T cell-mediated tumor immune surveillance and immune checkpoint therapy. The interferon-γ (IFNγ)-IRF1 signaling pathway regulates MHC class I antigen presentation. To examine genetic defects of the IFNγ-IRF1 pathway in non-small cell lung cancer (NSCLC), we analyzed The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LuAd) and lung squamous cell carcinoma (LuSc) data. Loss-of-function (LOF) genetic alterations of the IFNγ-IRF1 pathway genes (IFNGR1, IFNGR2, JAK1, JAK2, STAT1, IRF1) were found in 64 (6.3%) of 1,016 patients. These genetic defects occur prevalently in JAK2 (33 cases) and often through deletions (29 cases) of chromosome 9p24.1. JAK2 deletions were frequently, but not always, associated with deletions of PD-L1 gene (CD274), PD-L2 gene (PDCD1LG2), PTPRD, and CDKN2A/CDKN2B at the chromosome 9p24.1-9p21.3 region. IRF1 expression was correlated with immune cytolytic activity markers GZMA and PRF1 in NSCLC. IFNγ induced IRF1 expression and cell surface HLA-A/HLA-B/HLA-C (HLA-ABC) in A549, H661, H292, and H2172 cells that contained the wildtype JAK2, but not in H1573 and H1623 cells that were JAK2 defective. Deletion of JAK2 or inhibition of the JAK2 kinase activity resulted in loss of IFNγ-induced IRF1 and cell surface HLA-ABC in JAK2 wildtype NSCLC cells, whereas expression of exogenous JAK2 in H1573 cells restored the IFNγ responses. These findings show that JAK2 deficiency is the major mechanism of genetic defects of the IFNγ-IRF1 pathway in NSCLC and reveal a previously unrecognized significance of chromosome 9p deletion in NSCLC.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhengming Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
49
|
Fukasawa Y, Sasaki K, Natsume M, Nakashima M, Ota S, Watanabe K, Takahashi Y, Kondo F, Kozuma K, Seki N. Nivolumab-Induced Myocarditis Concomitant with Myasthenia Gravis. Case Rep Oncol 2017; 10:809-812. [PMID: 29070994 PMCID: PMC5649238 DOI: 10.1159/000479958] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/05/2022] Open
Abstract
We report a 69-year-old female patient with advanced lung cancer who developed myocarditis concomitant with myasthenia gravis (MG), also known as “Herzmyasthenie,” after 3 cycles of nivolumab administration. Her initial symptoms were general malaise and double vision. However, her myocarditis deteriorated rapidly the following day, necessitating a temporary pacemaker and noninvasive positive pressure ventilation in the intensive care unit. Immunohistochemical examination of a myocardial biopsy suggested an immune response on the basis of HLA associations. The patient also developed impaired adduction of her left eye and elevated serum levels of acetylcholine receptor antibody, suggesting the onset of MG. Her condition gradually improved after immediate methylprednisolone pulse therapy. This case of nivolumab-induced “Herzmyasthenie” highlights the need to be aware that fulminant myocarditis might occur at the same time as MG during treatment with anti-programmed cell death-1 monoclonal antibodies.
Collapse
Affiliation(s)
- Yoko Fukasawa
- Department of Medical Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuya Sasaki
- Department of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Maika Natsume
- Department of Medical Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Nakashima
- Department of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Shuji Ota
- Department of Medical Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kiyotaka Watanabe
- Department of Medical Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihisa Takahashi
- Department of Pathology, Graduate School of Medical Sciences, International University of Health and Welfare, Narita, Japan
| | - Fukuo Kondo
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Ken Kozuma
- Department of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Nobuhiko Seki
- Department of Medical Oncology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE. Antigen-Presenting Intratumoral B Cells Affect CD4 + TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol Res 2017; 5:898-907. [PMID: 28848053 DOI: 10.1158/2326-6066.cir-17-0075] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022]
Abstract
Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4+ TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4+ TILs and alter the CD4+ TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4+ TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4+ TIL population, activated TIL-Bs (CD19+CD20+CD69+CD27+CD21+) were associated with an effector T-cell response (IFNγ+ CD4+ TILs). Alternatively, exhausted TIL-Bs (CD19+CD20+CD69+CD27-CD21-) were associated with a regulatory T-cell phenotype (FoxP3+ CD4+ TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4+ TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR.
Collapse
Affiliation(s)
- Tullia C Bruno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peggy J Ebner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brandon L Moore
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Olivia G Squalls
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Waugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Mitchell
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Brent E Palmer
- Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey A Kern
- Division of Oncology, National Jewish Health, Denver, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|