1
|
Gerakopoulos V, Ramos C, Müller C, Walterskirchen N, Vintila S, Zotter C, Ilg M, Pap A, Riss S, Bergmann M, Unger LW, Vogt AB, Oehler R, Lukowski SW. Single-cell transcriptomic analysis identifies tissue-specific fibroblasts as the main modulators of myeloid cells in peritoneal metastasis of different origin. Cancer Lett 2025; 620:217678. [PMID: 40154914 DOI: 10.1016/j.canlet.2025.217678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Colorectal cancer (CRC) peritoneal metastasis (CPM) is related to limited therapy options and poor prognosis. Although stromal cells heavily infiltrate most CPMs, interactions between different cell types in their microenvironment remain unclear. Here, we investigated tumor and distant normal tissue from CPM and CRC patients using single-cell RNA sequencing. Investigating the incoming and outgoing signals between cells revealed that fibroblasts dominate the CPM signaling landscape with myeloid cells as their strongest interaction partner. Using immunohistochemistry, we confirmed that fibroblasts co-localize with macrophages in the CPM microenvironment. A fibroblast sub-population detected only in CPM and normal peritoneum demonstrated immunoregulatory properties in co-culture experiments, and was further detected in additional peritoneal malignancies derived from ovarian and gastric origin. This novel fibroblast type and its communication with macrophages could be attractive targets for therapeutic interventions in CPM and potentially peritoneal surface malignancies in general.
Collapse
Affiliation(s)
- Vasileios Gerakopoulos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Cristiano Ramos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Catharina Müller
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Natalie Walterskirchen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefania Vintila
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Chiara Zotter
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Mathias Ilg
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Anna Pap
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Stefan Riss
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas W Unger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria; Dept. of Colorectal Surgery, Oxford University Hospitals, Old Rd, Headington, Oxford, OX3 7LE, United Kingdom
| | - Anne B Vogt
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| | - Samuel W Lukowski
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| |
Collapse
|
2
|
Hu H, Fan Y, Wang J, Zhang J, Lyu Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025; 381:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Ling F, Feng H, Wu S, Zhu D, Chen Y, Zhou J, Lai J, Huang X, Hou T, Li Y. Role of m7G modification regulators as biomarkers in gastric cancer subtyping and precision immunotherapy. Int Immunopharmacol 2025; 154:114594. [PMID: 40194456 DOI: 10.1016/j.intimp.2025.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
This study investigated the role of N7-methylguanosine (m7G) modification regulators as biomarkers in subtyping and precision immunotherapy of gastric cancer (GC). Through multi-omics analyses, including RNA sequencing, proteomics, and single-cell measurement, the study revealed heterogeneity in the m7G regulatory landscape among GC patients. Three m7G subtypes were identified, each with distinct pathways and phenotypes. Patients with low m7Gscores, based on an established scoring system, showed better survival outcomes and increased antitumor immune cell infiltration, as well as higher tumor mutation loads and lower PD-L1 expression. The predictive value of m7Gscore was confirmed in two immunotherapy cohorts. These findings highlight the potential of m7G modification in shaping the tumor microenvironment and provide new insights for immunotherapeutic strategies in GC patients.
Collapse
Affiliation(s)
- Fa Ling
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Huolun Feng
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sifan Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jianlong Zhou
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jiayi Lai
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Tieying Hou
- Medical Experimental Center, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, 518052, China; Shenzhen University Medical School, Shenzhen, Guangdong, 518073, China.
| | - Yong Li
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Department of Gastrointestinal Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
4
|
Booth ME, Wood HM, Travis MA, Quirke P, Grabsch HI. The relationship between the gastric cancer microbiome and clinicopathological factors: a metagenomic investigation from the 100,000 genomes project and The Cancer Genome Atlas. Gastric Cancer 2025; 28:358-371. [PMID: 39961991 PMCID: PMC11993446 DOI: 10.1007/s10120-025-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Findings from previous gastric cancer microbiome studies have been conflicting, potentially due to patient and/or tumor heterogeneity. The intratumoral gastric cancer microbiome and its relationship with clinicopathological variables have not yet been characterized in detail. We hypothesized that variation in gastric cancer microbial abundance, alpha diversity, and composition is related to clinicopathological characteristics. METHODS Metagenomic analysis of 529 GC samples was performed, including whole exome sequencing data from The Cancer Genome Atlas (TCGA) and whole genome sequencing data from the 100,000 Genomes Project. Microbial abundance, alpha diversity, and composition were compared across patient age, sex, tumor location, geographic origin, pathological depth of invasion, pathological lymph node status, histological phenotype, microsatellite instability status, and TCGA molecular subtype. RESULTS Gastric cancer microbiomes resembled previous results, with Prevotella, Selenomonas, Stomatobaculum, Streptococcus, Lactobacillus, and Lachnospiraceae commonly seen across both cohorts. Within the TCGA cohort, microbial abundance and alpha diversity were greater in gastric cancers with microsatellite instability, lower pathological depth of invasion, intestinal-type histology, and those originating from Asia. Microsatellite instability status was associated with microbiome composition in both cohorts. Sex and pathological depth of invasion were associated with microbiome composition in the TCGA cohort. CONCLUSION The intratumoral gastric cancer microbiome appears to differ according to clinicopathological factors. Certain clinicopathological factors associated with favourable outcomes in gastric cancer were observed to be associated with greater microbial abundance and diversity. This highlights the need for further work to understand the underlying biological mechanisms behind the observed microbiome differences and their potential clinical and therapeutic impact.
Collapse
Affiliation(s)
- Mary E Booth
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Henry M Wood
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Phil Quirke
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Division of Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK.
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Cao Z, Wang Z, Yang L, Li T, Tao X, Niu X. Reshaping the immune microenvironment and reversing immunosenescence by natural products: Prospects for immunotherapy in gastric cancer. Semin Cancer Biol 2025; 110:1-16. [PMID: 39923925 DOI: 10.1016/j.semcancer.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Gastric cancer (GC) represents a global health-care challenge. Recent progress in immunotherapy has elicited attracted considerable attention as a viable treatment option through modulating the host immune system and unleashing pre-existing immunity, which has profoundly revolutionized oncology, especially GC. Nonetheless, low clinical response and intrinsic and acquired resistance remain persistently challenging. The microenvironment of GC comprising multifarious stromal cell types has remarkable immunosuppressive elements that may impact the efficacy of immunotherapy. Immunosenescence is increasingly regarded as a factor that contributes to cancer development, remodels the tumor microenvironment and affects the efficacy of immunotherapy. Natural products are at the forefront of traditional medicine. Senotherapeutics is a class of drugs and natural products capable of delaying, preventing, or reversing the senescence process (i.e., senolytics) or suppressing senescence-associated secretory phenotype (i.e., senomorphics). Emerging evidence supports that natural products can improve the efficacy of existing immunotherapy and expand their indications in GC mainly based upon remodeling the immunosuppressive microenvironment and reversing immunosenescence. The review provides an integrated review of previously reported and ongoing clinical trials with immunotherapeutic regimens in GC and discusses current challenges. Next, we focus on natural compounds that exert anti-GC functions and possess immunomodulatory properties. More attention is paid to the potential of these natural compounds in modulating the immune microenvironment and immunosenescence. Lastly, we discuss the nanomedicine that can overcome the deficiencies of natural products. Altogether, our review suggests the enormous potential of natural compounds in GC immunotherapy, and provides an important direction for future research.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Li Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| | - Xueshu Tao
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xing Niu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Tay RYK, Sachdeva M, Ma H, Kim YW, Kook MC, Kim H, Cheong JH, Hewitt LC, Schmidt G, Yoshikawa T, Oshima T, Arai T, Srivastava S, Teh M, Ong X, Tay ST, Sheng T, Zhao JJ, Tan P, Grabsch HI, Sundar R. Spatial organization of B lymphocytes and prognosis prediction in patients with gastric cancer. Gastric Cancer 2025; 28:384-396. [PMID: 39971854 PMCID: PMC11993452 DOI: 10.1007/s10120-025-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Within the tumor microenvironment (TME), the association of B lymphocytes (B cells) with prognosis and therapy response in gastric cancer (GC) remains poorly characterized. We investigated the predictive and prognostic value of B cells, including their spatial organization within the TME, in one of the largest multi-cohort studies to date. METHODS Using CD20 immunohistochemistry, we evaluated B cell density in resection specimens from 977 patients with resectable GC across three cohorts, including the randomized phase III Korean CLASSIC trial. The relationship between CD20 density, clinicopathological characteristics, and overall survival (OS) was analyzed. Digital spatial profiling of 1063 regions of interest from 15 patients was performed to characterize B cell distribution within different regions of interest (ROIs) using the NanoString GeoMx platform. RESULTS CD20 density was significantly higher in diffuse-type GC compared to intestinal-type (p = 0.000012). Patients with CD20-low diffuse-type GC had the shortest OS in the CLASSIC trial (median OS: 49 vs 62 months, HR: 1.9, 95% CI: 1.2-3.0, p = 0.003) and in a Japanese cohort (median OS: 49 vs 67 months, HR: 2.2, 95% CI: 1.2-4.0, p = 0.011). This survival difference was not seen in patients treated with adjuvant chemotherapy (median OS: 62 vs 63 months, HR: 1.8, 95% CI: 0.88-3.5, p = 0.108). Spatial profiling revealed significant B cell enrichment within tumor ROIs compared to the stroma, particularly in diffuse-type GC. CONCLUSIONS Low CD20 positivity, especially in diffuse-type GC, is linked to poor prognosis and may identify patients who could benefit from chemotherapy. These findings underscore the role of B cells in GC.
Collapse
Affiliation(s)
- Ryan Yong Kiat Tay
- Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Manavi Sachdeva
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Young-Woo Kim
- Department of Cancer Policy and Population Health, National Cancer Center Graduate School of Cancer Science and Policy and Center for Gastric Cancer and Department of Surgery, National Cancer Center, Goyang, Republic of Korea
| | - Myeong-Cherl Kook
- Center for Gastric Cancer, Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lindsay C Hewitt
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Precision Medicine, GROW School for Oncology and Reproduction, Maastricht University Center+, Maastricht, The Netherlands
| | - Günter Schmidt
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | | | - Takashi Oshima
- Department of Surgery, Yokohama City University, Yokohama, Japan
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Supriya Srivastava
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
- Singhealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Heike I Grabsch
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St. James'S, University of Leeds, Leeds, UK.
| | - Raghav Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| |
Collapse
|
7
|
You L, Wang Q, Zhang T, Xiao H, Lv M, Lv H, Deng L, Zhang X, Zhang Y. USP14-IMP2-CXCL2 axis in tumor-associated macrophages facilitates resistance to anti-PD-1 therapy in gastric cancer by recruiting myeloid-derived suppressor cells. Oncogene 2025:10.1038/s41388-025-03425-w. [PMID: 40269263 DOI: 10.1038/s41388-025-03425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Resistance to anti-PD-1 therapy remains a significant challenge in gastric cancer (GC) treatment. Here, we revealed that the USP14-IMP2-CXCL2 axis in tumor-associated macrophages (TAMs) drove resistance by recruiting myeloid-derived suppressor cells (MDSCs). Endoscopic biopsy samples were obtained from patients with inoperable GC who were candidates for anti-PD-1 therapy. Single-cell RNA sequencing (scRNA-seq) analysis showed a higher prevalence of USP14+ TAMs in therapy-resistant cases, where USP14 was linked to the immunosuppressive phenotype of TAMs. Clinically, GC samples with elevated USP14+ TAM infiltration exhibited decreased CD8+ T cell presence and increased MDSC infiltration. In vivo experiments further confirmed that USP14+ TAMs facilitated resistance to anti-PD-1 therapy in GC, reduced the infiltration of CD8+ T cells, and significantly increased the infiltration of MDSCs. In particular, USP14+ TAMs markedly enhanced the recruitment of MDSCs into the GC microenvironment through the secretion of CXCL2. Mechanistically, USP14 stabilized the m6A reader IMP2 through deubiquitination, thus enhancing CXCL2 expression and secretion. Conversely, the E3 ligase RNF40 facilitated IMP2 degradation via increasing its ubiquitination, with USP14 and RNF40 dynamically balancing IMP2's protein abundance. Furthermore, animal experiments demonstrated that targeted intervention of USP14 markedly enhanced the sensitivity of GC to anti-PD-1 therapy. This study provided a comprehensive exploration of USP14's oncogenic roles in TAMs, suggesting a novel strategy to enhance the efficacy of anti-PD-1 therapy by inhibiting the USP14/IMP2/CXCL2 signaling axis in GC. The sc-RNA analysis revealed that infiltration of USP14+ TAM was significantly higher in anti-PD-1 resistant GC compared to anti-PD-1 sensitive GC (top). USP14 stabilized IMP2 protein in tumor-associated macrophages (middle-left), leading to recruitment of MDSCs into GC microenvironment through secretion of CXCL2 (middle-right), thus reducing the infiltration of CD8+ T cells and facilitating the resistance to anti-PD-1 therapy in GC (bottom). Comment: Dear editors, in formally published articles, figure legends could be placed beneath their corresponding figures. In this version, is this arrangement adopted for the sake of convenience during the proofreading process? If so, we understand and accept this layout.
Collapse
Affiliation(s)
- Li You
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tianxue Zhang
- Yangpu Branch Campus, Shanghai Open University, Shanghai, 200082, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, 430064, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Deng
- Department of General Surgery, The Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Liu Q, Yu M, Lin Z, Wu L, Xia P, Zhu M, Huang B, Wu W, Zhang R, Li K, Zhu L, Wang Q. COL1A1-positive endothelial cells promote gastric cancer progression via the ANGPTL4-SDC4 axis driven by endothelial-to-mesenchymal transition. Cancer Lett 2025; 623:217731. [PMID: 40254092 DOI: 10.1016/j.canlet.2025.217731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/19/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Gastric cancer (GC) is an aggressive and heterogeneous disease with poor survival outcomes. The progression of GC involves complex, multi-step processes. Endothelial cells (ECs) play a crucial role in tumor angiogenesis, proliferation, invasion, and metastasis, particularly through the process of endothelial-to-mesenchymal transition (EndoMT). However, the specific role and mechanisms of EndoMT in gastric cancer remain unclear. Based on 6 GC single-cell RNA-sequencing (scRNA-seq) cohorts (samples = 97), we established an EndoMT-related gene signature, termed EdMTS. Leveraging this gene signature, ssGSEA was applied to calculate sample scores across multiple bulk RNA-seq datasets, which include information on immunotherapy, metastasis, GC progression, and survival. Moreover, we applied the Monocle2 method to calculate cell pseudotime and used CellChat to analyze interactions between malignant and EC cells. We verified the molecular mechanism by multiple immunofluorescence and cell function experiments. Findings In this study, we established a single-cell atlas of ECs in GC and identified a subpopulation of COL1A1+ ECs that play a critical role in tumor progression and metastasis. These COL1A1+ ECs were significantly associated with worse clinical outcomes in GC patients. Further analysis revealed that COL1A1+ ECs originated from lymphatic ECs and underwent EndoMT through the upregulation of CEBPB, driving tumor invasiveness. Moreover, COL1A1+ ECs interacted with malignant cells via ANGPTL4-SDC4 axis, enhancing invasion and migration. These findings provide a deeper understanding of the role of COL1A1+ ECs in GC progression and highlight potential therapeutic targets for disrupting the EndoMT process in these cells to provide a benefit for GC patients.
Collapse
Affiliation(s)
- Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Miao Yu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Zihan Lin
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Peng Xia
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Wei Wu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Deng C, Xie C, Li Z, Mei J, Wang K. Multi-omics analysis identifies diagnostic circulating biomarkers and potential therapeutic targets, revealing IQGAP1 as an oncogene in gastric cancer. NPJ Precis Oncol 2025; 9:105. [PMID: 40229327 PMCID: PMC11997149 DOI: 10.1038/s41698-025-00895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
This study employed a multi-omics integration approach to identify circulating biomarkers for gastric cancer (GC). We analyzed plasma and tumor tissue single-cell RNA sequencing data, along with gene and protein quantitative trait loci analyses. Leveraging data from UK Biobank and FinnGen, we investigated genetic associations with GC. Through colocalization, Mendelian Randomization, and various filtering analyses, we identified four genes (IQGAP1, KRTCAP2, PARP1, MLF2) and four proteins (EGFL9 [DLK2], ECM1, PDIA5, TIMP4) as potential GC biomarkers. These were selected based on significant genetic colocation probabilities and significant associations with GC. Seven of these biomarkers demonstrated predictive capability for GC occurrence, with AUC ranging from 0.61 to 0.99. Drug prediction analysis identified seven protein biomarkers as potential targets for immunotherapy, targeted therapies, and tumor chemotherapy. Further scRNA-seq analysis revealed significant expression differences between gastric tumor and normal tissues, particularly the upregulation of IQGAP1, which highlights its role in tumor growth.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chenjun Xie
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
| | - Zixi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Kewei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, 214122, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
10
|
Zhao LL, Liu YJ, Guo QJ, Yan N, Yang J, Han JQ, Xie XH, Luo YS. TPM4 influences the initiation and progression of gastric cancer by modulating ferroptosis via SCD1. Clin Exp Med 2025; 25:115. [PMID: 40214825 PMCID: PMC11991984 DOI: 10.1007/s10238-025-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis and few treatment options. Tropomyosin 4 (TPM4) is an actin-binding protein that stabilizes the cytoskeleton of cells and has an unclear role in GC. This study aimed to elucidate the role and underlying mechanisms of TPM4 in GC pathogenesis. The expression and diagnostic and prognostic value of TPM4 in GC were analyzed using bioinformatics. A nomogram based on TPM4 expression was created and validated with an external cohort. TPM4-knockdown GC cells and xenograft models in nude mice were used to study the function of TPM4 in vitro and in vivo. Proteomic and rescue experiments confirmed the regulatory effect of TPM4 on stearoyl-CoA desaturase 1 (SCD1) in GC. Immunohistochemistry verified the expression and correlation of the TPM4 and SCD1 proteins in GC tissues. Our study identified TPM4 as an oncogene in GC, suggesting its potential diagnostic and prognostic value. The TPM4-based nomogram showed potential prognostic value for clinical use. TPM4 knockdown inhibited GC cell proliferation, induced ferroptosis, and slowed tumor growth in vivo, which is achieved by inhibiting SCD1 expression. Immunohistochemical analysis of GC tissues revealed elevated expression levels of both TPM4 and SCD1 proteins, with a positive correlation observed between their expression. TPM4 is a promising target for new diagnostic, prognostic, and therapeutic strategies for GC. Downregulation of TPM4 inhibits GC cell growth and induces ferroptosis by suppressing SCD1 expression.
Collapse
Affiliation(s)
- Ling-Lin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Jun Liu
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Qi-Jing Guo
- Department of Oncology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Nan Yan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jie Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jing-Qi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xiao-Hong Xie
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Shuang Luo
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
11
|
Lee SH, Lee D, Choi J, Oh HJ, Ham IH, Ryu D, Lee SY, Han DJ, Kim S, Moon Y, Song IH, Song KY, Lee H, Lee S, Hur H, Kim TM. Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between CCL2+ fibroblasts and STAT3-activated macrophages. Gut 2025; 74:714-727. [PMID: 39580151 PMCID: PMC12013559 DOI: 10.1136/gutjnl-2024-332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND A spatially resolved, niche-level analysis of tumour microenvironments (TME) can provide insights into cellular interactions and their functional impacts in gastric cancers (GC). OBJECTIVE Our goal was to translate the spatial organisation of GC ecosystems into a functional landscape of cellular interactions involving malignant, stromal and immune cells. DESIGN We performed spatial transcriptomics on nine primary GC samples using the Visium platform to delineate the transcriptional landscape and dynamics of malignant, stromal and immune cells within the GC tissue architecture, highlighting cellular crosstalks and their functional consequences in the TME. RESULTS GC spatial transcriptomes with substantial cellular heterogeneity were delineated into six regional compartments. Specifically, the fibroblast-enriched TME upregulates epithelial-to-mesenchymal transformation and immunosuppressive response in malignant and TME cells, respectively. Cell type-specific transcriptional dynamics revealed that malignant and endothelial cells promote the cellular proliferations of TME cells, whereas the fibroblasts and immune cells are associated with procancer and anticancer immunity, respectively. Ligand-receptor analysis revealed that CCL2-expressing fibroblasts promote the tumour progression via JAK-STAT3 signalling and inflammatory response in tumour-infiltrated macrophages. CCL2+ fibroblasts and STAT3-activated macrophages are co-localised and their co-abundance was associated with unfavourable prognosis. We experimentally validated that CCL2+ fibroblasts recruit myeloid cells and stimulate STAT3 activation in recruited macrophages. The development of immunosuppressive TME by CCL2+ fibroblasts were also validated in syngeneic mouse models. CONCLUSION GC spatial transcriptomes revealed functional cellular crosstalk involving multiple cell types among which the interaction between CCL2+ fibroblasts and STAT3-activated macrophages plays roles in establishing immune-suppressive GC TME with potential clinical relevance.
Collapse
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Junyong Choi
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Daeun Ryu
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seo-Yeong Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, The Republic of Korea
| | - In-Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, The Republic of Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Hyeseong Lee
- Department of Hospital Pathology, Seoul St. Mary's Hostpital, Collage of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Seungho Lee
- Department of Surgery, Yonsei University, Seoul, The Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, The Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine, Suwon, The Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, The Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
- CMC Institute for Basic Medical Science, the Catholic Medical Center of The Catholic University of Korea, Seoul, The Republic of Korea
| |
Collapse
|
12
|
Ma H, Srivastava S, Ho SWT, Xu C, Lian BSX, Ong X, Tay ST, Sheng T, Lum HYJ, Abdul Ghani SAB, Chu Y, Huang KK, Goh YT, Lee M, Hagihara T, Ng CSY, Tan ALK, Zhang Y, Ding Z, Zhu F, Ng MSW, Joseph CRC, Chen H, Li Z, Zhao JJ, Rha SY, Teh M, Yeong J, Yong WP, So JBY, Sundar R, Tan P. Spatially Resolved Tumor Ecosystems and Cell States in Gastric Adenocarcinoma Progression and Evolution. Cancer Discov 2025; 15:767-792. [PMID: 39774838 PMCID: PMC11962405 DOI: 10.1158/2159-8290.cd-24-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Integration of spatial transcriptomic (GeoMx Digital Spatial Profiler) and single-cell RNA sequencing data from multiple gastric cancers identifies spatially resolved expression-based intratumoral heterogeneity, associated with distinct immune microenvironments. We uncovered two separate evolutionary trajectories associated with specific molecular subtypes, clinical prognoses, stromal neighborhoods, and genetic drivers. Tumor-stroma interfaces emerged as a unique state of tumor ecology.
Collapse
Affiliation(s)
- Haoran Ma
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chang Xu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xuewen Ong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Su Ting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Yunqiang Chu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Takeshi Hagihara
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Clara Shi Ya Ng
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yanrong Zhang
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| | - Zichen Ding
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Shu Wen Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Craig Ryan Cecil Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui Chen
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Zhen Li
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Joseph J. Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ming Teh
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joe Yeong
- Department of Pathology, National University Hospital, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Peng Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Jimmy Bok-Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
- Singhealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Harada K, Sakamoto N, Kitaoka T, Nakamura Y, Kondo R, Morisue R, Hashimoto H, Yamamoto Y, Ukai S, Maruyama R, Sakashita S, Kojima M, Tanabe K, Ohdan H, Shitara K, Kinoshita T, Ishii G, Yasui W, Ochiai A, Ishikawa S. PI3 expression predicts recurrence after chemotherapy with DNA-damaging drugs in gastric cancer. J Pathol 2025; 265:472-485. [PMID: 39980125 PMCID: PMC11880974 DOI: 10.1002/path.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
Despite recent advances in gastric cancer therapy, chemotherapy resistance and lack of methods for selecting combination regimens remain major problems. Organoids, which provide a culture system that more closely resembles tumor cell organization than traditional cell lines, can be established from surgical specimens with a high success rate and are widely used for drug sensitivity assays. In this study, we aimed to identify a novel biomarker for predicting multidrug resistance using gastric cancer organoids (GCOs). We evaluated 5-fluorouracil or oxaliplatin-resistant GCOs to find novel biomarkers that reflect multidrug resistance in gastric cancer. To examine the resistance mechanisms, RNA-sequencing analysis and ex vivo drug sensitivity testing were performed. The association of biomarkers with patient prognosis and chemotherapy efficacy was evaluated using three original cohorts with a total of 230 cases. The results were also validated with two independent public cohorts and single-cell RNA sequence data. Increased expression of peptidase inhibitor 3 (PI3) was detected in all 5-fluorouracil or oxaliplatin-resistant GCOs. Our findings suggest a potential association of PI3 expression with ribosome biosynthesis and RNA metabolism under organoid conditions. We also found that PI3 overexpression promoted 5-fluorouracil/oxaliplatin/cisplatin resistance but not paclitaxel resistance. Immunohistochemical evaluation of PI3 expression revealed that the PI3-positive gastric cancer group had a poorer outcome, especially in terms of time to recurrence. PI3 positivity was also an independent predictor of relapse after chemotherapy with DNA-damaging agents. PI3 promotes DNA-damaging drug resistance through multiple downstream regulations related to RNA and ribosomal metabolism. PI3 may be useful as a biomarker for the therapeutic selection of non-DNA-damaging agents. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kenji Harada
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Naoya Sakamoto
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pathology and Clinical LaboratoryNational Cancer Center Hospital EastKashiwaJapan
| | - Takumi Kitaoka
- Department of Pathology and Clinical LaboratoryNational Cancer Center Hospital EastKashiwaJapan
- The Department of Pathology, Faculty of MedicineYamagata UniversityYamagataJapan
| | - Yuka Nakamura
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Ryotaro Kondo
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Ryo Morisue
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Hiroko Hashimoto
- Division of Innovative Pathology and Laboratory MedicineExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Shoichi Ukai
- Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shingo Sakashita
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Pathology and Clinical LaboratoryNational Cancer Center Hospital EastKashiwaJapan
| | - Motohiro Kojima
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Pathology and Clinical LaboratoryNational Cancer Center Hospital EastKashiwaJapan
| | - Kazuaki Tanabe
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal OncologyNational Cancer Center Hospital EastKashiwaJapan
| | - Takahiro Kinoshita
- Division of Gastric SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Genichiro Ishii
- Department of Pathology and Clinical LaboratoryNational Cancer Center Hospital EastKashiwaJapan
- Division of Innovative Pathology and Laboratory MedicineExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Atsushi Ochiai
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Shumpei Ishikawa
- Division of PathologyExploratory Oncology Research & Clinical Trial Center, National Cancer CenterKashiwaJapan
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
14
|
Wang N, Li D, Zhang T, Pachai MR, Cho WH, Khudoynazarova MN, Schoeps DM, Bao Y, Liu M, Tang L, Yelena J, Chi P, Chen Y. Loss of Kmt2c / d promotes gastric cancer initiation and confers vulnerability to mTORC1 inhibition and anti-PD1 immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645747. [PMID: 40236091 PMCID: PMC11996406 DOI: 10.1101/2025.03.27.645747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
KMT2C and KMT2D ( KMT2C/D ) are frequently mutated in gastric adenocarcinoma, yet their function in cancer initiation remains poorly understood. In this study, based on the observation that loss-of-function mutations of KMT2C and KMT2D are enriched and co-occur in gastric adenocarcinoma, we developed genetically engineered mouse models to selectively knock out Kmt2c and Kmt2d in gastric epithelial cells with Tmprss2-CreER T2 . Through histological staining and single-cell RNA sequencing, we observed that Kmt2c/d loss led to nuclear dysplasia and expansion of cells with mixed gastric lineage markers. When combined with Pten deletion, Kmt2c/d loss drove rapid development of muscle-invasive gastric adenocarcinoma as early as 3 weeks post Cre-mediated gene deletion. The adenocarcinoma exhibited decreased expression of gastric lineage markers and increased expression of intestinal differentiation markers, phenocopying human gastric adenocarcinoma. Kmt2c/d knockout reduced protein synthesis but upregulated transcription of ribosomal proteins, rendering sensitivity to mTORC1 inhibitors. Additionally, Kmt2c/d knockout increased MHC-I molecule expression and enhanced antigen presentation. Combination of mTROC1 inhibition and anti-PD1 immunotherapy significantly suppressed tumor growth in immune-competent mice. Together, these findings reveal the role of Kmt2c / d loss in gastric cancer initiation and suggest the potential therapeutic strategies for KMT2C/D -deficient gastric cancer.
Collapse
|
15
|
Kemp LJS, Monster JL, Wood CS, Moers M, Vliem MJ, Khalil AA, Jamieson NB, Brosens LAA, Kodach LL, van Dieren JM, Bisseling TM, van der Post RS, Gloerich M. Tumour-intrinsic alterations and stromal matrix remodelling promote Wnt-niche independence during diffuse-type gastric cancer progression. Gut 2025:gutjnl-2024-334589. [PMID: 40169243 DOI: 10.1136/gutjnl-2024-334589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Development of diffuse-type gastric cancer (DGC) starts with intramucosal lesions that are primarily composed of differentiated, non-proliferative signet ring cells (SRCs). These indolent lesions can advance into highly proliferative and metastatic tumours, which requires suppression of DGC cell differentiation. OBJECTIVE Our goal was to identify molecular changes contributing to the progression of indolent to aggressive DGC lesions. DESIGN We conducted spatial transcriptomic analysis of patient tumours at different stages of hereditary DGC, comparing transcriptional differences in tumour cell populations and tumour-associated cells. We performed functional analysis of identified changes in a human gastric (CDH1 KO) organoid model recapitulating DGC initiation. RESULTS Our analysis reveals that distinct DGC cell populations exhibit varying levels of Wnt-signalling activity, and high levels of Wnt signalling prevent differentiation into SRCs. We identify multiple adaptations during DGC progression that converge on Wnt signalling, allowing tumour cells to remain in an undifferentiated state as they disseminate away from the gastric stem cell niche. First, DGC cells establish a cell-autonomous source for Wnt-pathway activation through upregulated expression of Wnt-ligands and 'secreted frizzled-related protein 2' (SFRP2) that potentiates ligand-induced Wnt signalling. Second, early tumour development is marked by extracellular matrix remodelling, including increased deposition of collagen I whose interactions with DGC cells suppress their differentiation in the absence of exogenous Wnt ligands. CONCLUSIONS Our findings demonstrate that tumour cell-derived ligand expression and extracellular matrix remodelling sustain Wnt signalling during DGC progression. These complementary mechanisms promote niche independence enabling expansion of undifferentiated DGC cells needed for the development of advanced tumours.
Collapse
Affiliation(s)
- Lars J S Kemp
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jooske L Monster
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Colin S Wood
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martijn Moers
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marjolein J Vliem
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antoine A Khalil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Lodewijk A A Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Liudmila L Kodach
- Deparment of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jolanda M van Dieren
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Zhou J, Zhang Y, Liu Y, Li J, Zhang W, Wang J, Yao X, Feng H, Zheng J, Li Y. Integrative analysis of bulk and single-cell sequencing reveals TNFSF9 as a potential regulator in microsatellite instability stomach adenocarcinoma. Eur J Med Res 2025; 30:214. [PMID: 40148957 PMCID: PMC11951761 DOI: 10.1186/s40001-025-02471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) with microsatellite instability (MSI) is associated with a better prognosis compared to Non-MSI. This study aims to elucidate the differences in the tumor microenvironment (TME) of MSI and explore its underlying mechanisms in STAD. METHODS TME differences between MSI and Non-MSI were analyzed using single-cell RNA sequencing (MSI = 7, Non-MSI = 19) and bulk RNA sequencing (MSI = 39, Non-MSI = 198). Differentially expressed genes (DEGs) were used to identify enriched pathways and hub genes. TNFSF9 expression was validated by immunohistochemistry (IHC) on 23 STAD sections (MSI = 13, Non-MSI = 10) and confirmed in tumor epithelial cells using SNU-1 (MSI) and AGS (Non-MSI) cell lines through quantitative polymerase chain reaction (qPCR) and Western blot (WB). RESULTS The results showed MSI was significantly associated with a better prognosis (P < 0.05). Within the TME, MSI was associated with a higher abundance of antigen-presenting cells, including M1 macrophages (40.1% vs. 27.9%) and activated dendritic cells (22.1% vs. 10.5%), as well as pro-inflammatory Th1-like CD4⁺ T cells (15% vs. 11%). However, MSI also showed an increase in exhausted T cells, indicating a complex immune landscape. Signaling pathway and cell communication analyses revealed an enrichment of cytokine-related pathways in MSI. Hub gene analysis revealed that TNFSF9 was predominantly expressed in stromal cells and partially in tumor epithelial cells in MSI, with its upregulation further confirmed through IHC, qPCR, and WB. Correlation analysis demonstrated a positive relationship between TNFSF9 expression and the abundance of M1 macrophages. CONCLUSIONS These findings provide new insights into the TME of MSI in STAD, emphasizing the significant role of TNFSF9 in shaping MSI-specific TME, enhancing immunotherapy efficacy, and improving patient survival.
Collapse
Affiliation(s)
- Jianlong Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yucheng Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yongfeng Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jiehui Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Wenxing Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| | - Huolun Feng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
17
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Xu R, He D, Sun R, Zhou J, Xin M, Liu Q, Dai Y, Li H, Zhang Y, Li J, Shan X, He Y, Xu B, Guo Q, Ning S, Gao Y, Wang P. CNV-mediated dysregulation of the ceRNA network mechanism revealed heterogeneity in diffuse and intestinal gastric cancers. J Transl Med 2025; 23:308. [PMID: 40069783 PMCID: PMC11895245 DOI: 10.1186/s12967-025-06222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous tumour with high morbidity. Approximately 95% of GC cases are gastric adenocarcinomas, which are further categorized into two predominant subtypes: diffuse gastric cancer (DGC) and intestinal gastric cancer (IGC). These subtypes exhibit distinct pathophysiological and molecular characteristics, reflecting their unique tumorigenic mechanisms. METHOD In this study, we employed a comprehensive approach to identify driver genes associated with DGC and IGC by focusing on copy number variation (CNV) genes within the competing endogenous RNA (ceRNA) network. The influence of driver CNV genes on the molecular, cellular, and clinical differences between DGC and IGC was subsequently analysed. Finally, therapeutic strategies for DGC and IGC were evaluated based on the status and functional pathways of the driver CNV genes. RESULTS A total of 17 and 22 driver CNV genes were identified in DGC and IGC, respectively. These genes drive subtype differences through the ceRNA network, resulting in alterations in the tumour microenvironment (TME). Based on these differences, personalized treatment strategies for DGC or IGC could be developed. Immune checkpoint inhibitors may be an effective treatment option in IGC. Additionally, DGC patients with homozygous deletion of PPIF might benefit from adjuvant chemotherapy, whereas those with high-level amplification of MTAP could respond to targeted therapy. CONCLUSION Driver CNV genes were identified to reveal the underlying cause of heterogeneity in DGC and IGC. Furthermore, specific driver CNV genes were identified as potential therapeutic targets, facilitating personalized treatment.
Collapse
Affiliation(s)
- Rongji Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Danni He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Rui Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Zhou
- The First Clinical School of Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Mengyu Xin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qian Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yifan Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Houxing Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yujie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiatong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - XinXin Shan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuting He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Borui Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qiuyan Guo
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
19
|
Yue SSK, Tong Y, Siu HC, Ho SL, Law SYK, Tsui WY, Chan D, Huang Y, Chan ASY, Yun SW, Hui HS, Choi JE, Hsu MSS, Lai FPL, Chan AS, Yuen ST, Clevers H, Leung SY, Yan HHN. Divergent lineage trajectories and genetic landscapes in human gastric intestinal metaplasia organoids associated with early neoplastic progression. Gut 2025; 74:522-538. [PMID: 39572083 DOI: 10.1136/gutjnl-2024-332594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/27/2024] [Indexed: 03/08/2025]
Abstract
BACKGROUND Gastric intestinal metaplasia (IM) is a precancerous stage spanning a morphological spectrum that is poorly represented by human cell line models. OBJECTIVE We aim to establish and characterise human IM cell models to better understand IM progression along the cancer spectrum. DESIGN A large human gastric IM organoid (IMO) cohort (n=28), their clonal derivatives and normal gastric organoids (n=42) for comparison were established. Comprehensive multi-omics profiling and functional characterisation were performed. RESULTS Single-cell transcriptomes revealed IMO cells spanning a spectrum from hybrid gastric/intestinal to advanced intestinal differentiation. Their lineage trajectories connected different cycling and quiescent stem and progenitors, highlighting differences in gastric to IM transition and the potential origin of IM from STMN1 cycling isthmus stem cells. Hybrid IMOs showed impaired differentiation potential, high lineage plasticity beyond gastric or intestinal fates and reactivation of a fetal gene programme.Cell populations in gastric IM and cancer tissues were highly similar to those derived from IMOs and exhibited a fetal signature. Genomically, IMOs showed elevated mutation burden, frequent chromosome 20 gain and epigenetic deregulation of many intestinal and gastric genes. Functionally, IMOs were FGF10 independent and showed downregulated FGFR2. Several IMOs exhibited a cell-matrix adhesion independent subpopulation that displayed chromosome 20 gain but lacked key cancer driver mutations, potentially representing the earliest neoplastic precursor of IM-induced gastric cancer. CONCLUSIONS Overall, our IMO biobank captured the heterogeneous nature of IM, revealing mechanistic insights on IM pathogenesis and progression, offering an ideal platform for studying early gastric neoplastic transformation and chemoprevention.
Collapse
Affiliation(s)
- Sarah S K Yue
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Lun Ho
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y K Law
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wai Yin Tsui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Dessy Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie S Y Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shui Wa Yun
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Sang Hui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jee-Eun Choi
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Matthew S S Hsu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Frank P L Lai
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Tsan Yuen
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, St. Paul's Hospital, No. 2, Eastern Hospital Road, Causeway Bay, Hong Kong SAR, China
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Oncode Institute, Utrecht, The Netherlands
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Helen H N Yan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
20
|
Kim HD, Jung S, Bang YH, Kim J, Kim HJ, Lee HE, Hyung J, Yoo C, Kim WT, Yoon MJ, Lee H, Ryou JH, Jeon H, Yanai H, Lee JS, Lee G, Ryu MH. Blood TCTP as a potential biomarker associated with immunosuppressive features and poor clinical outcomes in metastatic gastric cancer. J Immunother Cancer 2025; 13:e010455. [PMID: 40032602 DOI: 10.1136/jitc-2024-010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND No established biomarker exists for specific myeloid cell populations or in gastric cancer. This study aimed to explore the prognostic and immunological relevance of plasma translationally controlled tumor protein (TCTP) in patients with advanced gastric cancer treated with an immune checkpoint inhibitor and/or cytotoxic chemotherapy. METHODS Plasma samples were prospectively collected from the cohorts of patients with gastric cancer treated with first-line fluoropyrimidine plus platinum chemotherapy (n=143, cohort 1) and third-line nivolumab (n=165, cohort 2). Plasma TCTP levels were quantified using ELISA, and multiplex proteomic analysis (Olink) was conducted to assess expression levels of immune-related proteins. External single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics datasets were employed to validate the findings. RESULTS Patients with high plasma TCTP levels (TCTP-high group) exhibited poor progression-free survival (PFS) and overall survival (OS) with first-line chemotherapy compared with those with low levels (TCTP-low group) in cohort 1 (HR: 1.73 for PFS; 1.77 for OS). In the TCTP-high group, proteins associated with immunosuppressive myeloid cells, angiogenesis, and immune exclusion of T/natural killer (NK) cell function were upregulated, whereas proteins involved in T-cell activation/exhaustion were significantly upregulated in the TCTP-low group. scRNA-seq analyses identified a myeloid subset with high TPT1 (encoding TCTP) expression and TCTP-related molecules, enriched with inhibitory myeloid inflammation gene signatures and providing inhibitory signals to T/NK cells (Macrophage-chemokine). Spatial transcriptomics analyses revealed a tumor-cell-enriched cluster co-localized with the Macrophage-chemokine subset, which exhibited the highest TPT1 expression and a positive correlation between its abundance and average TPT1 levels. In nivolumab-treated patients (cohort 2), the high TCTP group was associated with poor survival outcomes (HR: 1.39 for PFS; 1.47 for OS). CONCLUSIONS Plasma TCTP is a prognostic biomarker, reflecting clinically relevant immunosuppressive myeloid signals in patients with gastric cancer.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Yeong Hak Bang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jiae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hee Jeong Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hyung Eun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | | | | | | | | | | | - Hideyuki Yanai
- Department of Inflammology, The University of Tokyo, Bunkyo-ku, Japan
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | | | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
21
|
Hu Y, Xu J, Lv J, Qin Y, Lu Y, Cen F, Yang H, Chen K, Xia S. Cellular heterogeneity and communication networks in gastric cancer: Single-cell analysis reveals β-hydroxybutyrylation-associated genes and immune infiltration characteristics. Transl Oncol 2025; 53:102270. [PMID: 39884220 PMCID: PMC11830287 DOI: 10.1016/j.tranon.2025.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025] Open
Abstract
Gastric cancer is characterized by high heterogeneity, with its complex microenvironment and intercellular communications playing critical roles in disease progression and treatment responses. In this study, we utilized single-cell sequencing to dissect the intricate landscape of gastric cancer, identifying diverse cell populations and their interactions. We focused on the role of β-hydroxybutyrylation (Kbhb)-associated genes and their impact on the tumor microenvironment. By analyzing 189,700 single-cell profiles, we identified four distinct malignant epithelial cell subpopulations characterized by unique gene expression patterns. Among these, 20 β-hydroxybutyrylation (Kbhb)-associated genes were identified, including key genes such as MRPL13, LDHB, COX6C, FABP5, and RPS13, which were significantly associated with immune infiltration and tumor microenvironment remodeling. Hierarchical clustering based on these genes classified gastric cancer patients into two subgroups with distinct prognostic outcomes. Patients in the high-risk subgroup exhibited increased expression of pro-tumor genes and reduced immune infiltration, correlating with poorer survival. We further constructed a robust risk scoring model incorporating these genes, achieving AUC values of 0.72, 0.69, and 0.66 for predicting 1-, 3-, and 5-year survival in the TCGA dataset. These findings underscore the prognostic value of Kbhb-associated genes and their potential as therapeutic targets. This study not only provides insights into the molecular underpinnings of gastric cancer but also offers potential biomarkers for patient stratification and targets for therapeutic intervention.
Collapse
Affiliation(s)
- You Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Jian Lv
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003 Shanghai, PR China
| | - Yan Qin
- Department of Pathology, the Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu, PR China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Fan Cen
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China
| | - Hongbao Yang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China.
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
22
|
Fan X, Han F, Wang H, Shu Z, Qiu B, Zeng F, Chen H, Wu Z, Lin Y, Lan Z, Ye Z, Ying Y, Geng T, Xian Z, Niu X, Wu J, Mo K, Zheng K, Ye Y, Cui C. YTHDF2-mediated m 6A modification of ONECUT2 promotes stemness and oxaliplatin resistance in gastric cancer through transcriptionally activating TFPI. Drug Resist Updat 2025; 79:101200. [PMID: 39823826 DOI: 10.1016/j.drup.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
AIMS Chemoresistance results in poor outcomes of patients with gastric cancer (GC). This study aims to identify oxaliplatin resistance-related cell subpopulations in the tumor microenvironment (TME) and decipher the involved molecular mechanisms. METHODS Through single-cell RNA sequencing, a unique ONECUT2+TFPI+ GC cell subset was identified in the oxaliplatin-resistant TME. The functional roles and molecular mechanisms of ONECUT2 in oxaliplatin resistance were investigated in cellular and mouse models. Therapeutic efficacy of small molecule inhibitor of ONECUT2 was also evaluated. RESULTS The abundance of ONECUT2+TFPI+ GC cell subset was elevated in oxaliplatin-resistant GC tumors. ONECUT2 was up-regulated and associated with undesirable prognostic outcomes of patients with GC. ONECUT2 facilitated GC cell migration, stemness properties and oxaliplatin resistance. YTHDF2, an m6A "reader", was down-regulated in GC, and its overexpression facilitated ONECUT2 mRNA degradation through m6A modification. Furthermore, ONECUT2 transcriptionally activated TFPI through binding to its promoter. Small molecule inhibitor CSRM617 targeting ONECUT2 was well tolerated in GC mouse models, and could effectively improve therapeutic efficacy of oxaliplatin against GC. CONCLUSIONS Our study demonstrates that YTHDF2-mediated m6A modification of ONECUT2 results in stemness and oxaliplatin resistance in GC through transcriptionally activating TFPI, which provides a novel therapeutic target against oxaliplatin-resistant GC.
Collapse
Affiliation(s)
- Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hongzhen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongwei Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhien Lan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhiwei Ye
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tiansu Geng
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ziqian Xian
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Junming Wu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong.
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
23
|
Qin C, Fu Y, Zhang X, Li M, Ruan W, Gai Y, Lan X. Prognostic value of [ 68Ga]Ga-FAPI-04 PET in patients with newly diagnosed gastric carcinoma. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07164-8. [PMID: 40016528 DOI: 10.1007/s00259-025-07164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Gallium-68-labeled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI) positron emission tomography (PET) has demonstrated excellent diagnostic performance in various malignancies, including gastric carcinoma. However, its prognostic utility is unclear. This study evaluates the prognostic value of [68Ga]Ga-FAPI-04 PET/MRI(CT) in gastric carcinoma. METHODS We retrospectively analyzed patients with gastric cancer who underwent [68Ga]Ga-FAPI-04 PET/MRI(CT) between June 2020 and June 2023. Semi-quantitative parameters, including maximum and mean standard uptake value (SUVmax, SUVmean), FAPI-avid tumor volume (FTV), total lesion FAP expression (TLF), tumor to background ratio (TBR), heterogeneity factor (HF) and coefficient of variation (CV) of the primary tumor were measured or calculated. Overall survival (OS) and progression-free survival (PFS) were obtained through follow-up. The relationships between disease prognosis and potential predictors were analyzed, and predictive models were established. RESULTS Eighty-six patients (median age 59 years) were included. Thirty-five patients experienced disease progression, and 26 of them died. Univariable analysis revealed SUVmax, FTV, TLF, TBR, HF and CV were significant prognostic factors for both OS and PFS. In multivariate Cox regression analysis, a nomogram model for OS was established, incorporating body mass index (BMI) and CV as independent predictors. The time-dependent C-index of the nomogram model > 0.75 indicates good predictive performance. When predicting PFS, a stratified analysis was performed based on distant metastasis, FTV was an independent prognostic factor among patients without distant metastasis. CONCLUSION CV and FTV, derived from [68Ga]Ga-FAPI-04 PET imaging, could serve as independent prognostic factor for OS and PFS in patients with gastric cancer, respectively.
Collapse
Affiliation(s)
- Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Yiru Fu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China.
| |
Collapse
|
24
|
Ortega-Batista A, Jaén-Alvarado Y, Moreno-Labrador D, Gómez N, García G, Guerrero EN. Single-Cell Sequencing: Genomic and Transcriptomic Approaches in Cancer Cell Biology. Int J Mol Sci 2025; 26:2074. [PMID: 40076700 PMCID: PMC11901077 DOI: 10.3390/ijms26052074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This article reviews the impact of single-cell sequencing (SCS) on cancer biology research. SCS has revolutionized our understanding of cancer and tumor heterogeneity, clonal evolution, and the complex interplay between cancer cells and tumor microenvironment. SCS provides high-resolution profiling of individual cells in genomic, transcriptomic, and epigenomic landscapes, facilitating the detection of rare mutations, the characterization of cellular diversity, and the integration of molecular data with phenotypic traits. The integration of SCS with multi-omics has provided a multidimensional view of cellular states and regulatory mechanisms in cancer, uncovering novel regulatory mechanisms and therapeutic targets. Advances in computational tools, artificial intelligence (AI), and machine learning have been crucial in interpreting the vast amounts of data generated, leading to the identification of new biomarkers and the development of predictive models for patient stratification. Furthermore, there have been emerging technologies such as spatial transcriptomics and in situ sequencing, which promise to further enhance our understanding of tumor microenvironment organization and cellular interactions. As SCS and its related technologies continue to advance, they are expected to drive significant advances in personalized cancer diagnostics, prognosis, and therapy, ultimately improving patient outcomes in the era of precision oncology.
Collapse
Affiliation(s)
- Ana Ortega-Batista
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Yanelys Jaén-Alvarado
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
| | - Dilan Moreno-Labrador
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Natasha Gómez
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Gabriela García
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Erika N. Guerrero
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
- Sistema Nacional de Investigación, Secretaria Nacional de Ciencia y Tecnología, Edificio 205, Ciudad del Saber, Panama City, Panama
| |
Collapse
|
25
|
Minoura H, Okamoto R, Hiki N, Yamashita K. Cancer-Associated Fibroblasts Genes and Transforming Growth Factor Beta Pathway in Gastric Cancer for Novel Therapeutic Strategy. Cancers (Basel) 2025; 17:795. [PMID: 40075643 PMCID: PMC11899367 DOI: 10.3390/cancers17050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background-Objective: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of gastric cancer (GC). Understanding the molecular characteristics of CAFs-associated genes (CAFGs) is essential for elucidating their role in tumor progression and prognosis. This review aims to summarize the current knowledge on CAFGs, highlighting their expression patterns, prognostic significance, and potential functional mechanisms. Methods: A comprehensive review of existing literature was conducted, focusing on molecular features of CAFGs in GC. Single-cell RNA sequencing (scRNA-seq) analyses were examined to assess the expression patterns of CAFGs in broad-sense CAFs, which include both CAFs and pericytes. Additionally, clinicopathological studies validating the prognostic significance of CAFGs were reviewed. Results: ScRNA-seq analyses revealed that CAFGs are not necessarily restricted to CAFs alone but may also reflect the activation status of surrounding cells. Several CAFGs, including SPARC, THBS2, COL1A1, COL3A1, INHBA, PDGFC, and SDC2, have been validated for their prognostic relevance in GC. However, compared with other cancers, the functional mechanisms of these genes in GC remain poorly understood. While CAFGs exhibit synchronized expression with TGFB1 in colorectal cancer (CRC), such patterns have yet to be confirmed in GC due to the limitations of available microdissected data. Conclusions: A comprehensive understanding of CAFGs and their interaction with the TGFB pathway, including LTBP family genes, may be critical for developing novel therapeutic strategies for GC. Further research is needed to elucidate their functional mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Hiroyuki Minoura
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| | - Riku Okamoto
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan;
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; (H.M.); (R.O.)
| |
Collapse
|
26
|
Tan H, Cai M, Wang J, Yu T, Xia H, Zhao H, Zhang X. Harnessing Macrophages in Cancer Therapy: from Immune Modulators to Therapeutic Targets. Int J Biol Sci 2025; 21:2235-2257. [PMID: 40083710 PMCID: PMC11900799 DOI: 10.7150/ijbs.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Macrophages, as the predominant phagocytes, play an essential role in pathogens defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, cancer cell proliferation and metastasis, as well as the construction of immunosuppressive microenvironment. Once properly activated, macrophages can kill tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked significant interest and emerged as a promising strategy in immunotherapy. In this review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer development and immunity and highlight the TAM-based therapeutic strategies such as inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as the potential of engineered CAR-armed macrophages in cancer therapy.
Collapse
Affiliation(s)
- Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province, China
- General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meihe Cai
- Department of Traditional Chinese Medicine, Zhushan Renmin Hospital, Zhushan, 442200, China
| | | | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Present: Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyu Zhang
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
27
|
Jiang J, Chen Y, Zheng Y, Ding Y, Wang H, Zhou Q, Teng L, Zhang X. Sialic acid metabolism-based classification reveals novel metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in gastric cancer. Cancer Cell Int 2025; 25:61. [PMID: 39987095 PMCID: PMC11847363 DOI: 10.1186/s12935-025-03695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND High heterogeneity in gastric cancer (GC) remains a challenge for standard treatments and prognosis prediction. Dysregulation of sialic acid metabolism (SiaM) is recognized as a key metabolic hallmark of tumor immune evasion and metastasis. Herein, we aimed to develop a SiaM-based metabolic classification in GC. METHODS SiaM-related genes were obtained from the MsigDB database. Bulk and single-cell transcriptional data of 956 GC patients were acquired from the GEO, TCGA, and MEDLINE databases. Proteomic profiles of 20 GC samples were derived from our institution. The consensus clustering algorithm was applied to identify SiaM-based clusters. The SiaM-based model was established via LASSO regression and evaluated via Kaplan‒Meier curve and ROC curve analyses. In vitro and in vivo experiments were conducted to explore the function of ST3GAL1 in GC. RESULTS Three SiaM clusters presented distinct patterns of clinicopathological features, transcriptomic alterations, and tumor immune microenvironment landscapes in GC. Compared with clusters A and B, cluster C presented elevated SiaM activity, higher metastatic potential, more abundant immunosuppressive features, and a worse prognosis. Based on the differentially expressed genes between these clusters, a risk model for six genes (ARHGAP6, ST3GAL1, ADAM28, C7, PLCL1, and TTC28) was then constructed. The model exhibited robust performance in predicting peritoneal metastasis and prognosis in four independent cohorts. As a hub gene in the model, ST3GAL1 promoted GC cell migration and invasion in vitro and in vivo. CONCLUSIONS Our study proposed a novel SiaM-based classification that identified three metabolic subtypes with distinct characteristics of tumor microenvironment and clinical outcomes in GC.
Collapse
Affiliation(s)
- Junjie Jiang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyong Wang
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Disease, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Zhang Y, Yang K, Bai J, Chen J, Ou Q, Zhou W, Li X, Hu C. Single-cell transcriptomics reveals the multidimensional dynamic heterogeneity from primary to metastatic gastric cancer. iScience 2025; 28:111843. [PMID: 39967875 PMCID: PMC11834116 DOI: 10.1016/j.isci.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Reprogramming of the tumor microenvironment (TME) plays a critical role in gastric cancer (GC) progression and metastasis. However, the multidimensional features between primary tumors and organ-specific metastases remain poorly understood. In this study, we characterized the dynamic heterogeneity of GC from primary to metastatic stages. We identified seven major cell types and 27 immune and stromal subsets. Immune cells decreased, while immunosuppressive cells increased in ovarian and peritoneal metastases. A 30-gene signature for ovarian metastasis was validated in GC cohorts. Additionally, critical ligand-receptor interactions, including LGALS9-MET in liver metastasis and PVR-TIGIT in lymph node metastasis, were identified as potential therapeutic targets. Furthermore, CLOCK, a transcription factor, was associated with poor prognosis and influenced immune cell interactions and migration. Collectively, this study provides valuable insights into TME dynamics in GC and highlights potential avenues for targeted therapies.
Collapse
Affiliation(s)
- Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Kuan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenzhe Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| |
Collapse
|
29
|
Shimura M, Matsuo J, Pang S, Jangphattananont N, Hussain A, Rahmat MB, Lee JW, Douchi D, Tong JJL, Myint K, Srivastava S, Teh M, Koh V, Yong WP, So JBY, Tan P, Yeoh KG, Unno M, Chuang LSH, Ito Y. IQGAP3 signalling mediates intratumoral functional heterogeneity to enhance malignant growth. Gut 2025; 74:364-386. [PMID: 39438124 PMCID: PMC11874294 DOI: 10.1136/gutjnl-2023-330390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The elevation of IQGAP3 expression in diverse cancers indicates a key role for IQGAP3 in carcinogenesis. Although IQGAP3 was established as a proliferating stomach stem cell factor and a regulator of the RAS-ERK pathway, how it drives cancer growth remains unclear. OBJECTIVE We define the function of IQGAP3 in gastric cancer (GC) development and progression. DESIGN We studied the phenotypic changes caused by IQGAP3 knockdown in three molecularly diverse GC cell lines by RNA-sequencing. In vivo tumorigenesis and lung metastasis assays corroborated IQGAP3 as a mediator of oncogenic signalling. Spatial analysis was performed to evaluate the intratumoral transcriptional and functional differences between control tumours and IQGAP3 knockdown tumours. RESULTS Transcriptomic profiling showed that IQGAP3 inhibition attenuates signal transduction networks, such as KRAS signalling, via phosphorylation blockade. IQGAP3 knockdown was associated with significant inhibition of MEK/ERK signalling-associated growth factors, including TGFβ1, concomitant with gene signatures predictive of impaired tumour microenvironment formation and reduced metastatic potential. Xenografts involving IQGAP3 knockdown cells showed attenuated tumorigenesis and lung metastasis in immunodeficient mice. Accordingly, immunofluorescence staining revealed significant reductions of TGFβ/SMAD signalling and αSMA-positive stromal cells; digital spatial analysis indicated that IQGAP3 is indispensable for the formation of two phenotypically diverse cell subpopulations, which played crucial but distinct roles in promoting oncogenic functions. CONCLUSION IQGAP3 knockdown suppressed the RAS-TGFβ signalling crosstalk, leading to a significant reduction of the tumour microenvironment. In particular, IQGAP3 maintains functional heterogeneity of cancer cells to enhance malignant growth. IQGAP3 is thus a highly relevant therapy target in GC.
Collapse
Affiliation(s)
- Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Aashiq Hussain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Jung-Won Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jasmine Jie Lin Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ming Teh
- Department of Medicine, National University of Singapore, Singapore
| | - Vivien Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Genome Institute of Singapore, Singapore
| | - Khay-Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
30
|
Song Q, Liu S, Wu D, Cai A. Multiple programmed cell death patterns predict the prognosis and drug sensitivity in gastric cancer. Front Immunol 2025; 16:1511453. [PMID: 39967665 PMCID: PMC11832517 DOI: 10.3389/fimmu.2025.1511453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with poor prognosis. The diverse patterns of programmed cell death (PCD) are significantly associated with the pathogenesis and progression of GC, and it has the potential to serve as prognostic and drug sensitivity indicators for GC. Method The sequencing data and clinical characteristics of GC patients were downloaded from The Cancer Genome Atlas and GEO databases. LASSO cox regression method was used to screen feature genes and develop the PCD score (PCDS). Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore immunotherapy response. By integrating PCDS with clinical characteristics, we constructed and validated a nomogram that demonstrated robust predictive performance. Results We screened nine PCD-related genes (SERPINE1, PLPPR4, CDO1, MID2, NOX4, DYNC1I1, PDK4, MYB, TUBB2A) to create the PCDS. We found that GC patients with high PCDS experienced significantly poorer prognoses, and PCDS was identified as an independent prognostic factor. Furthermore, there was a significant difference in immune profile between high PCDS and low PCDS groups. Additionally, drug sensitivity analysis indicated that patients with a high PCDS may exhibit resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may benefit from the FDA-approved drug Dasatinib. Conclusion Overall, we confirmed that the PCDS is a prognostic risk factor and a valuable predictor of immunotherapy response in GC patients, which provides new evidence for the potential application of GC.
Collapse
Affiliation(s)
| | | | | | - Aizhen Cai
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
31
|
Lin L, Huang T, Li L, Lin Y, Chen F, Zheng Z, Zhou J, Wang Y, You W, Duan Y, An Y, He S, Ye W. Single-cell profiling reveals a reduced epithelial defense system, decreased immune responses and the immune regulatory roles of different fibroblast subpopulations in chronic atrophic gastritis. J Transl Med 2025; 23:159. [PMID: 39905493 DOI: 10.1186/s12967-025-06150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
PURPOSE To identify key cellular changes and molecular events in atrophic mucosa, we aimed to elucidate the molecular mechanisms driving the occurrence of chronic atrophic gastritis (CAG). METHODS We used single-cell RNA sequencing (scRNA-seq) to characterize changes in the epithelial state and tissue microenvironment associated with CAG. The molecular changes were identified by comparing differentially expressed genes (DEGs) between the two mucosa states. Gene Ontology (GO) pathway enrichment analysis was used to explore the potential functional changes in each cell subtype in atrophic mucosa. Gene set score analysis was conducted to compare the functional roles of different fibroblast subtypes and functional changes in cell subtypes between the CAG and control groups. Metabolic analysis was performed to compare the metabolic activity of C1Q+ macrophages under different conditions. NichNet analysis was used to analyze the regulatory relationships between CCL11+APOE+ fibroblasts and C1Q+ macrophages and between CCL11+APOE+ fibroblasts and CD8+ effector T cells. Transcription factor (TF) analysis was performed to determine the transcription status of different T-cell subtypes in atrophic and normal mucosa. RESULTS We generated a single-cell transcriptomic atlas from 3 CAG biopsy samples and paired adjacent normal tissues. Our analysis revealed that chief cells and parietal cells exhibited a loss of detoxification ability and that surface mucous cells displayed a reduced antimicrobial defense ability in CAG lesions. The mucous neck cells in CAG lesions showed upregulation of genes related to cell cycle transition, which may lead to aberrant DNA replication. Additionally, cells with the T exhaustion phenotype infiltrated under CAG condition. C1Q+ macrophages exhibited reduced phagocytosis, downregulated expression of pattern recognition receptors and decreased metabolic activity. NichNet analysis revealed that a subpopulation of CXCL11+APOE+ fibroblasts regulated the inflammatory response in the pathogenesis of atrophic gastritis. APSN+CXCL11+APOE+ fibroblasts were found to be associated with gastric cancer (GC) development. CONCLUSIONS The main goal of this study was to comprehensively elucidate the cellular changes in CAG lesions. We observed an immune decline in the mucosal microenvironment during the development of CAG, including a reduced immune response of C1Q+ macrophages, reduced cytotoxicity of T cells, and increased infiltration of exhausted T cells. Specifically, we demonstrated that different epithelial subtypes aberrantly express genes related to susceptibility to external bacterial infection and aberrant cell cycle progression. Our study provides new insights into the functions of epithelial changes and immune alterations during the development of CAG.
Collapse
Affiliation(s)
- Lin Lin
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Tingxuan Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, 350001, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yang Lin
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Feng Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ziyi Zheng
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jie Zhou
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yizhe Wang
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Weihao You
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Yujie Duan
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Yawen An
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China
| | - Shiwei He
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China.
| | - Weimin Ye
- Institute of Population Medicine, School of Public Health, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
32
|
Lv C, Chen T, Li J, Shan Y, Zhou H. A comprehensive analysis of molecular characteristics of hot and cold tumor of gastric cancer. Cancer Immunol Immunother 2025; 74:102. [PMID: 39904894 PMCID: PMC11794920 DOI: 10.1007/s00262-025-03954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The advent of immunotherapy has revolutionized the treatment paradigm for gastric cancer (GC), offering unprecedented clinical benefits. However, a detailed molecular characterization of the tumor immune microenvironment in GC is essential to further optimize these therapies and enhance their efficacy. METHODS Consensus clustering was utilized to classify GC patients into distinct immune states, followed by an in-depth analysis of differences in mutation profiles, copy number variations, and DNA methylation patterns. Weighted gene co-expression network analysis (WGCNA) and correlation analysis were applied to identify gene modules underlying the classification of immune "hot" and "cold" tumors. Subsequently, 101 machine learning algorithm combinations were employed to construct a prognostic model based on the identified gene modules. Single-cell analysis was conducted to investigate cellular interactions associated with the immune-determinant gene module. Finally, immunofluorescence staining for CD8, CD45, and CXCR4 was performed on human GC tissue samples. RESULTS A total of 1,298 GC patients were included in this comprehensive analysis. For the first time, we identified and characterized immune "hot" and "cold" tumors in GC patients, revealing distinct molecular features associated with these tumor types. Immune "hot" tumor-related genes were identified, and their functional roles were validated through biological behavior analysis. A prognostic signature, termed the hot tumor top regulators (HTTR), was developed using 101 machine learning algorithm combinations. The HTTR signature emerged as an independent prognostic factor, effectively stratifying patients into low- and high-risk groups with significant differences in overall survival. High-risk groups demonstrated strong associations with immune checkpoint regulation, antigen presentation, and inhibitory pathways. Notably, single-cell analysis revealed that HTTR genes were highly active in CD8 + T cells, with the CXCL12-CXCR4 axis playing a critical role in mediating interactions between CD8 + T cells and endothelial cells. CONCLUSION In conclusion, the HTTR signature served as a robust prognostic biomarker for GC patients and effectively identified those with immune "hot" tumors. This finding provided valuable insights into the molecular mechanisms of tumor immunity in GC, offering potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chenxi Lv
- Department of Colorectal Surgery, Wenzhou Central Hospital, Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Tianwei Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Jiangtao Li
- Department of General Surgery, Hospital of Zhejiang People's Armed Police (PAP), Hangzhou, 310006, Zhejiang, China
| | - Yuqiang Shan
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Hong Zhou
- Department of Colorectal Surgery, Wenzhou Central Hospital, Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
33
|
Li X, Tang B, Yujie O, Xu C, Yuan S. Single-cell RNA Sequencing Analysis Reveals Cancer-associated Fibroblast Signature for Prediction of Clinical Outcomes and Immunotherapy in Gastric Cancer. J Immunother 2025; 48:63-77. [PMID: 39206772 DOI: 10.1097/cji.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) is a significant worldwide health concern and is a leading cause of cancer-related mortality. Immunotherapy has arisen as a promising strategy to stimulate the patient's immune system in combating cancer cells. Nevertheless, the effectiveness of immunotherapy in individuals with gastric cancer (GC) is not yet optimal. Thus, it is crucial to discover biomarkers capable appof predicting the advantages of immunotherapy for tailored treatment. The tumor microenvironment (TME) and its constituents, including cancer-associated fibroblasts (CAFs), exert a substantial influence on immune responses and treatment outcomes. In this investigation, we utilized single-cell RNA sequencing to profile CAFs in GC and established a scoring method, referred to as the CAF score (CAFS), for the prediction of patient prognosis and response to immunotherapy. Through our analysis, we successfully identified distinct subgroups within CAFs based on CAF score (CAFS), namely CAFS-high and CAFS-low subgroups. Notably, we noted that individuals within the CAFS-high subgroup experienced a lessF favorable prognosis and displayed diminished responsiveness to immunotherapy in contrast to the CAFS low subgroup. Furthermore, we analyzed the mutation and immune characteristics of these subgroups, identifying differentially mutated genes and immune cell compositions. We established that CAFS could forecast treatment advantages in patients with gastric cancer, both for chemotherapy and immunotherapy. Its efficacy was additionally confirmed in contrast to other biomarkers, including Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenotypic Score (IPS). These findings emphasize the clinical relevance and potential utility of CAFS in guiding personalized treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Shandong University Cancer Center
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao
| | - Bo Tang
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Ouyang Yujie
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Shuanghu Yuan
- Shandong University Cancer Center
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
34
|
Li X, Peng C, Liu H, Dong M, Li S, Liang W, Li X, Bai J. Constructing methylation-driven ceRNA networks unveil tumor heterogeneity and predict patient prognosis. Hum Mol Genet 2025; 34:251-264. [PMID: 39603659 PMCID: PMC11792255 DOI: 10.1093/hmg/ddae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cancer development involves a complex interplay between genetic and epigenetic factors, with emerging evidence highlighting the pivotal role of competitive endogenous RNA (ceRNA) networks in regulating gene expression. However, the influence of ceRNA networks by aberrant DNA methylation remains incompletely understood. In our study, we proposed DMceNet, a computational method to characterize the effects of DNA methylation on ceRNA regulatory mechanisms and apply it across eight prevalent cancers. By integrating methylation and transcriptomic data, we constructed methylation-driven ceRNA networks and identified a dominant role of lncRNAs within these networks in two key ways: (i) 17 cancer-shared differential methylation lncRNAs (DMlncs), including PVT1 and CASC2, form a Common Cancer Network (CCN) affecting key pathways such as the G2/M checkpoint, and (ii) 24 cancer-specific DMlncs construct unique ceRNA networks for each cancer type. For instance, in LUAD and STAD, hypomethylation drives DMlncs like PCAT6 and MINCR, disrupting the Wnt signaling pathway and apoptosis. We further investigated the characteristics of these methylation-driven ceRNA networks at the cellular level, revealing how methylation-driven dysregulation varies across distinct cell populations within the tumor microenvironment. Our findings also demonstrate the prognostic potential of cancer-specific ceRNA relationships, highlighting their relevance in predicting patient survival outcomes. This integrated transcriptomic and epigenomic analysis provides new insights into cancer biology and regulatory mechanisms.
Collapse
Affiliation(s)
- Xinyu Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Chuo Peng
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Hongyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Mingjie Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Shujuan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Weixin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
- Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China
- Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China
| |
Collapse
|
35
|
Ding T, He L, Lin G, Xu L, Zhu Y, Wang X, Liu X, Guo J, Lei F, Zuo Z, Zheng J. Integrated analysis of single-cell and bulk transcriptomes uncovers clinically relevant molecular subtypes in human prostate cancer. Chin J Cancer Res 2025; 37:90-114. [PMID: 40078560 PMCID: PMC11893346 DOI: 10.21147/j.issn.1000-9604.2025.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/26/2024] [Indexed: 03/14/2025] Open
Abstract
Objective Prostate cancer (PCa) is a complex disease characterized by diverse cellular ecosystems within the tumor microenvironment (TME) and high tumor heterogeneity, which challenges clinically stratified management and reinforces the need for novel strategies to fight against castration-resistant PCa (CRPC). Methods We performed single-cell RNA sequencing (scRNA-seq) on 10 untreated primary PCa tissues and integrated public scRNA-seq resources from three normal prostate tissues, two untreated primary PCa tissues, and six CRPC tumors to portray a comprehensive cellular and molecular interaction atlas of PCa. We further integrated the single-cell and bulk transcriptomes of PCa to establish a molecular classification system. Results scRNA-seq profiles revealed substantial inter- and intra-tumoral heterogeneity across different cell subpopulations in untreated PCa and CRPC tumors. In the malignant epithelial reservoir, cells evolved along decoupled paths in treatment-naive PCa and CRPC tumors, and distinct transcriptional reprogramming processes were activated, highlighting anti-androgen therapy-induced lineage plasticity. Based on the specifically expressed markers of the epithelial subpopulations, we conducted unsupervised clustering analysis in The Cancer Genome Atlas prostate adenocarcinoma (TCGA-PRAD) cohort and identified three molecularly and clinically distinct subtypes. The C1 subtype, characterized by high enrichment of CRPC-enriched epithelial cells, had a high risk of rapid development of anti-androgen resistance and might require active surveillance and additional promising intervention treatments, such as integrin A3 (ITGA3) + integrin B1 (ITGB1) inhibition. The C2 subtype resembled the immune-modulated subtype that was most likely to benefit from anti-LAG3 immunotherapy. The C3 subtype had a favorable prognosis. Conclusions Our study provides a comprehensive and high-resolution landscape of the intricate architecture of the PCa TME, and our trichotomic molecular taxonomy could help facilitate precision oncology.
Collapse
Affiliation(s)
- Tao Ding
- Department of Urology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan 512025, China
- Department of Urology, Southern Medical University Affifiliated Fengxian Hospital, Shanghai 201499, China
| | - Lina He
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lei Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xuefei Liu
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fanghong Lei
- Department of Pathology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zhixiang Zuo
- School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianghua Zheng
- Central Laboratory, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
36
|
Xu T, Zhang T, Sun Y, Wu S. To describe the subsets of malignant epithelial cells in gastric cancer, their developmental trajectories and drug resistance characteristics. Discov Oncol 2025; 16:93. [PMID: 39869282 PMCID: PMC11772634 DOI: 10.1007/s12672-024-01715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g., T cells, monocytes) and epithelial subpopulations. Among 27 epithelial subgroups, five malignant subpopulations were identified, each defined by unique marker gene expressions and playing diverse roles in tumor progression. Developmental trajectory analysis revealed potential stem-like characteristics in certain clusters, suggesting their involvement in therapeutic resistance and disease recurrence. Cell-cell communication analysis uncovered a dynamic network of interactions within the tumor microenvironment, potentially influencing tumor growth and metastasis. Differential gene expression analysis identified key genes (LDHA, GPC3, MIF, CD44, and TFF3) that were used to construct a prognostic risk score model. This model demonstrated robust predictive power, achieving AUC values of 0.77, 0.77, and 0.76 for 1-, 3-, and 5-year overall survival in the TCGA training dataset, with validation across independent cohorts. These findings deepen our understanding of gastric cancer's cellular and molecular heterogeneity, offering insights into potential therapeutic targets and biomarkers. By facilitating the development of targeted therapies and personalized treatment strategies, these results hold promise for improving clinical outcomes in gastric cancer patients.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tianying Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Sun
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Sijia Wu
- West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Wang R, Liu G, Wang K, Pan Z, Pei Z, Hu X. Hypoxia signature derived from tumor-associated endothelial cells predict prognosis in gastric cancer. Front Cell Dev Biol 2025; 13:1515681. [PMID: 39901877 PMCID: PMC11788339 DOI: 10.3389/fcell.2025.1515681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Background A hypoxic metabolism environment in the tumors is often associated with poor prognostic events such as tumor progression and treatment resistance. In gastric cancer, the mechanism of how hypoxia metabolism affects the tumor microenvironment and immunotherapy efficacy remains to be elucidated. Methods We used the bulk-mapping method to analyze the signatures correlated with the response of immunotherapy in the single-cell dataset. Cellular, pathway, and gene were systematically analyzed in both single-cell and bulk validation datasets. Results The most significant cell proportion difference between the response and non-response groups was in endothelial cells, which represent the malignant cells. VWF was specifically overexpressed in endothelial cells and was the hub gene of differential genes. EPAS1 was a VWF trans-regulated gene and highly positively correlated with VWF in expression. Knockdown experiments demonstrated that siVWF reduced the expression of VWF, EPAS1, and HIF1A, as well as the synthesis of lactate and adenosine which are indicators of hypoxic metabolism. These results suggest that the overexpression of core malign endothelial genes such as VWF drives hypoxic metabolism in tumors and creates an immunosuppressive environment that reduces the efficacy of immunotherapy. The adverse prognosis of the hypoxia signature was validated in the bulk cohort and significance was further enhanced after selecting core genes and combined survival weight scoring. Conclusion In summary, high expression of the malignant endothelial cell driver genes VWF and EPAS1 enhances hypoxic metabolism, and malignant cell-immune cell interactions suppress the immune response. Therefore, the two core genes of hypoxic metabolism might represent potential therapeutic and predicting biomarkers for immunotherapy of gastric cancer in the future.
Collapse
Affiliation(s)
- Ruiheng Wang
- Surgical Ward, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guijun Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of administrative, The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Wang
- Endoscopy Room, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhanglei Pan
- Surgical Ward, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhihua Pei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xijiao Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
38
|
Fan Y, Song S, Pizzi MP, Zou G, Vykoukal JV, Yoshimura K, Jin J, Calin GA, Waters RE, Gan Q, Wang L, Hanash S, Dhar SS, Ajani JA. Exosomal Galectin-3 promotes peritoneal metastases in gastric adenocarcinoma via microenvironment alterations. iScience 2025; 28:111564. [PMID: 39811647 PMCID: PMC11731617 DOI: 10.1016/j.isci.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/22/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Peritoneal carcinomatosis (PC) in gastric adenocarcinoma (GAC) is the most common metastatic site and leads to a short median survival. Exosomes have been shown to remodel the microenvironment, facilitating tumor metastases. However, the functional component in GAC cell-derived exosomes that remodel the landscape in the peritoneal cavity remains unclear. To address this, we performed in-depth proteomic profiling of ascites-derived exosomes from patients with PC, and we found that Galectin-3 was highly enriched in exosomes derived from malignant ascites. exosomal Galectin-3 was the crucial regulator of PC. Blockage of exosomal Galectin-3 significantly inhibited tumor metastases and prolonged overall survival. Exosomal Galectin-3 activated cancer-associated fibroblasts through integrin α1β1/FAK/Akt/mTOR/CXCL12 signaling. Combined inhibition of the CXCL12-CXCR4 axis and exosomal Galectin-3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly diminished PC progression and durable antitumor responses. These findings provide a rationale for clinical strategy of targeting exosomal Galectin-3 to treat PC.
Collapse
Affiliation(s)
- Yibo Fan
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rebecca E Waters
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiong Gan
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
DU YARU, PEI ZHIHUI, HU SHUQIN, LIAO CHUANWEN, LIU SHUHAO. KHSRP promotes cancer stem cell maintenance, tumorigenesis, and suppresses anti-tumor immunity in gastric cancer. Oncol Res 2025; 33:309-325. [PMID: 39866240 PMCID: PMC11753988 DOI: 10.32604/or.2024.058273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025] Open
Abstract
Objectives KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response. Methods KHSRP expression in gastric cancer tissues and normal tissues was analyzed using data from The Cancer Genome Atlas (TCGA) database. The correlation between KHSRP expression, patient survival, and immune response was also assessed. Immunohistochemistry was performed to evaluate KHSRP expression in gastric cancer tissues. Gain- and loss-of-function experiments were conducted to assess KHSRP's effects on gastric cancer cell proliferation, stemness, and migration. Furthermore, the impact of KHSRP silencing on tumor volume and immune cell infiltration was evaluated in a C3H/He mouse xenograft model. Results KHSRP was found to be overexpressed in gastric cancer tissues compared to normal tissues, with a positive correlation to tumor stage and a negative correlation with patient prognosis. Functional assays revealed that KHSRP promotes gastric cancer cell proliferation, enhances cancer stem cell properties, and increases migratory capabilities in vitro. In vivo, KHSRP silencing led to a significant reduction in tumor volume and increased immune cell infiltration in the mouse xenograft model. Conclusions KHSRP acts as an oncogene in gastric cancer by promoting tumorigenesis and suppressing anti-tumor immune responses. Its overexpression is associated with poor prognosis, making KHSRP a potential prognostic marker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- YARU DU
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - ZHIHUI PEI
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - SHUQIN HU
- Organ Transplantation Center, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - CHUANWEN LIAO
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - SHUHAO LIU
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| |
Collapse
|
40
|
Szakállas N, Kalmár A, Barták BK, Nagy ZB, Valcz G, Linkner TR, Rada KR, Takács I, Molnár B. Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells. Int J Mol Sci 2025; 26:737. [PMID: 39859451 PMCID: PMC11766235 DOI: 10.3390/ijms26020737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The progression of colorectal cancer is strongly influenced by environmental and genetic conditions. One of the key factors is tumor heterogeneity which is extensively studied by cfDNA and bulk sequencing methods; however, we lack knowledge regarding its effects at the single-cell level. Motivated by this, we aimed to employ an end-to-end single-cell sequencing workflow from tissue-derived sample isolation to exome sequencing. Our main goal was to investigate the heterogeneity patterns by laser microdissecting samples from different locations of a tissue slide. Moreover, by studying healthy colon control, tumor-associated normal, and colorectal cancer tissues, we explored tissue-specific heterogeneity motifs. For completeness, we also compared the performance of the whole-exome bulk, cfDNA, and single-cell sequencing methods based on variation at the level of a single nucleotide.
Collapse
Affiliation(s)
- Nikolett Szakállas
- Department of Biological Physics, Faculty of Science, Eötvös Loránd University, 1053 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Alexandra Kalmár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Barbara Kinga Barták
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Zsófia Brigitta Nagy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Gábor Valcz
- HUN-REN-SU Translational Extracellular Vesicle Research Group, 1117 Budapest, Hungary;
| | - Tamás Richárd Linkner
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Kristóf Róbert Rada
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| | - Béla Molnár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (A.K.); (B.K.B.); (Z.B.N.); (T.R.L.); (K.R.R.); (I.T.); (B.M.)
| |
Collapse
|
41
|
Liu T, Huang C, Sun L, Chen Z, Ge Y, Ji W, Chen S, Zhao Y, Wang M, Wang D, Zhu W. FAP + gastric cancer mesenchymal stromal cells via paracrining INHBA and remodeling ECM promote tumor progression. Int Immunopharmacol 2025; 144:113697. [PMID: 39615112 DOI: 10.1016/j.intimp.2024.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
Gastric cancer (GC) mesenchymal stromal cells (GCMSCs) are the predominant components of the tumor microenvironment (TME) and play a role in the occurrence, development, and metastasis of tumors. However, GCMSCs exhibit phenotypic and functional heterogeneity. The key population of GCMSCs which are vital to tumor progression remains elusive. The expression of fibroblast activation protein (FAP) in gastric cancer was analyzed and verified using clinical pathology data and single-cell RNA sequencing database of gastric cancer patients. FAP positive GCMSCs (FAP+ GCMSCs) were isolated via flow cytometry and characterized through transcriptomic sequencing. The impact of conditioned medium from FAP+ GCMSCs on gastric cancer cell lines was assessed using Enzyme-linked immunosorbent assay (ELISA) and Western blot analyses. Additionally, immunohistochemistry (IHC) and Masson's trichrome staining were employed to explore the association between FAP+ GCMSCs and extracellular matrix (ECM) deposition in gastric cancer tissues. Our study demonstrates that FAP is predominantly expressed in the mesenchymal stromal cells within the gastric cancer milieu. FAP+ GCMSCs exhibited enhanced proliferation, migration, contraction, and tumor-promoting capabilities compared to their FAP- counterparts. These cells significantly increased proliferation and migration of gastric cancer cells through the paracrine secretion of Inhibin Subunit Beta A (INHBA) and activation of the SMAD2/3 signaling pathway. Moreover, FAP+ GCMSCs also induced collagen deposition in ECM and then up-regulated invasion and stemness of GC cells. Mechanistically, this process was mediated by the interaction of collagen with Integrin Subunit Beta 1 (ITGB1), triggering the phosphorylation of Focal Adhesion Kinase (FAK) and Yes Associated Transcriptional Regulator (YAP). Our findings reveal that FAP+ GCSMCs enhanced the GC progression via releasing cytokine INHBA and remodeling ECM providing a theoretical basis for further exploration of tumor stromal-targeting therapy of gastric cancer.
Collapse
Affiliation(s)
- Ting Liu
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, 215300, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yan Ge
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Weimeng Ji
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shihan Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Wei Zhu
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
42
|
Wang L, Sun M, Li J, Wan L, Tan Y, Tian S, Hou Y, Wu L, Peng Z, Hu X, Zhang Q, Huang Z, Han M, Peng S, Pan Y, Ren Y, Zhang M, Chen D, Liu Q, Li X, Qin ZY, Xiang J, Li M, Zhu J, Chen Q, Luo H, Wang S, Wang T, Li F, Bian XW, Wang B. Intestinal Subtype as a Biomarker of Response to Neoadjuvant Immunochemotherapy in Locally Advanced Gastric Adenocarcinoma: Insights from a Prospective Phase II Trial. Clin Cancer Res 2025; 31:74-86. [PMID: 39495175 DOI: 10.1158/1078-0432.ccr-24-2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE Neoadjuvant immunochemotherapy (NAIC) markedly induces pathologic regression in locally advanced gastric adenocarcinoma. However, specific biomarkers are still lacking to effectively identify the beneficiary patients for NAIC. PATIENTS AND METHODS A prospective, single-arm, phase II study was conducted to treat locally advanced gastric adenocarcinoma with NAIC (NCT05515796). Correlation between clinicopathologic characteristics and neoadjuvant efficacy was investigated. Bulk RNA sequencing data from 104 samples (from 75 patients in two independent cohorts) and single-cell RNA sequencing data from 105 treatment-naïve gastric adenocarcinomas were comprehensively analyzed to decipher the association of epithelial and microenvironmental characteristics and clinical responses. RESULTS The prespecified primary endpoints were achieved: pathologic complete regression rate was 30%, major pathologic regression rate was 43%, and the regimen was well tolerated. Analysis of baseline clinical-pathologic parameters revealed the intestinal subtype of Lauren's classification as a key feature stratifying patients with increased sensitivity to NAIC. Mechanistically, an increased pool of DNA damage repair-active cancer cells and enrichment of CLEC9A+ dendritic cells in the tumor microenvironment were associated with enhanced responsiveness of the intestinal subtype gastric adenocarcinoma to NAIC. More importantly, an intestinal subtype-specific signature model was constructed by the machine learning algorithm NaiveBayes via integrating the transcriptomic features of both DNA damage repair-active cancer cells and CLEC9A+ dendritic cells, which accurately predicted the efficacy of NAIC in multiple independent gastric adenocarcinoma cohorts. CONCLUSIONS Intestinal subtype is a histologic biomarker of enhanced sensitivity of gastric adenocarcinoma to NAIC. The intestinal subtype-specific signature model is applicable to guide NAIC for patients with locally advanced gastric adenocarcinoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Mengting Sun
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Linghong Wan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Yuting Tan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- School of Medicine, Chongqing University, Chongqing, P.R. China
| | - Shuoran Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Yongying Hou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Linyu Wu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Ziyi Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Xiao Hu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- School of Medicine, Chongqing University, Chongqing, P.R. China
| | - Qihua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Mengyi Han
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Shiyin Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- School of Medicine, Chongqing University, Chongqing, P.R. China
| | - Yuwei Pan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- School of Medicine, Chongqing University, Chongqing, P.R. China
| | - Yuanfeng Ren
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Mengsi Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Xianfeng Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Zhong-Yi Qin
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Junyv Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jianwu Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Huiyan Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Fan Li
- Division of Gastric and Colorectal Surgery, Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
- Jinfeng Laboratory, Chongqing, P.R. China
| |
Collapse
|
43
|
Wu W, Tao G, Chen Z, Zhou Q. Identification of disulfidptosis-related subtypes in gastric cancer and GAMT is a key gene during disulfidptosis. Sci Rep 2025; 15:111. [PMID: 39747986 PMCID: PMC11697009 DOI: 10.1038/s41598-024-83580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Recent studies have found that disulfidptosis occurs in cells under glucose starvation. The role of this programmed death method in gastric cancer remains to be explored. Cluster analysis based on disulfidptosis related genes to analyze the differential characteristics of disulfidptosis subtypes. We construct a prognostic risk model using 12 differentially expressed genes of disulfidptosis subtypes. We also analyzed the disulfidptosis subtypes at single-cell resolution. We found that cluster 1 has a poor prognosis and is characterized by a younger age. Inhibiting the expression of GAMT genes associated with disulfidptosis subtypes can significantly inhibit the proliferation of gastric cancer cells, which may be an important target for gastric cancer treatment. Cluster 2 patients are more sensitive to various chemotherapy drugs and immunotherapy. Mesenchymal cells, especially myCAF, endothelial cells, and smooth muscle cells, have strong disulfidptosis scores. In summary, our study provides new insights into the role of disulfidptosis in gastric cancer, and this may be used to guide the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wenxue Wu
- Department of General Surgery, Shanghai Punan Hospital, No.279 Linyi Road, Pudong New District, Shanghai, China
| | - Guoqiang Tao
- Department of General Surgery, Shanghai Punan Hospital, No.279 Linyi Road, Pudong New District, Shanghai, China
| | - Zhiqing Chen
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi medical college, Nanchang University, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, Shanghai Punan Hospital, No.279 Linyi Road, Pudong New District, Shanghai, China.
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi medical college, Nanchang University, Jiangxi, China.
| |
Collapse
|
44
|
Gao B, Gou X, Feng C, Zhang Y, Gu H, Chai F, Wang Y, Ye Y, Hong N, Hu G, Sun B, Cheng J, Yang H. Identification of cancer-associated fibrolast subtypes and distinctive role of MFAP5 in CT-detected extramural venous invasion in gastric cancer. Transl Oncol 2025; 51:102188. [PMID: 39531783 PMCID: PMC11600027 DOI: 10.1016/j.tranon.2024.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Extramural venous invasion (EMVI) detected by computed tomography has been identified as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) are critical for remodeling the tumor microenvironment in GCs. Here, we report that MFAP5+ CAFs promote the formation of EMVI imaging in GC. We detected gene expression in pathological samples from 13 advanced GC patients with EMVI. Radiogenomics results showed the degree of CAFs infiltration was directly proportional to the EMVI score and EMT pathway in GC patients. Single-cell sequencing data analysis results showed that MFAP5+CAFs subtypes in GC were negatively correlated with patient prognosis and were enriched in tumor lactylation modification and EMT pathways. Immunohistochemistry results showed that the expression of MFAP5, L-lactyl and EMT markers in GC tissues was proportional to the EMVI score. CAF from gastric cancer tissue was extracted using collagenase method and co-cultured with GC cell line in vitro. After lentivirus knockdown of MFAP5 in CAFs, the levels of L-lactoyl and histone lactylation modifications were significantly reduced, and the sphere-forming and vascularization abilities of CAFs were significantly inhibited. Cell function experiments showed that MFAP5+ CAFs can affect the EMT, metastasis and invasion capabilities of GC cells. In vivo experimental results of the nude mouse in situ EMVI model suggest that MFAP5+ CAF may promote the formation of EMVI imaging features in GC by regulating lactylation modification. This innovative work may provide important new references for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Xinyi Gou
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yinli Zhang
- Department of Pathology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Huining Gu
- Department of Immunology, School of Basic Medical Sciences, Peking University and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China.
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
45
|
Chen Y, Tang Z, Tang Z, Fu L, Liang G, Zhang Y, Tao C, Wang B. Identification of core immune-related genes CTSK, C3, and IFITM1 for diagnosing Helicobacter pylori infection-associated gastric cancer through transcriptomic analysis. Int J Biol Macromol 2025; 287:138645. [PMID: 39667460 DOI: 10.1016/j.ijbiomac.2024.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To identify diagnostic genes and mechanisms linking Helicobacter pylori (H. pylori) infection to gastric cancer. METHODS Gene expression profiles from GEO were analyzed using differential expression gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), and functional enrichment. A random forest (RF) model assessed immune-related diagnostic genes, examining their expression, diagnostic performance, prognostic value, and immune cell relationships. Expression patterns of core genes were evaluated with single-cell RNA sequencing (scRNA-seq), and a regulatory network involving miRNA, mRNA, and transcription factors was built. RESULTS We identified 75 genes and developed an RF model including 15 immune-related genes, notably CTSK, NR4A3, C3, and IFITM1. Except for NR4A3, these genes showed higher expression in datasets, confirmed by in vitro tests. Their diagnostic performance had an AUC > 0.7, enhancing to >0.85 in a multi-gene model. Survival analysis linked gene upregulation to poorer prognosis, and scRNA-seq and immune cell infiltration analysis underscored their roles in immune dysregulation and pathogenicity in H. pylori-related gastric cancer. CONCLUSIONS CTSK, C3, and IFITM1 are crucial in H. pylori-related gastric cancer, forming a robust diagnostic model and guiding future diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Tang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifa Fu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
Yun H, Dong F, Wei X, Yan X, Zhang R, Zhang X, Wang Y. Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review). Oncol Rep 2025; 53:14. [PMID: 39611496 PMCID: PMC11622107 DOI: 10.3892/or.2024.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Gastric cancer (GC) is characterized by a complex and heterogeneous tumor microenvironment (TME) that significantly influences disease progression and treatment outcomes. The tumor stroma, which is composed of a variety of cell types such as cancer‑associated fibroblasts, immune cells and vascular components, displays significant spatial and temporal diversity. These stromal elements engage in dynamic crosstalk with cancer cells, shaping their proliferative, invasive and metastatic potential. Furthermore, the TME is instrumental in facilitating resistance to traditional chemotherapy, specific treatments and immunotherapy strategies. Understanding the underlying mechanisms by which the GC microenvironment evolves and supports tumor growth and therapeutic resistance is critical for developing effective treatment strategies. The present review explores the latest progress in understanding the intricate interactions between cancer cells and their immediate environment in GC, highlighting the implications for disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Fangde Dong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiaoqin Wei
- Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China
| | - Xinyong Yan
- Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Ronglong Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Yulin Wang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| |
Collapse
|
47
|
Kwan ASH, Uwishema O, Mshaymesh S, Choudhary K, Salem FK, Sengar AS, Patel RP, Kazan Z, Wellington J. Advances in the diagnosis of colorectal cancer: the application of molecular biomarkers and imaging techniques: a literature review. Ann Med Surg (Lond) 2025; 87:192-203. [PMID: 40109625 PMCID: PMC11918703 DOI: 10.1097/ms9.0000000000002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 03/22/2025] Open
Abstract
Background Following neoplasms of the lung and breast, colorectal cancer (CRC) is the third most frequent malignancy globally. Screening for CRC at the age of 50 years is strongly encouraged for prompt earlier diagnosis owing to prognoses being greatly correlated with time of detection and cancer staging. Aim This review aimed to elucidate the most recent advancements in the detection of CRC, with an emphasis on the latest innovations in diagnostic molecular biomarkers in conjunction with radiological imaging alongside stool-based tests for CRC screening. Methods A comprehensive review of the literature was performed, focusing on specific terms in different electronic databases, including that of PubMed/MEDLINE. Keywords pertaining to "colorectal cancer," "diagnosis," "screening," "imaging," and "biomarkers," among others, were employed in the search strategy. Articles screened and evaluated were deemed relevant to the study aim and were presented in the medium of the English language. Results There have been several innovations in the diagnostics and identification of CRC. These generally comprise molecular biomarkers, currently being studied for suitability in disease detection. Examples of these include genetic, epigenetic, and protein biomarkers. Concurrently, recent developments in CRC diagnostics highlight the advancements made in radiological imaging that offer precise insights on tumor biology in addition to morphological information. Combining these with statistical methodologies will increase the sensitivity and specificity of CRC diagnostics. However, putting these strategies into reality is hampered by several issues. Conclusion Progress in diagnostic technology alongside the identification of a few prognostic predictive molecular biomarkers suggested great promise for prompt detection and management of CRC. This clearly necessitates further efforts to learn more in this specific sector.
Collapse
Affiliation(s)
- Alicia Su Huey Kwan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine for Older People, Southampton General Hospital, Southampton, United Kingdom
| | - Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Sarah Mshaymesh
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Natural Sciences, Faculty of Sciences, Haigazian University, Beirut, Lebanon
| | - Karan Choudhary
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, MGM Medical College, Aurangabad, India
| | - Fatma K Salem
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Biochemistry Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Aman Singh Sengar
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Raj Pravin Patel
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of General Surgery, Manohar Waman Desai General Hospital, Mumbai, India
| | - Zeinab Kazan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Jack Wellington
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Foundation Trust, Leeds, United Kingdom
| |
Collapse
|
48
|
Jin X, Tian Y, Zhu H, Sun Y, Zhang Z. Computer-aided analysis reveals metallothionein-positive cancer-associated fibroblasts promote angiogenesis in gastric adenocarcinoma. Discov Oncol 2024; 15:751. [PMID: 39636347 PMCID: PMC11621267 DOI: 10.1007/s12672-024-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Gastric adenocarcinoma (GC), along with its tumor microenvironment (TME), poses great challenges for clinical treatment strategies. Single-cell sequencing has become an important tool for analyzing TME heterogeneity, cell subpopulation, and gene expression patterns. 56 GC single-cell sequencing samples were analyzed, focusing on TME by delineating cancer cells, cancer-associated fibroblasts (CAFs), and macrophages. The spatial transcriptome was used to clarify the distribution characteristics of each cellular component in the tissue slice. Despite the widespread genetic mutations observed in cancer cells, certain recurrent alterations were identified in specific chromosomal regions. The heterogeneity among GC cells is profound, four cancer cell subpopulations were identified through drug sensitivity profiling. Subtype 4, although only present in some samples, demonstrates the strongest stemness and metabolic activity, possibly indicative of an early-stage cancer subpopulation. Their drug sensitivity profiles may hold promise for guiding clinical intervention. In addition, robust spatial co-localization patterns were observed between CAFs, M2 macrophages, and endothelial cells. CAFs were further categorized into six subgroups, among which a novel subgroup termed metallothionein(mt)-positive CAF (mtCAF), characterized by elevated expression of metallothionein 1X (MT1X) and subsequent vascular endothelial growth factor A (VEGFA) secretion, was identified. Immunohistochemistry preliminary confirmed the presence of this unique CAF subgroup. Additionally, M2d macrophages, besides exhibiting high VEGFA expression, also demonstrated various growth factors such as Aamphiregulin (AREG). The M2d-mtCAF axis may play an important role in GC angiogenesis. This study not only enhances our understanding of the TME heterogeneity in GC but also sheds light on the interaction between CAFs and tumor-associated macrophages (TAMs) in tumor angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Jin
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yu Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuewen Sun
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No. 999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
49
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
50
|
Li J, Yu T, Sun J, Ma M, Zheng Z, Kang W, Ye X. Comprehensive integration of single-cell RNA and transcriptome RNA sequencing to establish a pyroptosis-related signature for improving prognostic prediction of gastric cancer. Comput Struct Biotechnol J 2024; 23:990-1004. [PMID: 38404710 PMCID: PMC10884435 DOI: 10.1016/j.csbj.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Cell pyroptosis, a Gasdermin-dependent programmed cell death characterized by inflammasome, plays a complex and dynamic role in Gastric cancer (GC), a serious threat to human health. Therefore, the value of pyroptosis-related genes (PRGs) as prognostic biomarkers and therapeutic indicators for patients needs to be exploited in GC. This study integrates single-cell RNA sequencing (scRNA-seq) dataset GSE183904 with GC transcriptome data from the TCGA database, focusing on the expression and distribution of PRGs in GC at the single-cell level. The prognostic signature of PRGs was established by using Cox and LASSO analyses. The differences in long-term prognosis, immune infiltration, mutation profile, CD274 and response to chemotherapeutic drugs between the two groups were analyzed and evaluated. A tissue array was used to verify the expression of six PRGs, CD274, CD163 and FoxP3. C12orf75, VCAN, RGS2, MKNK2, SOCS3 and TNFAIP2 were successfully screened out to establish a signature to potently predict the survival time of GC patients. A webserver (https://pumc.shinyapps.io/GastricCancer/) for prognostic prediction in GC patients was developed based on this signature. High-risk score patients typically had worse prognoses, resistance to classical chemotherapy, and a more immunosuppressive tumor microenvironment. VCAN, TNFAIP2 and SOCS3 were greatly elevated in the GC while RGS2 and MKNK2 were decreased in the tumor samples. Further, VCAN was positively related to the infiltrations of Tregs and M2 TAMs in GC TME and the CD274 in tumor cells. In summary, a potent pyroptosis-related signature was established to accurately forecast the survival time and treatment responsiveness of GC patients.
Collapse
Affiliation(s)
| | | | - Juan Sun
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, 100730 Beijing, People’s Republic of China
| | - Mingwei Ma
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, 100730 Beijing, People’s Republic of China
| | - Zicheng Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, 100730 Beijing, People’s Republic of China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, 100730 Beijing, People’s Republic of China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, 100730 Beijing, People’s Republic of China
| |
Collapse
|