1
|
Zheng SL, Henry A, Cannie D, Lee M, Miller D, McGurk KA, Bond I, Xu X, Issa H, Francis C, De Marvao A, Theotokis PI, Buchan RJ, Speed D, Abner E, Adams L, Aragam KG, Ärnlöv J, Raja AA, Backman JD, Baksi J, Barton PJR, Biddinger KJ, Boersma E, Brandimarto J, Brunak S, Bundgaard H, Carey DJ, Charron P, Cook JP, Cook SA, Denaxas S, Deleuze JF, Doney AS, Elliott P, Erikstrup C, Esko T, Farber-Eger EH, Finan C, Garnier S, Ghouse J, Giedraitis V, Guðbjartsson DF, Haggerty CM, Halliday BP, Helgadottir A, Hemingway H, Hillege HL, Kardys I, Lind L, Lindgren CM, Lowery BD, Manisty C, Margulies KB, Moon JC, Mordi IR, Morley MP, Morris AD, Morris AP, Morton L, Noursadeghi M, Ostrowski SR, Owens AT, Palmer CNA, Pantazis A, Pedersen OBV, Prasad SK, Shekhar A, Smelser DT, Srinivasan S, Stefansson K, Sveinbjörnsson G, Syrris P, Tammesoo ML, Tayal U, Teder-Laving M, Thorgeirsson G, Thorsteinsdottir U, Tragante V, Trégouët DA, Treibel TA, Ullum H, Valdes AM, van Setten J, van Vugt M, Veluchamy A, Verschuren WMM, Villard E, Yang Y, Asselbergs FW, Cappola TP, Dube MP, Dunn ME, Ellinor PT, Hingorani AD, Lang CC, Samani NJ, Shah SH, Smith JG, Vasan RS, et alZheng SL, Henry A, Cannie D, Lee M, Miller D, McGurk KA, Bond I, Xu X, Issa H, Francis C, De Marvao A, Theotokis PI, Buchan RJ, Speed D, Abner E, Adams L, Aragam KG, Ärnlöv J, Raja AA, Backman JD, Baksi J, Barton PJR, Biddinger KJ, Boersma E, Brandimarto J, Brunak S, Bundgaard H, Carey DJ, Charron P, Cook JP, Cook SA, Denaxas S, Deleuze JF, Doney AS, Elliott P, Erikstrup C, Esko T, Farber-Eger EH, Finan C, Garnier S, Ghouse J, Giedraitis V, Guðbjartsson DF, Haggerty CM, Halliday BP, Helgadottir A, Hemingway H, Hillege HL, Kardys I, Lind L, Lindgren CM, Lowery BD, Manisty C, Margulies KB, Moon JC, Mordi IR, Morley MP, Morris AD, Morris AP, Morton L, Noursadeghi M, Ostrowski SR, Owens AT, Palmer CNA, Pantazis A, Pedersen OBV, Prasad SK, Shekhar A, Smelser DT, Srinivasan S, Stefansson K, Sveinbjörnsson G, Syrris P, Tammesoo ML, Tayal U, Teder-Laving M, Thorgeirsson G, Thorsteinsdottir U, Tragante V, Trégouët DA, Treibel TA, Ullum H, Valdes AM, van Setten J, van Vugt M, Veluchamy A, Verschuren WMM, Villard E, Yang Y, Asselbergs FW, Cappola TP, Dube MP, Dunn ME, Ellinor PT, Hingorani AD, Lang CC, Samani NJ, Shah SH, Smith JG, Vasan RS, O'Regan DP, Holm H, Noseda M, Wells Q, Ware JS, Lumbers RT. Genome-wide association analysis provides insights into the molecular etiology of dilated cardiomyopathy. Nat Genet 2024; 56:2646-2658. [PMID: 39572783 PMCID: PMC11631752 DOI: 10.1038/s41588-024-01952-y] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2024] [Indexed: 12/12/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation. We report a genome-wide association study and multi-trait analysis of DCM (14,256 cases) and three left ventricular traits (36,203 UK Biobank participants). We identified 80 genomic risk loci and prioritized 62 putative effector genes, including several with rare variant DCM associations (MAP3K7, NEDD4L and SSPN). Using single-nucleus transcriptomics, we identify cellular states, biological pathways, and intracellular communications that drive pathogenesis. We demonstrate that polygenic scores predict DCM in the general population and modify penetrance in carriers of rare DCM variants. Our findings may inform the design of genetic testing strategies that incorporate polygenic background. They also provide insights into the molecular etiology of DCM that may facilitate the development of targeted therapeutics.
Collapse
Affiliation(s)
- Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Douglas Cannie
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Miller
- Division of Biosciences, University College London, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isabelle Bond
- Institute of Cardiovascular Science, University College London, London, UK
| | - Xiao Xu
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Catherine Francis
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Antonio De Marvao
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Doug Speed
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Anna Axelsson Raja
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua D Backman
- Analytical Genetics, Regeneron Genetics Center, Tarrytown, NY, USA
| | - John Baksi
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kiran J Biddinger
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Boersma
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Utrecht, the Netherlands
| | - Jeffrey Brandimarto
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Philippe Charron
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris, France
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Stuart A Cook
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- British Heart Foundation Data Science Centre, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
- Laboratory of Excellence GENMED (Medical Genomics), Paris, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Alexander S Doney
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Deparment of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sophie Garnier
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Jonas Ghouse
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Daniel F Guðbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Brian P Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
| | - Hans L Hillege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isabella Kardys
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Utrecht, the Netherlands
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Kenneth B Margulies
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Ify R Mordi
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael P Morley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Lori Morton
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mahdad Noursadeghi
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen University Hospital, Copenhagen, Denmark
| | - Anjali T Owens
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin N A Palmer
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Antonis Pantazis
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ole B V Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sanjay K Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Akshay Shekhar
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Sundararajan Srinivasan
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Mari-Liis Tammesoo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Upasana Tayal
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris, France
- Univ. Bordeaux, INSERM, BPH, Bordeaux, France
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | | | - Ana M Valdes
- Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marion van Vugt
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Abirami Veluchamy
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - W M Monique Verschuren
- Department Life Course, Lifestyle and Health, Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Villard
- Sorbonne Research Unit on Cardiovascular Disorders, Metabolism and Nutrition, Team Genomics & Pathophysiology of Cardiovascular Diseases, ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Yifan Yang
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Folkert W Asselbergs
- Institute of Cardiovascular Science, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Thomas P Cappola
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie-Pierre Dube
- Montreal Heart Institute, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael E Dunn
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Tuanku Muhriz Chair, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Svati H Shah
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK.
- Health Data Research UK, University College London, London, UK.
- British Heart Foundation Data Science Centre, London, UK.
| |
Collapse
|
2
|
Gutiérrez LK, Moreno-Manuel AI, Jalife J. Kir2.1-Na V1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases. Heart Rhythm 2024; 21:630-646. [PMID: 38244712 DOI: 10.1016/j.hrthm.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.
Collapse
Affiliation(s)
- Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Stevens TL, Coles S, Sturm AC, Hoover CA, Borzok MA, Mohler PJ, El Refaey M. Molecular Pathways and Animal Models of Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1057-1090. [PMID: 38884769 DOI: 10.1007/978-3-031-44087-8_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.
Collapse
Affiliation(s)
- Tyler L Stevens
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara Coles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy C Sturm
- Genomic Medicine Institute, 23andMe, Sunnyvale, CA, USA
| | - Catherine A Hoover
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Maegen A Borzok
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mona El Refaey
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhang Z, Brugada P, Weiss JN, Qu Z. Phase 2 Re-Entry Without I to: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias. JACC Clin Electrophysiol 2023; 9:2459-2474. [PMID: 37831035 PMCID: PMC11348283 DOI: 10.1016/j.jacep.2023.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - James N Weiss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
5
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
6
|
Liantonio A, Bertini M, Mele A, Balla C, Dinoi G, Selvatici R, Mele M, De Luca A, Gualandi F, Imbrici P. Brugada Syndrome: More than a Monogenic Channelopathy. Biomedicines 2023; 11:2297. [PMID: 37626795 PMCID: PMC10452102 DOI: 10.3390/biomedicines11082297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac channelopathy first diagnosed in 1992 but still considered a challenging disease in terms of diagnosis, arrhythmia risk prediction, pathophysiology and management. Despite about 20% of individuals carrying pathogenic variants in the SCN5A gene, the identification of a polygenic origin for BrS and the potential role of common genetic variants provide the basis for applying polygenic risk scores for individual risk prediction. The pathophysiological mechanisms are still unclear, and the initial thinking of this syndrome as a primary electrical disease is evolving towards a partly structural disease. This review focuses on the main scientific advancements in the identification of biomarkers for diagnosis, risk stratification, pathophysiology and therapy of BrS. A comprehensive model that integrates clinical and genetic factors, comorbidities, age and gender, and perhaps environmental influences may provide the opportunity to enhance patients' quality of life and improve the therapeutic approach.
Collapse
Affiliation(s)
- Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Matteo Bertini
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Antonietta Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Cristina Balla
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Rita Selvatici
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Marco Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
- Cardiothoracic Department, Policlinico Riuniti Foggia, 71122 Foggia, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| |
Collapse
|
7
|
Miles C, Boukens BJ, Scrocco C, Wilde AA, Nademanee K, Haissaguerre M, Coronel R, Behr ER. Subepicardial Cardiomyopathy: A Disease Underlying J-Wave Syndromes and Idiopathic Ventricular Fibrillation. Circulation 2023; 147:1622-1633. [PMID: 37216437 PMCID: PMC11073566 DOI: 10.1161/circulationaha.122.061924] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023]
Abstract
Brugada syndrome (BrS), early repolarization syndrome (ERS), and idiopathic ventricular fibrillation (iVF) have long been considered primary electrical disorders associated with malignant ventricular arrhythmia and sudden cardiac death. However, recent studies have revealed the presence of subtle microstructural abnormalities of the extracellular matrix in some cases of BrS, ERS, and iVF, particularly within right ventricular subepicardial myocardium. Substrate-based ablation within this region has been shown to ameliorate the electrocardiographic phenotype and to reduce arrhythmia frequency in BrS. Patients with ERS and iVF may also exhibit low-voltage and fractionated electrograms in the ventricular subepicardial myocardium, which can be treated with ablation. A significant proportion of patients with BrS and ERS, as well as some iVF survivors, harbor pathogenic variants in the voltage-gated sodium channel gene, SCN5A, but the majority of genetic susceptibility of these disorders is likely to be polygenic. Here, we postulate that BrS, ERS, and iVF may form part of a spectrum of subtle subepicardial cardiomyopathy. We propose that impaired sodium current, along with genetic and environmental susceptibility, precipitates a reduction in epicardial conduction reserve, facilitating current-to-load mismatch at sites of structural discontinuity, giving rise to electrocardiographic changes and the arrhythmogenic substrate.
Collapse
Affiliation(s)
- Chris Miles
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
| | - Bastiaan J. Boukens
- Department of Medical Biology, University of Amsterdam, the Netherlands (B.J.B.)
- University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands (B.J.B.)
| | - Chiara Scrocco
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
| | - Arthur A.M. Wilde
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, the Netherlands (A.A.M.W.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (A.A.M.W.)
- European Reference Network for rare, low-prevalence, and complex diseases of the heart: ERN GUARD-Heart (A.A.M.W., M.H.)
| | - Koonlawee Nademanee
- Center of Excellence in Arrhythmia Research Chulalongkorn University, Department of Medicine, Chulalongkorn University, Thailand (K.N.)
- Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok, Thailand (K.N.)
| | - Michel Haissaguerre
- European Reference Network for rare, low-prevalence, and complex diseases of the heart: ERN GUARD-Heart (A.A.M.W., M.H.)
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France (M.H.)
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, France (M.H.)
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Cardiovascular Science, the Netherlands (R.C.)
| | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
- Mayo Clinic Healthcare, London, UK (E.R.B.)
| |
Collapse
|
8
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
9
|
Cheng R, Xu X, Yang S, Mi Z, Zhao Y, Gao J, Yu F, Ren X. The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. Eur J Med Res 2022; 27:212. [PMID: 36303246 PMCID: PMC9615401 DOI: 10.1186/s40001-022-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aim The study aimed to identify the underlying differentially expressed genes (DEGs) and mechanism of unstable atherosclerotic plaque using bioinformatics methods. Methods GSE120521, which includes four unstable samples and four stable atherosclerotic samples, was downloaded from the GEO database. DEGs were identified using LIMMA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using the Database for metascape Visualization online tool. Based on the STRING database, protein–protein interactions (PPIs) network among DEGs were constructed. Regulatory networks were visualized using Cytoscape. We use the xCell to analyze the different immune cell subtypes. Results A total of 1626 DEGs (1034 up-regulated and 592 down-regulated DEGs) were identified between unstable and stable samples. I pulled 62 transcription factors (34 up-regulated TFs and 28 down-regulated TFs) from the Trust database. The up-regulated TFs were mainly enrichment in positive regulation of myeloid leukocyte differentiation, and the down-regulated TFs were mainly enrichment in connective tissue development. In the PPI network, RB1, CEBPA, PPARG, BATF was the most significantly up-regulated gene in ruptured atherosclerotic samples. The immune cell composition enriched in CD cells and macrophages in the unstable carotid plaque. Conclusions Upregulated RB1, CEBPA, PPARG, BATF and down-regulated SRF, MYOCD, HEY2, GATA6 might perform critical promotional roles in atherosclerotic plaque rupture, furthermore, number and polarization of macrophages may play an important role in vulnerable plaques. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00840-7.
Collapse
Affiliation(s)
- Rui Cheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endocrinology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xiaojiang Xu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Shurong Yang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zhongqian Mi
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yong Zhao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jinhua Gao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feiyan Yu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xiuyun Ren
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
10
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
11
|
Pressler MP, Horvath A, Entcheva E. Sex-dependent transcription of cardiac electrophysiology and links to acetylation modifiers based on the GTEx database. Front Cardiovasc Med 2022; 9:941890. [PMID: 35935618 PMCID: PMC9354462 DOI: 10.3389/fcvm.2022.941890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Development of safer drugs based on epigenetic modifiers, e.g., histone deacetylase inhibitors (HDACi), requires better understanding of their effects on cardiac electrophysiology. Using RNAseq data from the genotype-tissue-expression database (GTEx), we created models that link the abundance of acetylation enzymes (HDAC/SIRT/HATs), and the gene expression of ion channels (IC) via select cardiac transcription factors (TFs) in male and female adult human hearts (left ventricle, LV). Gene expression data (transcripts per million, TPM) from GTEx donors (21–70 y.o.) were filtered, normalized and transformed to Euclidian space to allow quantitative comparisons in 84 female and 158 male LVs. Sex-specific partial least-square (PLS) regression models, linking gene expression data for HDAC/SIRT/HATs to TFs and to ICs gene expression, revealed tight co-regulation of cardiac ion channels by HDAC/SIRT/HATs, with stronger clustering in the male LV. Co-regulation of genes encoding excitatory and inhibitory processes in cardiac tissue by the acetylation modifiers may help explain their predominantly net-neutral effects on cardiac electrophysiology. ATP1A1, encoding for the Na/K pump, represented an outlier—with orthogonal regulation by the acetylation modifiers to most of the ICs. The HDAC/SIRT/HAT effects were mediated by strong (+) TF regulators of ICs, e.g., MEF2A and TBX5, in both sexes. Furthermore, for male hearts, PLS models revealed a stronger (+/-) mediatory role on ICs for NKX25 and TGF1B/KLF4, respectively, while RUNX1 exhibited larger (-) TF effects on ICs in females. Male-trained PLS models of HDAC/SIRT/HAT effects on ICs underestimated the effects on some ICs in females. Insights from the GTEx dataset about the co-expression and transcriptional co-regulation of acetylation-modifying enzymes, transcription factors and key cardiac ion channels in a sex-specific manner can help inform safer drug design.
Collapse
Affiliation(s)
- Michael P. Pressler
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, United States
- *Correspondence: Emilia Entcheva,
| |
Collapse
|
12
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
13
|
Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, Kim DK, Ban K, Husain M, Hui CC, Backx PH. Irx5 and transient outward K + currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol 2022; 322:H725-H741. [PMID: 35245131 DOI: 10.1152/ajpheart.00572.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established that fast transmural gradients of transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of disrupted Ito,f gradient on contractile properties using mouse models of Irx5 knockout (Irx5-KO) for selective Ito,f elevation in the endomyocardium (ENDO) of the left ventricle (LV) and Kcnd2 ablation (KV4.2-KO) for selective Ito,freduction in the EPI. Irx5-KO mice exhibited decreased global LV contractility in association with reductions in cell shortening and Ca2+ transient amplitudes in isolated ENDO but not EPI cardiomyocytes. Moreover, transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e. Kcnd2 and Kcnip2) in the ENDO, but not the EPI. Indeed, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility comparable to KV4.2-KO mice. Our findings demonstrate that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ri Youn Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dae-Kyum Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kiwon Ban
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Single cardiomyocytes from papillary muscles show lower preload-dependent activation of force compared to cardiomyocytes from the left ventricular free wall. J Mol Cell Cardiol 2022; 166:127-136. [DOI: 10.1016/j.yjmcc.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/05/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
|
15
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, et alBarc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 PMCID: PMC9376964 DOI: 10.1038/s41588-021-01007-6] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
Affiliation(s)
- Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Y Chiang
- Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Floriane Simonet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sean J Jurgens
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manon Baudic
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michele Nicastro
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joost A Offerhaus
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yuka Mizusawa
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Soraya Anys
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Minois
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Marine Arnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Alison Muir
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Margherita Torchio
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Cristina Gil Ortuño
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Javier Lacunza
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Daniela F Giachino
- Clinical and Biological Sciences, Medical Genetics, University of Torino, Orbassano, Italy
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Natascia Cerrato
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Raphaël P Martins
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Medical Science Department, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Sonia Van Dooren
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centre for Medical Genetics, research group Reproduction and Genetics, research cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Aurélie Thollet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Kyndt
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Anniek Corveleyn
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Birgit Stallmeyer
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Sven Dittmann
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Johan Saenen
- Cardiology, Electrophysiology - Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Noël
- Department of Cardiology, University Hospital of Brest, Brest, France
| | | | - Boris Rudic
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Matthew K Rowe
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Claire Federspiel
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | | | - Leslie Placide
- Department of Cardiology, CHU Montpellier, Montpellier, France
| | - Antoine Milhem
- Department of Cardiology, CH La Rochelle, La Rochelle, France
| | | | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- University Hospital of the Johann Wolfgang Goethe University Frankfurt, Institute of Legal Medicine, Frankfurt, Germany
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
| | - Bo Gregers Winkel
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Moore B Shoemaker
- Medicine, Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Genome Diagnostics Laboratory, Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Federico Manevy
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip Van Damme
- Neurology Department University Hospital Leuven, Neuroscience Department KU Leuven, Center for Brain & Disease Research VIB, Leuven, Belgium
| | - Daniele Cusi
- Scientific Unit, Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy
| | - Chiara Lanzani
- Nephrology, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Milan, Italy
| | - Sidwell Rigade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Estelle Baron
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Bonnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Simon Lecointe
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Audrey Donnart
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Hervé Le Marec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Chatel
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphane Bézieau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Barry London
- Department of Internal Medicine, Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Roden
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
- Department of Cardiology, Translational Cardiology, University Hospital Bern, Bern, Switzerland
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Larry A Chinitz
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Paul G Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten P van de Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriel Laurent
- Cardiology Department, ImVia lab team IFTIM, University Hospital Dijon, Dijon, France
| | | | | | - Stefan Kääb
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | | | | | - Jean-Luc Pasquie
- Department of Cardiology, CNRS UMR9214 - Inserm U1046 - PHYMEDEXP, Université de Montpellier et CHU Montpellier, Montpellier, France
| | - Olivier Billon
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | - Jason D Roberts
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
- INSERM 1260 - Regenerative Nanomedecine, University of Strasbourg, Strasbourg, France
| | - Martin Borggrefe
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Pier D Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK
- Institute of Cardiovasculr Science, UCL, Population Health, UCL, London, UK
| | | | - Bart Loeys
- Center for Medical Genetics, Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiology, Hopital Bichat, Paris, France
| | - Pascale Guicheney
- Sorbonne Université, Paris, France
- UMR_S1166, Faculté de médecine, Sorbonne Université, INSERM, Paris, France
| | - Philippe Maury
- Service de cardiologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | - Silvia G Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo de Asmundis
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis, Brussel-Vrije Universiteit Brussel, ERN Heart Guard Center, Brussels, Belgium
- IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Ramon Brugada
- Hospital Trueta, CiberCV, University of Girona, IDIBGI, Girona, Spain, Barcelona, Spain
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Philippe Mabo
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Nathalie Behar
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Carla Giustetto
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Maria Sabater Molina
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Juan R Gimeno
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Bornova, Turkey
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal P McKeown
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
- Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carol A Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Delmar
- Medicine, Cardiology, New York University School of Medicine, New York, NY, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jean-Baptiste Gourraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael W Tanck
- Clinical Epidemiology, Biostatistics and Bioinformatics, Clinical Methods and Public Health, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calum A MacRae
- Medicine, Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christian Dina
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Arthur A Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Jacques Schott
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Connie R Bezzina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Brughera A, Ballestero JA, McAlpine D. Sensitivity to Envelope Interaural Time Differences: Modeling Auditory Modulation Filtering. J Assoc Res Otolaryngol 2022; 23:35-57. [PMID: 34741225 PMCID: PMC8782955 DOI: 10.1007/s10162-021-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/30/2021] [Indexed: 02/03/2023] Open
Abstract
For amplitude-modulated sound, the envelope interaural time difference (ITDENV) is a potential cue for sound-source location. ITDENV is encoded in the lateral superior olive (LSO) of the auditory brainstem, by excitatory-inhibitory (EI) neurons receiving ipsilateral excitation and contralateral inhibition. Between human listeners, sensitivity to ITDENV varies considerably, but ultimately decreases with increasing stimulus carrier frequency, and decreases more strongly with increasing modulation rate. Mechanisms underlying the variation in behavioral sensitivity remain unclear. Here, with increasing carrier frequency (4-10 kHz), as we phenomenologically model the associated decrease in ITDENV sensitivity using arbitrarily fewer neurons consistent across populations, we computationally model the variable sensitivity across human listeners and modulation rates (32-800 Hz) as the decreasing range of membrane frequency responses in LSO neurons. Transposed tones stimulate a bilateral auditory-periphery model, driving model EI neurons where electrical membrane impedance filters the frequency content of inputs driven by amplitude-modulated sound, evoking modulation filtering. Calculated from Fisher information in spike-rate functions of ITDENV, for model EI neuronal populations distinctly reflecting the LSO range in membrane frequency responses, just-noticeable differences in ITDENV collectively reproduce the largest variation in ITDENV sensitivity across human listeners. These slow to fast model populations each generally match the best human ITDENV sensitivity at a progressively higher modulation rate, by membrane-filtering and spike-generation properties producing realistically less than Poisson variance. Non-resonant model EI neurons are also sensitive to interaural intensity differences. With peripheral filters centered between carrier frequency and modulation sideband, fast resonant model EI neurons extend ITDENV sensitivity above 500-Hz modulation.
Collapse
Affiliation(s)
- Andrew Brughera
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia ,grid.189504.10000 0004 1936 7558Department of Biomedical Engineering, Boston University, Boston, MA USA
| | - Jimena A. Ballestero
- Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - David McAlpine
- grid.1004.50000 0001 2158 5405Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales Australia
| |
Collapse
|
17
|
Cadrin-Tourigny J, Tadros R. Predicting sudden cardiac death in genetic heart disease. Can J Cardiol 2022; 38:479-490. [DOI: 10.1016/j.cjca.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
|
18
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
19
|
Glinge C, Lahrouchi N, Jabbari R, Tfelt-Hansen J, Bezzina CR. Genome-wide association studies of cardiac electrical phenotypes. Cardiovasc Res 2021; 116:1620-1634. [PMID: 32428210 PMCID: PMC7341169 DOI: 10.1093/cvr/cvaa144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The genetic basis of cardiac electrical phenotypes has in the last 25 years been the subject of intense investigation. While in the first years, such efforts were dominated by the study of familial arrhythmia syndromes, in recent years, large consortia of investigators have successfully pursued genome-wide association studies (GWAS) for the identification of single-nucleotide polymorphisms that govern inter-individual variability in electrocardiographic parameters in the general population. We here provide a review of GWAS conducted on cardiac electrical phenotypes in the last 14 years and discuss the implications of these discoveries for our understanding of the genetic basis of disease susceptibility and variability in disease severity. Furthermore, we review functional follow-up studies that have been conducted on GWAS loci associated with cardiac electrical phenotypes and highlight the challenges and opportunities offered by such studies.
Collapse
Affiliation(s)
- Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Al Sayed ZR, Canac R, Cimarosti B, Bonnard C, Gourraud JB, Hamamy H, Kayserili H, Girardeau A, Jouni M, Jacob N, Gaignerie A, Chariau C, David L, Forest V, Marionneau C, Charpentier F, Loussouarn G, Lamirault G, Reversade B, Zibara K, Lemarchand P, Gaborit N. Human model of IRX5 mutations reveals key role for this transcription factor in ventricular conduction. Cardiovasc Res 2021; 117:2092-2107. [PMID: 32898233 DOI: 10.1093/cvr/cvaa259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
AIMS Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function. METHODS AND RESULTS Using human cardiac tissues, transcriptomic correlative analyses between IRX5 and genes involved in cardiac electrical activity showed that in human ventricular compartment, IRX5 expression strongly correlated to the expression of major actors of cardiac conduction, including the sodium channel, Nav1.5, and Connexin 40 (Cx40). We then generated human-induced pluripotent stem cells (hiPSCs) derived from two Hamamy syndrome-affected patients carrying distinct homozygous loss-of-function mutations in IRX5 gene. Cardiomyocytes derived from these hiPSCs showed impaired cardiac gene expression programme, including misregulation in the control of Nav1.5 and Cx40 expression. In accordance with the prolonged QRS interval observed in Hamamy syndrome patients, a slower ventricular action potential depolarization due to sodium current reduction was observed on electrophysiological analyses performed on patient-derived cardiomyocytes, confirming the functional role of IRX5 in electrical conduction. Finally, a cardiac TF complex was newly identified, composed by IRX5 and GATA4, in which IRX5 potentiated GATA4-induction of SCN5A expression. CONCLUSION Altogether, this work unveils a key role for IRX5 in the regulation of human ventricular depolarization and cardiac electrical conduction, providing therefore new insights into our understanding of cardiac diseases.
Collapse
Affiliation(s)
- Zeina R Al Sayed
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Robin Canac
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Bastien Cimarosti
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jean-Baptiste Gourraud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, Geneva University, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Hulya Kayserili
- Medical Genetics Department, Koç University School of Medicine(KUSOM), Rumelifeneri Yolu 34450, Istanbul, Turkey
| | - Aurore Girardeau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Mariam Jouni
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Nicolas Jacob
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Anne Gaignerie
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
| | - Caroline Chariau
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
- Université de Nantes, INSERM, CRTI, 30 Bd Jean Monnet, F-44093 Nantes, France
- ITUN, CHU Nantes, 30 Bd Jean Monnet, F-44093 Nantes, France
| | - Virginie Forest
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Céline Marionneau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Gildas Loussouarn
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Guillaume Lamirault
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
- Medical Genetics Department, Koç University School of Medicine(KUSOM), Rumelifeneri Yolu 34450, Istanbul, Turkey
- Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
- Reproductive Biology Laboratory, Amsterdam UMC, Meibergdreef 9 1105, Amsterdam-Zuidoost, Netherlands
| | - Kazem Zibara
- ER045, Laboratory of stem cells, DSST, Biology department, Faculty of Sciences, Lebanese University, Rafic Hariri Campus - Hadath, Beirut 1700, Lebanon
| | - Patricia Lemarchand
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Nathalie Gaborit
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| |
Collapse
|
21
|
Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis 2021; 8:jcdd8060070. [PMID: 34199178 PMCID: PMC8231901 DOI: 10.3390/jcdd8060070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.
Collapse
Affiliation(s)
- Mathilde R. Rivaud
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
| | - Michiel Blok
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
22
|
Behr ER, Ben-Haim Y, Ackerman MJ, Krahn AD, Wilde AAM. Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway? Eur Heart J 2021; 42:1073-1081. [PMID: 33421051 DOI: 10.1093/eurheartj/ehaa1051] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) was first described as a primary electrical disorder predisposing to the risk of sudden cardiac death and characterized by right precordial lead ST elevation. Early description of right ventricular structural abnormalities and of right ventricular outflow tract (RVOT) conduction delay in BrS patients set the stage for the current controversy over the pathophysiology underlying the syndrome: channelopathy or cardiomyopathy; repolarization or depolarization. This review examines the current understanding of the BrS substrate, its genetic and non-genetic basis, theories of pathophysiology, and the clinical implications thereof. We propose that the final common pathway for BrS could be viewed as a disease of 'reduced RVOT conduction reserve'.
Collapse
Affiliation(s)
- Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA
| | - Yael Ben-Haim
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu)
| | - Michael J Ackerman
- Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA.,Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
23
|
Makarawate P, Glinge C, Khongphatthanayothin A, Walsh R, Mauleekoonphairoj J, Amnueypol M, Prechawat S, Wongcharoen W, Krittayaphong R, Anannab A, Lichtner P, Meitinger T, Tjong FVY, Lieve KVV, Amin AS, Sahasatas D, Ngarmukos T, Wichadakul D, Payungporn S, Sutjaporn B, Wandee P, Poovorawan Y, Tfelt-Hansen J, Tanck MWT, Tadros R, Wilde AAM, Bezzina CR, Veerakul G, Nademanee K. Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand. Heart Rhythm 2020; 17:2145-2153. [PMID: 32619740 DOI: 10.1016/j.hrthm.2020.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations in SCN5A are rarely found in Thai patients with Brugada syndrome (BrS). Recent evidence suggested that common genetic variations may underlie BrS in a complex inheritance model. OBJECTIVE The purpose of this study was to find common and rare/low-frequency genetic variants predisposing to BrS in persons in Thailand. METHODS We conducted a genome-wide association study (GWAS) to explore the association of common variants in 154 Thai BrS cases and 432 controls. We sequenced SCN5A in 131 cases and 205 controls. Variants were classified according to current guidelines, and case-control association testing was performed for rare and low-frequency variants. RESULTS Two loci were significantly associated with BrS. The first was near SCN5A/SCN10A (lead marker rs10428132; odds ratio [OR] 2.4; P = 3 × 10-10). Conditional analysis identified a novel independent signal in the same locus (rs6767797; OR 2.3; P = 2.7 × 10-10). The second locus was near HEY2 (lead marker rs3734634; OR 2.5; P = 7 × 10-9). Rare (minor allele frequency [MAF] <0.0001) coding variants in SCN5A were found in 8 of the 131 cases (6.1% in cases vs 2.0% in controls; P = .046; OR 3.3; 95% confident interval [CI] 1.0-11.1), but an enrichment of low-frequency (MAF<0.001 and >0.0001) variants also was observed in cases, with 1 variant (SCN5A: p.Arg965Cys) detected in 4.6% of Thai BrS patients vs 0.5% in controls (P = 0.015; OR 9.8; 95% CI 1.2-82.3). CONCLUSION The genetic basis of BrS in Thailand includes a wide spectrum of variant frequencies and effect sizes. As previously shown in European and Japanese populations, common variants near SCN5A and HEY2 are associated with BrS in the Thai population, confirming the transethnic transferability of these 2 major BrS loci.
Collapse
Affiliation(s)
| | - Charlotte Glinge
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Apichai Khongphatthanayothin
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Bangkok Heart Hospital, Bangkok General Hospital, Bangkok, Thailand.
| | - Roddy Walsh
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - John Mauleekoonphairoj
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Montawatt Amnueypol
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Prechawat
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanwarang Wongcharoen
- Department of Medicine, Faculty of Medicine, Chiangmai University, Chiangmai, Thailand
| | - Rungroj Krittayaphong
- Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alisara Anannab
- Department of cardiovascular and intervention, Central Chest Institute of Thailand, Nonthaburi, Thailand
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fleur V Y Tjong
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Krystien V V Lieve
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ahmad S Amin
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Dujdao Sahasatas
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tachapong Ngarmukos
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Boosamas Sutjaporn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pharawee Wandee
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jacob Tfelt-Hansen
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu)
| | - Michael W T Tanck
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu)
| | - Connie R Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu)
| | | | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok, Thailand
| |
Collapse
|
24
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
25
|
Pérez-Agustín A, Pinsach-Abuin M, Pagans S. Role of Non-Coding Variants in Brugada Syndrome. Int J Mol Sci 2020; 21:E8556. [PMID: 33202810 PMCID: PMC7698069 DOI: 10.3390/ijms21228556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.
Collapse
Affiliation(s)
- Adrian Pérez-Agustín
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| | | | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| |
Collapse
|
26
|
Belbachir N, Portero V, Al Sayed ZR, Gourraud JB, Dilasser F, Jesel L, Guo H, Wu H, Gaborit N, Guilluy C, Girardeau A, Bonnaud S, Simonet F, Karakachoff M, Pattier S, Scott C, Burel S, Marionneau C, Chariau C, Gaignerie A, David L, Genin E, Deleuze JF, Dina C, Sauzeau V, Loirand G, Baró I, Schott JJ, Probst V, Wu JC, Redon R, Charpentier F, Le Scouarnec S. RRAD mutation causes electrical and cytoskeletal defects in cardiomyocytes derived from a familial case of Brugada syndrome. Eur Heart J 2020; 40:3081-3094. [PMID: 31114854 DOI: 10.1093/eurheartj/ehz308] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.
Collapse
Affiliation(s)
- Nadjet Belbachir
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent Portero
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Zeina R Al Sayed
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Jean-Baptiste Gourraud
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Florian Dilasser
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Laurence Jesel
- CHU Strasbourg, Service de Cardiologie, Strasbourg, France
| | - Hongchao Guo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Haodi Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathalie Gaborit
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | | | - Aurore Girardeau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Stephanie Bonnaud
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Floriane Simonet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Matilde Karakachoff
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | | | - Carol Scott
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Sophie Burel
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Céline Marionneau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Caroline Chariau
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France
| | - Anne Gaignerie
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France
| | - Laurent David
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, UNIV Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA, Evry, France
| | - Christian Dina
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Sauzeau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Gervaise Loirand
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Isabelle Baró
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Jean-Jacques Schott
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Probst
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Redon
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Flavien Charpentier
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Solena Le Scouarnec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| |
Collapse
|
27
|
Blok M, Boukens BJ. Mechanisms of Arrhythmias in the Brugada Syndrome. Int J Mol Sci 2020; 21:ijms21197051. [PMID: 32992720 PMCID: PMC7582368 DOI: 10.3390/ijms21197051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmias in Brugada syndrome patients originate in the right ventricular outflow tract (RVOT). Over the past few decades, the characterization of the unique anatomy and electrophysiology of the RVOT has revealed the arrhythmogenic nature of this region. However, the mechanisms that drive arrhythmias in Brugada syndrome patients remain debated as well as the exact site of their occurrence in the RVOT. Identifying the site of origin and mechanism of Brugada syndrome would greatly benefit the development of mechanism-driven treatment strategies.
Collapse
Affiliation(s)
- Michiel Blok
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
28
|
Ramírez J, van Duijvenboden S, Young WJ, Orini M, Lambiase PD, Munroe PB, Tinker A. Common Genetic Variants Modulate the Electrocardiographic Tpeak-to-Tend Interval. Am J Hum Genet 2020; 106:764-778. [PMID: 32386560 PMCID: PMC7273524 DOI: 10.1016/j.ajhg.2020.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death is responsible for half of all deaths from cardiovascular disease. The analysis of the electrophysiological substrate for arrhythmias is crucial for optimal risk stratification. A prolonged T-peak-to-Tend (Tpe) interval on the electrocardiogram is an independent predictor of increased arrhythmic risk, and Tpe changes with heart rate are even stronger predictors. However, our understanding of the electrophysiological mechanisms supporting these risk factors is limited. We conducted genome-wide association studies (GWASs) for resting Tpe and Tpe response to exercise and recovery in ∼30,000 individuals, followed by replication in independent samples (∼42,000 for resting Tpe and ∼22,000 for Tpe response to exercise and recovery), all from UK Biobank. Fifteen and one single-nucleotide variants for resting Tpe and Tpe response to exercise, respectively, were formally replicated. In a full dataset GWAS, 13 further loci for resting Tpe, 1 for Tpe response to exercise and 1 for Tpe response to exercise were genome-wide significant (p ≤ 5 × 10-8). Sex-specific analyses indicated seven additional loci. In total, we identify 32 loci for resting Tpe, 3 for Tpe response to exercise and 3 for Tpe response to recovery modulating ventricular repolarization, as well as cardiac conduction and contraction. Our findings shed light on the genetic basis of resting Tpe and Tpe response to exercise and recovery, unveiling plausible candidate genes and biological mechanisms underlying ventricular excitability.
Collapse
Affiliation(s)
- Julia Ramírez
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Stefan van Duijvenboden
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Barts Heart Centre, St Bartholomew's Hospital, London EC1A 7BE, UK
| | - Michele Orini
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK; Barts Heart Centre, St Bartholomew's Hospital, London EC1A 7BE, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK; Barts Heart Centre, St Bartholomew's Hospital, London EC1A 7BE, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
29
|
Li X, Guo LZ, Liu N, Du X, Bai R, Dong JZ, Ma CS. Association of T66A polymorphism in CASQ2 with PR interval in a Chinese population. Herz 2020; 46:123-129. [PMID: 32291483 DOI: 10.1007/s00059-020-04913-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to explore the relationship between arrhythmia-associated or electrocardiogram (ECG)-associated common variants and PR interval, QRS duration, QTcorrected, and heart rate in a Chinese cohort. METHODS We studied the association between 26 single-nucleotide polymorphisms (SNPs) and digital ECG data from 379 unrelated Han Chinese individuals collected in an epidemiological survey in Beijing. All subjects were 45 years of age or older and were free of cardiovascular diseases and diabetes. The SNPs were genotyped in a multiplex panel using the Sequenom MassARRAY platform. RESULTS Missense variant T66A (Thr66Ala, rs4074536) of the CASQ2 gene, which was previously reported to be associated with QRS complex in European populations, was significantly associated with PR interval prolongation in our sample (padjusted = 0.006, betaadjusted = 3.983 ms). A two-tailed t test showed that the CC genotype (n = 86) had a significantly longer PR interval (162.9 ± 19.4 ms) than the non-CC genotypes (n = 288, PR interval: 154.6 ± 20.9 ms), with a remarkable difference of 8.2 ms between the groups (p = 0.001). Interestingly, this association between T66A of CASQ2 and PR interval was more evident in females (padjusted = 0.007, betaadjusted = 5.723 ms) than in males (padjusted = 0.177, betaadjusted = 2.725 ms). In addition, rs3822714 in the HAND1 locus might be associated with QRS duration (padjusted = 0.034, betaadjusted = -2.268 ms). CONCLUSION We identified a novel signal of an association between the CC genotype of T66A in CASQ2 and PR interval prolongation in a Chinese population, particularly in females. This association deserves further exploration given its possible effects on calcium handling in cardiac electrophysiology.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Li-Zhu Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Rong Bai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Jian-Zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China
| | - Chang-Sheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine for Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
30
|
Khokhlova A, Konovalov P, Iribe G, Solovyova O, Katsnelson L. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models. Front Physiol 2020; 11:171. [PMID: 32256377 PMCID: PMC7091561 DOI: 10.3389/fphys.2020.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Transmural differences in ventricular myocardium are maintained by electromechanical coupling and mechano-calcium/mechano-electric feedback. In the present study, we experimentally investigated the influence of preload on the force characteristics of subendocardial (Endo) and subepicardial (Epi) single ventricular cardiomyocytes stretched by up to 20% from slack sarcomere length (SL) and analyzed the results with the help of mathematical modeling. Mathematical models of Endo and Epi cells, which accounted for regional heterogeneity in ionic currents, Ca2+ handling, and myofilament contractile mechanisms, showed that a greater slope of the active tension–length relationship observed experimentally in Endo cardiomyocytes could be explained by greater length-dependent Ca2+ activation in Endo cells compared with Epi ones. The models also predicted that greater length dependence of Ca2+ activation in Endo cells compared to Epi ones underlies, via mechano-calcium-electric feedback, the reduction in the transmural gradient in action potential duration (APD) at a higher preload. However, the models were unable to reproduce the experimental data on a decrease of the transmural gradient in the time to peak contraction between Endo and Epi cells at longer end-diastolic SL. We hypothesize that preload-dependent changes in viscosity should be involved alongside the Frank–Starling effects to regulate the transmural gradient in length-dependent changes in the time course of contraction of Endo and Epi cardiomyocytes. Our experimental data and their analysis based on mathematical modeling give reason to believe that mechano-calcium-electric feedback plays a critical role in the modulation of electrophysiological and contractile properties of myocytes across the ventricular wall.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Pavel Konovalov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gentaro Iribe
- Department of Physiology, Asahikawa Medical University, Hokkaido, Japan.,Department of Cardiovascular Physiology, Okayama University, Okayama, Japan
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| | - Leonid Katsnelson
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.,Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
31
|
Monasky MM, Micaglio E, Ciconte G, Pappone C. Brugada Syndrome: Oligogenic or Mendelian Disease? Int J Mol Sci 2020; 21:ijms21051687. [PMID: 32121523 PMCID: PMC7084676 DOI: 10.3390/ijms21051687] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Brugada syndrome (BrS) is diagnosed by a coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG), and it is associated with an increased risk of sudden cardiac death (SCD) compared to the general population. Although BrS is considered a genetic disease, its molecular mechanism remains elusive in about 70-85% of clinically-confirmed cases. Variants occurring in at least 26 different genes have been previously considered causative, although the causative effect of all but the SCN5A gene has been recently challenged, due to the lack of systematic, evidence-based evaluations, such as a variant's frequency among the general population, family segregation analyses, and functional studies. Also, variants within a particular gene can be associated with an array of different phenotypes, even within the same family, preventing a clear genotype-phenotype correlation. Moreover, an emerging concept is that a single mutation may not be enough to cause the BrS phenotype, due to the increasing number of common variants now thought to be clinically relevant. Thus, not only the complete list of genes causative of the BrS phenotype remains to be determined, but also the interplay between rare and common multiple variants. This is particularly true for some common polymorphisms whose roles have been recently re-evaluated by outstanding works, including considering for the first time ever a polygenic risk score derived from the heterozygous state for both common and rare variants. The more common a certain variant is, the less impact this variant might have on heart function. We are aware that further studies are warranted to validate a polygenic risk score, because there is no mutated gene that connects all, or even a majority, of BrS cases. For the same reason, it is currently impossible to create animal and cell line genetic models that represent all BrS cases, which would enable the expansion of studies of this syndrome. Thus, the best model at this point is the human patient population. Further studies should first aim to uncover genetic variants within individuals, as well as to collect family segregation data to identify potential genetic causes of BrS.
Collapse
Affiliation(s)
| | | | | | - Carlo Pappone
- Correspondence: ; Tel.: +39-0252-774260; Fax: +39-0252-774306
| |
Collapse
|
32
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
33
|
Cerrone M, Remme CA, Tadros R, Bezzina CR, Delmar M. Beyond the One Gene-One Disease Paradigm: Complex Genetics and Pleiotropy in Inheritable Cardiac Disorders. Circulation 2019; 140:595-610. [PMID: 31403841 DOI: 10.1161/circulationaha.118.035954] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inheritable cardiac disorders, which may be associated with cardiomyopathic changes, are often associated with increased risk of sudden death in the young. Early linkage analysis studies in Mendelian forms of these diseases, such as hypertrophic cardiomyopathy and long-QT syndrome, uncovered large-effect genetic variants that contribute to the phenotype. In more recent years, through genotype-phenotype studies and methodological advances in genetics, it has become evident that most inheritable cardiac disorders are not monogenic but, rather, have a complex genetic basis wherein multiple genetic variants contribute (oligogenic or polygenic inheritance). Conversely, studies on genes underlying these disorders uncovered pleiotropic effects, with a single gene affecting multiple and apparently unrelated phenotypes. In this review, we explore these 2 phenomena: on the one hand, the evidence that variants in multiple genes converge to generate one clinical phenotype, and, on the other, the evidence that variants in one gene can lead to apparently unrelated phenotypes. Although multiple conditions are addressed to illustrate these concepts, the experience obtained in the study of long-QT syndrome, Brugada syndrome, and arrhythmogenic cardiomyopathy, and in the study of functions related to SCN5A (the gene coding for the α-subunit of the most abundant sodium channel in the heart) and PKP2 (the gene coding for the desmosomal protein plakophilin-2), as well, is discussed in more detail.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York.,Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Carol Ann Remme
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, AMC Heart Center, The Netherlands (C.A.R., C.R.B.)
| | - Connie R Bezzina
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Mario Delmar
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York
| |
Collapse
|
34
|
Affiliation(s)
- Elijah R Behr
- Cardiology Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’s, University of London, London, UK
| |
Collapse
|
35
|
|
36
|
Wang W, Mellor RL, Nerbonne JM, Balke CW. Regional differences in the expression of tetrodotoxin-sensitive inward Ca 2+ and outward Cs +/K + currents in mouse and human ventricles. Channels (Austin) 2019; 13:72-87. [PMID: 30704344 PMCID: PMC6380286 DOI: 10.1080/19336950.2019.1568146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tetrodotoxin (TTX) sensitive inward Ca2+ currents, ICa(TTX), have been identified in cardiac myocytes from several species, although it is unclear if ICa(TTX) is expressed in all cardiac cell types, and if ICa(TTX) reflects Ca2+ entry through the main, Nav1.5-encoded, cardiac Na+ (Nav) channels. To address these questions, recordings were obtained with 2 mm Ca2+ and 0 mm Na+ in the bath and 120 mm Cs+ in the pipettes from myocytes isolated from adult mouse interventricular septum (IVS), left ventricular (LV) endocardium, apex, and epicardium and from human LV endocardium and epicardium. On membrane depolarizations from a holding potential of −100 mV, ICa(TTX) was identified in mouse IVS and LV endocardial myocytes and in human LV endocardial myocytes, whereas only TTX-sensitive outward Cs+/K+ currents were observed in mouse LV apex and epicardial myocytes and human LV epicardial myocytes. The inward Ca2+, but not the outward Cs+/K+, currents were blocked by mm concentrations of MTSEA, a selective blocker of cardiac Nav1.5-encoded Na+ channels. In addition, in Nav1.5-expressing tsA-201 cells, ICa(TTX) was observed in 3 (of 20) cells, and TTX-sensitive outward Cs+/K+ currents were observed in the other (17) cells. The time- and voltage-dependent properties of the TTX-sensitive inward Ca2+ and outward Cs+/K+ currents recorded in Nav1.5-expressing tsA-201 were indistinguishable from native currents in mouse and human cardiac myocytes. Overall, the results presented here suggest marked regional, cell type-specific, differences in the relative ion selectivity, and likely the molecular architecture, of native SCN5A-/Scn5a- (Nav1.5-) encoded cardiac Na+ channels in mouse and human ventricles.
Collapse
Affiliation(s)
- Wei Wang
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Rebecca L Mellor
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Jeanne M Nerbonne
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| | - C William Balke
- a Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran Veterans Administration Medical Center , St. Louis , MO , USA
| |
Collapse
|
37
|
Abstract
Spatiotemporal gene expression during cardiac development is a highly regulated process. Activation of key signaling pathways involved in electrophysiological programming, such as Notch and Wnt signaling, occurs in early cardiovascular development and these pathways are reactivated during pathologic remodeling. Direct targets of these signaling pathways have also been associated with inherited arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. In addition, evidence is emerging from animal models that reactivation of Notch and Wnt signaling during cardiac pathology may predispose to acquired arrhythmias, underscoring the importance of elucidating the transcriptional and epigenetic effects on cardiac gene regulation. Here, we highlight specific examples where gene expression dictates electrophysiological properties in both normal and diseased hearts.
Collapse
|
38
|
Li G, Khandekar A, Yin T, Hicks SC, Guo Q, Takahashi K, Lipovsky CE, Brumback BD, Rao PK, Weinheimer CJ, Rentschler SL. Differential Wnt-mediated programming and arrhythmogenesis in right versus left ventricles. J Mol Cell Cardiol 2018; 123:92-107. [PMID: 30193957 DOI: 10.1016/j.yjmcc.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Several inherited arrhythmias, including Brugada syndrome and arrhythmogenic cardiomyopathy, primarily affect the right ventricle and can lead to sudden cardiac death. Among many differences, right and left ventricular cardiomyocytes derive from distinct progenitors, prompting us to investigate how embryonic programming may contribute to chamber-specific conduction and arrhythmia susceptibility. Here, we show that developmental perturbation of Wnt signaling leads to chamber-specific transcriptional regulation of genes important in cardiac conduction that persists into adulthood. Transcriptional profiling of right versus left ventricles in mice deficient in Wnt transcriptional activity reveals global chamber differences, including genes regulating cardiac electrophysiology such as Gja1 and Scn5a. In addition, the transcriptional repressor Hey2, a gene associated with Brugada syndrome, is a direct target of Wnt signaling in the right ventricle only. These transcriptional changes lead to perturbed right ventricular cardiac conduction and cellular excitability. Ex vivo and in vivo stimulation of the right ventricle is sufficient to induce ventricular tachycardia in Wnt transcriptionally inactive hearts, while left ventricular stimulation has no effect. These data show that embryonic perturbation of Wnt signaling in cardiomyocytes leads to right ventricular arrhythmia susceptibility in the adult heart through chamber-specific regulation of genes regulating cellular electrophysiology.
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Aditi Khandekar
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephanie C Hicks
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Qiusha Guo
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Kentaro Takahashi
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Praveen K Rao
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Carla J Weinheimer
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet 2018; 50:1234-1239. [PMID: 30061737 DOI: 10.1038/s41588-018-0171-3] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
To identify genetic variation underlying atrial fibrillation, the most common cardiac arrhythmia, we performed a genome-wide association study of >1,000,000 people, including 60,620 atrial fibrillation cases and 970,216 controls. We identified 142 independent risk variants at 111 loci and prioritized 151 functional candidate genes likely to be involved in atrial fibrillation. Many of the identified risk variants fall near genes where more deleterious mutations have been reported to cause serious heart defects in humans (GATA4, MYH6, NKX2-5, PITX2, TBX5)1, or near genes important for striated muscle function and integrity (for example, CFL2, MYH7, PKP2, RBM20, SGCG, SSPN). Pathway and functional enrichment analyses also suggested that many of the putative atrial fibrillation genes act via cardiac structural remodeling, potentially in the form of an 'atrial cardiomyopathy'2, either during fetal heart development or as a response to stress in the adult heart.
Collapse
|
40
|
Hasdemir C, Juang JJM, Kose S, Kocabas U, Orman MN, Payzin S, Sahin H, Celen C, Ozcan EE, Chen CYJ, Gunduz R, Turan OE, Senol O, Burashnikov E, Antzelevitch C. Coexistence of atrioventricular accessory pathways and drug-induced type 1 Brugada pattern. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:1078-1092. [PMID: 29953624 DOI: 10.1111/pace.13414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atrial arrhythmias, particularly atrioventricular nodal reentrant tachycardia, can coexist with drug-induced type 1 Brugada electrocardiogram (ECG) pattern (DI-Type1-BrP). The present study was designed to determine the prevalence of DI-Type1-BrP in patients with atrioventricular accessory pathways (AV-APs) and to investigate the clinical, electrocardiographic, electrophysiologic, and genetic characteristics of these patients. METHODS One-hundred twenty-four consecutive cases of AV-APs and 84 controls underwent an ajmaline challenge test to unmask DI-Type1-BrP. Genetic screening and analysis was performed in 55 of the cases (19 with and 36 without DI-Type1-BrP). RESULTS Patients with AV-APs were significantly more likely than controls to have a Type1-BrP unmasked (16.1 vs 4.8%, P = 0.012). At baseline, patients with DI-Type1-BrP had higher prevalence of chest pain, QR/rSr' pattern in V1 and QRS notching/slurring in V2 and aVL during preexcitation, rSr' pattern in V1 -V2 , and QRS notching/slurring in aVL during orthodromic atrioventricular reentrant tachycardia (AVRT) compared to patients without DI-Type1-BrP. Abnormal QRS configuration (QRS notching/slurring and/or fragmentation) in V2 during preexcitation was present in all patients with DI-Type1 BrP. The prevalence of spontaneous preexcited atrial fibrillation (AF) and history of AF were similar (15% vs 18.3%, P = 0.726) in patients with and without DI-Type1-BrP, respectively. The prevalence of mutations in Brugada-susceptibility genes was higher (36.8% vs 8.3%, P = 0.02) in patients with DI-Type1-BrP compared to patients without DI-Type1-BrP. CONCLUSIONS DI-Type1-BrP is relatively common in patients with AV-APs. We identify 12-lead ECG characteristics during preexcitation and orthodromic AVRT that point to an underlying type1-BrP, portending an increased probability for development of malignant arrhythmias.
Collapse
Affiliation(s)
- Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | | | | | - Umut Kocabas
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Mehmet N Orman
- Department of Biostatistics and Medical Informatics, Ege University School of Medicine, Izmir, Turkey
| | - Serdar Payzin
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Hatice Sahin
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Candan Celen
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Emin E Ozcan
- Department of Cardiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ching-Yu Julius Chen
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,Lankenau Heart Institute, Wynnewood, PA, USA.,Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
41
|
Andreasen L, Ghouse J, Skov MW, Have CT, Ahlberg G, Rasmussen PV, Linneberg A, Pedersen O, Platonov PG, Haunsø S, Svendsen JH, Hansen T, Kanters JK, Olesen MS. Brugada Syndrome-Associated Genetic Loci Are Associated With J-Point Elevation and an Increased Risk of Cardiac Arrest. Front Physiol 2018; 9:894. [PMID: 30042696 PMCID: PMC6048413 DOI: 10.3389/fphys.2018.00894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: A previous genome-wide association study found three genetic loci, rs9388451, rs10428132, and rs11708996, to increase the risk of Brugada Syndrome (BrS). Since the effect of these loci in the general population is unknown, we aimed to investigate the effect on electrocardiogram (ECG) parameters and outcomes in the general population. Materials and Methods: A cohort of 6,161 individuals (median age 45 [interquartile range (IQR) 40–50] years, 49% males), with available digital ECGs, was genotyped and subsequently followed for a median period of 13 [IQR 12.6–13.4] years. Data on outcomes were collected from Danish administrative healthcare registries. Furthermore, ~400,000 persons from UK Biobank were investigated for associations between the three loci and cardiac arrest/ventricular fibrillation (VF). Results: Homozygote carriers of the C allele in rs6800541 intronic to SCN10A had a significantly larger J-point elevation (JPE) compared with wildtype carriers (11 vs. 6 μV, P < 0.001). There was an additive effect of carrying multiple BrS-associated risk alleles with an increased JPE in lead V1. None of the BrS-associated genetic loci predisposed to syncope, atrial fibrillation, or total mortality in the general Danish population. The rs9388451 genetic locus adjacent to the HEY2 gene was associated with cardiac arrest/VF in an analysis using the UK Biobank study (odds ratio = 1.13 (95% confidence interval: 1.08–1.18), P = 0.006). Conclusions: BrS-associated risk alleles increase the JPE in lead V1 in an additive manner, but was not associated with increased mortality or syncope in the general population of Denmark. However, the HEY2 risk allele increased the risk of cardiac arrest/VF in the larger population study of UK Biobank indicating an important role of this common genetic locus.
Collapse
Affiliation(s)
- Laura Andreasen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas Ghouse
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten W Skov
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian T Have
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Ahlberg
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter V Rasmussen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pyotr G Platonov
- Center for Integrative Electrocardiology at Lund University, Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.,Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
42
|
Calloe K, Aistrup GL, Di Diego JM, Goodrow RJ, Treat JA, Cordeiro JM. Interventricular differences in sodium current and its potential role in Brugada syndrome. Physiol Rep 2018; 6:e13787. [PMID: 30009404 PMCID: PMC6046646 DOI: 10.14814/phy2.13787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited disease associated with ST elevation in the right precordial leads, polymorphic ventricular tachycardia (PVT), and sudden cardiac death in adults. Mutations in the cardiac sodium channel account for a large fraction of BrS cases. BrS manifests in the right ventricle (RV), which led us to examine the biophysical and molecular properties of sodium channel in myocytes isolated from the left (LV) and right ventricle. Patch clamp was used to record sodium current (INa ) in single canine RV and LV epicardial (epi) and endocardial (endo) myocytes. Action potentials were recorded from multicellular preparations and single cells. mRNA and proteins were determined using quantitative RT-PCR and Western blot. Although LV wedge preparations were thicker than RV wedges, transmural ECG recordings showed no difference in the width of the QRS complex or transmural conduction time. Action potential characteristics showed RV epi and endo had a lower Vmax compared with LV epi and endo cells. Peak INa density was significantly lower in epi and endo RV cells compared with epi and endo LV cells. Recovery from inactivation of INa in RV cells was slightly faster and half maximal steady-state inactivation was more positive. β2 and β4 mRNA was detected at very low levels in both ventricles, which was confirmed at the protein level. Our observations demonstrate that Vmax and Na+ current are smaller in RV, presumably due to differential Nav 1.5/β subunit expression. These results provide a potential mechanism for the right ventricular manifestation of BrS.
Collapse
Affiliation(s)
- Kirstine Calloe
- Department of Veterinary and Animal SciencesSection for Anatomy, Biochemistry and PhysiologyUniversity of CopenhagenFrederiksbergDenmark
| | - Gary L. Aistrup
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - José M. Di Diego
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
- Lankenau Institute for Medical ResearchWynnewoodPennsylvania
| | - Robert J. Goodrow
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - Jacqueline A. Treat
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| | - Jonathan M. Cordeiro
- Department of Experimental CardiologyMasonic Medical Research LaboratoryUticaNew York
| |
Collapse
|
43
|
Howard T, Greer-Short A, Satroplus T, Patel N, Nassal D, Mohler PJ, Hund TJ. CaMKII-dependent late Na + current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2018; 315:H794-H801. [PMID: 29932771 DOI: 10.1152/ajpheart.00197.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanisms underlying Ca2+/calmodulin-dependent protein kinase II (CaMKII)-induced arrhythmias in ischemia-reperfusion (I/R) are not fully understood. We tested the hypothesis that CaMKII increases late Na+ current ( INa,L) via phosphorylation of Nav1.5 at Ser571 during I/R, thereby increasing arrhythmia susceptibility. To test our hypothesis, we studied isolated, Langendorff-perfused hearts from wild-type (WT) mice and mice expressing Nav channel variants Nav1.5-Ser571E (S571E) and Nav1.5-Ser571A (S571A). WT hearts showed a significant increase in the levels of phosphorylated CaMKII and Nav1.5 at Ser571 [p-Nav1.5(S571)] after 15 min of global ischemia (just before the onset of reperfusion). Optical mapping experiments revealed an increase in action potential duration (APD) and APD dispersion without changes in conduction velocity during I/R in WT and S571E compared with S571A hearts. At the same time, WT and S571E hearts showed an increase in spontaneous arrhythmia events (e.g., premature ventricular contractions) and an increase in the inducibility of reentrant arrhythmias during reperfusion. Pretreatment of WT hearts with the Na+ channel blocker mexiletine (10 μM) normalized APD dispersion and reduced arrhythmia susceptibility during I/R. We conclude that CaMKII-dependent phosphorylation of Nav1.5 is a crucial driver for increased INa,L, arrhythmia triggers, and substrate during I/R. Selective targeting of this CaMKII-dependent pathway may have therapeutic potential for reducing arrhythmias in the setting of I/R. NEW & NOTEWORTHY Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of Nav1.5 at Ser571 leads to a prolongation of action potential duration (APD), increased APD dispersion, and increased arrhythmia susceptibility after ischemia-reperfusion in isolated mouse hearts. Genetic ablation of the CaMKII-dependent phosphorylation site Ser571 on Nav1.5 or low-dose mexiletine (to inhibit late Na+ current) reduced APD dispersion, arrhythmia triggers, and ventricular tachycardia inducibility.
Collapse
Affiliation(s)
- Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
44
|
|
45
|
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by ST-segment elevation in right precordial ECG leads and associated with sudden cardiac death in young adults. The ECG manifestations of BrS are often concealed but can be unmasked by sodium channel blockers and fever. Areas covered: Implantation of a cardioverter defibrillator (ICD) is first-line therapy for BrS patients presenting with prior cardiac arrest or documented VT. A pharmacological approach to therapy is recommended in cases of electrical storm, as an adjunct to ICD and as preventative therapy. The goal of pharmacological therapy is to produce an inward shift to counter the genetically-induced outward shift of ion channel current flowing during the early phases of the ventricular epicardial action potential. This is accomplished by augmentation of ICa using □□adrenergic agents or phosphodiesterase III inhibitors or via inhibition of Ito. Radiofrequency ablation of the right ventricular outward flow tract epicardium is effective in suppressing arrhythmogenesis in BrS patients experiencing frequent appropriate ICD-shocks. Expert commentary: Understanding of the pathophysiology and approach to therapy of BrS has advanced considerably in recent years, but there remains an urgent need for development of cardio-selective and ion-channel-specific Ito blockers for treatment of BrS.
Collapse
Affiliation(s)
- Mariana Argenziano
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA
| | - Charles Antzelevitch
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA.,b Cardiovascular Research , Lankenau Heart Institute , Wynnewood , PA , USA.,c Department of Medicine and Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
46
|
Portero V, Wilders R, Casini S, Charpentier F, Verkerk AO, Remme CA. K V4.3 Expression Modulates Na V1.5 Sodium Current. Front Physiol 2018; 9:178. [PMID: 29593552 PMCID: PMC5857579 DOI: 10.3389/fphys.2018.00178] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
In cardiomyocytes, the voltage-gated transient outward potassium current (Ito) is responsible for the phase-1 repolarization of the action potential (AP). Gain-of-function mutations in KCND3, the gene encoding the Ito carrying KV4.3 channel, have been associated with Brugada syndrome (BrS). While the role of Ito in the pro-arrhythmic mechanism of BrS has been debated, recent studies have suggested that an increased Ito may directly affect cardiac conduction. However, the effects of an increased Ito on AP upstroke velocity or sodium current at the cellular level remain unknown. We here investigated the consequences of KV4.3 overexpression on NaV1.5 current and consequent sodium channel availability. We found that overexpression of KV4.3 protein in HEK293 cells stably expressing NaV1.5 (HEK293-NaV1.5 cells) significantly reduced NaV1.5 current density without affecting its kinetic properties. In addition, KV4.3 overexpression decreased AP upstroke velocity in HEK293-NaV1.5 cells, as measured with the alternating voltage/current clamp technique. These effects of KV4.3 could not be explained by alterations in total NaV1.5 protein expression. Using computer simulations employing a multicellular in silico model, we furthermore demonstrate that the experimentally observed increase in KV4.3 current and concurrent decrease in NaV1.5 current may result in a loss of conduction, underlining the potential functional relevance of our findings. This study gives the first proof of concept that KV4.3 directly impacts on NaV1.5 current. Future studies employing appropriate disease models should explore the potential electrophysiological implications in (patho)physiological conditions, including BrS associated with KCND3 gain-of-function mutations.
Collapse
Affiliation(s)
- Vincent Portero
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Arie O Verkerk
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
47
|
Lipovsky CE, Brumback BD, Khandekar A, Rentschler SL. Multi-Scale Assessments of Cardiac Electrophysiology Reveal Regional Heterogeneity in Health and Disease. J Cardiovasc Dev Dis 2018; 5:E16. [PMID: 29517992 PMCID: PMC5872364 DOI: 10.3390/jcdd5010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
The left and right ventricles of the four-chambered heart have distinct developmental origins and functions. Chamber-specific developmental programming underlies the differential gene expression of ion channel subunits regulating cardiac electrophysiology that persists into adulthood. Here, we discuss regional specific electrical responses to genetic mutations and cardiac stressors, their clinical correlations, and describe many of the multi-scale techniques commonly used to analyze electrophysiological regional heterogeneity.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Aditi Khandekar
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
48
|
Ion Channel Disorders and Sudden Cardiac Death. Int J Mol Sci 2018; 19:ijms19030692. [PMID: 29495624 PMCID: PMC5877553 DOI: 10.3390/ijms19030692] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Long QT syndrome, short QT syndrome, Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia are inherited primary electrical disorders that predispose to sudden cardiac death in the absence of structural heart disease. Also known as cardiac channelopathies, primary electrical disorders respond to mutations in genes encoding cardiac ion channels and/or their regulatory proteins, which result in modifications in the cardiac action potential or in the intracellular calcium handling that lead to electrical instability and life-threatening ventricular arrhythmias. These disorders may have low penetrance and expressivity, making clinical diagnosis often challenging. However, because sudden cardiac death might be the first presenting symptom of the disease, early diagnosis becomes essential. Genetic testing might be helpful in this regard, providing a definite diagnosis in some patients. Yet important limitations still exist, with a significant proportion of patients remaining with no causative mutation identifiable after genetic testing. This review aims to provide the latest knowledge on the genetic basis of cardiac channelopathies and discuss the role of the affected proteins in the pathophysiology of each one of these diseases.
Collapse
|
49
|
Cerrone M. Controversies in Brugada syndrome. Trends Cardiovasc Med 2017; 28:284-292. [PMID: 29254832 DOI: 10.1016/j.tcm.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
The Brugada syndrome is an inherited channelopathy associated with increased risk of ventricular arrhythmias and sudden death, often occurring during sleep or resting conditions. Although this entity has been described more than 20 years ago, it remains one of the most debated among channelopathies, with several open questions on its genetic substrate, arrhythmia mechanisms, and clinical management. Studies on the genetics and physiopathology bases of the Brugada syndrome have opened novel investigative pathways and concepts that are now entering the field of cardiovascular genetics and are applied to other inherited arrhythmias. In this perspective, Brugada syndrome can be seen as an example on how basic science discoveries have influenced clinical management and led to novel therapeutic approaches.
Collapse
Affiliation(s)
- Marina Cerrone
- Cardiovascular Genetics Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY.
| |
Collapse
|
50
|
El-Battrawy I, Lang S, Borggrefe M, Zhou XB, Akin I. Letter by El-Battrawy et al Regarding Article, "The Brugada Syndrome Susceptibility Gene HEY2 Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity". Circ Res 2017; 121:e20. [PMID: 28819041 DOI: 10.1161/circresaha.117.311655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,DZHK (GermanCenter for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,DZHK (GermanCenter for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,DZHK (GermanCenter for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Xia-Bo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,DZHK (GermanCenter for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,DZHK (GermanCenter for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| |
Collapse
|