1
|
Singh M, Celina A, Katiyar R, Deori S, Singh A, Singh V, Singh GD, Rajoriya JS, Kalita H, Mishra VK. Alteration in sperm mitochondrial membrane potential and antioxidant biomarkers in summer adversely affects Hampshire-Ghungroo crossbred boar semen fertility in sub-tropical climate. Front Vet Sci 2025; 12:1562988. [PMID: 40313631 PMCID: PMC12045030 DOI: 10.3389/fvets.2025.1562988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 05/03/2025] Open
Abstract
In temperate regions, boars experience environmental heat stress due to the subtropical climate, leading to their semen quality and fertility being severely compromised compared to indigenous breeds. Considering the above effect, the present study aimed to evaluate the effect of season on semen quality, seminal plasma antioxidant status, and in vivo fertility of crossbred boars of exotic (50%) and indigenous inheritance in a subtropical climate. A total of 14 Hampshire-Ghungroo crossbred boars were used for this investigation, which took place in both summer and winter. Sperm characteristics, namely motility, viability, abnormality, acrosomal integrity, and the hypo-osmotic swelling test (HOST) results, and mitochondrial membrane potential (MMP) were evaluated. Sperm kinematics parameters were assessed using computer-assisted semen analysis (CASA). Antioxidant biomarkers (glutathione peroxidase, GPx; catalase, CAT; and total antioxidant capacity, TAC) and lipid peroxidation (malondialdehyde, MDA) were analyzed in boars' seminal plasma. The summer season had a significant (p < 0.01) negative impact on reaction time and false mounts, whereas semen volume and sperm concentration were significantly (p < 0.01) higher in the winter season. Similarly, sperm abnormalities were significantly (p < 0.01) lower in the winter season. In the winter, sperm quality parameters, namely total motility, progressive motility, viability, acrosomal integrity, and HOST reactivity, were significantly (p < 0.01) improved. However, during the summer, sperm MMP was significantly (p < 0.01) lower in fresh samples and after 72 h of storage. Season had a significant (p < 0.05) effect on the following sperm kinematics parameters: average path velocity, straight-line velocity, curve linear velocity, amplitude of lateral head displacement, and beat cross frequency. Semen characteristics were significantly (p < 0.01) improved in winter after 72 h of cold storage compared with those in summer. The summer season had a significant effect (p < 0.01) on seminal plasma antioxidant biomarkers (TAC, MDA, CAT, and GPx). Furthermore, the farrowing rate was significantly (p < 0.05) higher in the winter season. In conclusion, our results showed that the low MMP of boar sperm and the downregulation of seminal plasma antioxidant biomarkers in summer lead to poor semen quality and poor fertility in Hampshire-Ghungroo crossbred boars in a subtropical climate. To alleviate the heat-stress-induced poor sperm fertility in boars and to optimize the fertility of boars during summer in subtropics, there is a need for scientific interventions in terms of genetics [less exotic inheritance (below 50%)], nutrition, and management.
Collapse
Affiliation(s)
- Mahak Singh
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | - Apanai Celina
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | - Rahul Katiyar
- Division of Animal Health and Fisheries Science, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Sourabh Deori
- Division of Animal Health and Fisheries Science, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Ashwani Singh
- College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vinay Singh
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | - G. D. Singh
- Department of Veterinary Clinical Complex, Bihar Veterinary College, Patna, India
| | - J. S. Rajoriya
- Department of Veterinary Gynaecology and Obstetrics, NDVSU-College of Veterinary Science and Animal Husbandry, Rewa, India
| | - H. Kalita
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | - V. K. Mishra
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
2
|
Saleh R, Sallam H, Elsuity MA, Dutta S, Sengupta P, Nasr A. Antioxidant therapy for infertile couples: a comprehensive review of the current status and consideration of future prospects. Front Endocrinol (Lausanne) 2025; 15:1503905. [PMID: 39850484 PMCID: PMC11756326 DOI: 10.3389/fendo.2024.1503905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes. Antioxidant therapy represents a promising intervention to mitigate the harmful effects of ROS on reproductive health in additions to its easy accessibility, safety, and low cost. Despite several findings suggesting improvements in fertility potential with AOX therapy, the data remains inconclusive regarding optimal dosage and combination, duration of treatment, and the specific patient populations most likely to benefit. In this review, we discuss the role of AOXs in the management of infertile couples, focusing on their biological mechanisms, potential adverse effects, therapeutic efficacy, and clinical applications in improving reproductive outcomes in both natural conception and medically assisted reproduction. Additionally, we highlight the current practice patterns and recommendations for AOX supplementation during the course of infertility treatment. Further, we provide an overview on the limitations of the current research on the topic and insights for future studies to establish standardized AOX regimens and to assess their long-term impact on key outcomes such as live birth rates and miscarriage rates.
Collapse
Affiliation(s)
- Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Hassan Sallam
- Department of Obstetrics and Gynaecology, University of Alexandria, Bab Sharqi, Alexandria Governorate, Alexandria, Egypt
- Alexandria Fertility and IVF Center, Alexandria, Egypt
| | - Mohamad AlaaEldein Elsuity
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ahmed Nasr
- Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
4
|
Ayub Mohammed Salih S, Jabarpour M, Sedighi Gilani MA, Sajadi H, Saedi Marghmaleki M, Shabani Nashtaei M, Salem M, Amidi F. The effect of astaxanthin after varicocele surgery on antioxidant status and semen quality in infertile men: A triple-blind randomized clinical trial. Food Sci Nutr 2024; 12:7977-7988. [PMID: 39479675 PMCID: PMC11521721 DOI: 10.1002/fsn3.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 11/02/2024] Open
Abstract
Varicocele (VC) is widely recognized as a prevalent etiological factor contributing to male infertility. It has been established that the generation of reactive oxygen species (ROS) plays a significant role in the progression and development of VC. Antioxidants may regulate ROS levels in these patients. Astaxanthin (ASX) is a carotenoid compound with notable antioxidant and anti-inflammatory characteristics. The current study postulated that the administration of ASX following varicocelectomy (VCT) could potentially enhance antioxidant status and semen quality in these patients. A total of 40 infertile males with clinical VC and abnormal semen analyses were randomly assigned to take part in the current trial. For 3 months following surgery, the intervention group took ASX (6 mg/day) while the control group received a placebo. After intervention, semen parameters, antioxidant status, and pro-inflammatory cytokines were compared between the two groups. Regarding semen parameters, antioxidant treatment led to a significant improvement in total and progressive motility in the treatment group (p < 0.05). Additionally, ASX led to a considerable increase in the expression levels of NRF2, Keap1, SOD2, SOD3, and BCL2, though the enhancement in the expression level of SOD3 was not statistically significant (p > .05). However, ASX significantly decreased the BAX expression level (p < .05). Even though the level of total antioxidant capacity (TAC) of seminal fluid (SF) increased significantly in the treatment group (p < .05), the level of total oxidative stress (TOS) in SF did not differ substantially between treatment and control groups (p > .05). Based on inflammatory factors in SF, ASX led to a considerable reduction in levels of TNF-α, IL-1β, and IL-6 (p < .05). Our findings demonstrated that ASX treatment provides an important contribution to VCT outcomes by modulating antioxidant status and pro-inflammatory cytokines. Our results indicated that ASX may be beneficial as an adjuvant therapy for infertile men following VCT.
Collapse
Affiliation(s)
| | - Masoome Jabarpour
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Sedighi Gilani
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | | | - Maryam Shabani Nashtaei
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Salem
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Moustakli E, Zikopoulos A, Skentou C, Stavros S, Sofikitis N, Georgiou I, Zachariou A. Integrative Assessment of Seminal Plasma Biomarkers: A Narrative Review Bridging the Gap between Infertility Research and Clinical Practice. J Clin Med 2024; 13:3147. [PMID: 38892858 PMCID: PMC11173072 DOI: 10.3390/jcm13113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility represents a significant global health challenge impacting millions of couples worldwide. Approximately half of all infertile couples exhibit compromised semen quality, indicative of diminished male fertility. While the diagnosis of male infertility traditionally relies on semen analysis, its limitations in providing a comprehensive assessment of male reproductive health have spurred efforts to identify novel biomarkers. Seminal plasma, a complex fluid containing proteins, lipids, and metabolites, has emerged as a rich source of such indicators. Reproduction depends heavily on seminal plasma, the primary transporter of chemicals from male reproductive glands. It provides a non-invasive sample for urogenital diagnostics and has demonstrated potential in the identification of biomarkers linked to illnesses of the male reproductive system. The abundance of seminal proteins has enabled a deeper understanding of their biological functions, origins, and differential expression in various conditions associated with male infertility, including azoospermia, asthenozoospermia, oligozoospermia, teratozoospermia, among others. The true prevalence of male infertility is understated due to the limitations of the current diagnostic techniques. This review critically evaluates the current landscape of seminal plasma biomarkers and their utility in assessing male infertility. Βy bridging the gap between research and clinical practice, the integrative assessment of seminal plasma biomarkers offers a multimodal approach to comprehensively evaluate male infertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| |
Collapse
|
7
|
Ogawa S, Ota K, Nishizawa K, Shinagawa M, Katagiri M, Kikuchi H, Kobayashi H, Takahashi T, Yoshida H. Micronutrient Antioxidants for Men (Menevit ®) Improve Sperm Function by Reducing Oxidative Stress, Resulting in Improved Assisted Reproductive Technology Outcomes. Antioxidants (Basel) 2024; 13:635. [PMID: 38929074 PMCID: PMC11200383 DOI: 10.3390/antiox13060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) affects men's health and impairs spermatogenesis. Micronutrient antioxidants are available for male infertility as complemental support; however, their efficacy remains debatable. This study aimed to investigate whether antioxidants can help to reduce sperm OS and improve semen analysis and quality. We included 171 male partners of couples planning to undergo assisted reproductive technology (ART). Male partners, aged 29-41 years, of couples intending to conceive were self-selected to take daily antioxidants (n = 84) containing folic acid and zinc, or not to take antioxidants (n = 52) for 6 months. We analyzed the alterations in serum oxidant levels, sperm parameters, OS, and deoxyribonucleic acid fragmentation after 3 and 6 months. Additionally, implantation, clinical pregnancy, and miscarriage rates after vitrified-warmed embryo transfer were compared between those taking antioxidants and those not taking them after 6 months. In men with high static oxidation-reduction potential (sORP), we observed a significant improvement in sperm concentration and sORP. The high-quality blastocyst rate tended to increase, and implantation and clinical pregnancy rates also significantly increased after 6 months of intervention. The micronutrient antioxidants could improve sperm function by reducing OS and improving ART outcomes. Therefore, micronutrient antioxidants may be a viable treatment option for male infertility.
Collapse
Affiliation(s)
- Seiji Ogawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, 1-1-4 Hanedakuko, Ota, Tokyo 144-0041, Japan
| | - Kuniaki Ota
- Department of Obstetrics and Gynecology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Okayama, Japan
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Kaori Nishizawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Masumi Shinagawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Mikiko Katagiri
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Hiroyuki Kikuchi
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| | - Hideyuki Kobayashi
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
- Department of Urology, Toho University, 5-21-16 Omori-Nishi, Ota, Tokyo 143-8540, Japan
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Hiroaki Yoshida
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Miyagi, Japan; (S.O.); (K.N.); (M.S.); (M.K.); (H.K.); (H.K.); (H.Y.)
| |
Collapse
|
8
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
9
|
Sanyal D, Arya D, Nishi K, Balasinor N, Singh D. Clinical Utility of Sperm Function Tests in Predicting Male Fertility: A Systematic Review. Reprod Sci 2024; 31:863-882. [PMID: 38012524 DOI: 10.1007/s43032-023-01405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Routine semen analysis provides considerable information regarding sperm parameters; however, it is not solely adequate to predict male fertility potential. In the past two decades, several advance sperm function tests have been developed. The present systematic review intends to assess the clinical utility of available advance sperm function tests in predicting the male fertility potential. A systematic literature search was conducted as per PRISMA guidelines using PubMed, MEDLINE, Google Scholar, and Cochrane Library. Different keywords either singly or in combination were used to retrieve the relevant articles related to sperm function tests, male fertility, and pregnancy outcomes. A total of 5169 articles were obtained, out of which 110 meeting the selection criteria were included in this review. The majorly investigated sperm function tests are hypo-osmotic swelling test, acrosome reaction test, sperm capacitation test, hemizona binding assay, sperm DNA fragmentation test, seminal reactive oxygen species test, mitochondrial dysfunction tests, antisperm antibody test, nuclear chromatin de-condensation (NCD) test, etc. The different advance sperm function tests analyse different aspects of sperm function. Hence, any one test may not be helpful to appropriately predict the male fertility potential. Currently, the unavailability of high-quality clinical data, robust thresholds, complex protocols, high cost, etc., are the limiting factors and prohibiting current sperm function tests to reach the clinics. Further multi-centric research efforts are required to fulfil the existing lacunas and pave the way for these tests to be introduced into the clinics.
Collapse
Affiliation(s)
- Debarati Sanyal
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
10
|
Rotimi DE, Ojo OA, Adeyemi OS. Atrazine exposure caused oxidative stress in male rats and inhibited brain-pituitary-testicular functions. J Biochem Mol Toxicol 2024; 38:e23579. [PMID: 37926918 DOI: 10.1002/jbt.23579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Exposure to the herbicide atrazine has been shown to have deleterious effects on human and animal reproduction. To determine whether atrazine influences the brain-pituitary-testicular axis directly or indirectly, the present study examined the toxic effects of atrazine on fertility potential by assessing gonadal hormones, testicular function indices, sperm quality, and oxido-inflammatory markers in rats. Twelve animals were grouped into two groups; control and atrazine. The control group received oral administration of olive oil (2 mL/kg), while the atrazine group received 120 mg/kg of atrazine. Treatments were daily and lasted for 7 days. Upon treatment cessation, rats were necropsied for biochemical and histopathological analyses. The biochemical function indices in the rat brain, testis, and epididymis decreased significantly in the atrazine group. Atrazine exposure led to decreases in gonadal hormonal concentrations, semen quality parameters, and testicular function indices compared with the control. Furthermore, there was a marked increase in oxidative stress and inflammatory markers as well as degeneration of the histo-architecture in atrazine-treated rats. Overall, atrazine exposure impaired sperm quality, led to increased inflammation and oxidative stress, and decreased the activity of the brain-pituitary-testicular axis via endocrine disruption.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi A Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University, Iwo, Nigeria
| | - Oluyomi S Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Laboratory of Medicinal Biochemistry & Biochemical Toxicology, Bowen University, Iwo, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| |
Collapse
|
11
|
Sengupta P, Pinggera G, Calogero AE, Agarwal A. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians. Reprod Med Biol 2024; 23:e12598. [PMID: 39224210 PMCID: PMC11366688 DOI: 10.1002/rmb2.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Increased oxidative stress (OS), resulting from the delicate balance between reactive oxygen species (ROS) production and antioxidant defense, is closely linked to sperm abnormalities and male subfertility. Elevated ROS levels particularly affect sperm quality. The vulnerability of spermatozoa to ROS is due to the absence of DNA repair mechanisms and the high presence of polyunsaturated fatty acids in their membranes. Methods This article updates and advances our understanding of the molecular damage caused by OS in spermatozoa, including lipid peroxidation, DNA damage, motility, and functionality. Additionally, the review discusses the challenges in diagnosing OS in semen and recommends accurate and sensitive testing methods. Case studies are utilized to demonstrate the effective management of male infertility caused by OS. Main findings Highlighting the need to bridge the gap between research and clinical practice, this review suggests strategies for clinicians, such as lifestyle and dietary changes and antioxidant therapies. The review emphasizes lifestyle modifications and personalized care as effective strategies in managing male infertility caused by OS. Conclusion This review calls for early detection and intervention and interdisciplinary collaboration to improve patient care in male infertility cases related to increased OS.
Collapse
Affiliation(s)
- Pallav Sengupta
- Global Andrology ForumMoreland HillsOhioUSA
- Department of Biomedical Sciences, College of MedicineGulf Medical UniversityAjmanUAE
| | - Germar‐M. Pinggera
- Global Andrology ForumMoreland HillsOhioUSA
- Department of UrologyMedical University InnsbruckInnsbruckAustria
| | - Aldo E. Calogero
- Global Andrology ForumMoreland HillsOhioUSA
- Division of Endocrinology, Metabolic Diseases and NutritionUniversity of CataniaCataniaItaly
| | - Ashok Agarwal
- Global Andrology ForumMoreland HillsOhioUSA
- Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
12
|
Geertsema S, Jansen BH, van Goor H, Dijkstra G, Faber KN, Bourgonje AR. Unsuitability of the Oxidation-Reduction Potential Measurement for the Quantification of Fecal Redox Status in Inflammatory Bowel Disease. Biomedicines 2023; 11:3107. [PMID: 38137328 PMCID: PMC10741202 DOI: 10.3390/biomedicines11123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress is a key pathophysiological process associated with the development and progression of inflammatory bowel disease (IBD). Biomarkers for oxidative stress, however, are scarce, as are diagnostic tools that can interrogate an individual's gut redox status. This proof-of-concept study aimed to evaluate the potential utility of an oxidation-reduction potential (ORP) measurement probe, to quantify redox status in the feces of both patients with IBD and healthy controls. Previous studies using this ORP measurement probe demonstrated promising data when comparing ORP from severely malnourished individuals with that of healthy controls. To date, ORP analyses have not been performed in the context of IBD. We hypothesized that measuring the ORP of fecal water in patients with IBD might have diagnostic value. The current study, however, did not show significant differences in ORP measurement values between patients with IBD (median [IQR] 46.5 [33.0-61.2] mV) and healthy controls (25 [8.0-52.0] mV; p = 0.221). Additionally, ORP measurements were highly unstable and rapidly fluctuated throughout time, with ORP values varying from +24 to +303 mV. Due to potential biological processes and limitations of the measuring equipment, this study was unable to reliably measure ORP. As a result, our findings indicate that ORP quantification may not be a suitable method for assessing fecal redox status and, therefore, does not currently support further exploration as a diagnostic or monitoring tool.
Collapse
Affiliation(s)
- Sem Geertsema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (S.G.); (B.H.J.); (G.D.); (K.N.F.)
| | - Bernadien H. Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (S.G.); (B.H.J.); (G.D.); (K.N.F.)
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (S.G.); (B.H.J.); (G.D.); (K.N.F.)
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (S.G.); (B.H.J.); (G.D.); (K.N.F.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (S.G.); (B.H.J.); (G.D.); (K.N.F.)
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Davies R, Minhas S, Jayasena CN. The role of seminal reactive oxygen species assessment in the setting of infertility and early pregnancy loss. World J Urol 2023; 41:3257-3265. [PMID: 37452867 PMCID: PMC10632302 DOI: 10.1007/s00345-023-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
The male contribution to a couple suffering with adverse early pregnancy outcomes is being increasingly investigated. Seminal oxidative stress is considered to cause sperm DNA damage, thus affecting the functional capacity of the sperm. Multiple lines of evidence support an association between elevated seminal reactive oxygen species (ROS) and infertility. In the setting of assisted reproduction various factors in the in vitro environment, differing from the in vivo environment, may exacerbate oxidative stress. Furthermore, seminal ROS levels have been found to be higher in the male partners of couple's affected by both spontaneous and recurrent pregnancy loss. There are several methods by which to assess ROS levels however they are costly, inconsistent and their incorporation into clinical practice is unclear. The value of ROS assessment lies in the ability to plan targeted therapies to improve pregnancy and live birth rates. As such, further robust study is required before firm conclusions can be made to inform clinical practice. We aim to review the available evidence regarding the role of seminal ROS in infertility and pregnancy loss.
Collapse
Affiliation(s)
- Rhianna Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial College NHS Trust, London, UK
| | - Channa N Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
14
|
Castleton P, Gyawali P, Mathews N, Mutuku SM, Sharkey DJ, McPherson NO. MiOXSYS ® and OxiSperm ® II assays appear to provide no clinical utility for determining oxidative stress in human sperm-results from repeated semen collections. Andrology 2023; 11:1566-1578. [PMID: 36455546 DOI: 10.1111/andr.13356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 10/20/2023]
Abstract
BACKGROUND Oxidative stress in semen contributes up to 80% of all infertility diagnosis. Diagnostics to measure oxidative stress in semen was recently added to the 6th edition WHO methods manual, although diagnostic predictive values need to be interpreted with caution as there are still several research questions yet to be answered. OBJECTIVES To determine the natural fluctuations in semen redox indicators (MiOXSYS® and OxiSperm® II) within and between men and their association with markers of sperm oxidative stress. MATERIALS AND METHODS Total, 118 repeat semen samples from 31 generally healthy men aged 18-45 years, over 6 months. Standard semen analysis as per 5th WHO manual. Semen redox levels measured via MiOXSYS® and OxiSperm® II. Additional attributes of sperm quality; HBA® binding assay and sperm hyperactivation and oxidative stress; DNA fragmentation (Halo® Sperm) and lipid peroxidation (BODIPY™ 581/591 C11) were assessed. RESULTS Samples with high redox-potential (MiOXSYS® ≥1.47 sORP/106 sperm/ml) had lower sperm, motility, morphology and higher DNA fragmentation (P < 0.05). Upon further analysis, these associations were driven solely by the adjustment of sperm concentration (106 /ml) in normalised redox-potential. No significant associations between NBT-reactivity (OxiSperm® II) and measures of the sperm function or oxidative stress were observed (P > 0.05). Fluctuations in semen redox levels varied greater between men than within men over the study period. DISCUSSION Neither MiOXSYS® nor OxiSperm® II assays were predictive of sperm function or sperm oxidative stress. This was likely due at least in part to limited understanding of their biochemistry and clinical application. As a result, these assays seem to provide no additional clinical utility beyond that of a standard semen analysis, highlighting the imperative for the development of new robust point-of-care devices for accurately determining sperm oxidative stress. CONCLUSION These findings suggest that MiOXSYS® and OxiSperm® II systems for the measurement of sperm oxidative stress may have limited diagnostic potential.
Collapse
Affiliation(s)
- Patience Castleton
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Prabin Gyawali
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicola Mathews
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Shadrack Mulinge Mutuku
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David James Sharkey
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole Olivia McPherson
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Reproduction and Development, School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
15
|
Kaltsas A, Zachariou A, Markou E, Dimitriadis F, Sofikitis N, Pournaras S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J Pers Med 2023; 13:1491. [PMID: 37888102 PMCID: PMC10608462 DOI: 10.3390/jpm13101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The human microbiota in the genital tract is pivotal for maintaining fertility, but its disruption can lead to male infertility. This study examines the relationship between microbial dysbiosis and male infertility, underscoring the promise of precision medicine in this field. Through a comprehensive review, this research indicates microbial signatures associated with male infertility, such as altered bacterial diversity, the dominance of pathogenic species, and imbalances in the genital microbiome. Key mechanisms linking microbial dysbiosis to infertility include inflammation, oxidative stress, and sperm structural deterioration. Emerging strategies like targeted antimicrobial therapies, probiotics, prebiotics, and fecal microbiota transplantation have shown potential in adjusting the genital microbiota to enhance male fertility. Notably, the application of precision medicine, which customizes treatments based on individual microbial profiles and specific causes of infertility, emerges as a promising approach to enhance treatment outcomes. Ultimately, microbial dysbiosis is intricately linked to male infertility, and embracing personalized treatment strategies rooted in precision medicine principles could be the way forward in addressing infertility associated with microbial factors.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
16
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
17
|
Alfaro Gómez M, Fernández-Santos MDR, Jurado-Campos A, Soria-Meneses PJ, Montoro Angulo V, Soler AJ, Garde JJ, Rodríguez-Robledo V. On Males, Antioxidants and Infertility (MOXI): Certitudes, Uncertainties and Trends. Antioxidants (Basel) 2023; 12:1626. [PMID: 37627621 PMCID: PMC10451353 DOI: 10.3390/antiox12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Male infertility (MI) involves various endogenous and exogenous facts. These include oxidative stress (OS), which is known to alter several physiological pathways and it is estimated to be present at high levels in up to 80% of infertile men. That is why since the late 20th century, the relationship between OS and MI has been widely studied. New terms have emerged, such as Male Oxidative Stress Infertility (MOSI), which is proposed as a new category to define infertile men with high OS levels. Another important term is MOXI: Male, Antioxidants, and Infertility. This term refers to the hypothesis that antioxidants could improve male fertility without the use of assisted reproductive technology. However, there are no evidence-based antioxidant treatments that directly improve seminal parameters or birth ratio. In this regard, there is controversy about their use. While certain scientists argue against their use due to the lack of results, others support this use because of their safety profile and low price. Some uncertainties related to the use of antioxidants for treating MI are their questionable efficacy or the difficulties in knowing their correct dosage. In addition, the lack of quality methods for OS detection can lead to excessive antioxidant supplementation, resulting in "reductive stress". Another important problem is that, although the inflammatory process is interdependent and closely linked to OS, it is usually ignored. To solve these uncertainties, new trends have recently emerged. These include the use of molecules with anti-inflammatory and antioxidant potential, which are also able to specifically target the reproductive tissue; as well as the use of new methods that allow for reliable quantification of OS and a quality diagnosis. This review aims to elucidate the main uncertainties about MOXI and to outline the latest trends in research to develop effective therapies with clinically relevant outcomes.
Collapse
Affiliation(s)
- Manuel Alfaro Gómez
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
| | - María del Rocío Fernández-Santos
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Alejandro Jurado-Campos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Pedro Javier Soria-Meneses
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Vidal Montoro Angulo
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - José Julián Garde
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Virginia Rodríguez-Robledo
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| |
Collapse
|
18
|
Nguyen ND, Le MT, Dang HNT, Van Nguyen T, Nguyen QHV, Cao TN. Impact of semen oxidative stress on sperm quality: initial results from Vietnam. J Int Med Res 2023; 51:3000605231188655. [PMID: 37572034 PMCID: PMC10423449 DOI: 10.1177/03000605231188655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVES This study aimed to determine the relationship between oxidative stress (OS) measured by the oxidation-reduction potential (ORP) and the results of semen analysis among men from infertile couples. METHODS This cross-sectional study included 166 men from infertile couples, determined according to the World Health Organization guidelines. The general characteristics, semen analysis, sperm chromatin dispersion assay, and ORP of all subjects were evaluated and analyzed statistically. RESULTS Among 166 men from infertile couples, individuals with OS had a significantly higher DNA fragmentation index (DFI) than men without OS (22.37% ± 11.67% vs. 17.98% ± 8.98%). The sperm concentration, total sperm count, motility rate, and normal morphology were negatively correlated, while and an abnormal head and neck-tail were positively correlated with ORP. There was also a positive association between the DFI and OS level. The optimal ORP threshold for determining sperm quality was 0.77 mV/106 sperm/mL (sensitivity, 50.4%; specificity, 93.5%; positive predictive value, 52.9%; negative predictive value, 32.3%). CONCLUSIONS Determining the ORP suggests that OS has an adverse effect on the total sperm count, sperm motility, sperm concentration, morphology, vitality, and DNA fragmentation index.
Collapse
Affiliation(s)
- Nguyen Dac Nguyen
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Vietnam
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Minh Tam Le
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Vietnam
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Hong Nhan Thi Dang
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Trung Van Nguyen
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Quoc Huy Vu Nguyen
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Thanh Ngoc Cao
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Vietnam
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| |
Collapse
|
19
|
Balló A, Czétány P, Busznyákné KS, Márk L, Mike N, Török A, Szántó Á, Máté G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int J Mol Sci 2023; 24:11981. [PMID: 37569357 PMCID: PMC10418886 DOI: 10.3390/ijms241511981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | | | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Nóra Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
20
|
Takalani NB, Monageng EM, Mohlala K, Monsees TK, Henkel R, Opuwari CS. Role of oxidative stress in male infertility. REPRODUCTION AND FERTILITY 2023; 4:e230024. [PMID: 37276172 PMCID: PMC10388648 DOI: 10.1530/raf-23-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2023] [Indexed: 06/07/2023] Open
Abstract
Abstract Infertility affects millions of couples worldwide. Oxidative stress (OS) causes peroxidation of lipids and damage to spermatozoa, thus, reducing the quality of seminal parameters. In addition, the differences in the levels of antioxidants and reactive oxygen species (ROS) caused by intrinsic and extrinsic variables linked to lifestyle, diet, genetics, and OS also contribute to male infertility. High levels of ROS result in sperm damage of sperm parameters due to lipid peroxidation and oxidation of proteins. Other significant causes of ROS include changes in sex hormone levels, sperm DNA damage, including mutations, and immature spermatozoa. Treating the root causes of OS, by changing one's lifestyle, as well as antioxidant therapy, may be helpful strategies to fight OS-related infertility. However, the determination of male infertility induced by OS is currently a challenge in the field of reproductive health research. This review intends to describe the role of oxidative stress on male infertility and the current understanding of its management. Lay summary The inability to conceive affects many couples globally. Oxidative stress refers to imbalances between different oxygen species which can lead to male fertility problems by damaging sperm and semen. Oxidative stress may be caused by several factors, including diets high in fats, sugars and processed foods, lifestyle (including smoking, alcohol consumption and having a sedentary lifestyle), and genetics. Treatment that focuses on the root cause may help combat male infertility. However, there is currently no consensus on the best way to treat male fertility problems, particularly those associated with oxidative stress. This paper describes the role of oxidative stress on male infertility and discusses the current techniques employed in treating male fertility issues.
Collapse
Affiliation(s)
- Ndivhuho B Takalani
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Elizabeth M Monageng
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Thomas K Monsees
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Ralf Henkel
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- LogixX Pharma, Theale, Reading, Berkshire, UK
| | - Chinyerum S Opuwari
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
21
|
Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int J Mol Sci 2023; 24:10978. [PMID: 37446156 DOI: 10.3390/ijms241310978] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the physiological role of oxidant molecules, oxidative stress (OS) could underlie several human diseases. When the levels of antioxidants are too low or too high, OS occurs, leading to damage at the molecular, tissue and cellular levels. Therefore, antioxidant compounds could represent a way to modulate OS and/or to maintain proper redox balance. This review provides an overview of the methods available to assess total antioxidant capacity (TAC) in biological systems to elucidate the correct terminology and the pathophysiological roles. The clinical context is fundamental to obtain a correct interpretation of TAC. Hence, we discuss metabolic syndrome and infertility, two clinical conditions that involve OS, including the potential prognostic role of TAC evaluation in monitoring antioxidant supplementation. This approach would provide more personalised and precise therapy.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Elisabetta Meucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Bianca Maria Ricerca
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
23
|
Elango K, Karuthadurai T, Kumaresan A, Sinha MK, Ebenezer Samuel King JP, Nag P, Sharma A, Raval K, Paul N, Talluri TR. High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality. 3 Biotech 2023; 13:60. [PMID: 36714547 PMCID: PMC9877259 DOI: 10.1007/s13205-023-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Seminal plasma proteins are the major extrinsic factors that can modulate the sperm quality and functions. The present study was carried out to compare the proteomic profiles of seminal plasma from breeding bulls producing good and poor quality semen in an effort to understand the possible proteins associated with semen quality. A total of 910 and 715 proteins were detected in the seminal plasma of poor and good quality semen producing bulls, respectively. A total of 705 proteins were common to both the groups, in which 380 proteins were upregulated and 89 proteins were downregulated in the seminal plasma of poor quality semen, while 236 proteins were co-expressed. The proteins negatively influencing sperm functions such as CCL2, UQCRC2, and SAA1 were among the top ten upregulated proteins in the seminal plasma of poor quality semen. Proteins having a positive role in sperm functions (NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2) were among the top ten downregulated proteins in the seminal plasma of poor quality semen. The upregulation of oxidation-reduction process-related proteins, histone proteins (HIST3H2A, H2AFJ, H2AFZ, H2AFX, HIST2H2AB, H2AFV, HIST1H2AC, HIST2H2AC, LOC104975684, LOC524236, LOC614970, LOC529277), and ubiquinol-cytochrome-c reductase proteins (UQCRB, UQCRFS1, UQCRQ, UQCRC1, UQCRC2) indicate deranged oxidation-reduction equilibrium, chromatin condensation and spermatogenesis in poor quality semen producing bulls. The expression of proteins essential for motile cilium (CCDC114, CFAP206, TEKT4), chromatin integrity (PRM2), gamete fusion (IZUMO4, EQTN), hyperactivation, tyrosine phosphorylation, and capacitation [PI3K-Akt signalling pathway-related proteins (COL1A1, COL2A1, COL1A2, SPP1, PDGFA, NGF)] were down regulated in poor quality semen producing bulls. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03474-6.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| |
Collapse
|
24
|
Tomita K, Udayanga KGS, Satoh M, Hashimoto S, Morimoto Y. Relation between semen oxidative reduction potential in initial semen examination and IVF outcomes. Reprod Med Biol 2023; 22:e12501. [PMID: 36726595 PMCID: PMC9884324 DOI: 10.1002/rmb2.12501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
Purpose The MiOXSYS system is a new technique to analyze the semen oxidative reduction potential (ORP) that may use to classify the level of sperm DNA integrity. It does not clearly explain how the semen ORP values could help to change the IVF outcomes. We have analyzed correlations between semen ORP value and the IVF results. Methods Four hundred and thirty couples were enrolled. The male counterparts were divided into two groups according to their semen ORP values and compared the fertilization rate, cell cleavage rate, and embryo quality, following the IVF procedures. The relations between ORP values and the clinical pregnancy, live birth, and abortion rates were analyzed. Results The ORP values show negative and positive correlations with some conventional semen parameters. The fertilization and the cleavage rate did not show any differences in those two groups, but the transferable embryo rate was significantly high in patients with high semen ORP. However, the patients with high ORP show a tendency to lower clinical pregnancy with a low abortion rate compared to the low ORP group. Conclusion The main purpose of measuring the ORP value in semen is still questionable and shows controversial results.
Collapse
Affiliation(s)
| | | | - Manabu Satoh
- HORAC Grand Front Osaka ClinicOsakaJapan
- IVF Namba ClinicOsakaJapan
| | - Shu Hashimoto
- Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | | |
Collapse
|
25
|
Zhao C, Sun L, Zhao P. Effects of sperm processing techniques on IVF pregnancy rates: a mini-review. Ther Adv Reprod Health 2023; 17:26334941231188656. [PMID: 37497119 PMCID: PMC10366343 DOI: 10.1177/26334941231188656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Many factors associated with assisted reproductive technologies significantly influence the success of pregnancy after in vitro fertilization (IVF) either directly or indirectly. These factors include sperm processing techniques, egg retrieval, intrauterine artificial insemination, intracytoplasmic sperm injection, and embryo transfer. Among these technologies, sperm quality is one of the most critical factors for a successful IVF pregnancy. The method used for sperm processing plays a crucial role in determining the quality of sperm. Several widely used sorting techniques, such as conventional swim-up, density gradient centrifugation, magnetic activated cell sorting, and hyaluronic acid, have been extensively compared in various studies. Previous studies have shown that each sperm processing method causes varying degrees of sperm damage, particularly in sperm motility, concentration, morphological features, viability, and DNA integrity. However, sperm processing techniques have been developed slowly, and the impact of these methods on pregnancy rates is still unclear. Further exploration is needed. In this review, we aim to compare the results of different sperm processing techniques concerning sperm quality and IVF pregnancy rates. We will also discuss possible clinical approaches, such as microfluidics and integrated approaches, for testing and improving sperm quality.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Beijing, China
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Beijing, China
| | - Pin Zhao
- Department of Clinical Laboratory, The Third People’s Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, 29th Bulan Road, Longgang District, Shenzhen, 518112, China
| |
Collapse
|
26
|
Aitken RJ. Oxidative stress and reproductive function. Reproduction 2022; 164:E5-E8. [PMID: 36408964 DOI: 10.1530/rep-22-0368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
27
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
28
|
Glycine Improved Cryopreserved Spermatozoa Quality in Achai Bull. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8282387. [PMID: 35968237 PMCID: PMC9371871 DOI: 10.1155/2022/8282387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Achai is a small size cattle breed, resilient to harsh and cold environment. Cryopreservation of Achai bull semen may help to improve its genetics and preserve the germplasm. Reactive oxygen species (ROS) affects the structural and functional integrity of the spermatozoa. During freezing and thawing processes, the ROS make changes in the spermatozoa quality parameters and reduce total antioxidant capacity (T-AOC) of semen that is considered as marker of oxidative stress. This study was designed to determine the effect of glycine along with vitamin E on post-thawed spermatozoa quality and total antioxidant capacity in Achai cattle. The semen collection was done twice a week from four mature fertile Achai cattle bulls (n = 4). The glycine was utilized as 0 mM, 5 mM, 10 mM, 15 mM, and 20 mM along with vitamin E @ 2.3 mM added constantly in each concentration. The control group contained all extenders except glycine. The results revealed that post-thawed spermatozoa motility was found significantly higher (P < 0.05) at 10 mM as compared to 5 mM, 15 mM, and 20 mM. Compared with control group, glycine concentration at 10 mM and other concentrations increased progressive and fast motility (%), curvilinear, straight line, and average path velocity (μm/s). Moreover, beat cross frequency (Hz) was higher (P < 0.05), and post-thaw viability (%), plasma membrane integrity, and mitochondrial membrane potential were significantly higher (P < 0.05) at 10 mM of glycine concentration in comparison to control and other glycine concentrations. Besides, acrosome integrity (%) and DNA integrity (%) as well as post-thawed T-AOC were also significantly higher (P < 0.05) at 10 mM of glycine concentration as compared to other glycine concentrations and control group. It is concluded that 10 mM of glycine along with vitamin E @ 2.3 mM improved cryopreserved semen quality of Achai bull.
Collapse
|
29
|
Llavanera M, Delgado-Bermúdez A, Ribas-Maynou J, Salas-Huetos A, Yeste M. A systematic review identifying fertility biomarkers in semen: a clinical approach through Omics to diagnose male infertility. Fertil Steril 2022; 118:291-313. [PMID: 35718545 DOI: 10.1016/j.fertnstert.2022.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the most robust molecular biomarkers in sperm and seminal plasma for the diagnosis of male infertility, and to evaluate their clinical use. DESIGN Systematic review. SETTING Not applicable. PATIENT(S) Accessible studies reporting well-defined (in)fertile populations and semen molecular biomarkers were included in this review. INTERVENTION(S) A systematic search of the literature published in MEDLINE-PubMed and EMBASE databases was performed, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MAIN OUTCOME MEASURE(S) The primary outcome was the content, expression, or activity of molecular biomarkers in human semen samples. Only studies reporting a receiver-operating characteristic (ROC) analysis values were included. RESULT(S) Eighty-nine studies were included. Direct evaluation of sperm DNA damage has high potential as a diagnostic biomarker of fertility and assisted reproductive technology outcomes (area under the curve [AUCs] median = 0.67). Regarding strand break-associated chromatin modifications, γH2AX levels show good predictive value for the diagnosis of male infertility (AUCs median = 0.93). Some noncoding ribonucleic acid (RNA) exhibit excellent predictive values; miR-34c-5p in semen is the most well-characterized and robust transcriptomic biomarker (AUCs median = 0.78). While many proteins in semen show fair diagnostic value for sperm quality and fertilizing capacity, the levels of some, such as TEX101, in seminal plasma have an excellent diagnostic potential (AUCs median = 0.69). Although individual metabolites and metabolomic profiles in seminal plasma present good predictive value, the latter seem to be better than the former when inferring sperm quality and fertilizing capacity. CONCLUSION(S) The current review supports that some Omics (e.g., DNA structure and integrity, genomics and epigenomics, transcriptomics, metabolomics, and proteomics) could be considered relevant molecular biomarkers that may help identify infertility etiologies and fertilization prognosis with cost-effective, simple, and accurate diagnosis.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
30
|
Palacin-Martinez C, Alvarez M, Montes-Garrido R, Neila-Montero M, Anel-Lopez L, de Paz P, Anel L, Riesco MF. Frequency of Semen Collection Affects Ram Sperm Cryoresistance. Animals (Basel) 2022; 12:ani12121492. [PMID: 35739829 PMCID: PMC9219472 DOI: 10.3390/ani12121492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
The improvement of frozen-thawed sperm quality has been mostly approached from the view of cryopreservation protocol optimization in terms of cryoprotectant solutions, freezing-thawing rates and antioxidant supplementation, while the impact of sperm collection frequency remains unknown in rams. In this work, a multiparametric study was carried out in cooled and frozen-thawed semen to evaluate sperm quality after different semen collection frequencies during a month: zero sperm collection (0 CW), four sperm collections per week (4 CW), and ten sperm collections per week (10 CW). Traditional analyses have been applied, in combination with novel technologies related to redox balance. Frozen-thawed semen quality showed a significant decrease (p < 0.05) in 0 CW and 10 CW in comparison to 4 CW, concerning motility and kinetics parameters. However, apoptosis showed a significant increase (p < 0.05) in 10 CW in comparison to 0 CW and 4 CW. The employment methods related to redox balance provided us with the definitive probe to ensure the influence of collection frequency on balance redox after thawing. Specifically, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activity showed a significant decrease (p < 0.05) in 10 CW compared to 0 CW and 4 CW. The characterization of alternative strategies to sperm cryopreservation based on consideration of male sexual regimes, could improve the quality of frozen-thawed sperm.
Collapse
Affiliation(s)
- Cristina Palacin-Martinez
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Mercedes Alvarez
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Rafael Montes-Garrido
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Marta Neila-Montero
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Luis Anel-Lopez
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Paulino de Paz
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain
| | - Luis Anel
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Marta F Riesco
- Assisted Reproduction Techniques Research Group (Itra-ULE), INDEGSAL, University of León, 24071 León, Spain
- Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain
| |
Collapse
|
31
|
Lai TCT, Roychoudhury S, Cho CL. Oxidative Stress and Varicocele-Associated Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:205-235. [PMID: 35641872 DOI: 10.1007/978-3-030-89340-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite being regarded as one of the most common causes of male subfertility, the pathophysiology of varicocele remains largely unknown. Recently, oxidative stress (OS) is proposed to be the mediator in how varicocele may negatively impact fertility. The imbalance of reactive oxygen species (ROS) and seminal antioxidants results in damage to sperm DNA and lipid membrane. There is evidence demonstrating higher OS level in men with varicocele which is also positively correlated with clinical grading of varicocele. Moreover, a number of studies have revealed the negative correlation between OS and conventional semen parameters. Furthermore, various interventions have shown their potential in alleviating OS in men with varicocele-associated infertility. Although direct evidence on improving pregnancy rate is not available at the moment, varicocelectomy has demonstrated promising results in relieving OS. Oral antioxidants represent another option with a favourable safety profile. The supplement can be used alone or as adjunct to varicocelectomy. However, most of the studies are hampered by heterogenous dose regime and high-level evidence is lacking.
Collapse
Affiliation(s)
- Terence Chun-Ting Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Chak-Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
32
|
Bacteriospermia and Male Infertility: Role of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:141-163. [PMID: 35641869 DOI: 10.1007/978-3-030-89340-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Male infertility is one of the major challenging and prevalent diseases having diverse etiologies of which bacteriospermia play a significant role. It has been estimated that approximately 15% of all infertility cases are due to infections caused by uropathogens and in most of the cases bacteria are involved in infection and inflammation leading to the development of bacteriospermia. In response to bacterial load, excess infiltration of leukocytes in the urogenital tract occurs and concomitantly generates oxidative stress (OS). Bacteria may induce infertility either by directly interacting with sperm or by generating reactive oxygen species (ROS) and impair sperm parameters such as motility, volume, capacitation, hyperactivation. They may also induce apoptosis leading to sperm death. Acute bacteriospermia is related with another clinical condition called leukocytospermia and both compromise male fertility potential by OS-mediated damage to sperm leading to male infertility. However, bacteriospermia as a clinical condition as well as the mechanism of action remains poorly understood, necessitating further research in order to understand the role of individual bacterial species and their impact in male infertility.
Collapse
|
33
|
Henkel R, Morris A, Vogiatzi P, Saleh R, Sallam H, Boitrelle F, Garrido N, Arafa M, Gül M, Rambhatla A, Rosas IM, Agarwal A, Leisegang K, Siebert TI. Predictive value of seminal oxidation-reduction potential (ORP) analysis for reproductive outcomes of intracytoplasmic sperm injection (ICSI) cycles. Reprod Biomed Online 2022; 45:1007-1020. [DOI: 10.1016/j.rbmo.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
34
|
Baszyński J, Kamiński P, Bogdzińska M, Mroczkowski S, Szymański M, Wasilow K, Stanek E, Hołderna-Bona K, Brodzka S, Bilski R, Tkachenko H, Kurhaluk N, Stuczyński T, Lorek M, Woźniak A. Enzymatic Antioxidant Defense and Polymorphic Changes in Male Infertility. Antioxidants (Basel) 2022; 11:817. [PMID: 35624681 PMCID: PMC9138092 DOI: 10.3390/antiox11050817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
The intensification of oxidative stress and destabilization of the antioxidative defenses of an organism is a consequence of many environmental factors. We considered aspects conditioning male reproductive potential and the functionality of enzymatic antioxidative mechanisms, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), and their correlations with Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Hg, Tl, Pb, and malondialdehyde (MDA), as well as genetic polymorphism IL-4v.C589T (rs2243250) in men with infertility (n = 76). A healthy normozoospermic control (n = 87) was also used. We assessed the impact of negative changes driven by oxidative stress on enzymatic antioxidative mechanisms as well as the role of MDA in the overall process. On this basis, we infer connections between disturbances in enzymatic antioxidative defense and reproductive potential. Based on a molecular analysis of the polymorphism of gene IL-4v.C589T (rs2243250) (chromosome 5) (PCR-RFLP), we considered the relationships among particular genotypes with the possibility of occurrence of male infertility. Concentrations of chemical elements were measured in the blood. The activity of antioxidants and MDA levels were measured in serum. In the infertile group, higher GPx activity was noted (6.56 nmoL·min-1·mL-1, control: 4.31 nmoL·min-1·mL-1; p = 0.004), while GR achieved a greater level in the control (17.74 nmoL·min-1·mL-1, infertile: 15.97 nmoL·min-1·mL-1, p = 0.043), which implies diversified efficiency of the first and second lines of defense. The polymorphism of IL-4v.C589T (rs2243250) was not directly connected with infertility because there were not any differences in the frequency of genotypes between the infertile and control group (p = 0.578). An analysis of genotypes CC and TT (polymorphism IL-4v.C589T (rs2243250)) indicated numerous correlations between antioxidants, chemical elements and MDA. Therefore, chemical economy, antioxidative defense and genetic conditions are connected and jointly shape male reproductive potential. Chemical elements influence antioxidative defense and male fertility; the most important modulators appeared to be Na, Ba, Al and B. The polymorphism of gene IL-4v.C589T (rs2243250) has a limited influence on antioxidative defense and the metabolism of chemical elements.
Collapse
Affiliation(s)
- Jędrzej Baszyński
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Piotr Kamiński
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
- Department of Biotechnology, Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland
| | - Maria Bogdzińska
- Department of Genetics and Animal Breeding, Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz, Hetmańska St. 33, PL 85-039 Bydgoszcz, Poland; (M.B.); (S.M.)
| | - Sławomir Mroczkowski
- Department of Genetics and Animal Breeding, Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz, Hetmańska St. 33, PL 85-039 Bydgoszcz, Poland; (M.B.); (S.M.)
| | - Marek Szymański
- Department of Obstetrics, Female Pathology and Oncological Gynecology, University Hospital No. 2, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejski St. 75, PL 85-168 Bydgoszcz, Poland;
- NZOZ Medical Center Co., Waleniowa St. 24, PL 85-435 Bydgoszcz, Poland;
| | - Karolina Wasilow
- NZOZ Medical Center Co., Waleniowa St. 24, PL 85-435 Bydgoszcz, Poland;
- Family Medicine Clinic, University Hospital No. 2, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejski St. 75, PL 85-168 Bydgoszcz, Poland
| | - Emilia Stanek
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Karolina Hołderna-Bona
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Sylwia Brodzka
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland; (R.B.); or (A.W.)
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, K. Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, K. Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (H.T.); (N.K.)
| | - Tomasz Stuczyński
- Department of Soil Structure, Institute of Soil and Plant Cultivation-Government Scientific Institute, Czartoryskich St. 8, PL 24-100 Puławy, Poland; or
- Faculty of Mathematics Informatics and Landscape Architecture, The John Paul II Catholic University of Lublin, Konstantynów 1 H, PL 20-708 Lublin, Poland
| | - Małgorzata Lorek
- Department of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (J.B.); (E.S.); (K.H.-B.); (S.B.); (M.L.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland; (R.B.); or (A.W.)
| |
Collapse
|
35
|
Al-Saleh I, Coskun S, Al-Rouqi R, Al-Rajudi T, Eltabache C, Abduljabbar M, Al-Hassan S. Oxidative stress and DNA damage status in couples undergoing in vitro fertilization treatment. REPRODUCTION AND FERTILITY 2022; 2:117-139. [PMID: 35128448 PMCID: PMC8812407 DOI: 10.1530/raf-20-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
This study examined the status of oxidative stress in 599 couples undertaking in vitro fertilization (IVF) treatment and its association with reproductive hormones, smoking, and outcomes. Oxidative stress biomarkers such as malondialdehyde, 8-hydroxy-2-deoxyguanosine, hydrogen peroxide (H2O2), catalase (CAT), and total antioxidant capacity (TAC) were determined in follicular fluid and seminal plasma. Tail moment (TM) was used to evaluate DNA damage in the sperm and granulosa cells. Reproductive hormones in serum and cotinine (COT) in urine, follicular fluid, and seminal plasma samples were determined. Separate multivariate linear regression was used to assess associations between levels of each oxidative stress biomarker and each hormone and smoking parameter (modeled as natural log-transformed). The findings indicate that some oxidative stress and DNA damage biomarkers played a role in disrupting certain reproductive hormones in women and their male partners either by overproducing reactive oxygen species or reducing antioxidant defense capacity. Although women were nonsmokers, COT levels > 50 and 10 µg/L in urine and follicular were observed in 5.7 and 1.7%, respectively. Levels of follicular fluid COT were positively associated with H2O2 and TM. We used log-binomial multivariate regression to estimate relative risks for the association between oxidative stress/DNA damage and IVF binary outcomes (fertilization rate > 50%, biochemical pregnancy, clinical pregnancy, and live birth). An increase in the CAT levels of follicular fluid was associated with a 48 and 41% decrease in the risk of poor fertilization rate (≤50%) and unsuccessful live birth, respectively. After the models were adjusted for hormonal factors, the associations remained the same, except that the elevated TAC in follicular fluid became significantly associated with a decrease of 42% in the risk of poor fertilization rate (≤50%). The higher antioxidant activity (CAT and TAC) in follicular fluid might positively impact specific IVF outcomes.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saad Al-Hassan
- Reproductive Medicine Unit, Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
37
|
Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:9-40. [DOI: 10.1007/978-3-030-89340-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Sikiru AB, Arangasamy A, Egena SSA, Veerasamy S, Reddy IJ, Raghavendra B. Elucidation of the liver proteome in response to an antioxidant intake in rabbits. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antioxidant intakes are one of the most cherished dietary approaches for the management of oxidative stress-induced liver damages. These antioxidants exist as the bioactive compounds present in plants and other natural sources functioning in varieties of ways from acting as direct scavengers of the free radicals to acting as the modifiers of genes and proteins expressions. Chlorella vulgaris is one of such antioxidants; it is a unicellular microalga and a rich source of polyphenols which has been reported for its capacity of reducing oxidative stress by upregulation of antioxidant genes. However, there are scarce reports on its effect on antioxidant protein expressions and functions in the liver. This situation necessitates untargeted proteomic profiling of the liver due to the antioxidant intakes as carried out in this present study. Sixteen laboratory weaner rabbits of 8 weeks old with initial average bodyweight of 1060 ± 29.42 g were randomly divided into two groups (n = 8 per group); the first group served as control while the second served as the treatment group were used for this study.
Results
After a period of 120 days daily consumption of 500 mg of Chlorella vulgaris biomass per kg bodyweight of the rabbit models, the animals were sacrificed and their livers were harvested followed by protein extraction for the untargeted proteomic profiling using LC-MS/Orbitrap Fusion Tribrid™ peptides quantifier and sequencer. Also, there was an assessment of the oxidative stress biomarkers in the liver and serum of the rabbits. Five-hundred and forty-four (544) proteins were identified out of which 204 were unique to the control, 198 were unique to the treatment group, while 142 were common to both groups of the rabbits. Antioxidant proteins commonly found in both groups were upregulated in the treatment group and were significantly associated with oxidative stress-protective activities. There was a reduction in oxidative stress biomarkers of the supplemented group as indicated by the assessment of the liver malondialdehyde concentrations (p < 0.05), total antioxidant capacities (p < 0.05), and antioxidant enzyme activities (p < 0.05). Similarly, these biomarkers were significantly reduced in the serum of the supplemented rabbits (p < 0.05).
Conclusion
The study concluded that Chlorella vulgaris is an antioxidant agent that could be suitable for reducing liver oxidative stress damage and it is a potential drug candidate for protecting the liver against oxidative stress damages as revealed in the rabbit models.
Collapse
|
39
|
Roozbeh N, Amirian A, Abdi F, Haghdoost S. A Systematic Review on Use of Medicinal Plants for Male Infertility Treatment. J Family Reprod Health 2021; 15:74-81. [PMID: 34721595 PMCID: PMC8520662 DOI: 10.18502/jfrh.v15i2.6447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Male infertility is involved in about half of the casess of infertility and the only sole reason for infertility in 20%-30% of the cases. Following the recent interest in the use of medicinal plants, scientists have sought to clarify their effects on male fertility. This review aimed to summarize the results of studies available to determine the effectiveness, safety and mechanism of herbal treatments in the improvement of male fertility. Materials and methods: Medline/PubMed, Scopus, Science Direct, and the Cochrane Central Register of Controlled Trials (Central) databases were searched for randomized controlled trials (RCTs) published during 2000-2020. Studies were only included if they adhered to the CONSORT checklist. The methodological quality of the selected studies was assessed using the Cochrane risk of bias tool. Results: Finally, 20 studies recruiting a total of 1519 individuals were reviewed. These studies compared the effects of eleven different medicinal plants, i.e. ginseng, saffron, Nigella sativa, palm pollen, ADOFON, TOPALAF, sesame, and Mucuna pruriens, on male fertility with those of placebo. All studies (except one) confirmed the beneficial effects of medicinal plants on the improvement of sperm and reproductive parameters and thus male infertility. Conclusion: The existing RCTs indicated the positive effects of medicinal plants on male fertility. Therefore, in order to develop a novel approach to the treatment of male infertility, further clinical trials are warranted to determine the maximum dosage and duration of treatment with herbal medicines and evaluate any potential side effects of such interventions.
Collapse
Affiliation(s)
- Nasibeh Roozbeh
- Mother and Child Welfare Research Center, Hormozgan Universiy of Medical Sciences, Bandar Abbas, Iran
| | - Azam Amirian
- Department of Midwifery, School of Nursing and Midwifery, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Abdi
- School of Nursing and Midwifery, Alborz University of Medical Sciences, Karaj, Iran
| | - Simin Haghdoost
- Department of Midwifery, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
40
|
Kurashova NA, Dashiev BG, Kolesnikov SI, Kolesnikova LI. Indicators of the Lipid Peroxidation-Antioxidant Protection System as Important Metabolic Markers of Reproductive Potential in Men. Bull Exp Biol Med 2021; 171:685-690. [PMID: 34709515 DOI: 10.1007/s10517-021-05295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/25/2022]
Abstract
We analyze results of recent studies demonstrating unfavorable state of the reproductive health in the male population that manifested not only in spermatogenesis deterioration, but also in oxidative stress (both systemic and in seminal fluid). The data on the effect of ROS and components of the antioxidant defense system on gamete quality in men with infertility associated with obesity and diabetes mellitus are presented. Some features of oxidative stress in men of reproductive age of various ethnic groups are shown. Evaluation of the parameters of oxidative stress provides new insight into the molecular mechanisms of functional activity of the semen and may become a promising direction for the development of new methodological recommendations for personalized diagnosis, prevention, and correction of reproductive disorders in men.
Collapse
Affiliation(s)
- N A Kurashova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - B G Dashiev
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
41
|
Finelli R, Leisegang K, Kandil H, Agarwal A. Oxidative Stress: A Comprehensive Review of Biochemical, Molecular, and Genetic Aspects in the Pathogenesis and Management of Varicocele. World J Mens Health 2021; 40:87-103. [PMID: 34666421 PMCID: PMC8761243 DOI: 10.5534/wjmh.210153] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress is a condition due to an imbalance between the concentrations of oxidants and antioxidants, and it is a well-recognized contributor in several male infertility conditions. Varicocele, a common vascular condition, may cause male infertility due to hyperthermia, hypoxia and/or exposure to toxic adrenal and renal metabolites. In this review, the mechanisms by which oxidative stress can affect cellular integrity and functions are described, along with molecular markers of cellular oxidative damage, and the most commonly performed techniques for their detection in seminal fluid. Moreover, we focus on the role of oxidative stress in the pathophysiology of varicocele based on recently published evidence from omics based studies, such as proteomics and genomics. Finally, we discuss strategies for the management of oxidative stress and the clinical guidelines for testing oxidative stress-related sperm DNA fragmentation in this group of patients.
Collapse
Affiliation(s)
- Renata Finelli
- Department of Urology, American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, United Arab Emirates
| | - Ashok Agarwal
- Department of Urology, American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
42
|
Zhang Y, Zhang W, Wu X, Liu G, Dai Y, Jiang H, Zhang X. Effect of varicocele on sperm DNA damage: A systematic review and meta-analysis. Andrologia 2021; 54:e14275. [PMID: 34658054 DOI: 10.1111/and.14275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
The updated meta-analysis was conducted to further verify the effect of varicocele on sperm DNA damage, supplying clinicians and researchers with high-grade evidence. The sperm DNA damage was evaluated by DNA fragmentation index (DFI), associated with the male fertility capability tightly. PubMed, Web of Science and Cochrane Library were searched extensively for eligible studies with the search terms: varicocele, sperm DNA and sperm DNA damage. Finally, a total of 12 studies were included in our meta-analysis with a total of 845 patients diagnosed with varicocele and 2,377 healthy controls. A statistical difference of DFI between varicocele patients and healthy controls was found after pooling the data ((Standardised mean difference) SMD: 1.40, 95%CI: 0.83-1.98, p < .0001), using the random effect model. We conducted subgroup analysis according to study region (Brazil and Other countries), detection methods of DFI (TUNEL, Comet, and SCSA), sample size (<50 and >50) and age (<30 and >30 years), based on substantial heterogeneity among eligible studies. The stability of pooled results was verified by sensitivity analysis. All these statistical analyses were conducted using Stata version 16.0. In conclusion, patients diagnosed with clinical varicocele had higher DFI than healthy controls, which means varicocele could impair sperm DNA, consequently the fertility potential of affected men.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xu Wu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Guodong Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yutian Dai
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Jiang
- The department of Urology, Peking University Third Hospital, Beijing, China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Symeonidis EN, Evgeni E, Palapelas V, Koumasi D, Pyrgidis N, Sokolakis I, Hatzichristodoulou G, Tsiampali C, Mykoniatis I, Zachariou A, Sofikitis N, Kaltsas A, Dimitriadis F. Redox Balance in Male Infertility: Excellence through Moderation-"Μέτρον ἄριστον". Antioxidants (Basel) 2021; 10:antiox10101534. [PMID: 34679669 PMCID: PMC8533291 DOI: 10.3390/antiox10101534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Male infertility, a relatively common and multifactorial medical condition, affects approximately 15% of couples globally. Based on WHO estimates, a staggering 190 million people struggle with this health condition, and male factor is the sole or contributing factor in roughly 20–50% of these cases. Nowadays, urologists are confronted with a wide spectrum of conditions ranging from the typical infertile male to more complex cases of either unexplained or idiopathic male infertility, requiring a specific patient-tailored diagnostic approach and management. Strikingly enough, no identifiable cause in routine workup can be found in 30% to 50% of infertile males. The medical term male oxidative stress infertility (MOSI) was recently coined to describe infertile men with abnormal sperm parameters and oxidative stress (OS), including those previously classified as having idiopathic infertility. OS is a critical component of male infertility, entailing an imbalance between reactive oxygen species (ROS) and antioxidants. ROS abundance has been implicated in sperm abnormalities, while the exact impact on fertilization and pregnancy has long been a subject of considerable debate. In an attempt to counteract the deleterious effects of OS, urologists resorted to antioxidant supplementation. Mounting evidence indicates that indiscriminate consumption of antioxidants has led in some cases to sperm cell damage through a reductive-stress-induced state. The “antioxidant paradox”, one of the biggest andrological challenges, remains a lurking danger that needs to be carefully avoided and thoroughly investigated. For that reason, oxidation-reduction potential (ORP) emerged as a viable ancillary tool to basic semen analysis, measuring the overall balance between oxidants and antioxidants (reductants). A novel biomarker, the Male infertility Oxidative System (MiOXSYS®), is a paradigm shift towards that goal, offering a quantification of OS via a quick, reliable, and reproducible measurement of the ORP. Moderation or “Μέτρον” according to the ancient Greeks is the key to successfully safeguarding redox balance, with MiOXSYS® earnestly claiming its position as a guarantor of homeostasis in the intracellular redox milieu. In the present paper, we aim to offer a narrative summary of evidence relevant to redox regulation in male reproduction, analyze the impact of OS and reductive stress on sperm function, and shed light on the “antioxidant paradox” phenomenon. Finally, we examine the most up-to-date scientific literature regarding ORP and its measurement by the recently developed MiOXSYS® assay.
Collapse
Affiliation(s)
- Evangelos N. Symeonidis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Evangelini Evgeni
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Vasileios Palapelas
- 3rd Department of Obstetrics and Gynecology, Hippokration General Hospital, School of Medicine, Aristotle University, 54642 Thessaloniki, Greece;
| | - Dimitra Koumasi
- Cryogonia Cryopreservation Bank, 11526 Athens, Greece; (E.E.); (D.K.)
| | - Nikolaos Pyrgidis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | - Ioannis Sokolakis
- Department of Urology, ‘Martha-Maria’ Hospital Nuremberg, 90491 Nuremberg, Germany; (N.P.); (I.S.); (G.H.)
| | | | | | - Ioannis Mykoniatis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Ares Kaltsas
- Department of Urology, School of Medicine, Ioannina University, 45500 Ioannina, Greece; (A.Z.); (N.S.); (A.K.)
| | - Fotios Dimitriadis
- Department of Urology, “G. Gennimatas” General Hospital, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (E.N.S.); (I.M.)
- Correspondence: ; Tel.: +30-23-1041-1121
| |
Collapse
|
44
|
Ribeiro JC, Braga PC, Martins AD, Silva BM, Alves MG, Oliveira PF. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants (Basel) 2021; 10:antiox10091441. [PMID: 34573073 PMCID: PMC8466935 DOI: 10.3390/antiox10091441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nowadays, infertility is classified as a disease of the reproductive system. Although it does not compromise the life of the individual, it can have detrimental effects on the physiological and psychological health of the couple. Male fertility evaluation is mainly focused on the analysis of sperm parameters. However, the ejaculated fluid is also composed of seminal plasma, and the study of this fluid can provide crucial information to help in the assessment of male fertility status. Total antioxidant capacity of the seminal plasma has been positively correlated with the fertility of men. Moreover, evidence highlights to a similar importance as that of female reproductive tract fluid antioxidant capabilities and female fertility. Herein, we describe the functions of seminal plasma and female reproductive tract fluids, as well as their main antioxidant components and their relationships with fertility outcomes. Additionally, this review contains the most up to date information regarding the mechanisms of the interaction between the male and the female reproductive fluids and the importance of proper antioxidant capacity for fertilization.
Collapse
Affiliation(s)
- João C. Ribeiro
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patrícia C. Braga
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
| | - Ana D. Martins
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Branca M. Silva
- CICS, Faculty of Health Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Marco G. Alves
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (P.C.B.); (M.G.A.)
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234370718
| |
Collapse
|
45
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
46
|
Measurement of Oxidative Stress Index in Seminal Plasma Can Predict In Vivo Fertility of Liquid-Stored Porcine Artificial Insemination Semen Doses. Antioxidants (Basel) 2021; 10:antiox10081203. [PMID: 34439450 PMCID: PMC8388916 DOI: 10.3390/antiox10081203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The study evaluated the relation between the oxidative stress index (OSI) in porcine seminal plasma (n = 76) with sperm resilience and in vivo fertility (farrowing rate and litter size of 3137 inseminated sows) of liquid-stored artificial insemination (AI) semen doses. The OSI was assessed as the ratio of advanced oxidation protein products to Trolox-equivalent antioxidant capacity, both measured using an automated analyzer. Sperm motility (computer-assisted sperm analyzer) and viability (flow cytometry) were evaluated in semen AI-doses at 0 and 72 h of storage at 17 °C. Sperm resilience was defined as the difference between storage intervals. Semen AI-doses were hierarchically clustered as having high, medium and low seminal OSI (p < 0.001) with those of low displaying higher resilience (p < 0.01). Boars were hierarchically clustered into two groups (p < 0.001) as having either positive or negative farrowing rate and litter size deviation; the negative one showing higher seminal OSI (p < 0.05). In sum, seminal OSI was negatively related to sperm motility and the in vivo fertility of liquid-stored boar semen AI-doses, with the receiver operating characteristic curve presenting seminal OSI as a good predictive biomarker of in vivo fertility of AI-boars (area under the curve: 0.815, p < 0.05).
Collapse
|
47
|
Agarwal A, Finelli R, Selvam MKP, Leisegang K, Majzoub A, Tadros N, Ko E, Parekh N, Henkel R, Durairajanayagam D, Colpi GM, Cho CL, Sallam HN, Park HJ, Saleh R, Micic S, Ambar RF, Zini A, Tremellen K, Alvarez JG, Palani A, Arafa M, Gava MM, Jindal S, Amar E, Kopa Z, Moein MR, Busetto GM, Sengupta P, Kavoussi P, Maldonado I, Fikri J, Borges E, Martinez M, Bojovic D, Rajmil O, Aydos K, Parekattil S, Marmar JL, Sefrioui O, Jungwirth A, Peña MGR, Cordts EB, Elbardisi H, Mostafa T, Sabbaghian M, Sadighi Gilani MA, Morimoto Y, Alves MG, Spasic A, Kenic U, Ramsay J, Akande EO, Oumeziane A, Dozortsev D, Chung E, Bell EG, Allegra A, Tanos V, Fiadjoe M, Gurgan T, Abou-Abdallah M, Al-Rumaih H, Oborna I, Arab H, Esteves S, Amer M, Kadioglu A, Yuzko O, Korsak V, Shah R. A Global Survey of Reproductive Specialists to Determine the Clinical Utility of Oxidative Stress Testing and Antioxidant Use in Male Infertility. World J Mens Health 2021; 39:470-488. [PMID: 33831977 PMCID: PMC8255391 DOI: 10.5534/wjmh.210025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The use of antioxidants is common practice in the management of infertile patients. However, there are no established guidelines by professional societies on antioxidant use for male infertility. MATERIALS AND METHODS Using an online survey, this study aimed to evaluate the practice pattern of reproductive specialists to determine the clinical utility of oxidative stress (OS) testing and antioxidant prescriptions to treat male infertility. RESULTS Responses from 1,327 participants representing 6 continents, showed the largest participant representation being from Asia (46.8%). The majority of participants were attending physicians (59.6%), with 61.3% having more than 10 years of experience in the field of male infertility. Approximately two-thirds of clinicians (65.7%) participated in this survey did not order any diagnostic tests for OS. Sperm DNA fragmentation was the most common infertility test beyond a semen analysis that was prescribed to study oxidative stress-related dysfunctions (53.4%). OS was mainly tested in the presence of lifestyle risk factors (24.6%) or sperm abnormalities (16.3%). Interestingly, antioxidants were prescribed by 85.6% of clinicians, for a duration of 3 (43.7%) or 3-6 months (38.6%). A large variety of antioxidants and dietary supplements were prescribed, and scientific evidence were mostly considered to be modest to support their clinical use. Results were not influenced by the physician's age, geographic origin, experience or training in male infertility. CONCLUSIONS This study is the largest online survey performed to date on this topic and demonstrates 1) a worldwide understanding of the importance of this therapeutic option, and 2) a widely prevalent use of antioxidants to treat male infertility. Finally, the necessity of evidence-based clinical practice guidelines from professional societies is highlighted.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA.
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, South Africa
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | | | | | - Chak Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Hassan N Sallam
- Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Sava Micic
- Uromedica Polyclinic, Andrology Department, Belgrade, Serbia
| | - Rafael F Ambar
- Sexual and Reproductive Medicine, Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo Andre, Brazil
| | - Armand Zini
- Department of Surgery, McGill University, St. Mary's Hospital, Montreal, QC, Canada
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, South Australia
| | | | - Ayad Palani
- Department of Biochemistry, College of Medicine, University of Garmian, Kalar, Iraq
| | - Mohamed Arafa
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Hamad Medical Corporation, Doha, Qatar
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marcello M Gava
- Sexual and Reproductive Medicine, Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo Andre, Brazil
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Edouard Amar
- Cabinet D'Andrologie Victor Hugo, American Hospital of Paris Reproductive Center, Paris, France
| | - Zsolt Kopa
- Andrology Centre, Department of Urology, Semmelweis University, Budapest, Hungary
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia Policlinico Riuniti of Foggia, Foggia, Italy
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | | | - Jamal Fikri
- IVF Unit, Al Boustane Clinic, Rabat, Morocco
| | - Edson Borges
- Fertility Medical Group, Sapientiae Institute, São Paulo, Brazil
| | - Marlon Martinez
- Department of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | | | - Osvaldo Rajmil
- Deparment of Andrology, Fundacio Puigvert, Barcelona, Spain
| | - Kaan Aydos
- Department of Urology, University of Ankara, Ankara, Turkey
| | - Sijo Parekattil
- Avant Concierge Urology & University of Central Florida, Winter Garden, FL, USA
| | - Joel L Marmar
- Honorary Staff of Cooper University Hospital, Camden, NJ, USA
| | | | | | | | - Emerson B Cordts
- Instituto Ideia Fertil-Human Reproduction Centre-Faculdade de Medicina do ABC, Sao Paulo, Brazil
| | | | - Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | | | | | - Eric Chung
- Department of Urology, University of Queensland, Brisbane, Australia
| | | | - Adolfo Allegra
- ANDROS Day Surgery Clinic, Reproductive Medicine Unit, Palermo, Italy
| | - Vasilios Tanos
- Department of Obstetrics and Gynecology, University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Timur Gurgan
- Department of Obstetrics and Gynecology, Bahcesehir University, Istanbul, Turkey
| | - Michel Abou-Abdallah
- Middle East Fertility Society, Canadian Foundation for Reproductive Medicine, Lebanon
| | - Hazem Al-Rumaih
- Reproductive Medicine Unit, New Jahra Hospital, Ministry of Health, Al Jahra, Kuwait
| | | | - Hesham Arab
- RMU Dr. Arab Medical Center, Jeddah, Saudi Arabia
| | - Sandro Esteves
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
| | - Medhat Amer
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ates Kadioglu
- Section of Andrology, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Oleksandr Yuzko
- Department of Obstetrics and Gynecology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Vladislav Korsak
- International Centre for Reproductive Medicine, Saint-Petersburg, Russia
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
48
|
Majzoub A, Arafa M, El Ansari W, Mahdi M, Agarwal A, Al-Said S, Elbardisi H. Correlation of oxidation reduction potential and total motile sperm count: its utility in the evaluation of male fertility potential. Asian J Androl 2021; 22:317-322. [PMID: 31339113 PMCID: PMC7275803 DOI: 10.4103/aja.aja_75_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) is detrimental to sperm functions, and the oxidation reduction potential (ORP) is a good measure of OS as it considers the balance between oxidants and reductants. Total motile sperm count (TMSC) is viewed as the single most important semen analysis parameter that can predict male infertility severity, and its correlation with ORP has never been undertaken. The objectives of this study were to assess the correlation between ORP and TMSC, to identify the ORP cutoff value based on the TMSC result, and to compare this cutoff value with previously reported ORP cutoff values in literature. One thousand one hundred and sixty-eight infertile patients and 100 fertile controls were enrolled. Demographic and semen data of the participants were retrieved and analyzed. Wilcoxon's rank-sum test compared variables between infertile men and fertile controls; Spearman's correlation assessed the static ORP (sORP)-TMSC relationship for the whole sample and among each group individually. Using a 20×106 TMSC threshold, receiver operator characteristic (ROC) analysis determined the sORP cutoff associated with the highest predictive values. TMSC was significantly negatively correlated with sORP across all participants (r = 0.86, P < 0.001), among infertile patients (r = 0.729, P < 0.001), and among fertile controls (r = 0.53, P < 0.001). A 20-million TMSC threshold determined an sORP cutoff value of 2.34 mV/106 sperm/ml to be associated with 82.9% sensitivity, 82.8% specificity, 91.5% positive predictive value (PPV), 68.5% negative predictive value (NPV), and 82.9% overall accuracy. Compared with previously reported cutoff values in searched literature, the 2.34 mV/106 sperm/ml cutoff value identified in our study yielded the highest overall diagnostic accuracy in the evaluation of infertile men.
Collapse
Affiliation(s)
- Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar.,Department of Andrology, Cairo University, Cairo 12613, Egypt
| | - Walid El Ansari
- Department of Surgery, Hamad Medical Corporation, Doha 00974, Qatar.,College of Medicine, Qatar University, Doha 00974, Qatar.,School of Health and Education, University of Skövde, Skövde 54128, Sweden
| | - Mohammed Mahdi
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar
| | - Ashok Agarwal
- Department of Urology, Glickman Urology and Kidney Institute, Cleveland Clinic Foundation, OH 44195, USA
| | - Sami Al-Said
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.,Department of Urology, Weill Cornell Medicine-Qatar, Doha 00974, Qatar
| |
Collapse
|
49
|
Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S. Coenzyme Q10, oxidative stress, and male infertility: A review. Clin Exp Reprod Med 2021; 48:97-104. [PMID: 34078005 PMCID: PMC8176150 DOI: 10.5653/cerm.2020.04175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.
Collapse
Affiliation(s)
- Ahmed T. Alahmar
- Department of Medical Physiology, College of Medicine, University of Babylon, Iraq
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University Teaching Hospital Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University Teaching Hospital Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Malaysia
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Malaysia
| |
Collapse
|
50
|
The association between testicular toxicity induced by Li2Co3 and protective effect of Ganoderma lucidum: Alteration of Bax & c-Kit genes expression. Tissue Cell 2021; 72:101552. [PMID: 33992978 DOI: 10.1016/j.tice.2021.101552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Ganoderma lucidum has received a lot of attention recently due to its medicinal potential activities. The aim of this designed experiment was to evaluate the beneficial effects of Ganoderma lucidum extract against lithium carbonate induced testicular toxicity and related lesions in mice testis. For this purpose, lithium carbonate at a dose of 30 mg/kg, followed by 75, 150 mg/kg Ganoderma lucidum extract orally were administered for 35 days. The results were obtained from Ganoderma lucidum extract analysis prove contained a large amount of polysaccharides, triterpenoids and poly phenols based on spectrophotometric assay. Also, DPPH assay for Ganoderma lucidum extract showed high level of radical scavenging activity. The hematoxylin & eosin cross section from lithium carbonate treated group exhibited significant alterations in seminiferous tubules. Moreover, lithium carbonate induced oxidative stress via lipid peroxidation and generate MDA (P < 0.001). In addition, lithium carbonate initiated germ cells apoptosis via increase Bax expression (p < 0.001) and reduce germ cells differentiation through down-regulation of c-Kit expression (p < 0.05). Results from CASA showed that sperm parameters like count, motility and viability significantly decreased in lithium treated group (p < 0.001). It is clear that lithium carbonate induce severe damage on male reproductive system and histopathological damages via generation oxidative stress but supplementation with Ganoderma lucidum extract exhibited prevention effects and repaired induced damages.
Collapse
|