1
|
Mei J, Yang K, Zhang X, Luo Z, Tian M, Fan H, Chu J, Zhang Y, Ding J, Xu J, Cai Y, Yin Y. Intratumoral Collagen Deposition Supports Angiogenesis Suggesting Anti-angiogenic Therapy in Armored and Cold Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409147. [PMID: 39823457 PMCID: PMC11904994 DOI: 10.1002/advs.202409147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/05/2025] [Indexed: 01/19/2025]
Abstract
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types. As a result, armored & cold tumors exhibit the highest angiogenic activity in lung adenocarcinoma (LUAD). Single-cell and spatial transcriptomics reveal close interactions and spatial co-localization of fibroblasts and endothelial cells. In vitro experiments demonstrate that collagen stimulates tumor cells to express vascular endothelial growth factor A (VEGFA) and directly enhances vessel formation and endothelial cell proliferation through sex determining region Y box 18 (SOX18) upregulation. Collagen inhibition via multiple approaches effectively suppresses tumor angiogenesis in vivo. In addition, armored & cold tumors display superior responsiveness to anti-angiogenic therapy in advanced LUAD cohorts. Post-immunotherapy resistance, the transformation into armored & cold tumors emerges as a potential biomarker for selecting anti-angiogenic therapy. In summary, collagen deposition is shown to drive angiogenesis across various cancers, providing a novel and actionable framework to refine therapeutic strategies combining chemotherapy with anti-angiogenic treatments.
Collapse
Affiliation(s)
- Jie Mei
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Kai Yang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Xinkang Zhang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Zhiwen Luo
- Department of Sports MedicineHuashan Hospital Affiliated to Fudan UniversityShanghai200040P. R. China
| | - Min Tian
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Hanfang Fan
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Jiahui Chu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Yan Zhang
- Departments of GynecologyThe Women's Hospital Affiliated to Jiangnan UniversityWuxi214023China
| | - Junli Ding
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Junying Xu
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Yun Cai
- Central LaboratoryChangzhou Jintan First People's HospitalThe Affiliated Jintan Hospital of Jiangsu UniversityChangzhouJiangsu213200P. R. China
| | - Yongmei Yin
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
2
|
Daum S, Decristoforo L, Mousa M, Salcher S, Plattner C, Hosseinkhani B, Trajanoski Z, Wolf D, Carmeliet P, Pircher A. Unveiling the immunomodulatory dance: endothelial cells' function and their role in non-small cell lung cancer. Mol Cancer 2025; 24:21. [PMID: 39819502 PMCID: PMC11737145 DOI: 10.1186/s12943-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
The dynamic interactions between tumor endothelial cells (TECs) and the immune microenvironment play a critical role in the progression of non-small cell lung cancer (NSCLC). In general, endothelial cells exhibit diverse immunomodulatory properties, influencing immune cell recruitment, antigen presentation, and regulation of immune checkpoint expression. Understanding the multifaceted roles of TECs as well as assigning specific functional hallmarks to various TEC phenotypes offer new avenues for targeted development of therapeutic interventions, particularly in the context of advanced immunotherapy and anti-angiogenic treatments. This review provides insights into the complex interplay between TECs and the immune system in NSCLC including discussion of potential optimized therapeutic opportunities.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Lilith Decristoforo
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stefan Salcher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Christina Plattner
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Baharak Hosseinkhani
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Peter Carmeliet
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Andreas Pircher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Rodak O, Mrozowska M, Rusak A, Gomułkiewicz A, Piotrowska A, Olbromski M, Podhorska-Okołów M, Ugorski M, Dzięgiel P. Targeting SOX18 Transcription Factor Activity by Small-Molecule Inhibitor Sm4 in Non-Small Lung Cancer Cell Lines. Int J Mol Sci 2023; 24:11316. [PMID: 37511076 PMCID: PMC10379584 DOI: 10.3390/ijms241411316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
4
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
6
|
Ojala PM, Francoís M. SOX18 Targeting as a Potential, Viable Therapeutic Avenue for Kaposi Sarcoma. JAMA Dermatol 2022; 158:1458-1459. [PMID: 36223085 DOI: 10.1001/jamadermatol.2022.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Päivi M Ojala
- Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Mathias Francoís
- The Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
An G, Park J, Lim W, Song G. Thiobencarb induces phenotypic abnormalities, apoptosis, and cardiovascular toxicity in zebrafish embryos through oxidative stress and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109440. [PMID: 35961533 DOI: 10.1016/j.cbpc.2022.109440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Thiobencarb is a representative herbicide used on rice paddies. Because thiobencarb is used extensively on agricultural lands, especially on paddy fields, there is a high risk of unintended leaks into aquatic ecosystems. For this reason, several studies have investigated and reported on the toxicity of thiobencarb to aquatic species. In European eels, thiobencarb affected acetylcholinesterase levels in plasma and impaired adenosine triphosphatase activity in their gills. In medaka, thiobencarb-exposed embryos showed lower viability. However, molecular mechanisms underlying thiobencarb-mediated embryotoxicity have yet to be clarified. Therefore, the objective of our study was to investigate its mechanism of toxicity using zebrafish embryos. The viability of zebrafish embryos decreased upon exposure to thiobencarb and various phenotypic abnormalities were observed at concentrations lower than the lethal dose. The developmental toxicity of thiobencarb was mediated by pro-inflammatory cytokines (il1b, cxcl8, cxcl18b, and cox2a) and excessive generation of reactive oxygen species due to the downregulation of genes such as catalase, sod1, and sod2, which encode antioxidant enzymes. In addition, severe defects of the cardiovascular system were identified in response to thiobencarb exposure. Specifically, deformed cardiac looping, delayed common cardinal vein (CCV) regression, and interrupted dorsal aorta (DA)-posterior cardinal vein (PCV) segregation were observed. Our results provide an essential resource that demonstrates molecular mechanisms underlying the toxicity of thiobencarb on non-target organisms, which may contribute to the establishment of a mitigation strategy.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Mao Y, Meng L, Liu H, Lu Y, Yang K, Ouyang G, Ban Y, Chen S. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ Sci B 2022; 23:353-364. [PMID: 35557037 DOI: 10.1631/jzus.b2101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.
Collapse
Affiliation(s)
- Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Yanran Ban
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Shuang Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
9
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
10
|
Seebauer CT, Graus MS, Huang L, McCann AJ, Wylie-Sears J, Fontaine FR, Karnezis T, Zurakowski D, Staffa SJ, Meunier FA, Mulliken JB, Bischoff J, Francois M. Non-β-blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. J Clin Invest 2021; 132:151109. [PMID: 34874911 PMCID: PMC8803322 DOI: 10.1172/jci151109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(–) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.
Collapse
Affiliation(s)
- Caroline T Seebauer
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Matthew S Graus
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| | - Lan Huang
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frank R Fontaine
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - Tara Karnezis
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Steven J Staffa
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frédéric A Meunier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - John B Mulliken
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Joyce Bischoff
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Mathias Francois
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Lei Z, Sun W, Guo T, Li J, Zhu S, Lu Z, Qiao G, Han M, Zhao H, Yang B, Zhang L, Liu J, Yuan C, Yue Y. Genome-Wide Selective Signatures Reveal Candidate Genes Associated with Hair Follicle Development and Wool Shedding in Sheep. Genes (Basel) 2021; 12:genes12121924. [PMID: 34946875 PMCID: PMC8702090 DOI: 10.3390/genes12121924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023] Open
Abstract
Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < −2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.
Collapse
Affiliation(s)
- Zhihui Lei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Shaohua Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- Correspondence:
| |
Collapse
|
12
|
Single-Cell RNA Sequencing Reveals Heterogeneity and Functional Diversity of Lymphatic Endothelial Cells. Int J Mol Sci 2021; 22:ijms222111976. [PMID: 34769408 PMCID: PMC8584409 DOI: 10.3390/ijms222111976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphatic endothelial cells (LECs) line the lymphatic vasculature and play a central role in the immune response. LECs have abilities to regulate immune transport, to promote immune cell survival, and to cross present antigens to dendritic cells. Single-cell RNA sequencing (scRNA) technology has accelerated new discoveries in the field of lymphatic vascular biology. This review will summarize these new findings in regard to embryonic development, LEC heterogeneity with associated functional diversity, and interactions with other cells. Depending on the organ, location in the lymphatic vascular tree, and micro-environmental conditions, LECs feature unique properties and tasks. Furthermore, adjacent stromal cells need the support of LECs for fulfilling their tasks in the immune response, such as immune cell transport and antigen presentation. Although aberrant lymphatic vasculature has been observed in a number of chronic inflammatory diseases, the knowledge on LEC heterogeneity and functional diversity in these diseases is limited. Combining scRNA sequencing data with imaging and more in-depth functional experiments will advance our knowledge of LECs in health and disease. Building the case, the LEC could be put forward as a new therapeutic target in chronic inflammatory diseases, counterweighting the current immune-cell focused therapies.
Collapse
|
13
|
Identification of Novel Choroidal Neovascularization-Related Genes Using Laplacian Heat Diffusion Algorithm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2295412. [PMID: 34532497 PMCID: PMC8440095 DOI: 10.1155/2021/2295412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Choroidal neovascularization (CNV) is a type of eye disease that can cause vision loss. In recent years, many studies have attempted to investigate the major pathological processes and molecular pathogenic mechanisms of CNV. Because many diseases are related to genes, the genes associated with CNV need to be identified. In this study, we proposed a network-based approach for identifying novel CNV-associated genes. To execute such method, we first employed a protein-protein interaction network reported in STRING. Then, we applied a network diffusion algorithm, Laplacian heat diffusion, on this network by selecting validated CNV-related genes as the seed nodes. As a result, some novel genes that had unknown but strong relationships with validated genes were identified. Furthermore, we used a screening procedure to extract the most essential genes. Eleven latent CNV-related genes were finally obtained. Extensive analyses were performed to confirm that these genes are novel CNV-related genes.
Collapse
|
14
|
Wong ES, Zheng D, Tan SZ, Bower NL, Garside V, Vanwalleghem G, Gaiti F, Scott E, Hogan BM, Kikuchi K, McGlinn E, Francois M, Degnan BM. Deep conservation of the enhancer regulatory code in animals. Science 2020; 370:370/6517/eaax8137. [PMID: 33154111 DOI: 10.1126/science.aax8137] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/29/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type-specific gene regulatory networks across the animal kingdom.
Collapse
Affiliation(s)
- Emily S Wong
- School of Biological Sciences, University of Queensland, Brisbane, Australia. .,Victor Chang Cardiac Research Institute, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Dawei Zheng
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Siew Z Tan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Neil L Bower
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Victoria Garside
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Ethan Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Edwina McGlinn
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mathias Francois
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia. .,Centenary Institute, David Richmond Program for Cardio-Vascular Research: Gene Regulation and Editing, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
15
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
16
|
Chai ZX, Xin JW, Zhang CF, Dawayangla, Luosang, Zhang Q, Pingcuozhandui, Li C, Zhu Y, Cao HW, Wang H, Han JL, Ji QM, Zhong JC. Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai-Tibet Plateau. BMC Evol Biol 2020; 20:137. [PMID: 33109104 PMCID: PMC7590491 DOI: 10.1186/s12862-020-01702-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND On the Qinghai-Tibet Plateau, known as the roof ridge of the world, the yak is a precious cattle species that has been indispensable to the human beings living in this high-altitude area. However, the origin of domestication, dispersal route, and the divergence of domestic yaks from different areas are poorly understood. RESULTS Here, we resequenced the genome of 91 domestic yak individuals from 31 populations and 1 wild yaks throughout China. Using a population genomics approach, we observed considerable genetic variation. Phylogenetic analysis suggested that the earliest domestications of yak occurred in the south-eastern QTP, followed by dispersal to the west QTP and northeast to SiChuang, Gansu, and Qinghai by two routes. Interestingly, we also found potential associations between the distribution of some breeds and historical trade routes such as the Silk Road and Tang-Tibet Ancient Road. Selective analysis identified 11 genes showing differentiation between domesticated and wild yaks and the potentially positively selected genes in each group were identified and compared among domesticated groups. We also detected an unbalanced pattern of introgression among domestic yak, wild yak, and Tibetan cattle. CONCLUSIONS Our research revealed population genetic evidence for three groups of domestic yaks. In addition to providing genomic evidence for the domestication history of yaks, we identified potential selected genes and introgression, which provide a theoretical basis and resources for the selective breeding of superior characters and high-quality yak.
Collapse
Affiliation(s)
- Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dawayangla
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Luosang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Pingcuozhandui
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Chao Li
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
17
|
Neinaa YMEH, El-Ashmawy AA, Alshenawy HAS, Arakeeb EEA. Significance of SOX18 expression in nonmelanoma skin cancers for prediction of high-risk patients: a preliminary study. Int J Dermatol 2020; 59:1117-1124. [PMID: 32662888 DOI: 10.1111/ijd.15032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND SOX18 is an integral transcription factor that is involved in endothelial cells differentiation during both angiogenesis and lymphangiogenesis. Therefore, it has been implicated in tumor progression and metastasis. OBJECTIVE To study SOX18 expression in nonmelanoma skin cancers (NMSCs) in comparison to seborrheic keratosis (SK) and normal control skin, and to assess its probable role in tumor evolution and progression. PATIENTS AND METHODS This study was conducted on 60 specimens of NMSCs: 30 basal cell carcinomas (BCC) and 30 squamous cell carcinomas (SCC), 30 specimens of SK, and 30 normal skin specimens. All were examined for immunohistochemical expression of SOX18 antibody. Additionally, morphometric assessment of vessel density (blood & lymphatic) in each specimen was estimated. RESULTS Significant SOX18 overexpression was observed in all studied cutaneous tumors in comparison to control skin. The highest score of SOX18 expression was detected in SCC, then BCC, and the least expression was reported in SK with significant difference between them. Furthermore, significant upregulation of SOX18 expression was observed in high-risk types of both BCC and SCC compared to low-risk types. Stromal vessel density showed significant differences between the studied tumors with the highest mean value in SCC, followed by BCC and then SK. Positive correlation between SOX18 expression in the studied tumors and their vessel density was detected. CONCLUSIONS SOX18 may have a potential role in the evolution as well as progression of NMSCs, possibly through induction of both angiogenesis and lymphangiogenesis. Furthermore, it could be beneficial for prediction of NMSC patients with poor prognosis.
Collapse
|
18
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
19
|
Rondon-Galeano M, Skoczylas R, Bower NI, Simons C, Gordon E, Francois M, Koltowska K, Hogan BM. MAFB modulates the maturation of lymphatic vascular networks in mice. Dev Dyn 2020; 249:1201-1216. [PMID: 32525258 DOI: 10.1002/dvdy.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.
Collapse
Affiliation(s)
- Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Renae Skoczylas
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Emma Gordon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Wada H, Suzuki M, Matsuda M, Ajiro Y, Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka T, Morita Y, Nakamura T, Fujimoto K, Matsubara H, Kato T, Unoki T, Takagi D, Wada K, Wada M, Iguchi M, Masunaga N, Ishii M, Yamakage H, Kusakabe T, Yasoda A, Shimatsu A, Kotani K, Satoh-Asahara N, Abe M, Akao M, Hasegawa K. Distinct Characteristics of VEGF-D and VEGF-C to Predict Mortality in Patients With Suspected or Known Coronary Artery Disease. J Am Heart Assoc 2020; 9:e015761. [PMID: 32319336 PMCID: PMC7428571 DOI: 10.1161/jaha.119.015761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background VEGF‐D (vascular endothelial growth factor D) and VEGF‐C are secreted glycoproteins that can induce lymphangiogenesis and angiogenesis. They exhibit structural homology but have differential receptor binding and regulatory mechanisms. We recently demonstrated that the serum VEGF‐C level is inversely and independently associated with all‐cause mortality in patients with suspected or known coronary artery disease. We investigated whether VEGF‐D had distinct relationships with mortality and cardiovascular events in those patients. Methods and Results We performed a multicenter, prospective cohort study of 2418 patients with suspected or known coronary artery disease undergoing elective coronary angiography. The serum level of VEGF‐D was measured. The primary outcome was all‐cause death. The secondary outcomes were cardiovascular death and major adverse cardiovascular events defined as a composite of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke. During the 3‐year follow‐up, 254 patients died from any cause, 88 died from cardiovascular disease, and 165 developed major adverse cardiovascular events. After adjustment for possible clinical confounders, cardiovascular biomarkers (N‐terminal pro‐B‐type natriuretic peptide, cardiac troponin‐I, and high‐sensitivity C‐reactive protein), and VEGF‐C, the VEGF‐D level was significantly associated with all‐cause death and cardiovascular death but not with major adverse cardiovascular events.. Moreover, the addition of VEGF‐D, either alone or in combination with VEGF‐C, to the model with possible clinical confounders and cardiovascular biomarkers significantly improved the prediction of all‐cause death but not that of cardiovascular death or major adverse cardiovascular events. Consistent results were observed within patients over 75 years old. Conclusions In patients with suspected or known coronary artery disease undergoing elective coronary angiography, an elevated VEGF‐D value seems to independently predict all‐cause mortality.
Collapse
Affiliation(s)
- Hiromichi Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masahiro Suzuki
- Department of Clinical Research National Hospital Organization Saitama Hospital Wako Japan
| | - Morihiro Matsuda
- Institute for Clinical Research National Hospital Organization Kure Medical Center and Chugoku Cancer Center Kure Japan
| | - Yoichi Ajiro
- Division of Clinical Research National Hospital Organization Yokohama Medical Center Yokohama Japan
| | - Tsuyoshi Shinozaki
- Department of Cardiology National Hospital Organization Sendai Medical Center Sendai Japan
| | - Satoru Sakagami
- Department of Cardiovascular Medicine National Hospital Organization Kanazawa Medical Center Kanazawa Japan
| | - Kazuya Yonezawa
- Division of Clinical Research National Hospital Organization Hakodate National Hospital Hakodate Japan
| | - Masatoshi Shimizu
- Department of Cardiology National Hospital Organization Kobe Medical Center Kobe Japan
| | - Junichi Funada
- Department of Cardiology National Hospital Organization Ehime Medical Center Toon Japan
| | - Takashi Takenaka
- Division of Cardiology National Hospital Organization Hokkaido Medical Center Sapporo Japan
| | - Yukiko Morita
- Department of Cardiology National Hospital Organization Sagamihara National Hospital Sagamihara Japan
| | - Toshihiro Nakamura
- Department of Cardiology National Hospital Organization Kyushu Medical Center Fukuoka Japan
| | - Kazuteru Fujimoto
- Department of Cardiology National Hospital Organization Kumamoto Medical Center Kumamoto Japan
| | - Hiromi Matsubara
- Department of Cardiology National Hospital Organization Okayama Medical Center Okayama Japan
| | - Toru Kato
- Department of Clinical Research National Hospital Organization Tochigi Medical Center Utsunomiya Japan
| | - Takashi Unoki
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Intensive Care Unit Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Daisuke Takagi
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Acute Care and General Medicine Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Kyohma Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Miyaka Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Moritake Iguchi
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Nobutoyo Masunaga
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Ishii
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Toru Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Akihiro Yasoda
- Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Akira Shimatsu
- Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine Jichi Medical University Shimotsuke Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Abe
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masaharu Akao
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Koji Hasegawa
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | | |
Collapse
|
21
|
Minami T, Muramatsu M, Kume T. Organ/Tissue-Specific Vascular Endothelial Cell Heterogeneity in Health and Disease. Biol Pharm Bull 2020; 42:1609-1619. [PMID: 31582649 DOI: 10.1248/bpb.b19-00531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The vascular system forms the largest surface in our body, serving as a critical interface between blood circulation and our diverse organ/tissue environments. Thus, the vascular system performs a gatekeeper function for organ/tissue homeostasis and the body's adjustment to pathological challenges. The endothelium, as the most inner layer of the vasculature, regulates the tissue microenvironment, which is critical for development, hemostatic balance, inflammation, and angiogenesis, with a role as well in tumor malignancy and metastasis. These multitudinous functions are primarily mediated by organ/tissue-specifically differentiated endothelial cells, in which heterogeneity has long been recognized at the molecular and histological level. Based on these general principles of vascular-bed heterogeneity and characterization, this review largely covers landmark discoveries regarding organ/tissue microenvironment-governed endothelial cell phenotypic changes. These involve the physical features of continuous, discontinuous, fenestrated, and sinusoidal endothelial cells, in addition to the more specialized endothelial cell layers of the lymphatic system, glomerulus, tumors, and the blood brain barrier (BBB). Major signal pathways of endothelial specification are outlined, including Notch as a key factor of tip/stalk- and arterial-endothelial cell differentiation. We also denote the shear stress sensing machinery used to convey blood flow-mediated biophysical forces that are indispensable to maintaining inert and mature endothelial phenotypes. Since our circulatory system is among the most fundamental and emergent targets of study in pharmacology from the viewpoint of drug metabolism and delivery, a better molecular understanding of organ vasculature-bed heterogeneity may lead to better strategies for novel vascular-targeted treatments to fight against hitherto intractable diseases.
Collapse
Affiliation(s)
- Takashi Minami
- Div. of Molecular and Vascular Biology, IRDA, Kumamoto University
| | | | - Tsutomu Kume
- Div. of Molecular and Vascular Biology, IRDA, Kumamoto University.,Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine
| |
Collapse
|
22
|
Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study. Lasers Med Sci 2020; 35:1909-1918. [PMID: 32056077 DOI: 10.1007/s10103-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
This study evaluated the viability, proliferation, and protein expression after photobiomodulation (PBM) of stem cell from human exfoliated deciduous teeth (SHED). The groups were the following: G1 (2.5 J/cm2), G2 (3.7 J/cm2), and control (not irradiated). According to the groups, cells were irradiated with InGaAlP diode laser at 660 nm wavelength, continuous mode, and single time application. After 6 h, 12 h, and 24 h from irradiation, the cell viability and proliferation, and the protein expression were analyzed by MTT, crystal violet, and ELISA multiplex assay, respectively. Twenty-four hours after PBM, SHED showed better proliferation. Over time in the supernatant, all groups had an increase at the levels of VEGF-C, VEGF-A, and PLGF. In the lysate, the control and G2 exhibited a decrease of the VEGF-A, PECAM-1, and PLGF expression, while control and G3 decreased VEGF-C, VEGF-A, and PDGF expression. The dosimetries of 2.5 J/cm2 and 3.7 J/cm2 maintained viability, improved proliferation, and synthesis of the angiogenic proteins in the supernatant in the studied periods on SHED.
Collapse
|
23
|
Yoo H, Lee YJ, Park C, Son D, Choi DY, Park JH, Choi HJ, La HW, Choi YJ, Moon EH, Saur D, Chung HM, Song H, Do JT, Jang H, Lee DR, Park C, Lee OH, Cho SG, Hong SH, Kong G, Kim JH, Choi Y, Hong K. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis 2020; 11:14. [PMID: 31908356 PMCID: PMC6944698 DOI: 10.1038/s41419-019-2201-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Proper functioning of the lymphatic system is required for normal immune responses, fluid balance, and lipid reabsorption. Multiple regulatory mechanisms are employed to ensure the correct formation and function of lymphatic vessels; however, the epigenetic modulators and mechanisms involved in this process are poorly understood. Here, we assess the regulatory role of mouse Dot1l, a histone H3 lysine (K) 79 (H3K79) methyltransferase, in lymphatic formation. Genetic ablation of Dot1l in Tie2(+) endothelial cells (ECs), but not in Lyve1(+) or Prox1(+) lymphatic endothelial cells (LECs) or Vav1(+) definitive hematopoietic stem cells, leads to catastrophic lymphatic anomalies, including skin edema, blood–lymphatic mixing, and underdeveloped lymphatic valves and vessels in multiple organs. Remarkably, targeted Dot1l loss in Tie2(+) ECs leads to fully penetrant lymphatic aplasia, whereas Dot1l overexpression in the same cells results in partially hyperplastic lymphatics in the mesentery. Genetic studies reveal that Dot1l functions in c-Kit(+) hemogenic ECs during mesenteric lymphatic formation. Mechanistically, inactivation of Dot1l causes a reduction of both H3K79me2 levels and the expression of genes important for LEC development and function. Thus, our study establishes that Dot1l-mediated epigenetic priming and transcriptional regulation in LEC progenitors safeguard the proper lymphatic development and functioning of lymphatic vessels.
Collapse
Affiliation(s)
- Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dabin Son
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dong Yoon Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ji-Hyun Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hee-Jin Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyun Woo La
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Baden-Württemberg, Heidelberg, 69120, Germany.,Department of Medicine II and Institute of Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Bavaria, München, 81675, Germany
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hoon Jang
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Seongdong-gu, 04763, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| |
Collapse
|
24
|
Wu ZS, Ding W, Cai J, Bashir G, Li YQ, Wu S. Communication Of Cancer Cells And Lymphatic Vessels In Cancer: Focus On Bladder Cancer. Onco Targets Ther 2019; 12:8161-8177. [PMID: 31632067 PMCID: PMC6781639 DOI: 10.2147/ott.s219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide and causes the highest lifetime treatment costs per patient. Bladder cancer is most likely to metastasize through lymphatic ducts, and once the lymph nodes are involved, the prognosis is poorly and finitely improved by current modalities. The underlying metastatic mechanism for bladder cancer is thus becoming a research focus to date. To identify relevant published data, an online search of the PubMed/Medline archives was performed to locate original articles and review articles regarding lymphangiogenesis and lymphatic metastasis in urinary bladder cancer (UBC), and was limited to articles in English published between 1998 and 2018. A further search of the clinical trials.gov search engine was conducted to identify both trials with results available and those with results not yet available. Herein, we summarized the unique mechanisms and biomarkers involved in the malignant progression of bladder cancer as well as their emerging roles in therapeutics, and that current data suggests that lymphangiogenesis and lymph node invasion are important prognostic factors for UBC. The growing knowledge about their roles in bladder cancers provides the basis for novel therapeutic strategies. In addition, more basic and clinical research needs to be conducted in order to identify further accurate predictive molecules and relevant mechanisms.
Collapse
Affiliation(s)
- Zhang-song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Wa Ding
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jiajia Cai
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| | - Ghassan Bashir
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yu-qing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| |
Collapse
|
25
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
26
|
Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. NPJ Regen Med 2019; 4:18. [PMID: 31452940 PMCID: PMC6706389 DOI: 10.1038/s41536-019-0079-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
The lymphatic vasculature mediates essential physiological functions including fluid homeostasis, lipid and hormone transport, and immune cell trafficking. Recent studies have suggested that promoting lymphangiogenesis enhances cardiac repair following injury, but it is unknown whether lymphangiogenesis is required for cardiac regeneration. Here, we describe the anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system using transgenic reporter lines and loss-of-function approaches. We show that zebrafish lacking functional vegfc and vegfd signaling are devoid of a cardiac lymphatic network and display cardiac hypertrophy in the absence of injury, suggesting a role for these vessels in cardiac tissue homeostasis. Using two different cardiac injury models, we report a robust lymphangiogenic response following cryoinjury, but not following apical resection injury. Although the majority of mutants lacking functional vegfc and vegfd signaling were able to mount a full regenerative response even in the complete absence of a cardiac lymphatic vasculature, cardiac regeneration was severely impaired in a subset of mutants, which was associated with heightened pro-inflammatory cytokine signaling. These findings reveal a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration.
Collapse
|
27
|
Sox17 is required for endothelial regeneration following inflammation-induced vascular injury. Nat Commun 2019; 10:2126. [PMID: 31073164 PMCID: PMC6509327 DOI: 10.1038/s41467-019-10134-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/17/2019] [Indexed: 12/25/2022] Open
Abstract
Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.
Collapse
|
28
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
29
|
Ndiaye PD, Pagès G. [VEGF-C and lymphatic vessels: a double-edged sword in tumor development and metastasis]. Med Sci (Paris) 2019; 35:132-137. [PMID: 30774080 DOI: 10.1051/medsci/2019002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lymphatic system is made up of vessels that drain interstitial fluids throughout the body. The circulation of the lymph (liquid in the lymphatic system) in the lymphatic vessels is unidirectional: tissues to the lymph nodes and then to the veins. Ganglia are mechanical filters but also immune barriers that can block the progression of certain pathogens as well as cancer cells. However, most studies on the lymphatic system and cancer highlight the role of the lymphatic network in metastatic dissemination as tumor cells use this network to reach other organs. However, recent studies describe a beneficial role of the lymphatic system and of the vascular endothelial growth factor C (VEGF-C) which is one of the main factors responsible for the development of lymphatic vessels in cancer. In this review, we will illustrate this ambivalent and emerging role of VEGF-C and the lymphatic system in cancer aggressiveness.
Collapse
Affiliation(s)
- Papa Diogop Ndiaye
- Université Côte d'Azur, Institut de recherche sur le cancer et le vieillissement de Nice, CNRS UMR 7284 ; Inserm U1081, Centre Antoine Lacassagne, 33, avenue de Valombrose, 06189 Nice, France
| | - Gilles Pagès
- Université Côte d'Azur, Institut de recherche sur le cancer et le vieillissement de Nice, CNRS UMR 7284 ; Inserm U1081, Centre Antoine Lacassagne, 33, avenue de Valombrose, 06189 Nice, France - Centre scientifique de Monaco, Département de biologie médicale, 8, quai Antoine Ier, MC-98000 Monaco, Principauté de Monaco
| |
Collapse
|
30
|
Wong BW, Zecchin A, García-Caballero M, Carmeliet P. Emerging Concepts in Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. Dev Cell 2018; 45:289-301. [PMID: 29738709 DOI: 10.1016/j.devcel.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/12/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023]
Abstract
The lymphatic system has been less well characterized than the blood vascular system; however, work in recent years has uncovered novel regulators and non-venous lineages that contribute to lymphatic formation in various organs. Further, the identification of organ-specific lymphatic beds underscores their potential interaction with organ development and function, and highlights the possibility of targeting these organ-specific lymphatics beds in disease. This review focuses on newly described metabolic and epigenetic regulators of lymphangiogenesis and the interplay between lymphatic development and function in a number of major organ systems.
Collapse
Affiliation(s)
- Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium.
| |
Collapse
|
31
|
Jha SK, Rauniyar K, Jeltsch M. Key molecules in lymphatic development, function, and identification. Ann Anat 2018; 219:25-34. [PMID: 29842991 DOI: 10.1016/j.aanat.2018.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
While both blood and lymphatic vessels transport fluids and thus share many similarities, they also show functional and structural differences, which can be used to differentiate them. Specific visualization of lymphatic vessels has historically been and still is a pivot point in lymphatic research. Many of the proteins that are investigated by molecular biologists in lymphatic research have been defined as marker molecules, i.e. to visualize and distinguish lymphatic endothelial cells (LECs) from other cell types, most notably from blood vascular endothelial cells (BECs) and cells of the hematopoietic lineage. Among the factors that drive the developmental differentiation of lymphatic structures from venous endothelium, Prospero homeobox protein 1 (PROX1) is the master transcriptional regulator. PROX1 maintains lymphatic identity also in the adult organism and thus is a universal LEC marker. Vascular endothelial growth factor receptor-3 (VEGFR-3) is the major tyrosine kinase receptor that drives LEC proliferation and migration. The major activator for VEGFR-3 is vascular endothelial growth factor-C (VEGF-C). However, before VEGF-C can signal, it needs to be proteolytically activated by an extracellular protein complex comprised of Collagen and calcium binding EGF domains 1 (CCBE1) protein and the protease A disintegrin and metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). This minireview attempts to give an overview of these and a few other central proteins that scientific inquiry has linked specifically to the lymphatic vasculature. It is limited in scope to a brief description of their main functions, properties and developmental roles.
Collapse
Affiliation(s)
- Sawan Kumar Jha
- Translational Cancer Biology Research Program, University of Helsinki, Finland
| | - Khushbu Rauniyar
- Translational Cancer Biology Research Program, University of Helsinki, Finland
| | - Michael Jeltsch
- Translational Cancer Biology Research Program, University of Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Finland.
| |
Collapse
|
32
|
Lal N, Puri K, Rodrigues B. Vascular Endothelial Growth Factor B and Its Signaling. Front Cardiovasc Med 2018; 5:39. [PMID: 29732375 PMCID: PMC5920039 DOI: 10.3389/fcvm.2018.00039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
In diabetes, compromised glucose utilization leads the heart to use FA almost exclusively for ATP generation. Chronically, this adaptation unfortunately leads to the conversion of FA to potentially toxic FA metabolites. Paired with increased formation of reactive oxygen species related to excessive mitochondrial oxidation of FA, can provoke cardiac cell death. To protect against this cell demise, intrinsic mechanisms must be available to the heart. Vascular endothelial growth factor B (VEGFB) may be one growth factor that plays an important role in protecting against heart failure. As a member of the VEGF family, initial studies with VEGFB focused on its role in angiogenesis. Surprisingly, VEGFB does not appear to play a direct role in angiogenesis under normal conditions or even when overexpressed, but has been implicated in influencing vascular growth indirectly by affecting VEGFA action. Intriguingly, VEGFB has also been shown to alter gene expression of proteins involved in cardiac metabolism and promote cell survival. Conversely, multiple models of heart failure, including diabetic cardiomyopathy, have indicated a significant drop in VEGFB. In this review, we will discuss the biology of VEGFB, and its relationship to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Fontaine FR, Goodall S, Prokop JW, Howard CB, Moustaqil M, Kumble S, Rasicci DT, Osborne GW, Gambin Y, Sierecki E, Jones ML, Zuegg J, Mahler S, Francois M. Functional domain analysis of SOX18 transcription factor using a single-chain variable fragment-based approach. MAbs 2018; 10:596-606. [PMID: 29648920 PMCID: PMC5972640 DOI: 10.1080/19420862.2018.1451288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies are routinely used to study the activity of transcription factors, using various in vitro and in vivo approaches such as electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, genome-wide method analysis coupled with next generation sequencing, or mass spectrometry. More recently, a new application for antibodies has emerged as crystallisation scaffolds for difficult to crystallise proteins, such as transcription factors. Only in a few rare cases, antibodies have been used to modulate the activity of transcription factors, and there is a real gap in our knowledge on how to efficiently design antibodies to interfere with transcription. The molecular function of transcription factors is underpinned by complex networks of protein-protein interaction and in theory, setting aside intra-cellular delivery challenges, developing antibody-based approaches to modulate transcription factor activity appears a viable option. Here, we demonstrate that antibodies or an antibody single-chain variable region fragments are powerful molecular tools to unravel complex protein-DNA and protein-protein binding mechanisms. In this study, we focus on the molecular mode of action of the transcription factor SOX18, a key modulator of endothelial cell fate during development, as well as an attractive target in certain pathophysiological conditions such as solid cancer metastasis. The engineered antibody we designed inhibits SOX18 transcriptional activity, by interfering specifically with an 8-amino-acid motif in the C-terminal region directly adjacent to α-Helix 3 of SOX18 HMG domain, thereby disrupting protein-protein interaction. This new approach establishes a framework to guide the study of transcription factors interactomes using antibodies as molecular handles.
Collapse
Affiliation(s)
- Frank R Fontaine
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Goodall
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia
| | - Jeremy W Prokop
- c HudsonAlpha Institute for Biotechnology , Huntsville AL , USA.,d Department of Pediatrics and Human Development , Michigan State University , East Lansing , MI , USA
| | - Christopher B Howard
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mehdi Moustaqil
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Sumukh Kumble
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | | | - Geoffrey W Osborne
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Yann Gambin
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Emma Sierecki
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Martina L Jones
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Johannes Zuegg
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Mahler
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mathias Francois
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| |
Collapse
|
34
|
Liang T, Jia Y, Zhang R, Du Q, Chang Z. Identification, molecular characterization and analysis of the expression pattern of $${\varvec{SoxF}}$$ SoxF subgroup genes the Yellow River carp, $${\varvec{Cyprinus} \varvec{carpio}}$$ Cyprinus carpio. J Genet 2018. [DOI: 10.1007/s12041-018-0898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Emerging Roles for VEGF-D in Human Disease. Biomolecules 2018; 8:biom8010001. [PMID: 29300337 PMCID: PMC5871970 DOI: 10.3390/biom8010001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Blood vessels and lymphatic vessels are located in many tissues and organs throughout the body, and play important roles in a wide variety of prevalent diseases in humans. Vascular endothelial growth factor-D (VEGF-D) is a secreted protein that can promote the remodeling of blood vessels and lymphatics in development and disease. Recent fundamental and translational studies have provided insight into the molecular mechanisms by which VEGF-D exerts its effects in human disease. Hence this protein is now of interest as a therapeutic and/or diagnostic target, or as a potential therapeutic agent, in a diversity of indications in cardiovascular medicine, cancer and the devastating pulmonary condition lymphangioleiomyomatosis. This has led to clinical trial programs to assess the effect of targeting VEGF-D signaling pathways, or delivering VEGF-D, in angina, cancer and ocular indications. This review summarizes our understanding of VEGF-D signaling in human disease, which is largely based on animal disease models and clinicopathological studies, and provides information about the outcomes of recent clinical trials testing agonists or antagonists of VEGF-D signaling.
Collapse
|
36
|
Lagendijk AK, Gomez GA, Baek S, Hesselson D, Hughes WE, Paterson S, Conway DE, Belting HG, Affolter M, Smith KA, Schwartz MA, Yap AS, Hogan BM. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat Commun 2017; 8:1402. [PMID: 29123087 PMCID: PMC5680264 DOI: 10.1038/s41467-017-01325-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Forces play diverse roles in vascular development, homeostasis and disease. VE-cadherin at endothelial cell-cell junctions links the contractile acto-myosin cytoskeletons of adjacent cells, serving as a tension-transducer. To explore tensile changes across VE-cadherin in live zebrafish, we tailored an optical biosensor approach, originally established in vitro. We validate localization and function of a VE-cadherin tension sensor (TS) in vivo. Changes in tension across VE-cadherin observed using ratio-metric or lifetime FRET measurements reflect acto-myosin contractility within endothelial cells. Furthermore, we apply the TS to reveal biologically relevant changes in VE-cadherin tension that occur as the dorsal aorta matures and upon genetic and chemical perturbations during embryonic development. Mechanical forces play a crucial role during morphogenesis, but how these are sensed and transduced in vivo is not fully understood. Here the authors apply a FRET tension sensor to live zebrafish and study changes in VE-cadherin tension at endothelial cell-cell junctions during arterial maturation.
Collapse
Affiliation(s)
- Anne Karine Lagendijk
- Institute for Molecular Bioscience, Genomics of Development and Disease division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia.
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, Cell Biology and Molecular Medicine division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia.,Centre for Cancer Biology, SA Pathology and the University of South Australia, Frome Road, Adelaide, 5000, SA, Australia
| | - Sungmin Baek
- Institute for Molecular Bioscience, Genomics of Development and Disease division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia
| | - Daniel Hesselson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, 2010, NSW, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, 2010, NSW, Australia
| | - Scott Paterson
- Institute for Molecular Bioscience, Genomics of Development and Disease division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Kelly A Smith
- Institute for Molecular Bioscience, Genomics of Development and Disease division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alpha S Yap
- Institute for Molecular Bioscience, Cell Biology and Molecular Medicine division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, Genomics of Development and Disease division, The University of Queensland, 306 Carmody Road, St Lucia, 4072, QLD, Australia
| |
Collapse
|
37
|
Chiang IKN, Fritzsche M, Pichol-Thievend C, Neal A, Holmes K, Lagendijk A, Overman J, D'Angelo D, Omini A, Hermkens D, Lesieur E, Liu K, Ratnayaka I, Corada M, Bou-Gharios G, Carroll J, Dejana E, Schulte-Merker S, Hogan B, Beltrame M, De Val S, Francois M. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development 2017; 144:2629-2639. [PMID: 28619820 PMCID: PMC5536923 DOI: 10.1242/dev.146241] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/07/2017] [Indexed: 12/30/2022]
Abstract
Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Arteries/embryology
- Arteries/metabolism
- Arteriovenous Malformations/embryology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Human Umbilical Vein Endothelial Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Pregnancy
- Receptor, Notch1/deficiency
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- SOXF Transcription Factors/deficiency
- SOXF Transcription Factors/genetics
- SOXF Transcription Factors/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Ivy Kim-Ni Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alice Neal
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Donatella D'Angelo
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alice Omini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Dorien Hermkens
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Monica Corada
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Jason Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Elisabetta Dejana
- IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy
- Department of Immunology Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Stefan Schulte-Merker
- University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CiM Cluster of Excellence, Germany
| | - Benjamin Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
38
|
De Angelis JE, Lagendijk AK, Chen H, Tromp A, Bower NI, Tunny KA, Brooks AJ, Bakkers J, Francois M, Yap AS, Simons C, Wicking C, Hogan BM, Smith KA. Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Dev Cell 2017; 40:123-136. [PMID: 28118600 DOI: 10.1016/j.devcel.2016.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/18/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
Abstract
Angiogenesis is responsible for tissue vascularization during development, as well as in pathological contexts, including cancer and ischemia. Vascular endothelial growth factors (VEGFs) regulate angiogenesis by acting through VEGF receptors to induce endothelial cell signaling. VEGF is processed in the extracellular matrix (ECM), but the complexity of ECM control of VEGF signaling and angiogenesis remains far from understood. In a forward genetic screen, we identified angiogenesis defects in tmem2 zebrafish mutants that lack both arterial and venous Vegf/Vegfr/Erk signaling. Strikingly, tmem2 mutants display increased hyaluronic acid (HA) surrounding developing vessels. Angiogenesis in tmem2 mutants was rescued, or restored after failed sprouting, by degrading this increased HA. Furthermore, oligomerized HA or overexpression of Vegfc rescued angiogenesis in tmem2 mutants. Based on these data, and the known structure of Tmem2, we find that Tmem2 regulates HA turnover to promote normal Vegf signaling during developmental angiogenesis.
Collapse
Affiliation(s)
- Jessica E De Angelis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne K Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huijun Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alisha Tromp
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Neil I Bower
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kathryn A Tunny
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J Brooks
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeroen Bakkers
- Department of Cardiac Development and Genetics, Hubrecht Institute, University Medical Centre Utrecht, Utrecht 3584 CT, the Netherlands; Department of Medical Physiology, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
39
|
Lilly AJ, Lacaud G, Kouskoff V. SOXF transcription factors in cardiovascular development. Semin Cell Dev Biol 2017; 63:50-57. [PMID: 27470491 DOI: 10.1016/j.semcdb.2016.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Cardiovascular development during embryogenesis involves complex changes in gene regulatory networks regulated by a variety of transcription factors. In this review we discuss the various reported roles of the SOXF factors: SOX7, SOX17 and SOX18 in cardiac, vascular and lymphatic development. SOXF factors have pleiotropic roles during these processes, and there is significant redundancy and functional compensation between SOXF family members. Despite this, evidence suggests that there is some specificity in the transcriptional programs they regulate which is necessary to control the differentiation and behaviour of endothelial subpopulations. Furthermore, SOXF factors appear to have an indirect role in regulating cardiac mesoderm specification and differentiation. Understanding how SOXF factors are regulated, as well as their downstream transcriptional target genes, will be important for unravelling their roles in cardiovascular development and related diseases.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK, Stem Cell Biology group Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK, Stem Cell Hematopoiesis, The University of Manchester, Wilmslow road, M20 4BX, UK.
| |
Collapse
|
40
|
Fontaine F, Overman J, Moustaqil M, Mamidyala S, Salim A, Narasimhan K, Prokoph N, Robertson AAB, Lua L, Alexandrov K, Koopman P, Capon RJ, Sierecki E, Gambin Y, Jauch R, Cooper MA, Zuegg J, Francois M. Small-Molecule Inhibitors of the SOX18 Transcription Factor. Cell Chem Biol 2017; 24:346-359. [PMID: 28163017 DOI: 10.1016/j.chembiol.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity.
Collapse
Affiliation(s)
- Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Nina Prokoph
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda Lua
- Protein Expression Facility, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AAB, Holmes K, Salim AA, Mamidyala S, Butler MS, Robinson AS, Lesieur E, Johnston W, Alexandrov K, Black BL, Hogan BM, De Val S, Capon RJ, Carroll JS, Bailey TL, Koopman P, Jauch R, Smyth MJ, Cooper MA, Gambin Y, Francois M. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. eLife 2017; 6:e21221. [PMID: 28137359 PMCID: PMC5283831 DOI: 10.7554/elife.21221] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mehdi Moustaqil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Avril AB Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ashley S Robinson
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brian L Black
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, The University of Queensland, Herston, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Bower NI, Vogrin AJ, Le Guen L, Chen H, Stacker SA, Achen MG, Hogan BM. Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development 2017; 144:507-518. [PMID: 28087639 DOI: 10.1242/dev.146969] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular development in vertebrates. Here, we generated a zebrafish vegfd mutant by genome editing. vegfd mutants display significant defects in facial lymphangiogenesis independent of vegfc function. Strikingly, we find that vegfc and vegfd cooperatively control lymphangiogenesis throughout the embryo, including during the formation of the trunk lymphatic vasculature. Interestingly, we find that vegfd and vegfc also redundantly drive artery hyperbranching phenotypes observed upon depletion of Flt1 or Dll4. Epistasis and biochemical binding assays suggest that, during primary angiogenesis, Vegfd influences these phenotypes through Kdr (Vegfr2) rather than Flt4 (Vegfr3). These data demonstrate that, rather than being dispensable during development, Vegfd plays context-specific indispensable and also compensatory roles during both blood vessel angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Adam J Vogrin
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Ludovic Le Guen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc G Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
43
|
Yin H, Sheng Z, Zhang X, Du Y, Qin C, Liu H, Dun Y, Wang Q, Jin C, Zhao Y, Xu T. Overexpression of SOX18 promotes prostate cancer progression via the regulation of TCF1, c-Myc, cyclin D1 and MMP-7. Oncol Rep 2016; 37:1045-1051. [PMID: 27922675 DOI: 10.3892/or.2016.5288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Sex determining region Y (SRY)-box 18 (SOX18) gene encodes transcription factors that have been recently confirmed to be overexpressed in various human types of cancer and maintain the malignant behavior of cancer cells. However, the role and its potential function in prostate cancer (PCa) has not been demonstrated and the mechanisms of SOX18 involved in tumor progression remain largely unclear. In the present study, the expression of SOX18 was analyzed in 98 PCa and 81 adjacent non-tumor tissues using immunohistochemistry. The data showed that SOX18 was overexpressed in 72 of 98 (73.5%) PCa tissues compared with that in 28 of 81 (34.6%) non-tumor tissues. In addition, the expression of SOX18 was related with the clinical features of patients with PCa. To explore the potential role of SOX18 in PCa cells, Cell Counting Kit-8 (CCK-8), migration, invasion and xenograft assays were performed. Our data showed that knockdown of SOX18 decreased the proliferation, migration and invasion of PCa cells in vitro, in addition to the tumor growth in vivo. Markedly, SOX18 knockdown caused the decreased expression of TCF1, c-Myc, cyclin D1 and MMP-7. In conclusion, SOX18 was overexpressed in PCa and may regulate the malignant capacity of cells via the upregulation of TCF1, c-Myc, cyclin D1 and MMP-7.
Collapse
Affiliation(s)
- Huaqi Yin
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Zhengzuo Sheng
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaowei Zhang
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Caipeng Qin
- Department of Urology, Peking University International Hospital, Beijing, P.R. China
| | - Huixin Liu
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yaojun Dun
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Chengyue Jin
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yanhui Zhao
- Department of Urology, Central Hospital of Qingdao City, Qingdao, P.R. China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
44
|
Davydova N, Harris NC, Roufail S, Paquet-Fifield S, Ishaq M, Streltsov VA, Williams SP, Karnezis T, Stacker SA, Achen MG. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D. J Biol Chem 2016; 291:27265-27278. [PMID: 27852824 PMCID: PMC5207153 DOI: 10.1074/jbc.m116.736801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C.
Collapse
Affiliation(s)
- Natalia Davydova
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Nicole C Harris
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Sally Roufail
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Sophie Paquet-Fifield
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Musarat Ishaq
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Victor A Streltsov
- the Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, and
| | - Steven P Williams
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Tara Karnezis
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Steven A Stacker
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000.,the Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Marc G Achen
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, .,the Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Pulmonary Vasculopathy Associated with FIGF Gene Mutation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:25-32. [PMID: 27846380 DOI: 10.1016/j.ajpath.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor (VEGF)-D is capable of inducing angiogenesis and lymphangiogenesis through signaling via VEGF receptor (VEGFR)-2 and VEGFR-3, respectively. Mutations in the FIGF (c-fos-induced growth factor) gene encoding VEGF-D have not been reported previously. We describe a young male with a hemizygous mutation in the X-chromosome gene FIGF (c.352 G>A) associated with early childhood respiratory deficiency. Histologically, lungs showed ectatic pulmonary arteries and pulmonary veins. The mutation resulted in a substitution of valine to methionine at residue 118 of the VEGF-D protein. The resultant mutant protein had increased dimerization, induced elevated VEGFR-2 signaling, and caused aberrant angiogenesis in vivo. Our observations characterize a new subtype of congenital diffuse lung disease, provide a histological correlate, and support a critical role for VEGF-D in lung vascular development and homeostasis.
Collapse
|
46
|
SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling. Circ Res 2016; 119:839-52. [DOI: 10.1161/circresaha.116.308483] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Rationale:
Vascular endothelial growth factor (VEGF) signaling is a key pathway for angiogenesis and requires highly coordinated regulation. Although the Notch pathway-mediated suppression of excessive VEGF activity via negative feedback is well known, the positive feedback control for augmenting VEGF signaling remains poorly understood. Transcription factor Sox17 is indispensable for angiogenesis, but its association with VEGF signaling is largely unknown. The contribution of other Sox members to angiogenesis also remains to be determined.
Objective:
To reveal the genetic interaction of Sox7, another Sox member, with Sox17 in developmental angiogenesis and their functional relationship with VEGF signaling.
Methods and Results:
Sox7 is expressed specifically in endothelial cells and its global and endothelial-specific deletion resulted in embryonic lethality with severely impaired angiogenesis in mice, substantially overlapping with Sox17 in both expression and function. Interestingly, compound heterozygosity for
Sox7
and
Sox17
phenocopied vascular defects of
Sox7
or
Sox17
homozygous knockout, indicating that the genetic cooperation of Sox7 and Sox17 is sensitive to their combined gene dosage. VEGF signaling upregulated both Sox7 and Sox17 expression in angiogenesis via mTOR pathway. Furthermore, Sox7 and Sox17 promoted VEGFR2 (VEGF receptor 2) expression in angiogenic vessels, suggesting a positive feedback loop between VEGF signaling and SoxF.
Conclusions:
Our findings demonstrate that SoxF transcription factors are indispensable players in developmental angiogenesis by acting as positive feedback regulators of VEGF signaling.
Collapse
|
47
|
Semo J, Nicenboim J, Yaniv K. Development of the lymphatic system: new questions and paradigms. Development 2016; 143:924-35. [PMID: 26980792 DOI: 10.1242/dev.132431] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lymphatic system is a blind-ended network of vessels that plays important roles in mediating tissue fluid homeostasis, intestinal lipid absorption and the immune response. A profound understanding of the development of lymphatic vessels, as well as of the molecular cues governing their formation and morphogenesis, might prove essential for our ability to treat lymphatic-related diseases. The embryonic origins of lymphatic vessels have been debated for over a century, with a model claiming a venous origin for the lymphatic endothelium being predominant. However, recent studies have provided new insights into the origins of lymphatic vessels. Here, we review the molecular mechanisms controlling lymphatic specification and sprouting, and we discuss exciting findings that shed new light on previously uncharacterized sources of lymphatic endothelial cells.
Collapse
Affiliation(s)
- Jonathan Semo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
48
|
Klaus M, Prokoph N, Girbig M, Wang X, Huang YH, Srivastava Y, Hou L, Narasimhan K, Kolatkar PR, Francois M, Jauch R. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction. Nucleic Acids Res 2016; 44:3922-35. [PMID: 26939885 PMCID: PMC4856986 DOI: 10.1093/nar/gkw130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022] Open
Abstract
The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis.
Collapse
Affiliation(s)
- Miriam Klaus
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Nina Prokoph
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - Mathias Girbig
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Xuecong Wang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linlin Hou
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute, Hamad Bin Khalifa Unversity, QatarFoundation, PO Box 5825, Doha, Qatar
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
49
|
A novel SOX18 mutation uncovered in Jordanian patient with hypotrichosis–lymphedema–telangiectasia syndrome by Whole Exome Sequencing. Mol Cell Probes 2016; 30:18-21. [DOI: 10.1016/j.mcp.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022]
|
50
|
GUI RONG, HUANG RONG, ZHANG JUNHUA, WEN XIANHUI, NIE XINMIN. MicroRNA-199a-5p inhibits VEGF-induced tumorigenesis through targeting oxidored-nitro domain-containing protein 1 in human HepG2 cells. Oncol Rep 2016; 35:2216-22. [DOI: 10.3892/or.2016.4550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
|