1
|
Taheri-Ledari M, Marashi SA, Kavousi K. pastboon: an R package to simulate parameterized stochastic Boolean networks. BIOINFORMATICS ADVANCES 2025; 5:vbaf017. [PMID: 40255969 PMCID: PMC12007881 DOI: 10.1093/bioadv/vbaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/30/2024] [Accepted: 02/03/2025] [Indexed: 04/22/2025]
Abstract
Summary Influencing the behavior of a Boolean network involves applying perturbations, which, in standard deterministic Boolean networks, is equivalent to modifying the update rules. Nevertheless, manipulating update functions to make a Boolean network exhibit the desired dynamics is challenging, as it requires extensive knowledge of the rationale behind the logical equations. Moreover, modifying logical rules can inadvertently alter essential functional and behavioral characteristics of the network. An alternative approach is to incorporate a set of parameters into the logical functions of Boolean networks. With such methods, one can alter the behavior of the network without needing detailed knowledge of the logical functions. We developed pastboon, an R package to simulate parameterized stochastic Boolean networks using three parameterization methods. This package enables researchers to study the phenotypic effects of various perturbations on Boolean network models describing cellular processes, which find valuable applications in systems biology. Availability and implementation pastboon is freely available on the R CRAN repository at https://cran.r-project.org/package=pastboon, and its source code can be accessed on GitHub at https://github.com/taherimo/pastboon.
Collapse
Affiliation(s)
- Mohammad Taheri-Ledari
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614411, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614411, Iran
| |
Collapse
|
2
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
3
|
Taoma K, Tyson JJ, Laomettachit T, Kraikivski P. Stochastic Boolean model of normal and aberrant cell cycles in budding yeast. NPJ Syst Biol Appl 2024; 10:121. [PMID: 39420008 PMCID: PMC11487276 DOI: 10.1038/s41540-024-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
The cell cycle of budding yeast is governed by an intricate protein regulatory network whose dysregulation can lead to lethal mistakes or aberrant cell division cycles. In this work, we model this network in a Boolean framework for stochastic simulations. Our model is sufficiently detailed to account for the phenotypes of 40 mutant yeast strains (83% of the experimentally characterized strains that we simulated) and also to simulate an endoreplicating strain (multiple rounds of DNA synthesis without mitosis) and a strain that exhibits 'Cdc14 endocycles' (periodic transitions between metaphase and anaphase). Because our model successfully replicates the observed properties of both wild-type yeast cells and many mutant strains, it provides a reasonable, validated starting point for more comprehensive stochastic-Boolean models of cell cycle controls. Such models may provide a better understanding of cell cycle anomalies in budding yeast and ultimately in mammalian cells.
Collapse
Affiliation(s)
- Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Pavel Kraikivski
- Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- VT-Center for the Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. Brief Bioinform 2024; 25:bbae509. [PMID: 39425527 PMCID: PMC11489466 DOI: 10.1093/bib/bbae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Multiscale models provide a unique tool for analyzing complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. These models aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms-coupled with a graphical interface-is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to construct these models more easily, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as Supplementary Material and all models are provided at https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université 15 rue de l'École de Médecine, 75006 Paris, France
- INSERM, U1138, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| |
Collapse
|
5
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Liu Y, Zhang SY, Kleijn IT, Stumpf MPH. Approximate Bayesian computation for inferring Waddington landscapes from single-cell data. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231697. [PMID: 39076359 PMCID: PMC11285904 DOI: 10.1098/rsos.231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/01/2024] [Indexed: 07/31/2024]
Abstract
Single-cell technologies allow us to gain insights into cellular processes at unprecedented resolution. In stem cell and developmental biology snapshot data allow us to characterize how the transcriptional states of cells change between successive cell types. Here, we show how approximate Bayesian computation (ABC) can be employed to calibrate mathematical models against single-cell data. In our simulation study, we demonstrate the pivotal role of the adequate choice of distance measures appropriate for single-cell data. We show that for good distance measures, notably optimal transport with the Sinkhorn divergence, we can infer parameters for mathematical models from simulated single-cell data. We show that the ABC posteriors can be used (i) to characterize parameter sensitivity and identify dependencies between different parameters and (ii) to construct representations of the Waddington or epigenetic landscape, which forms a popular and interpretable representation of the developmental dynamics. In summary, these results pave the way for fitting mechanistic models of stem cell differentiation to single-cell data.
Collapse
Affiliation(s)
- Yujing Liu
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Stephen Y. Zhang
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | | | - Michael P. H. Stumpf
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
- School of BioScience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Magaña-López G, Calzone L, Zinovyev A, Paulevé L. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics. PLoS Comput Biol 2024; 20:e1011620. [PMID: 38976751 PMCID: PMC11257695 DOI: 10.1371/journal.pcbi.1011620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/18/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Boolean networks are largely employed to model the qualitative dynamics of cell fate processes by describing the change of binary activation states of genes and transcription factors with time. Being able to bridge such qualitative states with quantitative measurements of gene expression in cells, as scRNA-seq, is a cornerstone for data-driven model construction and validation. On one hand, scRNA-seq binarisation is a key step for inferring and validating Boolean models. On the other hand, the generation of synthetic scRNA-seq data from baseline Boolean models provides an important asset to benchmark inference methods. However, linking characteristics of scRNA-seq datasets, including dropout events, with Boolean states is a challenging task. We present scBoolSeq, a method for the bidirectional linking of scRNA-seq data and Boolean activation state of genes. Given a reference scRNA-seq dataset, scBoolSeq computes statistical criteria to classify the empirical gene pseudocount distributions as either unimodal, bimodal, or zero-inflated, and fit a probabilistic model of dropouts, with gene-dependent parameters. From these learnt distributions, scBoolSeq can perform both binarisation of scRNA-seq datasets, and generate synthetic scRNA-seq datasets from Boolean traces, as issued from Boolean networks, using biased sampling and dropout simulation. We present a case study demonstrating the application of scBoolSeq's binarisation scheme in data-driven model inference. Furthermore, we compare synthetic scRNA-seq data generated by scBoolSeq with BoolODE's, data for the same Boolean Network model. The comparison shows that our method better reproduces the statistics of real scRNA-seq datasets, such as the mean-variance and mean-dropout relationships while exhibiting clearly defined trajectories in two-dimensional projections of the data.
Collapse
Affiliation(s)
| | - Laurence Calzone
- Institut Curie, Université PSL, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | | | - Loïc Paulevé
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France
| |
Collapse
|
8
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. ARXIV 2024:arXiv:2406.18371v1. [PMID: 38979487 PMCID: PMC11230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms - coupled with a graphical interface - is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to easily construct such models, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as a Supplementary Material and all models are provided at: https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université F-75005, Paris, France
- INSERM, U1138, F-75005, Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| |
Collapse
|
9
|
Šmelko A, Kratochvíl M, Barillot E, Noël V. Maboss for HPC environments: implementations of the continuous time Boolean model simulator for large CPU clusters and GPU accelerators. BMC Bioinformatics 2024; 25:199. [PMID: 38789933 PMCID: PMC11127412 DOI: 10.1186/s12859-024-05815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial. RESULTS We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations. CONCLUSION These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.
Collapse
Affiliation(s)
- Adam Šmelko
- Department of Distributed and Dependable Systems, Charles University, Prague, Czech Republic
| | - Miroslav Kratochvíl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 75005, Paris, France
- INSERM, U900, 75005, Paris, France
- Mines ParisTech, Université PSL, 75005, Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, 75005, Paris, France.
- INSERM, U900, 75005, Paris, France.
- Mines ParisTech, Université PSL, 75005, Paris, France.
| |
Collapse
|
10
|
Taoma K, Ruengjitchatchawalya M, Liangruksa M, Laomettachit T. Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy. PLoS One 2024; 19:e0298788. [PMID: 38394152 PMCID: PMC10889607 DOI: 10.1371/journal.pone.0298788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer is one of the most common types of cancer in females. While drug combinations have shown potential in breast cancer treatments, identifying new effective drug pairs is challenging due to the vast number of possible combinations among available compounds. Efforts have been made to accelerate the process with in silico predictions. Here, we developed a Boolean model of signaling pathways in breast cancer. The model was tailored to represent five breast cancer cell lines by integrating information about cell-line specific mutations, gene expression, and drug treatments. The models reproduced cell-line specific protein activities and drug-response behaviors in agreement with experimental data. Next, we proposed a calculation of protein synergy scores (PSSs), determining the effect of drug combinations on individual proteins' activities. The PSSs of selected proteins were used to investigate the synergistic effects of 150 drug combinations across five cancer cell lines. The comparison of the highest single agent (HSA) synergy scores between experiments and model predictions from the MDA-MB-231 cell line achieved the highest Pearson's correlation coefficient of 0.58 with a great balance among the classification metrics (AUC = 0.74, sensitivity = 0.63, and specificity = 0.64). Finally, we clustered drug pairs into groups based on the selected PSSs to gain further insights into the mechanisms underlying the observed synergistic effects of drug pairs. Clustering analysis allowed us to identify distinct patterns in the protein activities that correspond to five different modes of synergy: 1) synergistic activation of FADD and BID (extrinsic apoptosis pathway), 2) synergistic inhibition of BCL2 (intrinsic apoptosis pathway), 3) synergistic inhibition of MTORC1, 4) synergistic inhibition of ESR1, and 5) synergistic inhibition of CYCLIN D. Our approach offers a mechanistic understanding of the efficacy of drug combinations and provides direction for selecting potential drug pairs worthy of further laboratory investigation.
Collapse
Affiliation(s)
- Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
11
|
Ponce-de-Leon M, Montagud A, Noël V, Meert A, Pradas G, Barillot E, Calzone L, Valencia A. PhysiBoSS 2.0: a sustainable integration of stochastic Boolean and agent-based modelling frameworks. NPJ Syst Biol Appl 2023; 9:54. [PMID: 37903760 PMCID: PMC10616087 DOI: 10.1038/s41540-023-00314-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Arnau Montagud
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Annika Meert
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Gerard Pradas
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Alfonso Valencia
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain.
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain.
| |
Collapse
|
12
|
Singh V, Naldi A, Soliman S, Niarakis A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. NPJ Syst Biol Appl 2023; 9:33. [PMID: 37454172 DOI: 10.1038/s41540-023-00294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype. Thus, RA-FLS-directed therapies could become a complementary approach to immune-directed therapies by predicting the optimal conditions that would favour RA-FLS apoptosis, limit inflammation, slow the proliferation rate and minimise bone erosion and cartilage destruction. In this paper, we present a large-scale Boolean model for RA-FLS that consists of five submodels focusing on apoptosis, cell proliferation, matrix degradation, bone erosion and inflammation. The five-phenotype-specific submodels can be simulated independently or as a global model. In silico simulations and perturbations reproduced the expected biological behaviour of the system under defined initial conditions and input values. The model was then used to mimic the effect of mono or combined therapeutic treatments and predict novel targets and drug candidates through drug repurposing analysis.
Collapse
Affiliation(s)
- Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France
| | - Aurelien Naldi
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France.
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France.
| |
Collapse
|
13
|
Shah V, Womack J, Zamora AE, Terhune SS, Dash RK. Simulating the Evolution of Signaling Signatures During CART-Cell and Tumor Cell Interactions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083755 DOI: 10.1109/embc40787.2023.10340076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.Clinical Relevance- Analysis of CART-cell signaling signatures can inform future CAR receptor design and combination therapy approaches aimed at improving therapy response.
Collapse
|
14
|
Ruscone M, Montagud A, Chavrier P, Destaing O, Bonnet I, Zinovyev A, Barillot E, Noël V, Calzone L. Multiscale model of the different modes of cancer cell invasion. Bioinformatics 2023; 39:btad374. [PMID: 37289551 PMCID: PMC10293590 DOI: 10.1093/bioinformatics/btad374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
MOTIVATION Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model. Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | | | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Andrei Zinovyev
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- Mines ParisTech, Université PSL, F-75005 Paris, France
| |
Collapse
|
15
|
Deal I, Macauley M, Davies R. Boolean Models of the Transport, Synthesis, and Metabolism of Tryptophan in Escherichia coli. Bull Math Biol 2023; 85:29. [PMID: 36877290 DOI: 10.1007/s11538-023-01122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/11/2023] [Indexed: 03/07/2023]
Abstract
The tryptophan (trp) operon in Escherichia coli codes for the proteins responsible for the synthesis of the amino acid tryptophan from chorismic acid, and has been one of the most well-studied gene networks since its discovery in the 1960s. The tryptophanase (tna) operon codes for proteins needed to transport and metabolize it. Both of these have been modeled individually with delay differential equations under the assumption of mass-action kinetics. Recent work has provided strong evidence for bistable behavior of the tna operon. The authors of Orozco-Gómez et al. (Sci Rep 9(1):5451, 2019) identified a medium range of tryptophan in which the system has two stable steady-states, and they reproduced these experimentally. In this paper, we will show how a Boolean model can capture this bistability. We will also develop and analyze a Boolean model of the trp operon. Finally, we will combine these two to create a single Boolean model of the transport, synthesis, and metabolism of tryptophan. In this amalgamated model, the bistability disappears, presumably reflecting the ability of the trp operon to produce tryptophan and drive the system toward homeostasis. All of these models have longer attractors that we call "artifacts of synchrony", which disappear in the asynchronous automata. This curiously matches the behavior of a recent Boolean model of the arabinose operon in E. coli, and we discuss some open-ended questions that arise along these lines.
Collapse
Affiliation(s)
- Isadora Deal
- School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Matthew Macauley
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, 29634, USA.
| | - Robin Davies
- Radford University Carilion, Roanoke, VA, 24013, USA
| |
Collapse
|
16
|
Shah V, Womack J, Zamora AE, Terhune SS, Dash RK. Simulating the Evolution of Signaling Signatures during CART-Cell - Tumor Cell Interactions. ARXIV 2023:arXiv:2302.04338v1. [PMID: 36798455 PMCID: PMC9934731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets. Nevertheless, despite the excitement and promising potential of CART-cell therapy, response rates to therapy vary greatly between studies, patients, and cancers. There remains an unmet need to develop computational frameworks that more accurately predict CART-cell function and clinical efficacy. Here we present a coarse-grained model simulated with logical rules that demonstrates the evolution of signaling signatures following the interaction between CART-cells and tumor cells and allows for in silico based prediction of CART-cell functionality prior to experimentation.
Collapse
|
17
|
A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle. Sci Rep 2022; 12:20302. [PMID: 36434030 PMCID: PMC9700812 DOI: 10.1038/s41598-022-24302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
The cell division cycle is regulated by a complex network of interacting genes and proteins. The control system has been modeled in many ways, from qualitative Boolean switching-networks to quantitative differential equations and highly detailed stochastic simulations. Here we develop a continuous-time stochastic model using seven Boolean variables to represent the activities of major regulators of the budding yeast cell cycle plus one continuous variable representing cell growth. The Boolean variables are updated asynchronously by logical rules based on known biochemistry of the cell-cycle control system using Gillespie's stochastic simulation algorithm. Time and cell size are updated continuously. By simulating a population of yeast cells, we calculate statistical properties of cell cycle progression that can be compared directly to experimental measurements. Perturbations of the normal sequence of events indicate that the cell cycle is 91% robust to random 'flips' of the Boolean variables, but 9% of the perturbations induce lethal mistakes in cell cycle progression. This simple, hybrid Boolean model gives a good account of the growth and division of budding yeast cells, suggesting that this modeling approach may be as accurate as detailed reaction-kinetic modeling with considerably less demands on estimating rate constants.
Collapse
|
18
|
Hérault L, Poplineau M, Duprez E, Remy É. A novel Boolean network inference strategy to model early hematopoiesis aging. Comput Struct Biotechnol J 2022; 21:21-33. [PMID: 36514338 PMCID: PMC9719905 DOI: 10.1016/j.csbj.2022.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging is a multifactorial event leading to changes in HSC properties and functions, which are intrinsically coordinated and affect the early hematopoiesis. To better understand the mechanisms and factors controlling these changes, we developed an original strategy to construct a Boolean model of HSC differentiation. Based on our previous scRNA-seq data, we exhaustively characterized active transcription modules or regulons along the differentiation trajectory and constructed an influence graph between 15 selected components involved in the dynamics of the process. Then we defined dynamical constraints between observed cellular states along the trajectory and using answer set programming with in silico perturbation analysis, we obtained a Boolean model explaining the early priming of HSCs. Finally, perturbations of the model based on age-related changes revealed important deregulations, such as the overactivation of Egr1 and Junb or the loss of Cebpa activation by Gata2. These new regulatory mechanisms were found to be relevant for the myeloid bias of aged HSC and explain the decreased transcriptional priming of HSCs to all mature cell types except megakaryocytes.
Collapse
Affiliation(s)
- Léonard Hérault
- Aix Marseille Université, CNRS, Marseille I2M, France,Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Élisabeth Remy
- Aix Marseille Université, CNRS, Marseille I2M, France,Corresponding author.
| |
Collapse
|
19
|
Calzone L, Noël V, Barillot E, Kroemer G, Stoll G. Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells. Comput Struct Biotechnol J 2022; 20:5661-5671. [PMID: 36284705 PMCID: PMC9582792 DOI: 10.1016/j.csbj.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
As a result of the development of experimental technologies and the accumulation of data, biological and molecular processes can be described as complex networks of signaling pathways. These networks are often directed and signed, where nodes represent entities (genes/proteins) and arrows interactions. They are translated into mathematical models by adding a dynamic layer onto them. Such mathematical models help to understand and interpret non-intuitive experimental observations and to anticipate the response to external interventions such as drug effects on phenotypes. Several frameworks for modeling signaling pathways exist. The choice of the appropriate framework is often driven by the experimental context. In this review, we present MaBoSS, a tool based on Boolean modeling using a continuous time approach, which predicts time-dependent probabilities of entities in different biological contexts. MaBoSS was initially built to model the intracellular signaling in non-interacting homogeneous cell populations. MaBoSS was then adapted to model heterogeneous cell populations (EnsembleMaBoSS) by considering families of models rather than a unique model. To account for more complex questions, MaBoSS was extended to simulate dynamical interacting populations (UPMaBoSS), with a precise spatial distribution (PhysiBoSS). To illustrate all these levels of description, we show how each of these tools can be used with a running example of a simple model of cell fate decisions. Finally, we present practical applications to cancer biology and studies of the immune response.
Collapse
Affiliation(s)
- Laurence Calzone
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Vincent Noël
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France
- INSERM, U900, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisé par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Europén Georges Pompidou, AP-HP, Paris, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisé par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
20
|
Srinivasan M, Clarke R, Kraikivski P. Mathematical Models of Death Signaling Networks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1402. [PMID: 37420422 PMCID: PMC9602293 DOI: 10.3390/e24101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 07/09/2023]
Abstract
This review provides an overview of the progress made by computational and systems biologists in characterizing different cell death regulatory mechanisms that constitute the cell death network. We define the cell death network as a comprehensive decision-making mechanism that controls multiple death execution molecular circuits. This network involves multiple feedback and feed-forward loops and crosstalk among different cell death-regulating pathways. While substantial progress has been made in characterizing individual cell death execution pathways, the cell death decision network is poorly defined and understood. Certainly, understanding the dynamic behavior of such complex regulatory mechanisms can be only achieved by applying mathematical modeling and system-oriented approaches. Here, we provide an overview of mathematical models that have been developed to characterize different cell death mechanisms and intend to identify future research directions in this field.
Collapse
Affiliation(s)
- Madhumita Srinivasan
- College of Architecture, Arts, and Design, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Pavel Kraikivski
- Academy of Integrated Science, Division of Systems Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
Piretto E, Selvaggio G, Bragantini D, Domenici E, Marchetti L. A novel logical model of COVID-19 intracellular infection to support therapies development. PLoS Comput Biol 2022; 18:e1010443. [PMID: 36037223 PMCID: PMC9462742 DOI: 10.1371/journal.pcbi.1010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/09/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
In this paper, a logical-based mathematical model of the cellular pathways involved in the COVID-19 infection has been developed to study various drug treatments (single or in combination), in different illness scenarios, providing insights into their mechanisms of action. Drug simulations suggest that the effects of single drugs are limited, or depending on the scenario counterproductive, whereas better results appear combining different treatments. Specifically, the combination of the anti-inflammatory Baricitinib and the anti-viral Remdesivir showed significant benefits while a stronger efficacy emerged from the triple combination of Baricitinib, Remdesivir, and the corticosteroid Dexamethasone. Together with a sensitivity analysis, we performed an analysis of the mechanisms of the drugs to reveal their impact on molecular pathways. The paper introduces a logical-based mathematical model of the cellular pathways involved in the COVID-19 infection. The aim of the model is to study, in a qualitative but comprehensive way, the cellular mechanisms developed during the virus infection with the principal focus on drug treatments. The model is able to reproduce various illness scenarios: from the early infection stages to the late illness stages characterized by strong immune reaction usually evolving in the so-called cytokine storm. Different drug effects have been tested singularly and in combination treatments. Computational sensitivity analysis was performed on the model along with the analysis of the mechanisms of the drugs to reveal their impact on molecular pathways. The results show that the effect of single drugs may be limited or counterproductive, depending on the illness stage. The highest predicted efficacy is obtained by combining three different treatments: the anti-inflammatory Baricitinib, the anti-viral Remdesivir and the corticosteroid Dexamethasone. This triple combination therapy has been analyzed not only in terms of global cellular effect but also in function of the involved internal pathways, suggesting the rational mechanisms for its successfulness.
Collapse
Affiliation(s)
| | - Gianluca Selvaggio
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
| | - Damiano Bragantini
- Infectious Diseases Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Enrico Domenici
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Luca Marchetti
- Fondazione The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Trento, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
- * E-mail: ;
| |
Collapse
|
22
|
Ponce-de-Leon M, Montagud A, Akasiadis C, Schreiber J, Ntiniakou T, Valencia A. Optimizing Dosage-Specific Treatments in a Multi-Scale Model of a Tumor Growth. Front Mol Biosci 2022; 9:836794. [PMID: 35463947 PMCID: PMC9019571 DOI: 10.3389/fmolb.2022.836794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of cell resistance in cancer treatment is a complex phenomenon that emerges from the interplay of processes that occur at different scales. For instance, molecular mechanisms and population-level dynamics such as competition and cell–cell variability have been described as playing a key role in the emergence and evolution of cell resistances. Multi-scale models are a useful tool for studying biology at very different times and spatial scales, as they can integrate different processes occurring at the molecular, cellular, and intercellular levels. In the present work, we use an extended hybrid multi-scale model of 3T3 fibroblast spheroid to perform a deep exploration of the parameter space of effective treatment strategies based on TNF pulses. To explore the parameter space of effective treatments in different scenarios and conditions, we have developed an HPC-optimized model exploration workflow based on EMEWS. We first studied the effect of the cells’ spatial distribution in the values of the treatment parameters by optimizing the supply strategies in 2D monolayers and 3D spheroids of different sizes. We later study the robustness of the effective treatments when heterogeneous populations of cells are considered. We found that our model exploration workflow can find effective treatments in all the studied conditions. Our results show that cells’ spatial geometry and population variability should be considered when optimizing treatment strategies in order to find robust parameter sets.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- *Correspondence: Miguel Ponce-de-Leon,
| | | | - Charilaos Akasiadis
- Institute of Informatics and Telecommunications, NCSR “Demokritos”, Agia Paraskevi, Greece
| | | | | | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- ICREA, Pg. Lluís Companys, Barcelona, Spain
| |
Collapse
|
23
|
Selvaggio G, Parolo S, Bora P, Leonardelli L, Harrold J, Mehta K, Rock DA, Marchetti L. Computational Analysis of Cytokine Release Following Bispecific T-Cell Engager Therapy: Applications of a Logic-Based Model. Front Oncol 2022; 12:818641. [PMID: 35350575 PMCID: PMC8957948 DOI: 10.3389/fonc.2022.818641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial. To this end, computational approaches can be instrumental to systematically exploring the effects of combining bispecific antibodies with CRS intervention strategies. Here, we employ a logical model to describe the action of bispecific antibodies and the complex interplay of various immune system components and use it to perform simulation experiments to improve the understanding of the factors affecting CRS. We performed a sensitivity analysis to identify the comedications that could ameliorate CRS without impairing tumor clearance. Our results agree with publicly available experimental data suggesting anti-TNF and anti-IL6 as possible co-treatments. Furthermore, we suggest anti-IFNγ as a suitable candidate for clinical studies.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Silvia Parolo
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Pranami Bora
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Lorena Leonardelli
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - John Harrold
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA, United States.,Quantitative Pharmacology & Disposition, Seattle Genetics, San Francisco, CA, United States
| | - Khamir Mehta
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., South San Francisco, CA, United States
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA, United States.,ADME and Discovery Toxicology, Merck, San Francisco, CA, United States
| | - Luca Marchetti
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
24
|
Akasiadis C, Ponce‐de‐Leon M, Montagud A, Michelioudakis E, Atsidakou A, Alevizos E, Artikis A, Valencia A, Paliouras G. Parallel model exploration for tumor treatment simulations. Comput Intell 2022. [DOI: 10.1111/coin.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charilaos Akasiadis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | | | - Arnau Montagud
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Evangelos Michelioudakis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
- Department of Informatics and Telecommunications University of Athens Athens Greece
| | - Alexia Atsidakou
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Elias Alevizos
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alexander Artikis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alfonso Valencia
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Georgios Paliouras
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| |
Collapse
|
25
|
Stoll G, Naldi A, Noël V, Viara E, Barillot E, Kroemer G, Thieffry D, Calzone L. UPMaBoSS: A Novel Framework for Dynamic Cell Population Modeling. Front Mol Biosci 2022; 9:800152. [PMID: 35309516 PMCID: PMC8924294 DOI: 10.3389/fmolb.2022.800152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility. All of these aspects cannot be easily resolved in a unique mathematical model or with a unique formalism. To cope with some of these issues, we introduce here a novel framework, UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic populations of interacting cells. We rely on the preexisting tool MaBoSS, which enables probabilistic simulations of cellular networks. A novel software layer is added to account for cell interactions and population dynamics, but without considering the spatial dimension. This modeling approach can be seen as an intermediate step towards more complex spatial descriptions. We illustrate our methodology by means of a case study dealing with TNF-induced cell death. Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment. Relatively easy to encode, UPMaBoSS simulations require only moderate computational power and execution time. To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which contains all software and models used for this study.
Collapse
Affiliation(s)
- Gautier Stoll
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Aurélien Naldi
- Institut de Biologie de L’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Lifeware Group, Inria Saclay-Ile de France, Palaiseau, France
| | - Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
| | | | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Denis Thieffry
- Institut de Biologie de L’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Lifeware Group, Inria Saclay-Ile de France, Palaiseau, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM U900, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
- *Correspondence: Laurence Calzone,
| |
Collapse
|
26
|
Montagud A, Béal J, Tobalina L, Traynard P, Subramanian V, Szalai B, Alföldi R, Puskás L, Valencia A, Barillot E, Saez-Rodriguez J, Calzone L. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife 2022; 11:e72626. [PMID: 35164900 PMCID: PMC9018074 DOI: 10.7554/elife.72626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
Collapse
Affiliation(s)
- Arnau Montagud
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
| | - Jonas Béal
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Luis Tobalina
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Pauline Traynard
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Vigneshwari Subramanian
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Bence Szalai
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Semmelweis University, Faculty of Medicine, Department of PhysiologyBudapestHungary
| | | | | | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
- ICREA, Pg. Lluís Companys 23BarcelonaSpain
| | - Emmanuel Barillot
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Laurence Calzone
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| |
Collapse
|
27
|
Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 2022; 479:161-183. [PMID: 35098992 PMCID: PMC8883486 DOI: 10.1042/bcj20210547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied pathways related to inflammation, and its involvement in aging has attracted considerable attention. As aging is a complex phenomenon and is the result of a multi-step process, the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of NF-κB in the regulation of aging, different systems biology approaches have been employed. A multi-omics data-driven approach can be used to interpret and clarify unknown mechanisms but cannot generate mechanistic regulatory structures alone. In contrast, combining this approach with a mathematical modeling approach can identify the mechanistics of the phenomena of interest. The development of single-cell technologies has also helped clarify the heterogeneity of the NF-κB response and underlying mechanisms. Here, we review advances in the understanding of the regulation of aging by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical modeling of the NF-κB network.
Collapse
Affiliation(s)
- Masatoshi Haga
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd., Ikuno-ku, Osaka 544-8666, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
28
|
Karanam A, Rappel WJ. Boolean modelling in plant biology. QUANTITATIVE PLANT BIOLOGY 2022; 3:e29. [PMID: 37077966 PMCID: PMC10095905 DOI: 10.1017/qpb.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
Signalling and genetic networks underlie most biological processes and are often complex, containing many highly connected components. Modelling these networks can provide insight into mechanisms but is challenging given that rate parameters are often not well defined. Boolean modelling, in which components can only take on a binary value with connections encoded by logic equations, is able to circumvent some of these challenges, and has emerged as a viable tool to probe these complex networks. In this review, we will give an overview of Boolean modelling, with a specific emphasis on its use in plant biology. We review how Boolean modelling can be used to describe biological networks and then discuss examples of its applications in plant genetics and plant signalling.
Collapse
Affiliation(s)
- Aravind Karanam
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
- Author for correspondence: W.-J. Rappel, E-mail:
| |
Collapse
|
29
|
Karanam A, He D, Hsu PK, Schulze S, Dubeaux G, Karmakar R, Schroeder JI, Rappel WJ. Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. PLANT PHYSIOLOGY 2021; 187:2311-2322. [PMID: 34618035 PMCID: PMC8644243 DOI: 10.1093/plphys/kiab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 05/02/2023]
Abstract
Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.
Collapse
Affiliation(s)
- Aravind Karanam
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - David He
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Richa Karmakar
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
- Author for communication:
| |
Collapse
|
30
|
Noël V, Ruscone M, Stoll G, Viara E, Zinovyev A, Barillot E, Calzone L. WebMaBoSS: A Web Interface for Simulating Boolean Models Stochastically. Front Mol Biosci 2021; 8:754444. [PMID: 34888352 PMCID: PMC8651056 DOI: 10.3389/fmolb.2021.754444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
WebMaBoSS is an easy-to-use web interface for conversion, storage, simulation and analysis of Boolean models that allows to get insight from these models without any specific knowledge of modeling or coding. It relies on an existing software, MaBoSS, which simulates Boolean models using a stochastic approach: it applies continuous time Markov processes over the Boolean network. It was initially built to fill the gap between Boolean and continuous formalisms, i.e., providing semi-quantitative results using a simple representation with a minimum number of parameters to fit. The goal of WebMaBoSS is to simplify the use and the analysis of Boolean models coping with two main issues: 1) the simulation of Boolean models of intracellular processes with MaBoSS, or any modeling tool, may appear as non-intuitive for non-experts; 2) the simulation of already-published models available in current model databases (e.g., Cell Collective, BioModels) may require some extra steps to ensure compatibility with modeling tools such as MaBoSS. With WebMaBoSS, new models can be created or imported directly from existing databases. They can then be simulated, modified and stored in personal folders. Model simulations are performed easily, results visualized interactively, and figures can be exported in a preferred format. Extensive model analyses such as mutant screening or parameter sensitivity can also be performed. For all these tasks, results are stored and can be subsequently filtered to look for specific outputs. This web interface can be accessed at the address: https://maboss.curie.fr/webmaboss/ and deployed locally using docker. This application is open-source under LGPL license, and available at https://github.com/sysbio-curie/WebMaBoSS.
Collapse
Affiliation(s)
- Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Marco Ruscone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Gautier Stoll
- Equipe 11 labellisée Par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Universite de Paris, Sorbonne Universite, Paris, France
| | | | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| |
Collapse
|
31
|
Berg M, Plöntzke J, Siebert H, Röblitz S. Modelling Oscillatory Patterns in the Bovine Estrous Cycle with Boolean Delay Equations. Bull Math Biol 2021; 83:121. [PMID: 34727249 PMCID: PMC8563642 DOI: 10.1007/s11538-021-00942-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Boolean delay equations (BDEs), with their relatively simple and intuitive mode of modelling, have been used in many research areas including, for example, climate dynamics and earthquake propagation. Their application to biological systems has been scarce and limited to the molecular level. Here, we derive and present two BDE models. One is directly derived from a previously published ordinary differential equation (ODE) model for the bovine estrous cycle, whereas the second model includes a modification of a particular biological mechanism. We not only compare the simulation results from the BDE models with the trajectories of the ODE model, but also validate the BDE models with two additional numerical experiments. One experiment induces a switch in the oscillatory pattern upon changes in the model parameters, and the other simulates the administration of a hormone that is known to shift the estrous cycle in time. The models presented here are the first BDE models for hormonal oscillators, and the first BDE models for drug administration. Even though automatic parameter estimation still remains challenging, our results support the role of BDEs as a framework for the systematic modelling of complex biological oscillators.
Collapse
Affiliation(s)
| | | | - Heike Siebert
- Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany
| | - Susanna Röblitz
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits. Methods Mol Biol 2021; 2229:1-40. [PMID: 33405215 DOI: 10.1007/978-1-0716-1032-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Qualitative modeling approaches are promising and still underexploited tools for the analysis and design of synthetic circuits. They can make predictions of circuit behavior in the absence of precise, quantitative information. Moreover, they provide direct insight into the relation between the feedback structure and the dynamical properties of a network. We review qualitative modeling approaches by focusing on two specific formalisms, Boolean networks and piecewise-linear differential equations, and illustrate their application by means of three well-known synthetic circuits. We describe various methods for the analysis of state transition graphs, discrete representations of the network dynamics that are generated in both modeling frameworks. We also briefly present the problem of controlling synthetic circuits, an emerging topic that could profit from the capacity of qualitative modeling approaches to rapidly scan a space of design alternatives.
Collapse
|
33
|
Ye J, Chen Q, Wang R. Logical modeling of thymus and natural killer lymphocyte differentiation. J Biol Phys 2021; 47:31-47. [PMID: 33735399 DOI: 10.1007/s10867-021-09563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 10/21/2022] Open
Abstract
Thymus (T) and natural killer (NK) lymphocytes are important barriers against diseases. Therefore, it is necessary to understand regulatory mechanisms related to the cell fate decisions involved in the production of these cells. Although some individual information related to T and NK lymphocyte cell fate decisions have been revealed, the related network and its dynamical characteristics still have not been well understood. By integrating individual information and comparing with experimental data, we construct a comprehensive regulatory network and a logical model related to T and NK lymphocyte differentiation. We aim to explore possible mechanisms of how each lineage differentiation is realized by systematically screening individual perturbations. When determining the perturbation strategies, the state transition can be used to identify the roles of specific genes in cell type selection and reprogramming. In agreement with experimental observations, the dynamics of the model correctly restates the cell differentiation processes from common lymphoid progenitors to CD4+ T cells, CD8+ T cells, and NK cells. Our analysis reveals that some specific perturbations can give rise to directional cell differentiation or reprogramming. We test our in silico results by using known experimental observations. The integrated network and the logical model presented here might be a good candidate for providing qualitative mechanisms of cell fate specification involved in T and NK lymphocyte cell fate decisions.
Collapse
Affiliation(s)
- Jianting Ye
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Qingxi Chen
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, China.
| |
Collapse
|
34
|
Gjerga E, Trairatphisan P, Gabor A, Koch H, Chevalier C, Ceccarelli F, Dugourd A, Mitsos A, Saez-Rodriguez J. Converting networks to predictive logic models from perturbation signalling data with CellNOpt. Bioinformatics 2021; 36:4523-4524. [PMID: 32516357 PMCID: PMC7575044 DOI: 10.1093/bioinformatics/btaa561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Accepted: 06/03/2020] [Indexed: 11/27/2022] Open
Abstract
Summary The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network of signalling to obtain dynamic models. CellNOpt is a collection of Bioconductor R packages for building logic models from perturbation data and prior knowledge of signalling networks. We have recently developed new components and refined the existing ones to keep up with the computational demand of increasingly large datasets, including (i) an efficient integer linear programming, (ii) a probabilistic logic implementation for semi-quantitative datasets, (iii) the integration of a stochastic Boolean simulator, (iv) a tool to identify missing links, (v) systematic post-hoc analyses and (vi) an R-Shiny tool to run CellNOpt interactively. Availability and implementation R-package(s): https://github.com/saezlab/cellnopt. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Enio Gjerga
- Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant 69120 Heidelberg, Germany.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE)
| | - Panuwat Trairatphisan
- Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant 69120 Heidelberg, Germany
| | - Attila Gabor
- Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant 69120 Heidelberg, Germany
| | - Hermann Koch
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE).,Aachener Verfahrenstechnik, Process Systems Engineering, RWTH Aachen University, Aachen, Germany
| | - Celine Chevalier
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE).,University Paris-Saclay, Espace Technologique Bat. Discovery,91190 Saint-Aubin, France
| | - Franceco Ceccarelli
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE).,Computer Laboratory, University of Cambridge, Cambridge CB2 1TN, UK
| | - Aurelien Dugourd
- Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant 69120 Heidelberg, Germany.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE)
| | - Alexander Mitsos
- Aachener Verfahrenstechnik, Process Systems Engineering, RWTH Aachen University, Aachen, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant 69120 Heidelberg, Germany.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE)
| |
Collapse
|
35
|
Béal J, Pantolini L, Noël V, Barillot E, Calzone L. Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLoS Comput Biol 2021; 17:e1007900. [PMID: 33507915 PMCID: PMC7872233 DOI: 10.1371/journal.pcbi.1007900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
The study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training. This approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal cancers who experience significant differences in sensitivity despite similar omics profiles. We first gather information from literature and build a logical model summarizing the regulatory network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by automatically assessing that it qualitatively reproduces response or resistance behaviors identified in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to validate the model's ability to explain differences in sensitivity. This generic model is transformed into personalized cell line-specific logical models by integrating the omics information of the cell lines as constraints of the model. The use of mutations alone allows personalized models to correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and CRISPR targeting, and even better with the joint use of mutations and RNA, supporting multi-omics mechanistic models. A comparison of these untrained models with learning approaches highlights similarities in interpretation and complementarity depending on the size of the datasets. This parsimonious pipeline, which can easily be extended to other biological questions, makes it possible to explore the mechanistic causes of the response to treatment, on an individualized basis.
Collapse
Affiliation(s)
- Jonas Béal
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Lorenzo Pantolini
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Vincent Noël
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| |
Collapse
|
36
|
Checcoli A, Pol JG, Naldi A, Noel V, Barillot E, Kroemer G, Thieffry D, Calzone L, Stoll G. Dynamical Boolean Modeling of Immunogenic Cell Death. Front Physiol 2020; 11:590479. [PMID: 33281620 PMCID: PMC7690454 DOI: 10.3389/fphys.2020.590479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/24/2020] [Indexed: 11/13/2022] Open
Abstract
As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD) constitutes a type of cellular demise that elicits an adaptive immune response. ICD has been characterized in malignant cells following cytotoxic interventions, such as chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger signals that attract and activate dendritic cells (DCs). The latter can then engulf and cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity. This series of reactions works as a positive feedback loop where the antitumor immunity further improves the therapeutic efficacy by targeting cancer cells spared by the cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer treatment are able to stimulate bona fide ICD: some commonly used agents, such as cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better characterization of the process could help identify some gene or protein candidates to target pharmacologically and suggest combinations of drugs that would favor/increase antitumor immune response. To this end, we have built a mathematical model of the major cell types that intervene in ICD, namely cancer cells, DCs, CD8+ and CD4+ T cells. Our model not only integrates intracellular mechanisms within each individual cell entity, but also incorporates intercellular communications between them. The resulting cell population model recapitulates key features of the dynamics of ICD after an initial treatment, in particular the time-dependent size of the different cell types. The model is based on a discrete Boolean formalism and is simulated by means of a software tool, UPMaBoSS, which performs stochastic simulations with continuous time, considering the dynamics of the system at the cell population level with appropriate timing of events, and accounting for death and division of each cell type. With this model, the time scales of some of the processes involved in ICD, which are challenging to measure experimentally, have been predicted. In addition, our model analysis led to the identification of actionable targets for boosting ICD-induced antitumor response. All computational analyses and results are compiled in interactive notebooks which cover the presentation of the network structure, model simulations, and parameter sensitivity analyses.
Collapse
Affiliation(s)
- Andrea Checcoli
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jonathan G. Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aurelien Naldi
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Noel
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Europeen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Gautier Stoll
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
37
|
Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020; 18:e3000917. [PMID: 33180788 PMCID: PMC7685450 DOI: 10.1371/journal.pbio.3000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/24/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
38
|
Paulevé L, Kolčák J, Chatain T, Haar S. Reconciling qualitative, abstract, and scalable modeling of biological networks. Nat Commun 2020; 11:4256. [PMID: 32848126 PMCID: PMC7450094 DOI: 10.1038/s41467-020-18112-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Predicting biological systems' behaviors requires taking into account many molecular and genetic elements for which limited information is available past a global knowledge of their pairwise interactions. Logical modeling, notably with Boolean Networks (BNs), is a well-established approach that enables reasoning on the qualitative dynamics of networks. Several dynamical interpretations of BNs have been proposed. The synchronous and (fully) asynchronous ones are the most prominent, where the value of either all or only one component can change at each step. Here we prove that, besides being costly to analyze, these usual interpretations can preclude the prediction of certain behaviors observed in quantitative systems. We introduce an execution paradigm, the Most Permissive Boolean Networks (MPBNs), which offers the formal guarantee not to miss any behavior achievable by a quantitative model following the same logic. Moreover, MPBNs significantly reduce the complexity of dynamical analysis, enabling to model genome-scale networks.
Collapse
Affiliation(s)
- Loïc Paulevé
- Université Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 351 cours de la Libération, Talence, 33400, France.
- LRI UMR8623, Université Paris-Sud, CNRS, Université Paris-Saclay, Bat 650 Ada Lovelace, Rue Raimond Castaing, Gif-sur-Yvette, 91190, France.
| | - Juri Kolčák
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Thomas Chatain
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Stefan Haar
- Inria and LSV, CNRS (UMR 8643) and ENS Paris-Saclay, Université Paris-Saclay, 4 avenue des Sciences, Gif-sur-Yvette, 91190, France
| |
Collapse
|
39
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
40
|
Aguilar B, Gibbs DL, Reiss DJ, McConnell M, Danziger SA, Dervan A, Trotter M, Bassett D, Hershberg R, Ratushny AV, Shmulevich I. A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma. Gigascience 2020; 9:giaa075. [PMID: 32696951 PMCID: PMC7374045 DOI: 10.1093/gigascience/giaa075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/14/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. RESULTS By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type-specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. CONCLUSIONS The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.
Collapse
Affiliation(s)
- Boris Aguilar
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - David L Gibbs
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - David J Reiss
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Mark McConnell
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Samuel A Danziger
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Andrew Dervan
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Matthew Trotter
- BMS Center for Innovation and Translational Research Europe (CITRE), Pabellon de Italia, Calle Isaac Newton 4, Sevilla 41092, Spain
| | - Douglas Bassett
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Robert Hershberg
- Formerly Celgene Corporation, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Alexander V Ratushny
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
41
|
Koltai M, Noel V, Zinovyev A, Calzone L, Barillot E. Exact solving and sensitivity analysis of stochastic continuous time Boolean models. BMC Bioinformatics 2020; 21:241. [PMID: 32527218 PMCID: PMC7291460 DOI: 10.1186/s12859-020-03548-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 12/02/2022] Open
Abstract
Background Solutions to stochastic Boolean models are usually estimated by Monte Carlo simulations, but as the state space of these models can be enormous, there is an inherent uncertainty about the accuracy of Monte Carlo estimates and whether simulations have reached all attractors. Moreover, these models have timescale parameters (transition rates) that the probability values of stationary solutions depend on in complex ways, raising the necessity of parameter sensitivity analysis. We address these two issues by an exact calculation method for this class of models. Results We show that the stationary probability values of the attractors of stochastic (asynchronous) continuous time Boolean models can be exactly calculated. The calculation does not require Monte Carlo simulations, instead it uses graph theoretical and matrix calculation methods previously applied in the context of chemical kinetics. In this version of the asynchronous updating framework the states of a logical model define a continuous time Markov chain and for a given initial condition the stationary solution is fully defined by the right and left nullspace of the master equation’s kinetic matrix. We use topological sorting of the state transition graph and the dependencies between the nullspaces and the kinetic matrix to derive the stationary solution without simulations. We apply this calculation to several published Boolean models to analyze the under-explored question of the effect of transition rates on the stationary solutions and show they can be sensitive to parameter changes. The analysis distinguishes processes robust or, alternatively, sensitive to parameter values, providing both methodological and biological insights. Conclusion Up to an intermediate size (the biggest model analyzed is 23 nodes) stochastic Boolean models can be efficiently solved by an exact matrix method, without using Monte Carlo simulations. Sensitivity analysis with respect to the model’s timescale parameters often reveals a small subset of all parameters that primarily determine the stationary probability of attractor states.
Collapse
Affiliation(s)
- Mihály Koltai
- Institut Curie, PSL Research University, Paris, F-75005, France. .,INSERM, U900, Paris, F-75005, France. .,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France.
| | - Vincent Noel
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, F-75005, France.,INSERM, U900, Paris, F-75005, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, F-75006, France
| |
Collapse
|
42
|
Khazaaleh M, Samarasinghe S. Using activity time windows and logical representation to reduce the complexity of biological network models: G1/S checkpoint pathway with DNA damage. Biosystems 2020; 191-192:104128. [DOI: 10.1016/j.biosystems.2020.104128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023]
|
43
|
Montagud A, Traynard P, Martignetti L, Bonnet E, Barillot E, Zinovyev A, Calzone L. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases. Brief Bioinform 2020; 20:1238-1249. [PMID: 29237040 DOI: 10.1093/bib/bbx163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
Mathematical models can serve as a tool to formalize biological knowledge from diverse sources, to investigate biological questions in a formal way, to test experimental hypotheses, to predict the effect of perturbations and to identify underlying mechanisms. We present a pipeline of computational tools that performs a series of analyses to explore a logical model's properties. A logical model of initiation of the metastatic process in cancer is used as a transversal example. We start by analysing the structure of the interaction network constructed from the literature or existing databases. Next, we show how to translate this network into a mathematical object, specifically a logical model, and how robustness analyses can be applied to it. We explore the visualization of the stable states, defined as specific attractors of the model, and match them to cellular fates or biological read-outs. With the different tools we present here, we explain how to assign to each solution of the model a probability and how to identify genetic interactions using mutant phenotype probabilities. Finally, we connect the model to relevant experimental data: we present how some data analyses can direct the construction of the network, and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus on high-throughput data in cancer biology. A step-by-step tutorial is provided as a Supplementary Material and all models, tools and scripts are provided on an accompanying website: https://github.com/sysbio-curie/Logical_modelling_pipeline.
Collapse
|
44
|
Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA. Concepts in Boolean network modeling: What do they all mean? Comput Struct Biotechnol J 2020; 18:571-582. [PMID: 32257043 PMCID: PMC7096748 DOI: 10.1016/j.csbj.2020.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/27/2020] [Accepted: 03/01/2020] [Indexed: 12/02/2022] Open
Abstract
Boolean network models are one of the simplest models to study complex dynamic behavior in biological systems. They can be applied to unravel the mechanisms regulating the properties of the system or to identify promising intervention targets. Since its introduction by Stuart Kauffman in 1969 for describing gene regulatory networks, various biologically based networks and tools for their analysis were developed. Here, we summarize and explain the concepts for Boolean network modeling. We also present application examples and guidelines to work with and analyze Boolean network models.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
45
|
Letort G, Montagud A, Stoll G, Heiland R, Barillot E, Macklin P, Zinovyev A, Calzone L. PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics 2020; 35:1188-1196. [PMID: 30169736 PMCID: PMC6449758 DOI: 10.1093/bioinformatics/bty766] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023] Open
Abstract
MOTIVATION Due to the complexity and heterogeneity of multicellular biological systems, mathematical models that take into account cell signalling, cell population behaviour and the extracellular environment are particularly helpful. We present PhysiBoSS, an open source software which combines intracellular signalling using Boolean modelling (MaBoSS) and multicellular behaviour using agent-based modelling (PhysiCell). RESULTS PhysiBoSS provides a flexible and computationally efficient framework to explore the effect of environmental and genetic alterations of individual cells at the population level, bridging the critical gap from single-cell genotype to single-cell phenotype and emergent multicellular behaviour. PhysiBoSS thus becomes very useful when studying heterogeneous population response to treatment, mutation effects, different modes of invasion or isomorphic morphogenesis events. To concretely illustrate a potential use of PhysiBoSS, we studied heterogeneous cell fate decisions in response to TNF treatment. We explored the effect of different treatments and the behaviour of several resistant mutants. We highlighted the importance of spatial information on the population dynamics by considering the effect of competition for resources like oxygen. AVAILABILITY AND IMPLEMENTATION PhysiBoSS is freely available on GitHub (https://github.com/sysbio-curie/PhysiBoSS), with a Docker image (https://hub.docker.com/r/gletort/physiboss/). It is distributed as open source under the BSD 3-clause license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gaelle Letort
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Arnau Montagud
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Gautier Stoll
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, U1138, Paris, France.,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Randy Heiland
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Paris, France.,INSERM, U900, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| |
Collapse
|
46
|
Contribution of ROS and metabolic status to neonatal and adult CD8+ T cell activation. PLoS One 2019; 14:e0226388. [PMID: 31841528 PMCID: PMC6913967 DOI: 10.1371/journal.pone.0226388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
In neonatal T cells, a low response to infection contributes to a high incidence of morbidity and mortality of neonates. Here we have evaluated the impact of the cytoplasmic and mitochondrial levels of Reactive Oxygen Species of adult and neonatal CD8+ T cells on their activation potential. We have also constructed a logical model connecting metabolism and ROS with T cell signaling. Our model indicates the interplay between antigen recognition, ROS and metabolic status in T cell responses. This model displays alternative stable states corresponding to different cell fates, i.e. quiescent, activated and anergic states, depending on ROS levels. Stochastic simulations with this model further indicate that differences in ROS status at the cell population level contribute to the lower activation rate of neonatal, compared to adult, CD8+ T cells upon TCR engagement. These results are relevant for neonatal health care. Our model can serve to analyze the impact of metabolic shift during cancer in which, similar to neonatal cells, a high glycolytic rate and low concentrations of glutamine and arginine promote tumor tolerance.
Collapse
|
47
|
Yan J, Goldbeter A. Robust synchronization of the cell cycle and the circadian clock through bidirectional coupling. J R Soc Interface 2019; 16:20190376. [PMID: 31506042 PMCID: PMC6769306 DOI: 10.1098/rsif.2019.0376] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cell cycle and the circadian clock represent major cellular rhythms, which appear to be coupled. Thus the circadian factor BMAL1 controls the level of cell cycle proteins such as Cyclin E and WEE1, the latter of which inhibits the kinase CDK1 that governs the G2/M transition. In reverse the cell cycle impinges on the circadian clock through direct control by CDK1 of REV-ERBα, which negatively regulates BMAL1. These observations provide evidence for bidirectional coupling of the cell cycle and the circadian clock. By merging detailed models for the two networks in mammalian cells, we previously showed that unidirectional coupling to the circadian clock can entrain the cell cycle to 24 or 48 h, depending on the cell cycle autonomous period, while complex oscillations occur when entrainment fails. Here we show that the reverse unidirectional coupling via phosphorylation of REV-ERBα or via mitotic inhibition of transcription, both controlled by CDK1, can elicit entrainment of the circadian clock by the cell cycle. We then determine the effect of bidirectional coupling of the cell cycle and circadian clock as a function of their relative coupling strengths. In contrast to unidirectional coupling, bidirectional coupling markedly reduces the likelihood of complex oscillations. While the two rhythms oscillate independently as long as both couplings are weak, one rhythm entrains the other if one of the couplings dominates. If the couplings in both directions become stronger and of comparable magnitude, the two rhythms synchronize, generally at an intermediate period within the range defined by the two autonomous periods prior to coupling. More surprisingly, synchronization may also occur at a period slightly below or above this range, while in some conditions the synchronization period can even be much longer. Two or even three modes of synchronization may sometimes coexist, yielding examples of birhythmicity or trirhythmicity. Because synchronization readily occurs in the form of simple periodic oscillations over a wide range of coupling strengths and in the presence of multiple connections between the two oscillatory networks, the results indicate that bidirectional coupling favours the robust synchronization of the cell cycle and the circadian clock.
Collapse
Affiliation(s)
- Jie Yan
- Center for Systems Biology, School of Mathematical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Albert Goldbeter
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
48
|
Metzcar J, Wang Y, Heiland R, Macklin P. A Review of Cell-Based Computational Modeling in Cancer Biology. JCO Clin Cancer Inform 2019; 3:1-13. [PMID: 30715927 PMCID: PMC6584763 DOI: 10.1200/cci.18.00069] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer's ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.
Collapse
|
49
|
Béal J, Montagud A, Traynard P, Barillot E, Calzone L. Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients. Front Physiol 2019; 9:1965. [PMID: 30733688 PMCID: PMC6353844 DOI: 10.3389/fphys.2018.01965] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Logical models of cancer pathways are typically built by mining the literature for relevant experimental observations. They are usually generic as they apply for large cohorts of individuals. As a consequence, they generally do not capture the heterogeneity of patient tumors and their therapeutic responses. We present here a novel framework, referred to as PROFILE, to tailor logical models to a particular biological sample such as a patient tumor. This methodology permits to compare the model simulations to individual clinical data, i.e., survival time. Our approach focuses on integrating mutation data, copy number alterations (CNA), and expression data (transcriptomics or proteomics) to logical models. These data need first to be either binarized or set between 0 and 1, and can then be incorporated in the logical model by modifying the activity of the node, the initial conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo kinetic algorithm to perform stochastic simulations on logical models results in model state probabilities, and allows for a semi-quantitative study of the model phenotypes and perturbations. As a proof of concept, we use a published generic model of cancer signaling pathways and molecular data from METABRIC breast cancer patients. For this example, we test several combinations of data incorporation and discuss that, with these data, the most comprehensive patient-specific cancer models are obtained by modifying the nodes' activity of the model with mutations, in combination or not with CNA data, and altering the transition rates with RNA expression. We conclude that these model simulations show good correlation with clinical data such as patients' Nottingham prognostic index (NPI) subgrouping and survival time. We observe that two highly relevant cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are biologically consistent prognostic factors: patients with both high proliferation and low apoptosis have the worst survival rate, and conversely. Our approach aims to combine the mechanistic insights of logical modeling with multi-omics data integration to provide patient-relevant models. This work leads to the use of logical modeling for precision medicine and will eventually facilitate the choice of patient-specific drug treatments by physicians.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| | - Laurence Calzone
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris, France
| |
Collapse
|
50
|
Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos T, Van Daele D, De Raedt L, Kühl M, Kestler HA. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol 2019; 2:21. [PMID: 30675519 PMCID: PMC6336720 DOI: 10.1038/s42003-018-0268-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Dynamic models analyzing gene regulation and metabolism face challenges when adapted to modeling signal transduction networks. During signal transduction, molecular reactions and mechanisms occur in different spatial and temporal frames and involve feedbacks. This impedes the straight-forward use of methods based on Boolean networks, Bayesian approaches, and differential equations. We propose a new approach, ProbRules, that combines probabilities and logical rules to represent the dynamics of a system across multiple scales. We demonstrate that ProbRules models can represent various network motifs of biological systems. As an example of a comprehensive model of signal transduction, we provide a Wnt network that shows remarkable robustness under a range of phenotypical and pathological conditions. Its simulation allows the clarification of controversially discussed molecular mechanisms of Wnt signaling by predicting wet-lab measurements. ProbRules provides an avenue in current computational modeling by enabling systems biologists to integrate vast amounts of available data on different scales.
Collapse
Affiliation(s)
- Alexander Groß
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Barbara Kracher
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Silke D. Kühlwein
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Astrid S. Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Katrin Luckert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Thomas Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Dries Van Daele
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Luc De Raedt
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|