1
|
van der Plas MC, Koemans EA, Schipper MR, Voigt S, Rasing I, van der Zwet RGJ, Kaushik K, van Dort R, Schriemer S, van Harten TW, van Zwet E, van Etten ES, van Osch MJP, Terwindt GM, van Walderveen M, Wermer MJH. One-Year Radiologic Progression in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Neurology 2025; 104:e213546. [PMID: 40198864 PMCID: PMC11995281 DOI: 10.1212/wnl.0000000000213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Knowledge on the short-term progression of cerebral amyloid angiopathy (CAA) is important for clinical practice and the design of clinical treatment trials. We investigated the 1-year progression of CAA-related MRI markers in sporadic (sCAA) and Dutch-type hereditary (D-CAA). METHODS Participants were included from 2 prospective cohort studies. 3T-MRI was performed at baseline and after 1 year. We assessed macrobleeds, cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), convexity subarachnoid hemorrhages (cSAHs), white matter hyperintensities (WMH), enlarged centrum semiovale perivascular spaces (CSO-EPVS), and visually stimulated blood oxygenation level-dependent (BOLD) fMRI parameters. Progression was defined as increase in number of macrobleeds or CMBs, new focus or extension of cSS, increase in CSO-EPVS category, or volume increase of >10% of WMH. Multivariable regression analyses were performed to determine factors associated with progression and the association between events related to parenchymal injury (cSAH, macrobleeds) and radiologic progression. RESULTS We included 98 participants (47% women): 55 with sCAA (mean age 70 years), 28 with symptomatic D-CAA (mean age 59 years), and 15 with presymptomatic D-CAA (mean age 45 years). Progression of >1 MRI markers was seen in all 83 (100%) participants with sCAA and symptomatic D-CAA and in 9 (60%) with presymptomatic D-CAA. The number of CMBs showed the largest progression in sCAA (98%; median increase 24) and symptomatic D-CAA (100%; median increase 58). WMH volume (>10% increase in 70%; mean increase 1.2 mL) was most progressive in presymptomatic D-CAA. A decrease in the upslope of the visually evoked BOLD response was observed for most patients. Symptomatic D-CAA status was associated with more overall progression (adjusted odds ratio [aOR] 9.7; 95% CI 1.7-54.2), CMB (adjusted relative risk [aRR] 2.47; 95% CI 1.5-4.1), and WMH volume progression (β 2.52; 95% CI 0.3-4.8). Baseline CMB count (aRR 1.002; 95% CI 1.001-1.002) was associated with CMB progression and cSS presence at baseline (aOR 8.16; 95% CI 2.6-25.4) with cSS progression. cSS progression was also associated with cSAH and macrobleeds (aOR 21,029; 95% CI 2.042-216.537). DISCUSSION CAA is a radiologically progressive disease even in the short-term. After 1 year, all symptomatic and most of the presymptomatic participants showed progression of at least 1 MRI-marker. CMBs and WMH volume (in symptomatic CAA) and WMH volume (in presymptomatic CAA) are the most promising markers to track short-term progression in future trials.
Collapse
Affiliation(s)
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Manon R Schipper
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Rosemarie van Dort
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sanne Schriemer
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands; and
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2025; 43:736-751. [PMID: 39730931 PMCID: PMC12053366 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
3
|
Aghetti A, Bouteloup V, Lebenberg J, Chupin M, Gourieux E, Mangin JF, Chêne G, Dufouil C, Jouvent E. Superficial white matter hyperintensities are associated with mild tissue alterations in vascular aging. Rev Neurol (Paris) 2025:S0035-3787(25)00501-6. [PMID: 40287332 DOI: 10.1016/j.neurol.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
In the elderly, white matter hyperintensities (WMH) are usually rated as periventricular or deep. However, recent data suggest that superficial WMH may be associated with distinct mechanisms and may be associated with milder underlying tissue alterations. We developed and validated a new grading scale to differentiate superficial WMH from other WMH (either periventricular or deep). We evaluated individuals with high loads of WMH from MEMENTO, a multicenter memory-clinic study, to evaluate the links between superficial WMH and 1) MRI markers of cerebral small vessel disease (number of lacunes and microbleeds and normalized brain volume); 2) cognitive outcomes including global evaluation with Mini Mental State Examination (MMSE). Our analytical sample included 208 participants. Participants with higher grades of superficial WMH had larger normalized brain volumes (82.1±1.3% vs 81.0±1.1%, P<0.001) and were more frequently women (85.0% vs 51.4%, P=0.01). In total contrast but as expected, participants with higher grades of other WMH were older (79.8±8.1 vs 75.5±6.2 years, P<0.001), had more often lacunes (41.7% vs 7.1%, P<0.001) and performed worse at the MMSE (26.8±2.0 vs 28.1±1.7, P=0.01). Our results support the hypothesis that superficial WMH are distinct from other WMH and probably correspond to mild tissue alterations.
Collapse
Affiliation(s)
- A Aghetti
- AP-HP, Lariboisière Hospital, Department of Neurology and FHU NeuroVasc, Université de Paris Cité, 75475 Paris, France; Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - V Bouteloup
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, 33000 Bordeaux, France; CHU de Bordeaux, Pole de Santé Publique, 33000 Bordeaux, France
| | - J Lebenberg
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; AP-HP, Lariboisière Hospital, Translational Neurovascular Centre, FHU NeuroVasc, Université de Paris Cité, 75475 Paris, France
| | - M Chupin
- ICM, Sorbonne Université, CNRS, Paris, France; CATI Multicenter Neuroimaging Platform
| | - E Gourieux
- ICM, Sorbonne Université, CNRS, Paris, France; CATI Multicenter Neuroimaging Platform
| | - J-F Mangin
- CATI Multicenter Neuroimaging Platform; Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
| | - G Chêne
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, 33000 Bordeaux, France; CHU de Bordeaux, Pole de Santé Publique, 33000 Bordeaux, France
| | - C Dufouil
- INSERM, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, 33000 Bordeaux, France; CHU de Bordeaux, Pole de Santé Publique, 33000 Bordeaux, France
| | - E Jouvent
- AP-HP, Lariboisière Hospital, Department of Neurology and FHU NeuroVasc, Université de Paris Cité, 75475 Paris, France; Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Université Paris-Cité, Paris, France.
| |
Collapse
|
4
|
Beyer F, Tsuchida A, Soumaré A, Rajula HSR, Mishra A, Crivello F, Proust‐Lima C, Loeffler M, Tzourio C, Amouyel P, Villringer A, Scholz M, Jacqmin‐Gadda H, Joliot M, Witte AV, Dufouil C, Debette S. White matter hyperintensity spatial patterns: Risk factors and clinical correlates. Alzheimers Dement 2025; 21:e70053. [PMID: 40189793 PMCID: PMC11972985 DOI: 10.1002/alz.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION White matter hyperintensities (WMHs), a major cerebral small vessel disease (cSVD) marker, may arise from different pathologies depending on their location. We explored clinical and genetic correlates of agnostically derived spatial WMH patterns in two longitudinal population-based cohorts (Three-City Study [3C]-Dijon, LIFE-Adult). METHODS We derived seven WMH spatial patterns using Bullseye segmentation in 2878 individuals aged 65+ and explored their associations with vascular and genetic risk factors, cognitive performance, dementia and stroke incidence. RESULTS WMHs in the frontoparietal and anterior periventricular region were associated with blood pressure traits, WMH genetic risk score (GRS), baseline and decline in general cognitive performance, incident all-cause dementia, and ischemic stroke. Juxtacortical-deep occipital WMHs were not associated with vascular risk factors and WMH GRS, but with incident all-cause dementia and intracerebral hemorrhage. DISCUSSION Accounting for WMH spatial distribution is key to deciphering mechanisms underlying cSVD subtypes, an essential step towards personalized therapeutic approaches. HIGHLIGHTS We studied spatial patterns of WMHs in 2878 participants. Blood pressure was associated with frontoparietal and anterior PV WMHs. Anterior PV WMHs predicted dementia and stroke risk. Juxtacortical-deep occipital WMH burden was not associated with blood pressure or WMH genetic risk. Juxtacortical-deep occipital WMH burden predicted dementia and intracerebral hemorrhage.
Collapse
Affiliation(s)
- Frauke Beyer
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ami Tsuchida
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - Aicha Soumaré
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | | | - Aniket Mishra
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Fabrice Crivello
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - Cécile Proust‐Lima
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE)University of LeipzigLeipzigGermany
| | - Christophe Tzourio
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of Medical InformaticsBordeaux University HospitalBordeauxFrance
| | - Philippe Amouyel
- INSERM U1167University of Lille, Institut Pasteur de Lille, 1 Rue du Professeur CalmetteLilleFrance
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic of Cognitive NeurologyUniversity Clinic LeipzigLeipzigGermany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE)University of LeipzigLeipzigGermany
| | - Hélène Jacqmin‐Gadda
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Marc Joliot
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - A. Veronica Witte
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic of Cognitive NeurologyUniversity Clinic LeipzigLeipzigGermany
- CRC 1052 “Obesity Mechanisms”, Subproject A1University of LeipzigLeipzigGermany
| | - Carole Dufouil
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of Neurology, Institute for Neurodegenerative DiseasesBordeaux University HospitalBordeauxFrance
- Institut du Cerveau (ICM)Sorbonne UniversitéParisFrance
- Department of NeurologyPitiá‐Salpêtrière Hospital, Assistance Publique des Hôpitaux de ParisParisFrance
| |
Collapse
|
5
|
Yang Z, Liu X, He R, Wu C, Huang Y, He L, Zeng W. Predicting poor 90-day prognosis in acute spontaneous intracerebral hemorrhage patients using initial MRI signs of cerebral small vessel disease (CSVD): a retrospective cohort study. Acta Radiol 2025:2841851251329523. [PMID: 40151879 DOI: 10.1177/02841851251329523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundVarious factors impact the prognosis of the patients with intracerebral hemorrhage (ICH).PurposeTo evaluate the initial magnetic resonance imaging (MRI) indicators of cerebral small vessel disease (CSVD) and evaluate the relationship between the MRI indicators and ICH prognosis.Material and MethodsClinical and imaging data were collected from individuals diagnosed with acute ICH who had undergone MRI within 48 h of symptom onset between October 2021 and March 2022. The 90-day modified Rankin Scale (mRS) scores were analyzed, focusing on identifying those patients with a mRS score ≥3 points, which was consistent with a poor prognosis.ResultsA total of 220 ICH patients were evaluated, with 81 (36.8%) having a poor prognosis at 90 days. The study identified encephalatrophy (P = 0.014, odds ratio [OR] = 2.431, 95% confidence interval [CI] = 1.242-3.768), grade 2 periventricular Fazekas scale (P = 0.021, OR = 2.389, 95% CI = 1.174-2.869), centrum semiovale perivascular space (P = 0.035, OR = 2.296, 95% CI = 1.110-3.798), age (P = 0.002, OR = 1.046, 95% CI = 1.017-1.077), female sex (P = 0.015, OR = 0.463, 95% CI = 0.250-0.859), and admission National Institutes of Health Stroke Scale score (P = 0.003, OR = 1.052, 95% CI = 1.022-1.084) as independent risk factors for poor prognosis of an ICH. The incorporation of MRI findings significantly enhanced the predictive accuracy of the poor prognosis model in comparison to a model lacking MRI findings (AUC = 0.833 vs. 0.815, net reclassification index = 0.186; P = 0.021, integrated discrimination improvement = 0.158; P = 0.016).ConclusionIdentification of initial MRI findings of CSVD, such as white matter hyperintensity, perivascular spaces, cerebral microbleeds, lacunar infarcts, brain atrophy, and leukodystrophy, has the potential to enhance prognostication of patients with ICHs.
Collapse
Affiliation(s)
- Zhenjie Yang
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, PR China
- School of Medicine, Chongqing University, Chongqing, PR China
| | - Xinghua Liu
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, PR China
- School of Medicine, Chongqing University, Chongqing, PR China
| | - Rui He
- Department of Ultrasound Medicine, Chongqing Wanzhou District Maternal and Child Health Care Hospital, Chongqing, PR China
| | - Chuyue Wu
- School of Medicine, Chongqing University, Chongqing, PR China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, PR China
- Chongqing Municipality Clinical Research Center for Geriatric diseases, Chongqing University Three Gorges Hospital, Chongqing, PR China
| | - Yu Huang
- School of Medicine, Chongqing University, Chongqing, PR China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, PR China
| | - Lei He
- School of Medicine, Chongqing University, Chongqing, PR China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, PR China
| | - Wenbing Zeng
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, PR China
- School of Medicine, Chongqing University, Chongqing, PR China
| |
Collapse
|
6
|
Weidauer S, Hattingen E. Cerebral Amyloid Angiopathy: Clinical Presentation, Sequelae and Neuroimaging Features-An Update. Biomedicines 2025; 13:603. [PMID: 40149580 PMCID: PMC11939913 DOI: 10.3390/biomedicines13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The prevalence of cerebral amyloid angiopathy (CAA) has been shown to increase with age, with rates reported to be around 50-60% in individuals over 80 years old who have cognitive impairment. The disease often presents as spontaneous lobar intracerebral hemorrhage (ICH), which carries a high risk of recurrence, along with transient focal neurologic episodes (TFNE) and progressive cognitive decline, potentially leading to Alzheimer's disease (AD). In addition to ICH, neuroradiologic findings of CAA include cortical and subcortical microbleeds (MB), cortical subarachnoid hemorrhage (cSAH) and cortical superficial siderosis (cSS). Non-hemorrhagic pathologies include dilated perivascular spaces in the centrum semiovale and multiple hyperintense lesions on T2-weighted magnetic resonance imaging (MRI). A definitive diagnosis of CAA still requires histological confirmation. The Boston criteria allow for the diagnosis of a probable or possible CAA by considering specific neurological and MRI findings. The recent version, 2.0, which includes additional non-hemorrhagic MRI findings, increases sensitivity while maintaining the same specificity. The characteristic MRI findings of autoantibody-related CAA-related inflammation (CAA-ri) are similar to the so-called "amyloid related imaging abnormalities" (ARIA) observed with amyloid antibody therapies, presenting in two variants: (a) vasogenic edema and leptomeningeal effusions (ARIA-E) and (b) hemorrhagic lesions (ARIA-H). Clinical and MRI findings enable the diagnosis of a probable or possible CAA-ri, with biopsy remaining the gold standard for confirmation. In contrast to spontaneous CAA-ri, only about 20% of patients treated with monoclonal antibodies who show proven ARIA on MRI also experience clinical symptoms, including headache, confusion, other psychopathological abnormalities, visual disturbances, nausea and vomiting. Recent findings indicate that treatment should be continued in cases of mild ARIA, with ongoing MRI and clinical monitoring. This review offers a concise update on CAA and its associated consequences.
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute of Neuroradiology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
7
|
Miner AE, Groh JR, Farris C, Hattiangadi S, Cui A, Brickman AM, Alshikho M, Rabinovici GD, Rosen HJ, Cobigo Y, Asken B, Nowinski CJ, Bureau S, Shahrokhi F, Tripodis Y, Ly M, Altaras C, Lenio S, Stern RA, Rosen G, Kelley H, Huber BR, Stein TD, Mez J, McKee AC, Alosco ML. Does white matter and vascular injury from repetitive head impacts lead to a novel pattern on T2 FLAIR MRI? A hypothesis proposal and call for research. Alzheimers Dement 2025; 21:e70085. [PMID: 40145364 PMCID: PMC11947747 DOI: 10.1002/alz.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
The goal of this paper is to introduce the hypothesis that white matter (WM) and vascular injury are long-term consequences of repetitive head impacts (RHI) that result in a novel T2 fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging pattern. A non-systematic literature review of autopsy and FLAIR studies of RHI-exposed adults was first conducted as a foundation for our hypothesis. A case series of RHI-exposed participants is presented to illustrate the unique FLAIR WM hyperintensities (WMH) pattern. Current literature shows a direct link between RHI and later-life WM/vascular neuropathologies, and that FLAIR WMH are associated with RHI, independent of modifiable vascular risk factors. Initial observations suggest a distinctive pattern of WMH in RHI-exposed participants, termed RHI-associated WMH (RHI-WMH). RHI-WMH defining features are as follows: (1) small, punctate, non-confluent, (2) spherical, and (3) proximal to the gray matter. Our hypothesis serves as a call for research to empirically validate RHI-WMH and clarify their biological and clinical correlates. HIGHLIGHTS: Repetitive head impacts (RHI) have been associated with later-life white matter (WM) and vascular neuropathologies. T2 FLAIR MRI of RHI-exposed participants reveals a potentially unique WM hyperintensity (WMH) pattern that is termed RHI-associated WMH (RHI-WMH). RHI-WMH are characterized as (1) small, punctate, and non-confluent, (2) spherical, and (3) proximal to the gray matter at an area anatomically susceptible to impact injury, such as the depths of the cortical sulci.
Collapse
|
8
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
9
|
Fandler-Höfler S, Kaushik K, Storti B, Pikija S, Mallon D, Ambler G, Damavandi PT, Panteleienko L, Canavero I, van Walderveen MAA, van Etten ES, DiFrancesco JC, Enzinger C, Gattringer T, Bersano A, Wermer MJH, Banerjee G, Werring DJ. Clinical-radiological presentation and natural history of iatrogenic cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-335164. [PMID: 39939135 DOI: 10.1136/jnnp-2024-335164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND We aimed to describe neuroimaging features, clinical profiles and long-term outcomes in patients with iatrogenic cerebral amyloid angiopathy (iCAA). METHODS We performed a systematic literature search for case series of iCAA and included individual patients and their longitudinal clinical and neuroimaging data in this pooled cohort study. Patients meeting a modified version of the Queen Square criteria for iCAA were included. Baseline and follow-up MRIs were centrally analysed for markers of CAA using validated rating scales. RESULTS We included 51 patients (68.6% male, median age at presentation 48 years), 51.0% with probable and 49.0% with possible iCAA. We evaluated 219 MRIs acquired over a median follow-up time of 3.7 years (IQR 1.8-6.4). There were 43 symptomatic intracerebral haemorrhages (ICH) in 24 patients during follow-up, a rate of 16.7 per 100 patient-years.Patients with previous supratentorial brain surgery had an ipsilateral-dominant distribution and spread of haemorrhagic markers on MRI. 14/51 (27.5%) patients had transient inflammatory changes (cortical or parenchymal oedema, sulcal hyperintensities). Haemorrhagic markers progressed during follow-up. In addition to 43 symptomatic ICH, 36 asymptomatic ICH (mostly smaller intragyral haemorrhages) were detected on follow-up scans. Besides numerous lobar microbleeds (median 16 at baseline, 53 at last follow-up), deep microbleeds were present in 19.6% of patients at baseline and 44.4% at follow-up. Severe perivascular spaces in centrum semiovale were common at baseline (64.7%) and follow-up (95.6%). CONCLUSIONS Patients with iCAA appear to have distinctive MRI characteristics, which might differentiate iCAA from other CAA subtypes and provide new insights into underlying disease mechanisms.
Collapse
Affiliation(s)
- Simon Fandler-Höfler
- Department of Neurology, Medical University of Graz, Graz, Austria
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Slaven Pikija
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - Dermot Mallon
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, UK
| | | | - Larysa Panteleienko
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
10
|
Das AS, Abramovitz Fouks A, Gökçal E, Rotschild O, Pasi M, Regenhardt RW, Goldstein JN, Viswanathan A, Rosand J, Greenberg SM, Gurol ME. Characterizing the underlying microangiopathy of deep cerebellar intracerebral hemorrhage. J Neurol 2025; 272:167. [PMID: 39853492 DOI: 10.1007/s00415-025-12905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
INTRODUCTION While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH. PATIENTS AND METHODS Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers. Clinical risk factors, left ventricular hypertrophy (LVH, a marker of hypertensive end-organ damage), and neuroimaging markers were compared between patients with deep and superficial cICH in univariate and multivariable models. RESULTS Hypertension and LVH were more common among 83 (64%) patients with deep cICH compared to 46 (36%) with superficial cICH. HA-related markers such as peri-basal ganglia white matter hyperintensity pattern, deep lacunes, severe basal ganglia enlarged perivascular spaces, and deep cerebral microbleeds (CMBs) were more common among those with deep vs. superficial cICH. Strictly lobar CMBs were less common among patients with deep cICH, whereas mixed-location CMBs were more common. After multivariable adjustment, LVH (aOR 4.06, 95% CI [1.22-13.50], p = 0.02), deep lacunes (aOR 6.02, 95% CI [1.46-24.89], p = 0.01), and strictly lobar CMBs (aOR 0.09, 95% CI [0.02-0.45], p < 0.01) remained significantly associated with deep cICH. DISCUSSION AND CONCLUSION Because HA-associated markers are significantly associated with deep cICH, it is likely HA is the dominant underlying microangiopathy of this ICH subtype.
Collapse
Affiliation(s)
- Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Lowry Medical Office Building, Ste 9A-05, Boston, MA, 02215, USA.
| | - Avia Abramovitz Fouks
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elif Gökçal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Rotschild
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Pasi
- Centre Hospitalier, Université de Tours, Tours, France
| | - Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua N Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Zhang M, Che R, Liu X, Hou C, Wang Z, Hu S, Fu S, Kan Y, Sun H, Xu J, Ma S, Li S, Ren C, Zhao W, Jia M, Wang J, Wu C, Ji X. Clinical diagnosis of cerebral amyloid angiopathy related hemorrhage in China: Simplified Edinburgh criteria and Boston criteria version 2.0. Eur Stroke J 2025:23969873241309513. [PMID: 39827411 PMCID: PMC11744617 DOI: 10.1177/23969873241309513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Accurate diagnosis of cerebral amyloid angiopathy (CAA) in surviving patients is indispensable for making treatment decisions and conducting clinical trials. We aimed to evaluate the diagnostic value and clinical utility of the simplified Edinburgh computed tomography (CT) criteria for CAA-related hemorrhage in Chinese patients. METHODS We analyzed 212 patients with lobar hemorrhage who underwent brain CT and magnetic resonance imaging (MRI) from a multicentre cohort. Using the Boston criteria version 2.0 (v2.0) as the gold standard, we assessed the application value of the simplified Edinburgh CT criteria, and investigated whether the Edinburgh CT criteria predict patient outcomes. RESULTS Patients with probable CAA accounted for 36.6% according to the Boston criteria v2.0. The Edinburgh CT criteria indicated an area under the receiver operating characteristic curves (AUC) of 0.735 for the diagnosis of probable CAA, and it performed better when there was a high-risk threshold of CAA in the decision curve analysis. Patients with a high risk of CAA based on the Edinburgh CT criteria had poorer outcomes at 90-day after adjusting for confounding factors (p = 0.034). Finger-like projections in the Edinburgh CT criteria were associated with lobar microbleeds, cortical superficial siderosis, and multispot white matter hyperintensity according to the Boston criteria. CONCLUSIONS Taking the Boston criteria v2.0 as the gold standard, the Edinburgh CT criteria demonstrated good diagnostic value and predicted outcomes well at 90-day in Chinese patients with lobar hemorrhage. Further studies with larger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Mengke Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ruiwen Che
- Department of Neurology, Beijing ShiJiTan hospital, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chengbei Hou
- Center for Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyue Wang
- Department of Neurology, Henan Province People’s Hospital, Henan, China
| | - Sen Hu
- Department of Medical Records, Henan Province People’s Hospital, Henan, China
| | - Shengqi Fu
- Department of Neurology, People’s Hospital of Zhengzhou, Henan, China
| | - Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hailiang Sun
- Department of Neurosurgery, Beijing Fengtai You`anmen Hospital, Beijing, China
| | - Jianmin Xu
- Department of Radiology, Beijing Fengtai You`anmen Hospital, Beijing, China
| | - Shiliang Ma
- Department of Radiology, Beijing Fengtai You`anmen Hospital, Beijing, China
| | - Sijie Li
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingang Wang
- Department of Radiology, Beijing Fengtai You`anmen Hospital, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yang Z, Xiong Q, He R, Wu C, Huang Y, Li Q, Liu X. Association between apolipoprotein E gene polymorphism and early MR findings in individuals with acute intracerebral hemorrhage: A retrospective cohort analysis. J Stroke Cerebrovasc Dis 2025; 34:108128. [PMID: 39528057 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The Apolipoprotein E (APOE) gene plays a significant role in the development and prognosis of intracerebral hemorrhage (ICH). Imaging features identified within 48 h of ICH onset, particularly on magnetic resonance imaging (MRI), are indicative of cerebral small vessel diseases (CSVD). Our study aimed to assess these imaging characteristics and investigate their association with the APOE gene among ICH patients. METHODS Clinical and imaging data from patients meeting specific inclusion and exclusion criteria from October 2021 to March 2022 were collected. MR signs or scores were evaluated following international accreditation standards and then analyzed in connection with the APOE allele genes. RESULTS In a cohort of 220 patients, ε2 was identified as an independent risk factor for the "multiple subcortical spots" sign (OR = 13.29, 95% CI 1.88-22.59). Furthermore, ε4 emerged as an independent risk factor for the presence of perivascular space (PVS) in the centrum semiovale (OR = 2.46, 95% CI 1.03-5.89) and basal ganglia (OR = 2.64, 95% CI 1.10-6.35), as well as for cerebral microbleeds (CMB) across all locations (OR = 2.38, 95% CI 1.15-6.97), lobar CMB (OR = 2.92, 95% CI 1.11-7.65), and deep CMB (OR = 2.29, 95% CI 1.12-8.67). CONCLUSION The association between APOE ɛ2 and ɛ4 alleles and the presence of "subcortical multiple spots," "PVS," and "CMB" indirectly implies the potential role of APOE gene-related pathological changes in the progression of ICH and small vessel pathology.
Collapse
Affiliation(s)
- Zhenjie Yang
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China
| | - Qiuxia Xiong
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China
| | - Rui He
- Department of Ultrasound Medicine, Chongqing Wanzhou District Maternal and Child Health Care Hospital, Wanzhou, Chongqing, 404000, China
| | - Chuyue Wu
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China; Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China
| | - Yu Huang
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China
| | - Qian Li
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China
| | - Xinghua Liu
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China.
| |
Collapse
|
13
|
Wei L, Zhao X, Luo J, Xiao M, Li B, Zhu Z, Fan H, Lu W, Lin Z, Wu Y, Pan S, Liu X, Ji Z, Huang K. White Matter Hyperintensity is Associated with Malignant Cerebral Edema in Ischemic Stroke Treated with Thrombectomy. J Magn Reson Imaging 2025; 61:441-449. [PMID: 38722187 DOI: 10.1002/jmri.29423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND White matter hyperintensity (WMH) burden may lead to poor clinical outcomes after endovascular thrombectomy (EVT). But the relationship between WMH burden and cerebral edema (CED) is unclear. PURPOSE To examine the association between WMH burden and CED and functional outcome in patients treated with EVT. STUDY TYPE Retrospective. SUBJECT 344 patients with acute anterior circulation large-vessel occlusion stroke who received EVT at two comprehensive stroke centers. Mean age was 62.6 ± 11.6 years and 100 patients (29.1%) were female. FIELD STRENGTH/SEQUENCE 3T, including diffusion-weighted imaging and fluid-attenuated inversion recovery (FLAIR) images. ASSESSMENT The severity of WMH was evaluated using the Fazekas scale on a FLAIR sequence before EVT. The severity of CED was assessed using CED score (three for malignant cerebral edema [MCE]) and net water uptake (NWU)/time on post-EVT cranial CT. The impact of WMH burden on MCE, NWU/time, and 3-month poor outcome (modified Rankin scale >2) after EVT were assessed. STATISTICAL TESTS Pearson's chi-squared test, Fisher exact test, 2-tailed t test, Mann-Whitney U test, multivariable logistic regression, multivariate regression analysis, Sobel test. A P value <0.05 was considered statistically significant. RESULTS WMH burden was not significantly associated with MCE and parenchymal hemorrhage (PH) in the whole population (P = 0.072; P = 0.714). WMH burden was significantly associated with an increased risk of MCE (OR, 1.550; 95% CI, 1.128-2.129), higher NWU/time (Coefficient, 0.132; 95% CI, 0.012-0.240), and increased risk of 3-month poor outcome (OR, 1.434; 95% CI, 1.110-1.853) in the subset of patients without PH. Moreover, the connection between WMH burden and poor outcome was partly mediated by CED in patients without PH (regression coefficient changed by 29.8%). DATA CONCLUSION WMH burden is associated with CED, especially MCE, and poor outcome in acute ischemic stroke patients treated with EVT. The association between WMH burden and poor outcome may partly be attributed to postoperative CED. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Lihua Wei
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Luo
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mengxuan Xiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bingbing Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhiliang Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huanhuan Fan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenting Lu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghong Liu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi Province, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
14
|
Zhang Q, Ma D, Du H, Wang T, Li W. Combination of White Matter Hyperintensity and Neutrophil-to-Lymphocyte Ratio Predicts Short-Term Prognosis of Acute Ischemic Stroke Patients. Int J Gen Med 2024; 17:6199-6206. [PMID: 39698042 PMCID: PMC11653866 DOI: 10.2147/ijgm.s486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Purpose To assess the value of combination of white matter hyperintensity (WMH) and neutrophil-to-lymphocyte ratio (NLR) in predicting short-term prognosis of acute ischemic stroke (AIS) patients. Patients and Methods Three hundred and nine AIS patients were included in this prospective observational research. They were evaluated at 3-month after the onset of AIS using modified Rankin Scale (mRS) score. A mRS score of 0-2 was defined as a favourable outcome, while an mRS score of 3-6 was defined as an unfavourable outcome. Multivariate analysis was used to identify the independent associations of WMH and NLR with short-term prognosis of AIS patients, and receiver operating characteristic (ROC) curves were used to evaluate the predictive values of WMH, NLR and their combination for short-term prognosis of AIS patients, and Z test was used to compare the area under curve (AUC). Results Among 309 AIS patients, 201 (65.0%) had a favorable 3-month outcome, while 108 (35.0%) had an unfavorable outcome. According to the results of multivariate analysis, WMH, NLR and on-admission NIHSS score were independently associated with unfavourable outcome of AIS after adjusting for diabetes mellitus, atrial fibrillation, TOAST subtype and LDL-cholesterol. ROC curves showed that the AUCs of WMH, NLR and their combination for predicting short-term prognosis of AIS patients were 0.760 [standard error (SE): 0.029, 95% confidence interval (CI): 0.703-0.817, P<0.001], 0.717 (SE: 0.030, 95% CI: 0.661-0.774, P<0.001) and 0.906 (SE: 0.019, 95% CI: 0.868-0.944, P<0.001), respectively. The AUC of combination prediction was significantly higher than those of individual predictions (0.906 vs 0.760, Z=4.211, P<0.001; 0.906 vs 0.717, Z=5.322, P<0.001). Conclusion WMH and NLR were independently associated with short-term prognosis of AIS patients, and the combination of WMH and NLR could be applied in predicting short-term prognosis of AIS patients, having a high predictive value.
Collapse
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310000, People’s Republic of China
| | - Danyue Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310000, People’s Republic of China
| | - Hebin Du
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| | - Tiantian Wang
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| | - Wei Li
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| |
Collapse
|
15
|
Theodorou A, Athanasaki A, Melanis K, Pachi I, Sterpi A, Koropouli E, Bakola E, Chondrogianni M, Stefanou MI, Vasilopoulos E, Kouzoupis A, Paraskevas GP, Tsivgoulis G, Tzavellas E. Cognitive Impairment in Cerebral Amyloid Angiopathy: A Single-Center Prospective Cohort Study. J Clin Med 2024; 13:7427. [PMID: 39685885 DOI: 10.3390/jcm13237427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Cognitive impairment represents a core and prodromal clinical feature of cerebral amyloid angiopathy (CAA). We sought to assess specific cognitive domains which are mainly affected among patients with CAA and to investigate probable associations with neuroimaging markers and Cerebrospinal Fluid (CSF) biomarkers. Methods: Thirty-five patients fulfilling the Boston Criteria v1.5 or v2.0 for the diagnosis of probable/possible CAA were enrolled in this prospective cohort study. Brain Magnetic Resonance Imaging and CSF biomarker data were collected. Every eligible participant underwent a comprehensive neurocognitive assessment. Spearman's rank correlation tests were used to identify possible relationships between the Addenbrooke's Cognitive Examination-Revised (ACE-R) sub-scores and other neurocognitive test scores and the CSF biomarker and neuroimaging parameters among CAA patients. Moreover, linear regression analyses were used to investigate the effects of CSF biomarkers on the ACE-R total score and Mini-Mental State Examination (MMSE) score, based on the outcomes of univariate analyses. Results: Cognitive impairment was detected in 80% of patients, and 60% had a coexistent Alzheimer's disease (AD) pathology based on CSF biomarker profiles. Notable correlations were identified between increased levels of total tau (t-tau) and phosphorylated tau (p-tau) and diminished performance in terms of overall cognitive function, especially memory. In contrast, neuroimaging indicators, including lobar cerebral microbleeds and superficial siderosis, had no significant associations with cognitive scores. Among the CAA patients, those without AD had superior neurocognitive test performance, with significant differences observed in their ACE-R total scores and memory sub-scores. Conclusions: The significance of tauopathy in cognitive impairment associated with CAA may be greater than previously imagined, underscoring the necessity for additional exploration of the non-hemorrhagic facets of the disease and new neuroimaging markers.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Athanasia Athanasaki
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Melanis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioanna Pachi
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angeliki Sterpi
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Eleftheria Koropouli
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Eleni Bakola
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Chondrogianni
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Neurology & Stroke, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios P Paraskevas
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
16
|
Makkinejad N, Zanon Zotin MC, van den Brink H, Auger CA, vom Eigen KA, Iglesias JE, Greenberg SM, Perosa V, van Veluw SJ. Neuropathological Correlates of White Matter Hyperintensities in Cerebral Amyloid Angiopathy. J Am Heart Assoc 2024; 13:e035744. [PMID: 39526350 PMCID: PMC11681407 DOI: 10.1161/jaha.124.035744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are frequently observed on magnetic resonance imaging (MRI) in patients with cerebral amyloid angiopathy (CAA). The neuropathological substrates that underlie WMHs in CAA are unclear, and it remains largely unexplored whether the different WMH distribution patterns associated with CAA (posterior confluent and subcortical multispot) reflect alternative pathophysiological mechanisms. METHODS AND RESULTS We performed a combined in vivo MRI-ex vivo MRI-neuropathological study in patients with definite CAA. Formalin-fixed hemispheres from 19 patients with CAA, most of whom also had in vivo MRI available, underwent 3T MRI, followed by standard neuropathological examination of the hemispheres and targeted neuropathological assessment of WMH patterns. Ex vivo WMH volume was independently associated with CAA severity (P=0.046) but not with arteriolosclerosis (P=0.743). In targeted neuropathological examination, compared with normal-appearing white matter, posterior confluent WMHs were associated with activated microglia (P=0.043) and clasmatodendrosis (P=0.031), a form of astrocytic injury. Trends were found for an association with white matter rarefaction (P=0.074) and arteriolosclerosis (P=0.094). An exploratory descriptive analysis suggested that the histopathological correlates of WMH multispots were similar to those underlying posterior confluent WMHs. CONCLUSIONS This study confirmed that vascular amyloid β severity in the cortex is significantly associated with WMH volume in patients with definite CAA. The histopathological substrates of both posterior confluent and WMH multispots were comparable, suggesting overlapping pathophysiological mechanisms, although these exploratory observations require confirmation in larger studies.
Collapse
Affiliation(s)
- Nazanin Makkinejad
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Hilde van den Brink
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Corinne A. Auger
- Department of NeurologyMassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMAUSA
| | - Kali A. vom Eigen
- Department of NeurologyMassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMAUSA
| | - Juan Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMAUSA
- Computer Science and Artificial Intelligence Laboratory, MITCambridgeMAUSA
- Centre for Medical Image ComputingUniversity College LondonLondonUnited Kingdom
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
- Department of NeurologyMassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMAUSA
| |
Collapse
|
17
|
Jensen-Kondering U, Heß K, Neumann A, Margraf NG. Neuroradiological Findings in Cerebral Amyloid Angiopathy with a Particular Consideration of the Boston Criteria 2.0: An Imaging Review. Biomolecules 2024; 14:1459. [PMID: 39595634 PMCID: PMC11592298 DOI: 10.3390/biom14111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
In the elderly, cerebral amyloid angiopathy (CAA) is the most common cause for intracranial lobar hemorrhages. CAA is caused by the accumulation of amyloid-β fibrils in cortical and leptomeningeal vessels. In 2022, the Boston Criteria 2.0 became the new diagnostic standard for CAA, following the Modified Boston Criteria of 2010. The diagnostic criteria are a composite of clinical, imaging and histopathological findings. In the latest version of the Boston Criteria, neuroradiological imaging findings were even expanded compared to the previous version. Crucially, the correct application of the diagnostic criteria is necessary to avoid over- and underdiagnosis. The aim of this review is to demonstrate the diagnostic criteria for CAA with an emphasis on typical imaging findings which are part of the Boston Criteria 2.0 and other imaging findings suggestive of CAA.
Collapse
Affiliation(s)
- Ulf Jensen-Kondering
- Department of Neuroradiology, University Medical Centre Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Department of Radiology and Neuroradiology, University Medical Centre Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Katharina Heß
- Department of Pathology, University Medical Centre Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Medical Centre Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
| | - Nils G. Margraf
- Department of Neurology, University Medical Centre Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
18
|
Lu CQ, Liu Y, Huang JR, Li MS, Wang YS, Gu Y, Chang D. Quantitative comparison of CSVD imaging markers between patients with possible amyloid small vessel disease and with non-amyloid small vessel disease. Neuroimage Clin 2024; 44:103681. [PMID: 39368336 PMCID: PMC11489385 DOI: 10.1016/j.nicl.2024.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
The spatial distribution patterns of cerebral microbleeds are associated with different types of cerebral small vessel disease (CSVD). This study aims to examine the disparities in brain imaging markers of CSVD among patients diagnosed with possible amyloid and non-amyloid small vessel disease. The head MR scans including susceptibility-weighted imaging (SWI) sequences from 351 patients at our institute were collected for analysis. CSVD imaging markers were quantified or graded across various CSVD dimensions in the patient images. Patients were categorized into the cerebral amyloid angiopathy group (CAA), hypertensive arteriopathy group (HA), or mixed small vessel disease group (Mixed), based on the spatial distribution of microbleeds. White matter lesions (WML) were segmented using an artificial neural network and assessed via a voxel-wise approach. Significant differences were observed among the three groups in several indices: microbleed count, lacune count at the centrum semiovale and basal ganglia levels, grade of enlarged perivascular space (EPVS) at the basal ganglia, and white matter lesion volume. These indices were substantially higher in the Mixed group compared to the other groups. Additionally, the incidences of cerebral hemorrhages (χ2 = 7.659, P = 0.006) and recent small subcortical infarcts (χ2 = 4.660, P = 0.031) were significantly more frequent in the HA group than in the CAA group. These results indicate that mixed spatial distribution patterns of microbleeds demonstrated the highest burden of cerebral small vessel disease. Microbleeds located in the deep brain regions were associated with a higher incidence of recent small subcortical infarcts and cerebral hemorrhages compared to those in the cortical areas.
Collapse
Affiliation(s)
- Chun-Qiang Lu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215128, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Jia-Rong Huang
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Meng-Shuang Li
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Yan-Shuang Wang
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Yan Gu
- Department of Radiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China; The First Peoples Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China.
| | - Di Chang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
19
|
Weidauer S, Tafreshi M, Förch C, Hattingen E, Arendt CT, Friedauer L. Clinical and neuroimaging precursors in cerebral amyloid angiopathy: impact of the Boston criteria version 2.0. Eur J Neurol 2024; 31:e16425. [PMID: 39105407 DOI: 10.1111/ene.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE Although the Boston criteria version 2.0 facilitates the sensitivity of cerebral amyloid angiopathy (CAA) diagnosis, there are only limited data about precursor symptoms. This study aimed to determine the impact of neurological and imaging features in relation to the time of CAA diagnosis. METHODS Patients diagnosed with probable CAA according to the Boston criteria version 1.5, treated between 2010 and 2020 in our neurocentre, were identified through a keyword search in our medical database. Neuroimaging was assessed using Boston criteria versions 1.5 and 2.0. Medical records with primary focus on the clinical course and the occurrence of transient focal neurological episodes were prospectively evaluated. RESULTS Thirty-eight out of 81 patients (46.9%) exhibited transient focal neurological episodes, most often sensory (13.2%) or aphasic disorders (13.2%), or permanent deficits at a mean time interval of 31.1 months (SD ±26.3; range 1-108 months) before diagnosis of probable CAA (Boston criteria version 1.5). If using Boston criteria version 2.0, all patients receiving magnetic resonance imaging (MRI) met the criteria for probable CAA, and diagnosis could have been made on average 44 months earlier. Four patients were younger than 50 years, three of them with supporting pathology. Cognitive deficits were most common (34.6%) at the time of diagnosis. CONCLUSIONS Non-haemorrhagic MRI markers enhance the sensitivity of diagnosing probable CAA; however, further prospective studies are proposed to establish a minimum age for inclusion. As the neurological overture of CAA may occur several years before clinical diagnosis, early clarification by MRI including haemosensitive sequences are suggested.
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mona Tafreshi
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Förch
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christophe T Arendt
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Swiatek VM, Schreiber S, Amini A, Hasan D, Rashidi A, Stein KP, Neyazi B, Sandalcioglu IE. Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases? J Clin Med 2024; 13:5864. [PMID: 39407924 PMCID: PMC11476928 DOI: 10.3390/jcm13195864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Intracranial aneurysms (IAs) may be connected to interactions between large and small intracranial vessels. We aimed to investigate the association between IAs and cerebral small-vessel disease (CSVD) and assess CSVD impact on IA patient management. Methods: This retrospective study analyzed clinical data and MRI features of CSVD in 192 subarachnoid hemorrhage (SAH) patients: 136 with incidental IA, 147 with severe CSVD without SAH/IA, and 50 controls without SAH, IA, or severe CSVD. MRI assessments followed the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE), with a total burden of small-vessel disease (TBSVD) score calculated. Statistical analyses included forward selection and binary logistic regression. Results: TBSVD differed significantly across groups (p < 0.001), except between SAH and IA groups (p = 0.8). Controls had the lowest TBSVD (1.00; 1.22 ± 0.996), followed by SAH (2.00; 2.08 ± 1.013) and IA groups (2.00; 2.04 ± 1.141), with the highest in the CSVD group (1.00; 1.22 ± 0.996). White-matter hyperintensity (WMH) patterns varied with IA rupture status (p = 0.044); type A was prevalent in SAH patients and type D in the IA group. Incorporating MRI CSVD features and TBSVD into risk assessments did not enhance IA prediction or outcome models. Conclusions: IA patients exhibit a higher CSVD burden than controls, suggesting a link between small and large intracranial vessels. WMH patterns distinguish between ruptured and unruptured IA patients, offering potential markers for IA rupture risk assessment and signaling a paradigm shift in understanding IAs and CSVD.
Collapse
Affiliation(s)
- Vanessa M. Swiatek
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Amir Amini
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - David Hasan
- Department of Neurosurgery, Duke University, Durham, NC 27707, USA;
| | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (A.A.); (A.R.); (K.-P.S.); (I.E.S.)
| |
Collapse
|
21
|
Yeager CE, Garg RK. Advances and Future Trends in the Diagnosis and Management of Intracerebral Hemorrhage. Neurol Clin 2024; 42:689-703. [PMID: 38937036 DOI: 10.1016/j.ncl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Spontaneous intracerebral hemorrhage accounts for approximately 10% to 15% of all strokes in the United States and remains one of the deadliest. Of concern is the increasing prevalence, especially in younger populations. This article reviews the following: epidemiology, risk factors, outcomes, imaging findings, medical management, and updates to surgical management.
Collapse
Affiliation(s)
- Christine E Yeager
- Division of Critical Care Neurology, Rush University Medical Center, 1725 W Harrison Street, Suite 1106, Chicago, IL, USA.
| | - Rajeev K Garg
- Division of Critical Care Neurology, Section of Cognitive Neurosciences, Rush University Medical Center, 1725 W Harrison Street, Suite 1106, Chicago, IL, USA
| |
Collapse
|
22
|
Deasy L, Laurent-Chabalier S, Wacongne A, Parvu T, Mura T, Thouvenot E, Renard D. Diagnostic Accuracy of Posterior/Anterior Periventricular WMH Ratio to Differentiate CAA From Hypertensive Arteriopathy. Stroke 2024; 55:2086-2093. [PMID: 38920025 DOI: 10.1161/strokeaha.123.046379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Periventricular white matter hyperintensities (PVWMHs) in cerebral amyloid angiopathy (CAA) have been reported posterior predominant using semiautomated segmentation method and logarithmic transformation. We aimed to compare PVWMH extent and posterior/anterior distribution between patients with CAA and patients with hypertensive arteriopathy with radiological tools available in daily practice. METHODS We retrospectively analyzed confluent PVWMH directly adjacent to lateral ventricles on axial FLAIR (fluid-attenuated inversion recovery) from 108 patients with CAA and 99 patients with hypertensive arteriopathy presenting with hemorrhage-related symptoms consecutively recruited in our stroke database (Nîmes University Hospital, France) between January 2015 and March 2022. For each of the left (L), right (R), anterior (A), and posterior (P) horns of lateral ventricles, the maximal distance between the outer PVWMH border and ventricle border was measured. The sum of anterior left PVWMH and anterior right PVWMH, and posterior left PVWMH and posterior right PVWMH resulted in anterior and posterior extent, respectively. RESULTS Compared with hypertensive arteriopathy, patients with CAA were older (median, 77 versus 71; P=0.0010) and less frequently male (46% versus 64%; P=0.012) and had less frequent hypertension (45% versus 63%; P=0.013) and more chronic hemorrhages (P<0.0001). CAA showed slightly more extensive anterior right PVWMH (median, 6.50 versus 5.90 mm; P=0.034), far more extensive (all P<0.0001) posterior left PVWMH (median, 13.95 versus 6.95 mm), posterior right PVWMH (median, 14.15 versus 5.45 mm), posterior (median, 27.95 versus 13.00 mm), and total (median, 39.60 versus 24.65 mm) PVWMH, and higher posterior/anterior ratios (median, 1.82 versus 1.01). Age-/sex-adjusted model predicting CAA incorporating total PVWMH extent and posterior/anterior ratios for the given score (-4.3683+0.0268×PVWMH-T+0.3749×posterior/anterior PVWMH ratio+0.0394×age+0.3046 when female) showed highest area under the curve (0.76 [0.70-0.83]), with a 72% [62.50-80.99] sensitivity and 76% [67.18-84.12] specificity. Values above the optimal threshold of 0.22 for the score showed a crude relative risk of 2.75 (2.26-2.37; P<0.0001). CONCLUSIONS Severe posterior PVWMH and high posterior/anterior PVWMH ratio assessed by radiological tools used in daily practice are associated with probable CAA versus hypertensive arteriopathy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT05486897.
Collapse
Affiliation(s)
- Louise Deasy
- Department of Neurology (L.D., A.W., T.P., E.T., D.R.), CHU Nîmes, Université de Montpellier, France
| | - Sabine Laurent-Chabalier
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology (S.L.-C., T.M.), CHU Nîmes, Université de Montpellier, France
| | - Anne Wacongne
- Department of Neurology (L.D., A.W., T.P., E.T., D.R.), CHU Nîmes, Université de Montpellier, France
| | - Teodora Parvu
- Department of Neurology (L.D., A.W., T.P., E.T., D.R.), CHU Nîmes, Université de Montpellier, France
| | - Thibault Mura
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology (S.L.-C., T.M.), CHU Nîmes, Université de Montpellier, France
| | - Eric Thouvenot
- Department of Neurology (L.D., A.W., T.P., E.T., D.R.), CHU Nîmes, Université de Montpellier, France
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut National de la Santé et de la Recherche Médicale (INSERM) 1191, Université de Montpellier, France (E.T.)
| | - Dimitri Renard
- Department of Neurology (L.D., A.W., T.P., E.T., D.R.), CHU Nîmes, Université de Montpellier, France
| |
Collapse
|
23
|
Switzer AR, Charidimou A, McCarter S, Vemuri P, Nguyen AT, Przybelski SA, Lesnick TG, Rabinstein AA, Brown RD, Knopman DS, Petersen RC, Jack CR, Reichard RR, Graff-Radford J. Boston Criteria v2.0 for Cerebral Amyloid Angiopathy Without Hemorrhage: An MRI-Neuropathologic Validation Study. Neurology 2024; 102:e209386. [PMID: 38710005 PMCID: PMC11177590 DOI: 10.1212/wnl.0000000000209386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.
Collapse
Affiliation(s)
- Aaron R Switzer
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Andreas Charidimou
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Stuart McCarter
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Aivi T Nguyen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Scott A Przybelski
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Timothy G Lesnick
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Alejandro A Rabinstein
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Robert D Brown
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - David S Knopman
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Ronald C Petersen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - R Ross Reichard
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| |
Collapse
|
24
|
Cheng Y, Valdés Hernández MDC, Xu M, Zhang S, Pan X, An B, Wardlaw JM, Liu M, Wu B. Differential risk factor profile and neuroimaging markers of small vessel disease between lacunar ischemic stroke and deep intracerebral hemorrhage. Ther Adv Neurol Disord 2024; 17:17562864241253901. [PMID: 38799702 PMCID: PMC11119384 DOI: 10.1177/17562864241253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background Lacunar ischemic stroke (LIS) and deep intracerebral hemorrhage (dICH) are two stroke phenotypes of deep perforator arteriopathy. It is unclear what factors predispose individuals with deep perforator arteriopathy to either ischemic or hemorrhagic events. Objectives We aimed to investigate risk factors and neuroimaging features of small vessel disease (SVD) associated with LIS versus dICH in a cross-sectional study. Methods We included patients with clinically presenting, magnetic resonance imaging-confirmed LIS or dICH from two tertiary hospitals between 2010 and 2021. We recorded vascular risk factors and SVD markers, including lacunes, white matter hyperintensities (WMH), perivascular spaces (PVS), and cerebral microbleeds (CMB). Logistic regression modeling was used to determine the association between vascular risk factors, SVD markers, and stroke phenotype. We further created WMH probability maps to compare WMH distribution between LIS and dICH. Results A total of 834 patients with LIS (mean age 61.7 ± 12.1 years) and 405 with dICH (57.7 ± 13.2 years) were included. Hypertension was equally frequent between LIS and dICH (72.3% versus 74.8%, p = 0.349). Diabetes mellitus, hyperlipidemia, smoking, and prior ischemic stroke were more associated with LIS [odds ratio (OR) (95% confidence interval (CI)), 0.35 (0.25-0.48), 0.32 (0.22-0.44), 0.31 (0.22-0.44), and 0.38 (0.18-0.75)]. Alcohol intake and prior ICH were more associated with dICH [OR (95% CI), 2.34 (1.68-3.28), 2.53 (1.31-4.92)]. Lacunes were more prevalent in LIS [OR (95% CI) 0.23 (0.11-0.43)], while moderate-to-severe basal-ganglia PVS and CMB were more prevalent in dICH [OR (95% CI) 2.63 (1.35-5.27), 4.95 (2.71-9.42)]. WMH burden and spatial distribution did not differ between groups. Conclusion The microangiopathy underlying LIS and dICH reflects distinct risk profiles and SVD features, hence possibly SVD subtype susceptibility. Prospective studies with careful phenotyping and genetics are needed to clarify the mechanisms underlying this difference.
Collapse
Affiliation(s)
- Yajun Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Mangmang Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Pan
- Department of Neurology, Baotou Eighth Hospital, Baotou, China
| | - Baoqiang An
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Center of Cerebrovascular Disease, Inner Mongolia AeroSpace Hospital, Hohhot, China
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China
| |
Collapse
|
25
|
Zhu HH, Wang YC, He LC, Luo HY, Zong C, Yang YH, Wu JH, Song B, Gao Y, Xu YM, Li YS. Novel inflammatory and insulin resistance indices provide a clue in cerebral amyloid angiopathy. Sci Rep 2024; 14:11474. [PMID: 38769356 PMCID: PMC11106308 DOI: 10.1038/s41598-024-62280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study investigated the correlation of newly identified inflammatory and insulin resistance indices with cerebral amyloid angiopathy (CAA), and explored their potential to differentiate CAA from hypertensive arteriopathy (HA). We retrospectively analyzed 514 consecutive patients with cerebral small vessel disease (CSVD)-related haemorrhage, comparing the differences in novel inflammatory and insulin resistance indices between patients with CAA and HA. Univariate regression, LASSO and multivariate regression were used to screen variables and construct a classification diagnosis nomogram. Additionally, these biomarkers were explored in patients with mixed haemorrhagic CSVD. Inflammatory indices were higher in CAA patients, whereas insulin resistance indices were higher in HA patients. Further analysis identified neutrophil-to-lymphocyte ratio (NLR, OR 1.17, 95% CI 1.07-1.30, P < 0.001), and triglyceride-glucose index (TyG, OR = 0.56, 95% CI 0.36-0.83, P = 0.005) as independent factors for CAA. Therefore, we constructed a CAA prediction nomogram without haemorrhagic imaging markers. The nomogram yielded an area under the curve (AUC) of 0.811 (95% CI 0.764-0.865) in the training set and 0.830 (95% CI 0.718-0.887) in the test set, indicating an ability to identify high-risk CAA patients. These results show that CSVD patients can be phenotyped using novel inflammatory and insulin resistance indices, potentially allowing identification of high-risk CAA patients without haemorrhagic imaging markers.
Collapse
Affiliation(s)
- Hang-Hang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Yun-Chao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Liu-Chang He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Ce Zong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Ying-Hao Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Jing-Hao Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| |
Collapse
|
26
|
Shen J, Wang B, Jing L, Chen T, Han L, Dong W. Gender and race disparities in the prevalence of chronic kidney disease among individuals with hypertension in the United States, 2001-2016. Front Endocrinol (Lausanne) 2024; 15:1378631. [PMID: 38812816 PMCID: PMC11134289 DOI: 10.3389/fendo.2024.1378631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a common complication among individuals with hypertension. We aimed to identify the prevalence of CKD and the sex and race disparities within the hypertensive population in the United States from 2001-2016. Methods A total of 16,148 participants with hypertension were included, representing 561,909,480 individuals from the U.S. population between 2001 and 2016, as documented in the National Health and Nutrition Examination Survey. The prevalence of albuminuria and CKD stage were assessed using survey-weighted general linear regression analysis. Heterogeneity in the CKD stage among the hypertensive population, stratified by sex and race, was identified through survey-weighted logistic regression analysis. Results Overall, the prevalence of albuminuria remained stable (p for trend = 0.3196), and changes in the CKD stage were minimal (p for trend > 0.05) from 2001-2016. In the analysis of CKD stage heterogeneity by sex and race, the prevalence of CKD was higher among women than men and higher among individuals of other races combined than non-Hispanic Whites, but the differences were not statistically significant. Conclusion The overall CKD stage within the hypertensive population plateaued between 2001 and 2016. Our findings highlight the importance of continuous monitoring and potential refinement of renoprotection strategies in individuals with hypertension to mitigate the persistent burden of CKD and address health disparities among different demographic groups.
Collapse
Affiliation(s)
- Jing Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baoquan Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Jing
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiancong Chen
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Han
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Penckofer M, Kazmi KS, Thon J, Tonetti DA, Ries C, Rajagopalan S. Neuro-imaging in intracerebral hemorrhage: updates and knowledge gaps. Front Neurosci 2024; 18:1408288. [PMID: 38784090 PMCID: PMC11111865 DOI: 10.3389/fnins.2024.1408288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is characterized by hematoma development within the brain's parenchyma, contributing significantly to the burden of stroke. While non-contrast head computed tomography (CT) remains the gold standard for initial diagnosis, this review underscores the pivotal role of magnetic resonance imaging (MRI) in ICH management. Beyond diagnosis, MRI offers invaluable insights into ICH etiology, prognosis, and treatment. Utilizing echo-planar gradient-echo or susceptibility-weighted sequences, MRI demonstrates exceptional sensitivity and specificity in identifying ICH, aiding in differentiation of primary and secondary causes. Moreover, MRI facilitates assessment of hemorrhage age, recognition of secondary lesions, and evaluation of perihematomal edema progression, thus guiding tailored therapeutic strategies. This comprehensive review discusses the multifaceted utility of MRI in ICH management, highlighting its indispensable role in enhancing diagnostic accuracy as well as aiding in prognostication. As MRI continues to evolve as a cornerstone of ICH assessment, future research should explore its nuanced applications in personalized care paradigms.
Collapse
Affiliation(s)
- Mary Penckofer
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Khuram S. Kazmi
- Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Neuroradiology, Cooper University Health Care, Camden, NJ, United States
| | - Jesse Thon
- Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Neurology, Cooper University Health Care, Camden, NJ, United States
| | - Daniel A. Tonetti
- Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, United States
| | - Casey Ries
- Department of Radiology, Cooper University Health Care, Camden, NJ, United States
| | - Swarna Rajagopalan
- Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Neurology, Cooper University Health Care, Camden, NJ, United States
| |
Collapse
|
28
|
Biesbroek JM, Coenen M, DeCarli C, Fletcher EM, Maillard PM, Barkhof F, Barnes J, Benke T, Chen CPLH, Dal‐Bianco P, Dewenter A, Duering M, Enzinger C, Ewers M, Exalto LG, Franzmeier N, Hilal S, Hofer E, Koek HL, Maier AB, McCreary CR, Papma JM, Paterson RW, Pijnenburg YAL, Rubinski A, Schmidt R, Schott JM, Slattery CF, Smith EE, Sudre CH, Steketee RME, Teunissen CE, van den Berg E, van der Flier WM, Venketasubramanian N, Venkatraghavan V, Vernooij MW, Wolters FJ, Xin X, Kuijf HJ, Biessels GJ. Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities: A multicenter study in 3132 memory clinic patients. Alzheimers Dement 2024; 20:2980-2989. [PMID: 38477469 PMCID: PMC11032573 DOI: 10.1002/alz.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume. RESULTS VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. HIGHLIGHTS Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.
Collapse
|
29
|
Bachmann D, von Rickenbach B, Buchmann A, Hüllner M, Zuber I, Studer S, Saake A, Rauen K, Gruber E, Nitsch RM, Hock C, Treyer V, Gietl A. White matter hyperintensity patterns: associations with comorbidities, amyloid, and cognition. Alzheimers Res Ther 2024; 16:67. [PMID: 38561806 PMCID: PMC10983708 DOI: 10.1186/s13195-024-01435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are often measured globally, but spatial patterns of WMHs could underlie different risk factors and neuropathological and clinical correlates. We investigated the spatial heterogeneity of WMHs and their association with comorbidities, Alzheimer's disease (AD) risk factors, and cognition. METHODS In this cross-sectional study, we studied 171 cognitively unimpaired (CU; median age: 65 years, range: 50 to 89) and 51 mildly cognitively impaired (MCI; median age: 72, range: 53 to 89) individuals with available amyloid (18F-flutementamol) PET and FLAIR-weighted images. Comorbidities were assessed using the Cumulative Illness Rating Scale (CIRS). Each participant's white matter was segmented into 38 parcels, and WMH volume was calculated in each parcel. Correlated principal component analysis was applied to the parceled WMH data to determine patterns of WMH covariation. Adjusted and unadjusted linear regression models were used to investigate associations of component scores with comorbidities and AD-related factors. Using multiple linear regression, we tested whether WMH component scores predicted cognitive performance. RESULTS Principal component analysis identified four WMH components that broadly describe FLAIR signal hyperintensities in posterior, periventricular, and deep white matter regions, as well as basal ganglia and thalamic structures. In CU individuals, hypertension was associated with all patterns except the periventricular component. MCI individuals showed more diverse associations. The posterior and deep components were associated with renal disorders, the periventricular component was associated with increased amyloid, and the subcortical gray matter structures was associated with sleep disorders, endocrine/metabolic disorders, and increased amyloid. In the combined sample (CU + MCI), the main effects of WMH components were not associated with cognition but predicted poorer episodic memory performance in the presence of increased amyloid. No interaction between hypertension and the number of comorbidities on component scores was observed. CONCLUSION Our study underscores the significance of understanding the regional distribution patterns of WMHs and the valuable insights that risk factors can offer regarding their underlying causes. Moreover, patterns of hyperintensities in periventricular regions and deep gray matter structures may have more pronounced cognitive implications, especially when amyloid pathology is also present.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zurich, Switzerland.
| | | | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Neurimmune AG, 8952, Zurich, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Zurich, Schlieren, Switzerland
- Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, 8032, Zurich, Switzerland
| |
Collapse
|
30
|
Barucci E, Salvadori E, Magi S, Squitieri M, Fiore GM, Ramacciotti L, Formelli B, Pescini F, Poggesi A. Cognitive profile in cerebral small vessel disease: comparison between cerebral amyloid angiopathy and hypertension-related microangiopathy. Sci Rep 2024; 14:5922. [PMID: 38467658 PMCID: PMC10928167 DOI: 10.1038/s41598-024-55719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is recognized as a cause of cognitive impairment, but its cognitive profile needs to be characterized, also respect to hypertension-related microangiopathy (HA). We aimed at comparing difference or similarity of CAA and HA patients' cognitive profiles, and their associated factors. Participants underwent an extensive clinical, neuropsychological, and neuroimaging protocol. HA patients (n = 39) were more frequently males, with history of vascular risk factors than CAA (n = 32). Compared to HA, CAA patients presented worse performance at MoCA (p = 0.001) and semantic fluency (p = 0.043), and a higher prevalence of amnestic MCI (46% vs. 68%). In univariate analyses, multi-domain MCI was associated with worse performance at MoCA, Rey Auditory Verbal Learning Test (RAVLT), and semantic fluency in CAA patients, and with worse performance at Symbol Digit Modalities Test (SDMT) and phonemic fluency in HA ones. In multivariate models, multi-domain deficit remained as the only factor associated with RAVLT (β = - 0.574) in CAA, while with SDMT (β = - 0.364) and phonemic fluency (β = - 0.351) in HA. Our results highlight different patterns of cognitive deficits in CAA or HA patients. While HA patients' cognitive profile was confirmed as mainly attentional/executive, a complex cognitive profile, characterized also by deficit in semantic memory, seems the hallmark of CAA patients.
Collapse
Affiliation(s)
- Eleonora Barucci
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Emilia Salvadori
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simona Magi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Martina Squitieri
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Giulio Maria Fiore
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Lorenzo Ramacciotti
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Benedetta Formelli
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Francesca Pescini
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- Stroke Unit, Careggi University Hospital, Florence, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
- Stroke Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
31
|
Arndt P, Chahem C, Luchtmann M, Kuschel JN, Behme D, Pfister M, Neumann J, Görtler M, Dörner M, Pawlitzki M, Jansen R, Meuth SG, Vielhaber S, Henneicke S, Schreiber S. Risk factors for intracerebral hemorrhage in small-vessel disease and non-small-vessel disease etiologies-an observational proof-of-concept study. Front Neurol 2024; 15:1322442. [PMID: 38515448 PMCID: PMC10954881 DOI: 10.3389/fneur.2024.1322442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background Sporadic cerebral small-vessel disease (CSVD), i.e., hypertensive arteriopathy (HA) and cerebral amyloid angiopathy (CAA), is the main cause of spontaneous intracerebral hemorrhage (ICH). Nevertheless, a substantial portion of ICH cases arises from non-CSVD etiologies, such as trauma, vascular malformations, and brain tumors. While studies compared HA- and CAA-related ICH, non-CSVD etiologies were excluded from these comparisons and are consequently underexamined with regard to additional factors contributing to increased bleeding risk beyond their main pathology. Methods As a proof of concept, we conducted a retrospective observational study in 922 patients to compare HA, CAA, and non-CSVD-related ICH with regard to factors that are known to contribute to spontaneous ICH onset. Medical records (available for n = 861) were screened for demographics, antithrombotic medication, and vascular risk profile, and CSVD pathology was rated on magnetic resonance imaging (MRI) in a subgroup of 185 patients. The severity of CSVD was assessed with a sum score ranging from 0 to 6, where a score of ≥2 was defined as advanced pathology. Results In 922 patients with ICH (median age of 71 years), HA and CAA caused the majority of cases (n = 670, 73%); non-CSVD etiologies made up the remaining quarter (n = 252, 27%). Individuals with HA- and CAA-related ICH exhibited a higher prevalence of predisposing factors than those with non-CSVD etiologies. This includes advanced age (median age: 71 vs. 75 vs. 63 years, p < 0.001), antithrombotic medication usage (33 vs. 37 vs. 19%, p < 0.001), prevalence of vascular risk factors (70 vs. 67 vs. 50%, p < 0.001), and advanced CSVD pathology on MRI (80 vs. 89 vs. 51%, p > 0.001). However, in particular, half of non-CSVD ICH patients were either aged over 60 years, presented with vascular risk factors, or had advanced CSVD on MRI. Conclusion Risk factors for spontaneous ICH are less common in non-CSVD ICH etiologies than in HA- and CAA-related ICH, but are still frequent. Future studies should incorporate these factors, in addition to the main pathology, to stratify an individual's risk of bleeding.
Collapse
Affiliation(s)
- Philipp Arndt
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Christian Chahem
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Luchtmann
- Department of Neurosurgery, Paracelsus-Klinik, Zwickau, Germany
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan-Niklas Kuschel
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel Behme
- Department of Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Görtler
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marc Pawlitzki
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Robin Jansen
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Solveig Henneicke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
32
|
Raposo N, Périole C, Planton M. In-vivo diagnosis of cerebral amyloid angiopathy: an updated review. Curr Opin Neurol 2024; 37:19-25. [PMID: 38038409 DOI: 10.1097/wco.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW Sporadic cerebral amyloid angiopathy (CAA) is a highly prevalent small vessel disease in ageing population with potential severe complications including lobar intracerebral hemorrhage (ICH), cognitive impairment, and dementia. Although diagnosis of CAA was made only with postmortem neuropathological examination a few decades ago, diagnosing CAA without pathological proof is now allowed in living patients. This review focuses on recently identified biomarkers of CAA and current diagnostic criteria. RECENT FINDINGS Over the past few years, clinicians and researchers have shown increased interest for CAA, and important advances have been made. Thanks to recent insights into mechanisms involved in CAA and advances in structural and functional neuroimaging, PET amyloid tracers, cerebrospinal fluid and plasma biomarkers analysis, a growing number of biomarkers of CAA have been identified. Imaging-based diagnostic criteria including emerging biomarkers have been recently developed or updated, enabling accurate and earlier diagnosis of CAA in living patients. SUMMARY Recent advances in neuroimaging allow diagnosing CAA in the absence of pathological examination. Current imaging-based criteria have high diagnostic performance in patients presenting with ICH, but is more limited in other clinical context such as cognitively impaired patients or asymptomatic individuals. Further research is still needed to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Nicolas Raposo
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Charlotte Périole
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
| | - Mélanie Planton
- Department of neurology, Toulouse University Hospital
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| |
Collapse
|
33
|
Szalardy L, Fakan B, Maszlag-Torok R, Ferencz E, Reisz Z, Radics BL, Csizmadia S, Szpisjak L, Annus A, Zadori D, Kovacs GG, Klivenyi P. Identifying diagnostic and prognostic factors in cerebral amyloid angiopathy-related inflammation: A systematic analysis of published and seven new cases. Neuropathol Appl Neurobiol 2024; 50:e12946. [PMID: 38093468 DOI: 10.1111/nan.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
AIMS Cerebral amyloid angiopathy (CAA)-related inflammation (CAA-RI) is a potentially reversible manifestation of CAA, histopathologically characterised by transmural and/or perivascular inflammatory infiltrates. We aimed to identify clinical, radiological and laboratory variables capable of improving or supporting the diagnosis of or predicting/influencing the prognosis of CAA-RI and to retrospectively evaluate different therapeutic approaches. METHODS We present clinical and neuroradiological observations in seven unpublished CAA-RI cases, including neuropathological findings in two definite cases. These cases were included in a systematic analysis of probable/definite CAA-RI cases published in the literature up to 31 December 2021. Descriptive and associative analyses were performed, including a set of clinical, radiological and laboratory variables to predict short-term, 6-month and 1-year outcomes and mortality, first on definite and second on an expanded probable/definite CAA-RI cohort. RESULTS Data on 205 definite and 100 probable cases were analysed. CAA-RI had a younger symptomatic onset than non-inflammatory CAA, without sex preference. Transmural histology was more likely to be associated with the co-localisation of microbleeds with confluent white matter hyperintensities on magnetic resonance imaging (MRI). Incorporating leptomeningeal enhancement and/or sulcal non-nulling on fluid-attenuated inversion recovery (FLAIR) enhanced the sensitivity of the criteria. Cerebrospinal fluid pleocytosis was associated with a decreased probability of clinical improvement and longer term positive outcomes. Future lobar haemorrhage was associated with adverse outcomes, including mortality. Immunosuppression was associated with short-term improvement, with less clear effects on long-term outcomes. The superiority of high-dose over low-dose corticosteroids was not established. CONCLUSIONS This is the largest retrospective associative analysis of published CAA-RI cases and the first to include an expanded probable/definite cohort to identify diagnostic/prognostic markers. We propose points for further crystallisation of the criteria and directions for future prospective studies.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Bernadett Fakan
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Rita Maszlag-Torok
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Emil Ferencz
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Zita Reisz
- Institute of Pathology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Department of Clinical Neuropathology, King's College Hospital, London, UK
| | - Bence L Radics
- Institute of Pathology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Laszlo Szpisjak
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Adam Annus
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Peter Klivenyi
- Department of Neurology, Albert Szent-Györgyi Medical School, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Bangad A, Abbasi M, Payabvash S, de Havenon A. Imaging of Amyloid-beta-related Arteritis. Neuroimaging Clin N Am 2024; 34:167-173. [PMID: 37951701 DOI: 10.1016/j.nic.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder marked by the accumulation of amyloid-beta peptide (Aβ) within the leptomeninges and smaller blood vessels of the brain. CAA can be both noninflammatory and inflammatory, and the inflammatory version includes Aβ-related angiitis (ABRA). ABRA is a vasculitis of the central nervous system related to an inflammatory response to Aβ in the vascular walls, which necessitates differentiating ABRA from noninflammatory CAA, as ABRA may require immunosuppressive treatment. MR imaging is typically the most effective imaging modality of choice to screen for these conditions, and they should be obtained at varying time points to track disease progression.
Collapse
Affiliation(s)
- Aaron Bangad
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Mehdi Abbasi
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Sam Payabvash
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
| | - Adam de Havenon
- Department of Neurology, Yale University, New Haven, CT, USA; Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Ye X, Jia Y, Song G, Liu X, Wu C, Li G, Zhao X, Wang X, Huang S, Zhu S. Apolipoprotein E ɛ2 Is Associated with the White Matter Hyperintensity Multispot Pattern in Spontaneous Intracerebral Hemorrhage. Transl Stroke Res 2024; 15:101-109. [PMID: 36495423 DOI: 10.1007/s12975-022-01113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The white matter hyperintensity (WMH) multispot pattern, as multiple punctate subcortical foci, could differentiate cerebral amyloid angiopathy (CAA) from hypertensive arteriolopathy. Nevertheless, the pathophysiology underlying the multispot sign is still inexplicit. We aimed to explore risk factors for multispot patterns in cerebral small vessel disease (CSVD)-related intracerebral hemorrhage (ICH). Between June 2018 and January 2020, we retrospectively rated the WMH multispot pattern while blinded to our prospective spontaneous ICH cohort's clinical data. Demographic, genetic, and neuroimaging characteristics were applied in establishing the multispot pattern models via multiple logistic regression. In total, 268 participants were selected from our cohort. The possession of apolipoprotein E (APOE) ε2 (P = 0.051) was associated with multispot WMH in univariate analysis. Multispot WMHs were accompanied by multiple CAA features, such as centrum semiovale (CSO)-perivascular space (PVS) predominance (P = 0.032) and severe CSO-PVS (P < 0.001). After adjusting for confounding factors, APOE ε2 possession (OR 2.99, 95% CI [1.07, 8.40]; P = 0.037), severe CSO-PVS (OR 2.39, 95% CI [1.09, 5.26]; P = 0.031), and large posterior subcortical patches (P = 0.001) were independently correlated with the multispot pattern in multivariate analysis. Moreover, APOE ε2 possession (OR 4.34, 95% CI [1.20, 15.62]; P = 0.025) and severe CSO-PVS (OR 3.39, 95% CI [1.23, 9.34]; P = 0.018) remained statistically significant among the participants older than 55 years of age and with categorizable CSVD. APOE ε2 and severe CSO-PVS contribute to the presence of WMH multispot patterns. Because the multispot pattern is a potential diagnostic biomarker in CAA, genetics-driven effects shed light on its underlying vasculopathy. Clinical Trial Registration: URL- http://www.chictr.org.cn . Unique identifier: ChiCTR-ROC-2000039365. Registration date 2020/10/24 (retrospectively registered).
Collapse
Affiliation(s)
- Xiaodong Ye
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuchao Jia
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Guini Song
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiaoyan Liu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Chuyue Wu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Guo Li
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China
| | - Xu Zhao
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China.
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Sohn JH, Kim C, Sung JH, Han SW, Minwoo Lee, Oh MS, Yu KH, Kim Y, Park SH, Lee SH. Effect of pre-stroke antiplatelet use on stroke outcomes in acute small vessel occlusion stroke with moderate to severe white matter burden. J Neurol Sci 2024; 456:122837. [PMID: 38141530 DOI: 10.1016/j.jns.2023.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Cerebral small vessel disease is characterized by white matter hyperintensities (WMH) and acute small vessel occlusion (SVO) stroke. We investigated the effect of prior antiplatelet use (APU) on stroke outcome in 1151 patients with acute SVO stroke patients and moderate to severe WMH. METHODS Using a multicenter database, this retrospective study used quantitative WMH volume measurements and propensity score matching (PSM) for comparisons between patients with prior APU and without APU. Primary outcomes were stroke progression and poor functional outcome (modified Rankin Scale>2) at 3 months. Logistic regression analyses assessed associations between prior APU, WMH burden, and stroke outcomes. RESULTS Stroke progression was lower in the prior APU group in both the total cohort (14.8% vs. 6.9%, p < 0.001) and the PSM cohort (16.3% vs. 6.9%, p < 0.001). The proportion of poor functional outcomes at 3 months was not significantly different in the total cohort, but the PSM cohort showed a lower proportion in the prior APU group (30.8% vs. 20.2%, p = 0.002). Logistic regression analysis confirmed that prior APU was associated with a reduced risk of stroke progression (OR, 0.39; 95% CI, 0.22-0.70; p = 0.001) and poor functional outcome at 3 months (OR, 0.37; 95% CI, 0.23-0.59; p < 0.001). CONCLUSION Prior APU is associated with reduced stroke progression and improved functional outcome at 3 months in acute SVO stroke patients with moderate to severe WMH. Early treatment of WMH and acute SVO stroke may have potential benefits in improving stroke outcomes.
Collapse
Affiliation(s)
- Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea; Institute of New Frontier research Team, Hallym University, Chuncheon, South Korea
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea; Institute of New Frontier research Team, Hallym University, Chuncheon, South Korea
| | - Joo Hye Sung
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Minwoo Lee
- Department of Neurology, Hallym Sacred Heart Hospital Hallym University College of Medicine, Anyang, South Korea
| | - Mi Sun Oh
- Department of Neurology, Hallym Sacred Heart Hospital Hallym University College of Medicine, Anyang, South Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym Sacred Heart Hospital Hallym University College of Medicine, Anyang, South Korea
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Soo-Hyun Park
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea; Institute of New Frontier research Team, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
37
|
Zanon Zotin MC, Makkinejad N, Schneider JA, Arfanakis K, Charidimou A, Greenberg SM, van Veluw SJ. Sensitivity and Specificity of the Boston Criteria Version 2.0 for the Diagnosis of Cerebral Amyloid Angiopathy in a Community-Based Sample. Neurology 2024; 102:e207940. [PMID: 38165367 PMCID: PMC10834125 DOI: 10.1212/wnl.0000000000207940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The Boston criteria are a set of clinical and neuroimaging features that enable accurate diagnosis of cerebral amyloid angiopathy (CAA) without invasive methods such as brain biopsies or autopsy. The last updates to the Boston criteria, named version 2.0, were recently released and incorporated new nonhemorrhagic MRI features. These criteria have been validated in symptomatic samples, with improved diagnostic yield. We set out to investigate the accuracy of the Boston criteria v2.0 for the diagnosis of CAA in a community-based sample. METHODS Participants were recruited from longitudinal clinical-pathologic studies of aging conducted at the Rush Alzheimer's Disease Center in Chicago: the Religious Orders Study and the Rush Memory and Aging Project. Deceased participants with in vivo 3T MRI and detailed pathologic data available were included in the analysis. We compared the diagnostic yield of the current and earlier versions of the Boston criteria in our sample. Among those classified as probable CAA according to the Boston criteria v2.0, we investigated the ability of each neuroimaging marker to distinguish between false-positive and true-positive cases. RESULTS In total, 134 individuals were included in the study (mean age = 82.4 ± 6.0 years; 69.4% F), and 49 of them were considered pathology-proven definite cases with CAA (mean age = 82.9 ± 6.0 years; 63.3% F). The Boston criteria versions 1.0 and 1.5 yielded similar sensitivity (26.5%, both), specificity (90.6% and 89.4%, respectively), and predictive values (negative: 68.1% and 67.9%; positive: 61.9% and 59.1%, respectively). The recently released Boston criteria v2.0 offered higher sensitivity (38.8%) and slightly lower specificity (83.5%). Among those classified as probable CAA (v2.0), pathology-proven true-positive cases had higher numbers of strictly cortical lobar microbleeds compared with false-positive cases (p = 0.004). DISCUSSION Similar to findings from symptomatic samples, the inclusion of nonhemorrhagic neuroimaging markers in the updated Boston criteria offered a 12.3% gain in sensitivity among community-dwelling individuals, at the expense of a 5.9% drop in specificity. In cases with probable CAA, the cortical location of microbleeds may represent a promising distinguishing feature between true-positive and false-positive cases. Despite its improved performance, the diagnostic sensitivity of the updated criteria in a community-based sample remains limited. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the Boston criteria v2.0 accurately distinguishes people with CAA from those without CAA.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Nazanin Makkinejad
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Julie A Schneider
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Konstantinos Arfanakis
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Andreas Charidimou
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Steven M Greenberg
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| | - Susanne J van Veluw
- From the J. Philip Kistler Stroke Research Center (M.C.Z.Z., N.M., A.C., S.M.G., S.J.V.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Center for Imaging Sciences and Medical Physics (M.C.Z.Z.), Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Rush Alzheimer's Disease Center (J.A.S., K.A.), Rush University Medical Center; and Department of Biomedical Engineering (K.A.), Illinois Institute of Technology, Chicago
| |
Collapse
|
38
|
Goeldlin MB, Mueller M, Siepen BM, Zhang W, Ozkan H, Locatelli M, Du Y, Valenzuela W, Radojewski P, Hakim A, Kaesmacher J, Meinel TR, Clénin L, Branca M, Strambo D, Fischer T, Medlin F, Peters N, Carrera E, Lovblad KO, Karwacki GM, Cereda CW, Niederhauser J, Mono ML, Mueller A, Wegener S, Sartoretti S, Polymeris AA, Altersberger V, Katan M, Psychogios M, Sturzenegger R, Nauer C, Schaerer M, Buitrago Tellez C, Renaud S, Minkner Klahre K, Z'Graggen WJ, Bervini D, Bonati LH, Wiest R, Arnold M, Simister RJ, Wilson D, Jäger HR, Fischer U, Werring DJ, Seiffge DJ. CADMUS: A Novel MRI-Based Classification of Spontaneous Intracerebral Hemorrhage Associated With Cerebral Small Vessel Disease. Neurology 2024; 102:e207977. [PMID: 38165372 PMCID: PMC10834115 DOI: 10.1212/wnl.0000000000207977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral small vessel disease (SVD) is the major cause of intracerebral hemorrhage (ICH). There is no comprehensive, easily applicable classification of ICH subtypes according to the presumed underlying SVD using MRI. We developed an MRI-based classification for SVD-related ICH. METHODS We performed a retrospective study in the prospectively collected Swiss Stroke Registry (SSR, 2013-2019) and the Stroke InvestiGation in North And central London (SIGNAL) cohort. Patients with nontraumatic, SVD-related ICH and available MRI within 3 months were classified as Cerebral Amyloid angiopathy (CAA), Deep perforator arteriopathy (DPA), Mixed CAA-DPA, or Undetermined SVD using hemorrhagic and nonhemorrhagic MRI markers (CADMUS classification). The primary outcome was inter-rater reliability using Gwet's AC1. Secondary outcomes were recurrent ICH/ischemic stroke at 3 months according to the CADMUS phenotype. We performed Firth penalized logistic regressions and competing risk analyses. RESULTS The SSR cohort included 1,180 patients (median age [interquartile range] 73 [62-80] years, baseline NIH Stroke Scale 6 [2-12], 45.6% lobar hematoma, systolic blood pressure on admission 166 [145-185] mm Hg). The CADMUS phenotypes were as follows: mixed CAA-DPA (n = 751 patients, 63.6%), undetermined SVD (n = 203, 17.2%), CAA (n = 154, 13.1%), and DPA (n = 72, 6.3%), with a similar distribution in the SIGNAL cohort (n = 313). Inter-rater reliability was good (Gwet's AC1 for SSR/SIGNAL 0.69/0.74). During follow-up, 56 patients had 57 events (28 ICH, 29 ischemic strokes). Three-month event rates were comparable between the CADMUS phenotypes. DISCUSSION CADMUS, a novel MRI-based classification for SVD-associated ICH, is feasible and reproducible and may improve the classification of ICH subtypes in clinical practice and research.
Collapse
Affiliation(s)
- Martina B Goeldlin
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Madlaine Mueller
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Bernhard M Siepen
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Wenpeng Zhang
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Hatice Ozkan
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Martina Locatelli
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Yang Du
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Waldo Valenzuela
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Piotr Radojewski
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Arsany Hakim
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Johannes Kaesmacher
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Thomas R Meinel
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Leander Clénin
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Mattia Branca
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Davide Strambo
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Tim Fischer
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Friedrich Medlin
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Nils Peters
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Emmanuel Carrera
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Karl-Olof Lovblad
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Grzegorz M Karwacki
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Carlo W Cereda
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Julien Niederhauser
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Marie-Luise Mono
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Achim Mueller
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Susanne Wegener
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Sabine Sartoretti
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Alexandros A Polymeris
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Valerian Altersberger
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Mira Katan
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Marios Psychogios
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Rolf Sturzenegger
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Claude Nauer
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Michael Schaerer
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Carlos Buitrago Tellez
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Susanne Renaud
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Katharina Minkner Klahre
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Werner J Z'Graggen
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - David Bervini
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Leo H Bonati
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Roland Wiest
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Marcel Arnold
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Robert J Simister
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Duncan Wilson
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Hans Rolf Jäger
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - Urs Fischer
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - David J Werring
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| | - David J Seiffge
- From the Departments of Neurology (M.B.G., M.M., B.M.S., T.R.M., L.C., M.A., U.F., D.J.S., W.J.Z.G.) and Neurosurgery (D.B., W.J.Z.G.), and the University Institute for Diagnostic and Interventional Neuroradiology (W.V., P.R., A.H., J.K., R.W.), Inselspital Bern University Hospital and University of Bern; Graduate School for Health Sciences (M.B.G., B.M.S.) and CTU Bern (M.B.), University of Bern, Switzerland; Stroke Research Centre (M.B.G., W.Z., H.O., M.L., Y.D., D.J.W.), University College London Queen Square Institute of Neurology, United Kingdom; Service of Neurology (D.S.), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne; Department of Radiology (T.F.), Cantonal Hospital St. Gallen; Department of Internal Medicine (F.M.), Stroke Unit and Division of Neurology, HFR Fribourg-Cantonal Hospital; Stroke Center Hirslanden (N.P.), Klinik Hirslanden Zurich; Stroke Research Group (E.C.), Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva; Department of Radiology and Medical Informatics (K.-O.L.), University of Geneva; Department of Radiology and Nuclear Medicine (G.M.K.), Luzerner Kantonsspital; Stroke Center EOC (C.W.C.), Neurocenter of Southern Switzerland; Stroke Unit (J.N.), GHOL, Hôpital de zone de Nyon; Stadtspitäler Triemli und Waid (M.-L.M.), Zurich; Department of Neurology (A.M., S.W.), University Hospital and University of Zurich; Department of Radiology and Nuclear Medicine (S.S.), Kantonsspital Winterthur; Department of Neurology and Stroke Center (A.A.P., V.A., M.K., U.F., L.H.B.) and Center for Rehabilitation Rheinfelden (L.H.B.), University Hospital Basel and University of Basel; Diagnostic and Interventional Neuroradiology (M.P.), Department of Radiology and Nuclear Medicine, University Hospital Basel; Department of Neurology (R.S.), Kantonsspital Graubünden, Chur; Department of Radiology/Neuroradiology (C.N.), Kantonsspital Graubünden, Chur; Department of Neurology (M.S.), and Department of Radiology (C.B.T.), Buergerspital Solothurn; Division of Neurology (S.R.), Pourtalès Hospital, Neuchâtel; Department of Radiology (K.M.K.), Réseau Hospitalier Neuchâtelois, Switzerland; Comprehensive Stroke Service (R.J.S., D.J.W.) and Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair & Rehabilitation, University College London Hospital, United Kingdom; and New Zealand Brain Research Institute (D.W.), Christchurch
| |
Collapse
|
39
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
40
|
Hou Y, Qin W, Yang S, Li Y, Yang L, Hu W. Diffusion-weighted Imaging Detection of Acute Ischemia Brain Lesions in Spontaneous Intracerebral Hemorrhage Associated with White Matter Hyperintensities, Enlarged Perivascular Spaces and Diabetes Mellitus. Curr Neurovasc Res 2024; 20:544-552. [PMID: 38288839 DOI: 10.2174/0115672026283323240108052711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Diffusion-weighted imaging (DWI) is commonly detected after spontaneous intracerebral hemorrhage (sICH) and is associated with poor functional outcomes. However, the etiology and significance of DWI lesions remain unclear. Thus, our study aimed to explore the prevalence and risk factors of acute ischemic lesions in sICH and discussed the possible mechanisms. METHODS We conducted a retrospective review of a consecutive cohort of 408 patients from June 2013 to October 2019 with sICH, who had brain computed tomography (CT) and magnetic resonance imaging (MRI) within 14 days of symptoms onset. Acute ischemic lesions were assessed on MRI using DWI lesions. We compared the clinical and imaging characteristics of patients with and without DWI lesions. The data were analyzed by univariate and multivariate logistic regression. RESULTS Among the enrolled 408 patients, the mean age was 56.8 ± 14.5 years, 68 (16.7%) of them had been diagnosed with diabetes mellitus (DM). DWI lesions were observed in 89 (21.8%) patients, and most of them had a history of lacunar infarctions, which were located in cortical or subcortical. In multivariate logistic regression analysis, DM (odds ratio (OR) 3.962, p <0.001), severe deep white matter hypertensities (DWMH) (OR 2.463, p =0.001) and severe centrum semiovale enlarged perivascular spaces (CSO-EPVS) (OR 2.679, p =0.001) were independently associated with the presence of DWI lesions. CONCLUSION In our cohort, we found DM, severe DWMH and severe CSO-EPVS were the independent risk factors in sICH patients with DWI lesions.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Qin
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuna Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yue Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Henneicke S, Meuth SG, Schreiber S. [Cerebral Small Vessel Disease: Advances in Understanding its Pathophysiology]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:494-502. [PMID: 38081163 DOI: 10.1055/a-2190-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sporadic cerebral small vessel disease determines age- and vascular-risk-factor-related processes of the small brain vasculature. The underlying pathology develops in a stage-dependent manner - probably over decades - often already starting in midlife. Endothelial and pericyte activation precedes blood-brain barrier leaks, extracellular matrix remodeling and neuroinflammation, which ultimately result in bleeds, synaptic and neural dysfunction. Hemodynamic compromise of the small vessel walls promotes perivascular drainage failure and accumulation of neurotoxic waste products in the brain. Clinical diagnosis is mainly based on magnetic resonance imaging according to the Standards for Reporting Vascular Changes on Neuroimaging 2. Cerebral amyloid angiopathy is particularly stratified according to the Boston v2.0 criteria. Small vessel disease of the brain could be clinically silent, or manifested through a heterogeneous spectrum of diseases, where cognitive decline and stroke-related symptoms are the most common ones. Prevention and therapy are centered around vascular risk factor control, physically and cognitively enriched life style and, presumably, maintenance of a good sleep quality, which promotes sufficient perivascular drainage. Prevention of ischemic stroke through anticoagulation that carries at the same time an increased risk for large brain hemorrhages - particularly in the presence of disseminated cortical superficial siderosis - remains one of the main challenges. The cerebral small vessel disease field is rapidly evolving, focusing on the establishment of early disease stage imaging and biofluid biomarkers of neurovascular unit remodeling and the compromise of perivascular drainage. New prevention and therapy strategies will correspondingly center around the dedicated targeting of, e. g., cellular small vessel wall and perivascular tissue structures. Growing knowledge about brain microvasculature bridging neuroimmunological, neurovascular and neurodegenerative fields might lead to a rethink about apparently separate disease entities and the development of overarching concepts for a common line of prevention and treatment for several diseases.
Collapse
Affiliation(s)
- Solveig Henneicke
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| |
Collapse
|
42
|
Incontri D, Marchina S, Andreev A, Wilson M, Wang JY, Lin D, Heistand EC, Carvalho F, Selim M, Lioutas VA. Etiology of Primary Cerebellar Intracerebral Hemorrhage Based on Topographic Localization. Stroke 2023; 54:3074-3080. [PMID: 37842779 PMCID: PMC10843011 DOI: 10.1161/strokeaha.123.044271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Cerebellar intracerebral hemorrhage (cICH) is often attributed to hypertension or cerebral amyloid angiopathy (CAA). However, deciphering the exact etiology can be challenging. A recent study reported a topographical etiologic relationship with superficial cICH secondary to CAA. We aimed to reexamine this relationship between topography and etiology in a separate cohort of patients and using the most recent Boston criteria version 2.0. METHODS We performed a retrospective analysis of consecutive patients with primary cICH admitted to a tertiary academic center between 2000 and 2022. cICH location on brain computed tomography/magnetic resonance imaging scan(s) was divided into strictly superficial (cortex, surrounding white matter, vermis) versus deep (cerebellar nuclei, deep white matter, peduncular region) or mixed (both regions). Magnetic resonance imaging was rated for markers of cerebral small vessel disease. We assigned possible/probable versus absent CAA using Boston criteria 2.0. RESULTS We included 197 patients; 106 (53.8%) were females, median age was 74 (63-82) years. Fifty-six (28%) patients had superficial cICH and 141 (72%) deep/mixed cICH. Magnetic resonance imaging was available for 112 (57%) patients (30 [26.8%] with superficial and 82 [73.2%] with deep/mixed cICH). Patients with superficial cICH were more likely to have possible/probable CAA (48.3% versus 8.6%; odds ratio [OR], 11.43 [95% CI, 3.26-40.05]; P<0.001), strictly lobar cerebral microbleeds (51.7% versus 6.2%; OR, 14.18 [95% CI, 3.98-50.50]; P<0.001), and cortical superficial siderosis (13.8% versus 1.2%; OR, 7.70 [95% CI, 0.73-80.49]; P=0.08). Patients with deep/mixed cICH were more likely to have deep/mixed cerebral microbleeds (59.2% versus 3.4%; OR, 41.39 [95% CI, 5.01-341.68]; P=0.001), lacunes (54.9% versus 17.2%; OR, 6.14 [95% CI, 1.89-19.91]; P=0.002), severe basal ganglia enlarged perivascular spaces (36.6% versus 7.1%; OR, 7.63 [95% CI, 1.58-36.73]; P=0.01), hypertension (84.4% versus 62.5%; OR, 3.43 [95% CI, 1.61 to -7.30]; P=0.001), and higher admission systolic blood pressure (172 [146-200] versus 146 [124-158] mm Hg, P<0.001). CONCLUSIONS Our results suggest that superficial cICH is strongly associated with CAA whereas deep/mixed cICH is strongly associated with hypertensive arteriopathy.
Collapse
Affiliation(s)
- Diego Incontri
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, Huixquilucan, CP 52786, Edo. de México, México
| | - Sarah Marchina
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Andreev
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mitchell Wilson
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jia-Yi Wang
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David Lin
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth C. Heistand
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Filipa Carvalho
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Magdy Selim
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vasileios-Arsenios Lioutas
- Department of Neurology, Stroke Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Bruno A, Prabu P, Vedala K, Sethuraman S, Nichols FT. Distribution of cerebral age-related white matter changes in relation to risk factors in stroke patients. Clin Neurol Neurosurg 2023; 235:108018. [PMID: 37924721 DOI: 10.1016/j.clineuro.2023.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION The distribution of cerebral age-related white matter changes (ARWMC) may be indicative of the underlying etiology and could suggest optimal interventions. We aimed to determine if left ventricular hypertrophy (LVH), a marker of uncontrolled hypertension, along with additional risk factors are associated with the distribution of cerebral ARWMC. METHODS We analyzed data of 172 patients from a hospital stroke registry who had acute stroke and brain MRI. We classified lesion location as superficial (frontal, parieto-occipital, or temporal) or deep (basal nuclei) using the ARWMC scale. We defined a superficial ARWMC index as the superficial minus the deep score. We excluded infratentorial lesions and patients with bilateral strokes. Regression analysis analyzed LVH and other relevant clinical factors for independent association with the superficial ARWMC index. RESULTS The superficial ARWMC scores ranged from 0 to 6, the deep scores from 0 to 3, and the superficial ARWMC index from -2 to 6. We categorized the superficial ARWMC index as -2 to 1 (n = 65), 2 (n = 50), and 3 - 6 (n = 57). In bivariate analysis, ARWMC distribution was significantly associated with older age, lower household income (HI), and lower serum triglyceride (TG) levels. In multiple logistic regression analysis, higher superficial ARWMC index was significantly associated with lower HI (OR 10.72, 95 % CI 2.30-49.85), lower serum low density cholesterol (LDL) (OR 0.86, 95 % CI 0.75-0.98, per 10 mg/dL), and lower serum TG levels (OR 0.91, 95 % CI 0.85-0.99, per 10 mg/dL). The area under the curve in receiver operating characteristic analysis (95 % CI) for HI was 0.63 (0.49-0.76), LDL level 0.64 (0.51-0.77), and TG level 0.77 (0.65-0.88). CONCLUSION In this study, LVH was not associated with the distribution of cerebral ARWMC. Using an alternate classification of ARWMC distribution and analyzing additional risk factors in larger studies may yield further discoveries.
Collapse
Affiliation(s)
- Askiel Bruno
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, United States.
| | - Pranav Prabu
- Medical College of Georgia, Augusta, GA, United States
| | | | - Sankara Sethuraman
- Department of Mathematics, Augusta University, Augusta, GA, United States
| | - Fenwick T Nichols
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
44
|
Switzer A, Charidimou A, McCarter SJ, Vemuri P, Nguyen A, Przybelski SA, Lesnick TG, Rabinstein AA, Brown RD, Knopman DS, Petersen RC, Jack CR, Reichard RR, Graff-Radford J. Boston criteria v2.0 for cerebral amyloid angiopathy without hemorrhage: An MRI-neuropathological validation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298325. [PMID: 37986913 PMCID: PMC10659504 DOI: 10.1101/2023.11.09.23298325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without intracerebral hemorrhage (ICH) or transient focal neurological episodes (TFNE) is unknown. We assessed the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals presenting without symptomatic ICH. METHODS Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared to v1.5 using histopathologically verified CAA as the reference standard. RESULTS Median age at MRI was 75 years (IQR 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95%CI: 13.2-48.7%) and 65.3% (95%CI: 44.3-82.8%) for probable CAA diagnosis (AUC 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC: 0.57), respectively. The v2.0 Boston criteria was not superior in performance compared to the prior v1.5 criteria for either CAA diagnostic category. CONCLUSIONS The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms.. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.
Collapse
|
45
|
Perosa V, Auger CA, Zanon Zotin MC, Oltmer J, Frosch MP, Viswanathan A, Greenberg SM, van Veluw SJ. Histopathological Correlates of Lobar Microbleeds in False-Positive Cerebral Amyloid Angiopathy Cases. Ann Neurol 2023; 94:856-870. [PMID: 37548609 PMCID: PMC11573502 DOI: 10.1002/ana.26761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE A definite diagnosis of cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid β in walls of cerebral small vessels, can only be obtained through pathological examination. A diagnosis of probable CAA during life relies on the presence of hemorrhagic markers, including lobar cerebral microbleeds (CMBs). The aim of this project was to study the histopathological correlates of lobar CMBs in false-positive CAA cases. METHODS In 3 patients who met criteria for probable CAA during life, but showed no CAA upon neuropathological examination, lobar CMBs were counted on ex vivo 3T magnetic resonance imaging (MRI) and on ex vivo 7T MRI. Areas with lobar CMBs were next sampled and cut into serial sections, on which the CMBs were then identified. RESULTS Collectively, there were 25 lobar CMBs on in vivo MRI and 22 on ex vivo 3T MRI of the analyzed hemispheres. On ex vivo MRI, we targeted 12 CMBs for sampling, and definite histopathological correlates were retrieved for 9 of them, of which 7 were true CMBs. No CAA was found on any of the serial sections. The "culprit vessels" associated with the true CMBs instead showed moderate to severe arteriolosclerosis. Furthermore, CMBs in false-positive CAA cases tended to be located more often in the juxtacortical or subcortical white matter than in the cortical ribbon. INTERPRETATION These findings suggest that arteriolosclerosis can generate lobar CMBs and that more detailed investigations into the exact localization of CMBs with respect to the cortical ribbon could potentially aid the diagnosis of CAA during life. ANN NEUROL 2023;94:856-870.
Collapse
Affiliation(s)
- Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corinne A Auger
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jan Oltmer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthew P Frosch
- Department of Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
46
|
Zhu Y, Liu L, Zhong L, Cheng Y, Zhang S, Wu B, Wang D, Xu M. The association between hypertensive angiopathy and cerebral amyloid angiopathy in primary intracerebral hemorrhage. Front Neurol 2023; 14:1257896. [PMID: 37928159 PMCID: PMC10621040 DOI: 10.3389/fneur.2023.1257896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To determine the association between the burden of cerebral small vessel disease (CSVD) due to hypertensive angiopathy (HA) and cerebral amyloid angiopathy (CAA) on MRI in patients with primary intracerebral hemorrhage (ICH). Methods Patients with primary ICH admitted to our center from March 2012 to November 2021 were consecutively enrolled. We used multivariate binary and ordinal regression analyses to assess the association between HA-CSVD burden and CAA-CSVD burden. Lobar cerebral microbleeds (CMBs) were categorized into three level of severity: 0-1, 2-4, and ≥ 5 lobar CMBs. A high CAA-CSVD score was defined as a CAA-CSVD score of ≥3. Results Overall, 222 participants (mean age 59.88 ± 13.56) were included into analysis. Age and ICH etiology differed among different lobar CMB severity and between the presence and absence of high CAA-CSVD score (all p < 0.05). Positive associations between HA-related markers and both lobar CMB severity and high CAA-CSVD score (p < 0.05 for the presence of lacune, deep CMBs ≥5, the presence of WMH, and HA-CSVD score) were observed in univariate analysis. These associations remained significant after adjusting for age, sex, ICH etiology, and potential vascular risk factors. The distribution of CAA-CSVD score was significantly different between patients with and without CMBs ≥5 (adjusted OR 2.351, 95% CI 1.242-4.455, p = 0.009) after correcting for age, sex, ICH etiology, and vascular risk factors. Conclusion Our study provides evidence of an association between HA-CSVD and CAA-CSVD in patients with primary ICH, which needs to be verified in future studies.
Collapse
Affiliation(s)
- Yuyi Zhu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Luyao Zhong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yajun Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shihong Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Deren Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mangmang Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
47
|
Theodorou A, Palaiodimou L, Papagiannopoulou G, Kargiotis O, Psychogios K, Safouris A, Bakola E, Chondrogianni M, Kotsali-Peteinelli V, Melanis K, Tsibonakis A, Andreadou E, Vasilopoulou S, Lachanis S, Velonakis G, Tzavellas E, Tzartos JS, Voumvourakis K, Paraskevas GP, Tsivgoulis G. Clinical Characteristics, Neuroimaging Markers, and Outcomes in Patients with Cerebral Amyloid Angiopathy: A Prospective Cohort Study. J Clin Med 2023; 12:5591. [PMID: 37685658 PMCID: PMC10488273 DOI: 10.3390/jcm12175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Background and purpose: Sporadic cerebral amyloid angiopathy (CAA) is a small vessel disease, resulting from progressive amyloid-β deposition in the media/adventitia of cortical and leptomeningeal arterioles. We sought to assess the prevalence of baseline characteristics, clinical and radiological findings, as well as outcomes among patients with CAA, in the largest study to date conducted in Greece. Methods: Sixty-eight patients fulfilling the Boston Criteria v1.5 for probable/possible CAA were enrolled and followed for at least twelve months. Magnetic Resonance Imaging was used to assess specific neuroimaging markers. Data regarding cerebrospinal fluid biomarker profile and Apolipoprotein-E genotype were collected. Multiple logistic regression analyses were performed to identify predictors of clinical phenotypes. Cox-proportional hazard regression models were used to calculate associations with the risk of recurrent intracerebral hemorrhage (ICH). Results: Focal neurological deficits (75%), cognitive decline (57%), and transient focal neurological episodes (TFNEs; 21%) were the most common clinical manifestations. Hemorrhagic lesions, including lobar cerebral microbleeds (CMBs; 93%), cortical superficial siderosis (cSS; 48%), and lobar ICH (43%) were the most prevalent neuroimaging findings. cSS was independently associated with the likelihood of TFNEs at presentation (OR: 4.504, 95%CI:1.258-19.088), while multiple (>10) lobar CMBs were independently associated with cognitive decline at presentation (OR:5.418, 95%CI:1.316-28.497). cSS emerged as the only risk factor of recurrent ICH (HR:4.238, 95%CI:1.509-11.900) during a median follow-up of 20 months. Conclusions: cSS was independently associated with TFNEs at presentation and ICH recurrence at follow-up, while a higher burden of lobar CMBs with cognitive decline at baseline. These findings highlight the prognostic value of neuroimaging markers, which may influence clinical decision-making.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgia Papagiannopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Odysseas Kargiotis
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Klearchos Psychogios
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Apostolos Safouris
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Eleni Bakola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Maria Chondrogianni
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Vasiliki Kotsali-Peteinelli
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Melanis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Athanasios Tsibonakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Elissavet Andreadou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Sofia Vasilopoulou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Stefanos Lachanis
- Iatropolis Magnetic Resonance Diagnostic Centre, 15231 Athens, Greece;
| | - Georgios Velonakis
- Second Department of Radiology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Elias Tzavellas
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - John S. Tzartos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Voumvourakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios P. Paraskevas
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
48
|
Das AS, Gokcal E, Biffi A, Regenhardt RW, Pasi M, Abramovitz Fouks A, Viswanathan A, Goldstein J, Schwamm LH, Rosand J, Greenberg SM, Gurol ME. Mechanistic Implications of Cortical Superficial Siderosis in Patients With Mixed Location Intracerebral Hemorrhage and Cerebral Microbleeds. Neurology 2023; 101:e636-e644. [PMID: 37290968 PMCID: PMC10424843 DOI: 10.1212/wnl.0000000000207476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Hypertensive cerebral small vessel disease (HTN-cSVD) is the predominant microangiopathy in patients with a combination of lobar and deep cerebral microbleeds (CMBs) and intracerebral hemorrhage (mixed ICH). We tested the hypothesis that cerebral amyloid angiopathy (CAA) is also a contributing microangiopathy in patients with mixed ICH with cortical superficial siderosis (cSS), a marker strongly associated with CAA. METHODS Brain MRIs from a prospective database of consecutive patients with nontraumatic ICH admitted to a referral center were reviewed for the presence of CMBs, cSS, and nonhemorrhagic CAA markers (lobar lacunes, centrum semiovale enlarged perivascular spaces [CSO-EPVS], and multispot white matter hyperintensity [WMH] pattern). The frequencies of CAA markers and left ventricular hypertrophy (LVH), a marker for hypertensive end-organ damage, were compared between patients with mixed ICH with cSS (mixed ICH/cSS[+]) and without cSS (mixed ICH/cSS[-]) in univariate and multivariable models. RESULTS Of 1,791 patients with ICH, 40 had mixed ICH/cSS(+) and 256 had mixed ICH/cSS(-). LVH was less common in patients with mixed ICH/cSS(+) compared with those with mixed ICH/cSS(-) (34% vs 59%, p = 0.01). The frequencies of CAA imaging markers, namely multispot pattern (18% vs 4%, p < 0.01) and severe CSO-EPVS (33% vs 11%, p < 0.01), were higher in patients with mixed ICH/cSS(+) compared with those with mixed ICH/cSS(-). In a logistic regression model, older age (adjusted odds ratio [aOR] 1.04 per year, 95% CI 1.00-1.07, p = 0.04), lack of LVH (aOR 0.41, 95% CI 0.19-0.89, p = 0.02), multispot WMH pattern (aOR 5.25, 95% CI 1.63-16.94, p = 0.01), and severe CSO-EPVS (aOR 4.24, 95% CI 1.78-10.13, p < 0.01) were independently associated with mixed ICH/cSS(+) after further adjustment for hypertension and coronary artery disease. Among ICH survivors, the adjusted hazard ratio of ICH recurrence in patients with mixed ICH/cSS(+) was 4.65 (95% CI 1.38-11.38, p < 0.01) compared with that in patients with mixed ICH/cSS(-). DISCUSSION The underlying microangiopathy of mixed ICH/cSS(+) likely includes both HTN-cSVD and CAA, whereas mixed ICH/cSS(-) is likely driven by HTN-cSVD. These imaging-based classifications can be important to stratify ICH risk but warrant confirmation in studies incorporating advanced imaging/pathology.
Collapse
Affiliation(s)
- Alvin S Das
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Elif Gokcal
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alessandro Biffi
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Robert W Regenhardt
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marco Pasi
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Avia Abramovitz Fouks
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joshua Goldstein
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lee H Schwamm
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Rosand
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- From the Department of Neurology (A.S.D., E.G., A.B., R.W.R., A.A.F., A.V., L.H.S., J.R., S.M.G., M.E.G.), Massachusetts General Hospital, Department of Neurology (A.S.D.), Beth Israel Deaconess Medical Center, and Henry and Allison McCance Center for Brain Health (A.B., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston; Centre Hospitalier (M.P.), Université de Tours, France; and Department of Emergency Medicine (J.G.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
49
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
50
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|