1
|
Jenkins PM, Bender KJ. Axon initial segment structure and function in health and disease. Physiol Rev 2025; 105:765-801. [PMID: 39480263 DOI: 10.1152/physrev.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
At the simplest level, neurons are structured to integrate synaptic input and perform computational transforms on that input, converting it into an action potential (AP) code. This process, converting synaptic input into AP output, typically occurs in a specialized region of the axon termed the axon initial segment (AIS). The AIS, as its name implies, is often contained to the first section of axon abutted to the soma and is home to a dizzying array of ion channels, attendant scaffolding proteins, intracellular organelles, extracellular proteins, and, in some cases, synapses. The AIS serves multiple roles as the final arbiter for determining if inputs are sufficient to evoke APs, as a gatekeeper that physically separates the somatodendritic domain from the axon proper, and as a regulator of overall neuronal excitability, dynamically tuning its size to best suit the needs of parent neurons. These complex roles have received considerable attention from experimentalists and theoreticians alike. Here, we review recent advances in our understanding of the AIS and its role in neuronal integration and polarity in health and disease.
Collapse
Affiliation(s)
- Paul M Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J Bender
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States
| |
Collapse
|
2
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
3
|
Biadun M, Sidor S, Kalka M, Karelus R, Sochacka M, Krowarsch D, Opalinski L, Zakrzewska M. Production and purification of recombinant long protein isoforms of FGF11 subfamily. J Biotechnol 2025; 403:9-16. [PMID: 40154621 DOI: 10.1016/j.jbiotec.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The FGF11 subfamily of FGF proteins also known as fibroblast growth factor homologous factors (FHFs) includes four proteins, FGF11, FGF12, FGF13, and FGF14. They are mainly expressed in excitable cells but are also present in fibroblasts or osteoclasts, where their function is much less understood. Each FGF11-14 protein has at least two isoforms formed by alternative splicing, which differ in both cellular localization and function. Until recently, only the short isoforms had been efficiently produced and purified in recombinant form. Here, we developed a protocol to produce in the bacterial expression system and efficiently purify the long "a" isoforms of FGF11, FGF12, FGF13 and FGF14. In addition, we characterized their biophysical and biological properties, demonstrating that they activate downstream signaling and, unlike short "b" isoforms, induce cell proliferation.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Szymon Sidor
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Lukasz Opalinski
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
4
|
Gade A, Malvezzi M, Das LT, Matsui M, Ma CIJ, Mazdisnian K, Marx SO, Maxfield FR, Pitt GS. The Na V 1.5 auxiliary subunit FGF13 modulates channels by regulating membrane cholesterol independent of channel binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644183. [PMID: 40166257 PMCID: PMC11957044 DOI: 10.1101/2025.03.19.644183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor homologous factors (FHFs) bind to the cytoplasmic carboxy terminus of voltage-gated sodium channels (VGSCs) and modulate channel function. Variants in FHFs or VGSCs perturbing that bimolecular interaction are associated with arrhythmias. Like some channel auxiliary subunits, FHFs exert additional cellular regulatory roles, but whether these alternative roles affect VGSC regulation is unknown. Using a separation-of-function strategy, we show that a structurally guided, binding incompetent mutant FGF13 (the major FHF in mouse heart), confers complete regulation of VGSC steady-state inactivation (SSI), the canonical effect of FHFs. In cardiomyocytes isolated from Fgf13 knockout mice, expression of the mutant FGF13 completely restores wild-type regulation of SSI. FGF13 regulation of SSI derives from effects on local accessible membrane cholesterol, which is unexpectedly polarized and concentrated in cardiomyocytes at the intercalated disc (ID) where most VGSCs localize. Fgf13 knockout eliminates the polarized cholesterol distribution and causes loss of VGSCs from the ID. Moreover, we show that the previously described FGF13-dependent stabilization of VGSC currents at elevated temperatures depends on the cholesterol mechanism. These results provide new insights into how FHFs affect VGSCs and alter the canonical model by which channel auxiliary exert influence.
Collapse
|
5
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha A, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. eLife 2025; 13:RP98661. [PMID: 39773461 PMCID: PMC11709433 DOI: 10.7554/elife.98661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Isabella DiStefano
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Anjali Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell MedicineNew York CityUnited States
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| |
Collapse
|
6
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
7
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Biadun M, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. FGF12: biology and function. Differentiation 2024; 139:100740. [PMID: 38042708 DOI: 10.1016/j.diff.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of β-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland; Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
9
|
Goldfarb M. Fibroblast growth factor homologous factors: canonical and non-canonical mechanisms of action. J Physiol 2024; 602:4097-4110. [PMID: 39083261 DOI: 10.1113/jp286313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Since their discovery nearly 30 years ago, fibroblast growth factor homologous factors (FHFs) are now known to control the functionality of excitable tissues through a range of mechanisms. Nervous and cardiac system dysfunctions are caused by loss- or gain-of-function mutations in FHF genes. The best understood 'canonical' targets for FHF action are voltage-gated sodium channels, and recent studies have expanded the repertoire of ways that FHFs modulate sodium channel gating. Additional 'non-canonical' functions of FHFs in excitable and non-excitable cells, including cancer cells, have been reported over the past dozen years. This review summarizes and evaluates reported canonical and non-canonical FHF functions.
Collapse
Affiliation(s)
- Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, New York, USA
- Biology Program, The Graduate Center City University, New York, New York, USA
| |
Collapse
|
10
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
11
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
12
|
Ransdell JL, Carrasquillo Y, Bosch MK, Mellor RL, Ornitz DM, Nerbonne JM. Loss of Intracellular Fibroblast Growth Factor 14 (iFGF14) Increases the Excitability of Mature Hippocampal and Cortical Pyramidal Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592532. [PMID: 38746081 PMCID: PMC11092765 DOI: 10.1101/2024.05.04.592532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( Fgf14 -/- ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na + (Nav) current, I NaT . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons. Current-clamp recordings from adult mouse hippocampal CA1 pyramidal neurons in acute in vitro slices, however, revealed that repetitive firing rates were higher in Fgf14 -/- , than in wild type (WT), cells. In addition, the waveforms of individual action potentials were altered in Fgf14 -/- hippocampal CA1 pyramidal neurons, and the loss of iFGF14 reduced the time delay between the initiation of axonal and somal action potentials. Voltage-clamp recordings revealed that the loss of iFGF14 altered the voltage-dependence of activation, but not inactivation, of I NaT in CA1 pyramidal neurons. Similar effects of the loss of iFGF14 on firing properties were evident in current-clamp recordings from layer 5 visual cortical pyramidal neurons. Additional experiments demonstrated that the loss of iFGF14 does not alter the distribution of anti-Nav1.6 or anti-ankyrin G immunofluorescence labeling intensity along the axon initial segments (AIS) of mature hippocampal CA1 or layer 5 visual cortical pyramidal neurons in situ . Taken together, the results demonstrate that, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, the loss of iFGF14 does not disrupt AIS architecture or Nav1.6 localization/distribution along the AIS of mature hippocampal (or cortical) pyramidal neurons in situ .
Collapse
|
13
|
Saleem NM, Chencheri N, Thomas S, Alexander G, Madathil B. Early-Onset Epileptic Encephalopathy Responsive to Phenytoin: A Diagnostic Clue for Fibroblast Growth Factor 12 Mutation. Cureus 2024; 16:e53906. [PMID: 38465135 PMCID: PMC10924931 DOI: 10.7759/cureus.53906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
We present a case of a three-year-old girl with a rare genetic epilepsy with developmental delay. She was born to a non-consanguineous parentage and required resuscitation soon after delivery via cesarean section. The patient had her first seizure within 36 hours of life, which progressed into refractory epilepsy. She required multiple hospital admissions due to prolonged seizures. Despite being tried on multiple drug combinations over the years, she responded only to phenytoin. Basic imaging and other investigations, including genetic analysis, revealed a fibroblast growth factor 12 (FGF12) mutation. Mutations in these genes cause refractory early-onset seizures associated with severe developmental delay. Due to early and appropriate intervention with phenytoin, she had good seizure control which probably resulted in a better developmental outcome.
Collapse
Affiliation(s)
- Nadia M Saleem
- Department of Medicine and Surgery, Dubai Academic Health Corporation, Dubai, ARE
| | - Nidheesh Chencheri
- Department of Pediatric Neurology, Al Jalila Children's Specialty Hospital, Dubai, ARE
| | - Sen Thomas
- Department of Pediatric Emergency Medicine, Al Jalila Children's Specialty Hospital, Dubai, ARE
| | - Gail Alexander
- Department of Pediatric Neurology, Al Jalila Children's Specialty Hospital, Dubai, ARE
| | - Biju Madathil
- Department of Neonatology, NMC Royal Women's Hospital, Abu Dhabi, ARE
| |
Collapse
|
14
|
Gao L, Shi X, Su G, Guo Y, Lou Y, Wang Y, Miao P, Feng J. Generation of a human iPSC line (ZJSHDPi001-A) from peripheral blood mononuclear cells of a patient with Developmental epileptic encephalopathy-47 carrying FGF12 gene mutation (c.334G > A). Stem Cell Res 2023; 71:103127. [PMID: 37331110 DOI: 10.1016/j.scr.2023.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Developmental epileptic encephalopathy-47 (DEE47) is a nervous system disease characterized by the onset of intractable seizures that appear the first days or weeks after birth. FGF12 is the disease-causing gene of DEE47 that encodes a small cytoplasm protein, which is a member of the fibroblast growth factor homologous factor (FGF) family. The FGF12-encoded protein interacts with the cytoplasmic tail of voltage-gated sodium channels to enhance the voltage dependence of rapid inactivation of sodium channels in neurons. This study used non-insertion Sendai virus transfection to establish the induced pluripotent stem cells(iPSCs)line with FGF12 mutation. The cell line was obtained from a 3-year-old boy carrying the c.334G > A heterozygous mutation in the FGF12 gene. This iPSC line could facilitate the investigations of pathogeneses of complex nervous system diseases such as developmental epileptic encephalopathy.
Collapse
Affiliation(s)
- Liuyan Gao
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xinglei Shi
- Department of Pediatrics, Suichang Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Guofa Su
- Department of Pediatrics, Songyang Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yufan Guo
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yuting Lou
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Ye Wang
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Pu Miao
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
15
|
Ohori S, Miyauchi A, Osaka H, Lourenco CM, Arakaki N, Sengoku T, Ogata K, Honjo RS, Kim CA, Mitsuhashi S, Frith MC, Seyama R, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Saito K, Fujita A, Matsumoto N. Biallelic structural variations within FGF12 detected by long-read sequencing in epilepsy. Life Sci Alliance 2023; 6:e202302025. [PMID: 37286232 PMCID: PMC10248215 DOI: 10.26508/lsa.202302025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
We discovered biallelic intragenic structural variations (SVs) in FGF12 by applying long-read whole genome sequencing to an exome-negative patient with developmental and epileptic encephalopathy (DEE). We also found another DEE patient carrying a biallelic (homozygous) single-nucleotide variant (SNV) in FGF12 that was detected by exome sequencing. FGF12 heterozygous recurrent missense variants with gain-of-function or heterozygous entire duplication of FGF12 are known causes of epilepsy, but biallelic SNVs/SVs have never been described. FGF12 encodes intracellular proteins interacting with the C-terminal domain of the alpha subunit of voltage-gated sodium channels 1.2, 1.5, and 1.6, promoting excitability by delaying fast inactivation of the channels. To validate the molecular pathomechanisms of these biallelic FGF12 SVs/SNV, highly sensitive gene expression analyses using lymphoblastoid cells from the patient with biallelic SVs, structural considerations, and Drosophila in vivo functional analysis of the SNV were performed, confirming loss-of-function. Our study highlights the importance of small SVs in Mendelian disorders, which may be overlooked by exome sequencing but can be detected efficiently by long-read whole genome sequencing, providing new insights into the pathomechanisms of human diseases.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Shimotsuke, Japan
| | - Charles Marques Lourenco
- Neurogenetics Department, Faculdade de Medicina de São José do Rio Preto, São Jose do Rio Preto, Brazil
- Personalized Medicine Department, Special Education Sector at DLE/Grupo Pardini, Belo Horizonte, Brazil
| | - Naohiro Arakaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rachel Sayuri Honjo
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genética Médica do Instituto da Criança, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Marra C, Hartke TV, Ringkamp M, Goldfarb M. Enhanced sodium channel inactivation by temperature and FHF2 deficiency blocks heat nociception. Pain 2023; 164:1321-1331. [PMID: 36607284 PMCID: PMC10166761 DOI: 10.1097/j.pain.0000000000002822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Transient voltage-gated sodium currents are essential for the initiation and conduction of action potentials in neurons and cardiomyocytes. The amplitude and duration of sodium currents are tuned by intracellular fibroblast growth factor homologous factors (FHFs/iFGFs) that associate with the cytoplasmic tails of voltage-gated sodium channels (Na v s), and genetic ablation of Fhf genes disturbs neurological and cardiac functions. Among reported phenotypes, Fhf2null mice undergo lethal hyperthermia-induced cardiac conduction block attributable to the combined effects of FHF2 deficiency and elevated temperature on the cardiac sodium channel (Na v 1.5) inactivation rate. Fhf2null mice also display a lack of heat nociception, while retaining other somatosensory capabilities. Here, we use electrophysiological and computational methods to show that the heat nociception deficit can be explained by the combined effects of elevated temperature and FHF2 deficiency on the fast inactivation gating of Na v 1.7 and tetrodotoxin-resistant sodium channels expressed in dorsal root ganglion C fibers. Hence, neurological and cardiac heat-associated deficits in Fhf2null mice derive from shared impacts of FHF deficiency and temperature towards Na v inactivation gating kinetics in distinct tissues.
Collapse
Affiliation(s)
- Christopher Marra
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| | - Timothy V. Hartke
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Matthias Ringkamp
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| |
Collapse
|
17
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
18
|
Liao W, Luo H, Ruan Y, Mai Y, Liu C, Chen J, Yang S, Xuan A, Liu J. Identification of candidate genes associated with clinical onset of Alzheimer's disease. Front Neurosci 2022; 16:1060111. [PMID: 36605552 PMCID: PMC9808086 DOI: 10.3389/fnins.2022.1060111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background and objective Alzheimer's disease (AD) is the most common type of dementia, with its pathology like beta-amyloid and phosphorylated tau beginning several years before the clinical onset. The aim is to identify genetic risk factors associated with the onset of AD. Methods We collected three microarray data of post-mortem brains of AD patients and the healthy from the GEO database and screened differentially expressed genes between AD and healthy control. GO/KEGG analysis was applied to identify AD-related pathways. Then we distinguished differential expressed genes between symptomatic and asymptomatic AD. Feature importance with logistic regression analysis is adopted to identify the most critical genes with symptomatic AD. Results Data was collected from three datasets, including 184 AD patients and 132 healthy controls. We found 66 genes to be differently expressed between AD and the control. The pathway enriched in the process of exocytosis, synapse, and metabolism and identified 19 candidate genes, four of which (VSNL1, RTN1, FGF12, and ENC1) are vital. Conclusion VSNL1, RTN1, FGF12, and ENC1 may be the essential genes that progress asymptomatic AD to symptomatic AD. Moreover, they may serve as genetic risk factors to identify high-risk individuals showing an earlier onset of AD.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoyu Luo
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuting Ruan
- Department of Rehabilitation, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingren Mai
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chongxu Liu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiawei Chen
- Guangzhou Medical University, Guangzhou, China
| | - Shaoqing Yang
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Shaoqing Yang,
| | - Aiguo Xuan
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China,Aiguo Xuan,
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,*Correspondence: Jun Liu,
| |
Collapse
|
19
|
Sochacka M, Karelus R, Opalinski L, Krowarsch D, Biadun M, Otlewski J, Zakrzewska M. FGF12 is a novel component of the nucleolar NOLC1/TCOF1 ribosome biogenesis complex. Cell Commun Signal 2022; 20:182. [PMID: 36411431 PMCID: PMC9677703 DOI: 10.1186/s12964-022-01000-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Martyna Sochacka
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Radoslaw Karelus
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Opalinski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Daniel Krowarsch
- grid.8505.80000 0001 1010 5103Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Martyna Biadun
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jacek Otlewski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Malgorzata Zakrzewska
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
20
|
Modulating effects of FGF12 variants on Na V1.2 and Na V1.6 being associated with developmental and epileptic encephalopathy and Autism spectrum disorder: A case series. EBioMedicine 2022; 83:104234. [PMID: 36029553 PMCID: PMC9429545 DOI: 10.1016/j.ebiom.2022.104234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Fibroblast Growth Factor 12 (FGF12) may represent an important modulator of neuronal network activity and has been associated with developmental and epileptic encephalopathy (DEE). We sought to identify the underlying pathomechanism of FGF12-related disorders. METHODS Patients with pathogenic variants in FGF12 were identified through published case reports, GeneMatcher and whole exome sequencing of own case collections. The functional consequences of two missense and two copy number variants (CNVs) were studied by co-expression of wildtype and mutant FGF12 in neuronal-like cells (ND7/23) with the sodium channels NaV1.2 or NaV1.6, including their beta-1 and beta-2 sodium channel subunits (SCN1B and SCN2B). RESULTS Four variants in FGF12 were identified for functional analysis: one novel FGF12 variant in a patient with autism spectrum disorder and three variants from previously published patients affected by DEE. We demonstrate the differential regulating effects of wildtype and mutant FGF12 on NaV1.2 and NaV1.6 channels. Here, FGF12 variants lead to a complex kinetic influence on NaV1.2 and NaV1.6, including loss- as well as gain-of function changes in fast and slow inactivation. INTERPRETATION We could demonstrate the detailed regulating effect of FGF12 on NaV1.2 and NaV1.6 and confirmed the complex effect of FGF12 on neuronal network activity. Our findings expand the phenotypic spectrum related to FGF12 variants and elucidate the underlying pathomechanism. Specific variants in FGF12-associated disorders may be amenable to precision treatment with sodium channel blockers. FUNDING DFG, BMBF, Hartwell Foundation, National Institute for Neurological Disorders and Stroke, IDDRC, ENGIN, NIH, ITMAT, ILAE, RES and GRIN.
Collapse
|
21
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
22
|
Xia D, Zhang X, Deng D, Ma X, Masri S, Wang J, Bao S, Hu S, Zhou Q. Long-Term Enhancement of NMDA Receptor Function in Inhibitory Neurons Preferentially Modulates Potassium Channels and Cell Adhesion Molecules. Front Pharmacol 2022; 12:796179. [PMID: 35058780 PMCID: PMC8764260 DOI: 10.3389/fphar.2021.796179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Effectively enhancing the activity of inhibitory neurons has great therapeutic potentials since their reduced function/activity has significant contributions to pathology in various brain diseases. We showed previously that NMDAR positive allosteric modulator GNE-8324 and M-8324 selectively increase NMDAR activity on the inhibitory neurons and elevates their activity in vitro and in vivo. Here we examined the impact of long-term administering M-8324 on the functions and transcriptional profiling of parvalbumin-containing neurons in two representative brain regions, primary auditory cortex (Au1) and prelimbic prefrontal cortex (PrL-PFC). We found small changes in key electrophysiological parameters and RNA levels of neurotransmitter receptors, Na+ and Ca2+ channels. In contrast, large differences in cell adhesion molecules and K+ channels were found between Au1 and PrL-PFC in drug-naïve mice, and differences in cell adhesion molecules became much smaller after M-8324 treatment. There was also minor impact of M-8324 on cell cycle and apoptosis, suggesting a fine safety profile.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinyang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Di Deng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.,International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
23
|
Tian Q, Li H, Shu L, Wang H, Peng Y, Fang H, Mao X. Effective treatments for FGF12-related early-onset epileptic encephalopathies patients. Brain Dev 2021; 43:851-856. [PMID: 34020858 DOI: 10.1016/j.braindev.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND FGF12 (FHF1) gene encodes voltage-gated sodium channel (Nav)-binding protein fibroblast growth factor homologous factor 1, which could cause seizures by regulating voltage dependence of Nav fast inactivation and neuron excitability. The most common pathogenic variant FGF12 c.341G > A related early-onset epileptic encephalopathies (EOEE) was characterized by intractable seizures and developmental disabilities. RESULTS Using whole exome sequencing, a de novo hotspot variant c.341G > A (NM_021032.4) of FGF12 was identified in three unrelated EOEE probands. All probands were seizure free after a combination treatment of valproic acid (VPA) and topiramate (TPM). The motor and cognitive skills in two probands were improved due to the early and effective treatment. In order to compare the effectiveness of different treatment strategies for the disease, a review of treatments for FGF12-related epilepsy was made. CONCLUSION We reported three FGF12 c.341G > A related EOEE patients responded well to a combination antiepileptic therapy of VPA and TPM. The current study is the first to describe the combination therapy of VPA and TPM in FGF12 c.341G > A related EOEE patients. This study may contribute to future medication consultation for intractable epilepsy with FGF12 hotspot variants.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Genetics, Maternal, Child Health Hospital of Hunan Province, Changsha Hunan 410008, China; National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Shu
- Department of Medical Genetics, Maternal, Child Health Hospital of Hunan Province, Changsha Hunan 410008, China; National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Hua Wang
- Department of Medical Genetics, Maternal, Child Health Hospital of Hunan Province, Changsha Hunan 410008, China; National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Ying Peng
- Department of Medical Genetics, Maternal, Child Health Hospital of Hunan Province, Changsha Hunan 410008, China.
| | - Hongjun Fang
- Department of Neurology, Hunan Children's Hospital, University of South China, Changsha 410007, China.
| | - Xiao Mao
- Department of Medical Genetics, Maternal, Child Health Hospital of Hunan Province, Changsha Hunan 410008, China; National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| |
Collapse
|
24
|
Magalhães PHM, Moraes HT, Athie MCP, Secolin R, Lopes-Cendes I. New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav 2021; 121:106428. [PMID: 31400936 DOI: 10.1016/j.yebeh.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022]
Abstract
Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.
Collapse
Affiliation(s)
- Pedro H M Magalhães
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Helena T Moraes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Maria C P Athie
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Rodrigo Secolin
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil.
| |
Collapse
|
25
|
Zhou M, Chen J, Meng K, Zhang Y, Zhang M, Lu P, Feng Y, Huang M, Dong Q, Li X, Tian H. Production of bioactive recombinant human fibroblast growth factor 12 using a new transient expression vector in E. coli and its neuroprotective effects. Appl Microbiol Biotechnol 2021; 105:5419-5431. [PMID: 34244814 DOI: 10.1007/s00253-021-11430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, an increasing number of studies have shown that fibroblast growth factor 12 (FGF12) plays important roles in regulating neural development and function. Importantly, changes of FGF12 expression are thought to be related to the pathophysiology of many neurological diseases. However, little research has been performed to explore the protective effect of FGF12 on nerve damage. This study aims to explore its neuroprotective effects using our recombinant humanized FGF12 (rhFGF12). The hFGF12 gene was cloned and ligated into an expression vector to construct a recombinant plasmid pET-3a-hFGF12. Single colonies were screened to obtain high expression engineering strains, and fermentation and purification protocols for rhFGF12 were designed and optimized. The biological activities and related mechanisms of rhFGF12 were investigated by MTT assay using NIH3T3 and PC12 cell lines. The in vitro neurotoxicity model of H2O2-induced oxidative injury in PC12 cells was established to explore the protective effects of rhFGF12. The results indicate that the beneficial effects of rhFGF12 were most likely achieved by promoting cell proliferation and reducing apoptosis. Moreover, a transgenic zebrafish (islet) with strong GFP fluorescence in the motor neurons of the hindbrain was used to establish a central injury model caused by mycophenolate mofetil (MMF). The results suggested that rhFGF12 could ameliorate central injury induced by MMF in zebrafish. In conclusion, we have established an efficient method to express and purify active rhFGF12 using an Escherichia coli expression system. Besides, rhFGF12 plays a protective effect of on nerve damage, and it provides a promising therapeutic approach for nerve injury. KEY POINTS: • Effective expression and purification of bioactive rhFGF12 protein in E. coli. • ERK/MAPK pathway is involved in rhFGF12-stimulated proliferation on PC12 cells. • The rhFGF12 has the neuroprotective effects by inhibiting apoptosis.
Collapse
Affiliation(s)
- Mi Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kuikui Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Panyu Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongjun Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
26
|
Chaudhuri T, Chintalapati J, Hosur MV. Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients. PLoS One 2021; 16:e0252475. [PMID: 34086756 PMCID: PMC8177469 DOI: 10.1371/journal.pone.0252475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3'-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3'-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3'-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3'-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3'-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3'-UTR variants in relevant genes by the mechanisms mentioned above. 3'-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3'-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures.
Collapse
Affiliation(s)
- Tanusree Chaudhuri
- Department of Natural Sciences and Engineering, National Institute of Advanced Studies, IISc campus, Bangalore, India
| | - Janaki Chintalapati
- CDAC-Centre for Development of Advanced Computing, Byappanahalli, Bangalore, India
| | | |
Collapse
|
27
|
Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 2021; 62:1546-1558. [PMID: 33982289 DOI: 10.1111/epi.16916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H /F+ mice. Spontaneous epileptiform events in Fhf1R52H /+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS All Fhf1R52H /+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H /+ mice prior to seizure. SIGNIFICANCE The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Yue Liu
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Vasilisa Iatckova
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Ying Xie
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| |
Collapse
|
28
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
29
|
Martinez-Espinosa PL, Yang C, Xia XM, Lingle CJ. Nav1.3 and FGF14 are primary determinants of the TTX-sensitive sodium current in mouse adrenal chromaffin cells. J Gen Physiol 2021; 153:211839. [PMID: 33651884 PMCID: PMC8020717 DOI: 10.1085/jgp.202012785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.
Collapse
Affiliation(s)
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
30
|
Fry AE, Marra C, Derrick AV, Pickrell WO, Higgins AT, Te Water Naude J, McClatchey MA, Davies SJ, Metcalfe KA, Tan HJ, Mohanraj R, Avula S, Williams D, Brady LI, Mesterman R, Tarnopolsky MA, Zhang Y, Yang Y, Wang X, Rees MI, Goldfarb M, Chung SK. Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic encephalopathy. Am J Hum Genet 2021; 108:176-185. [PMID: 33245860 PMCID: PMC7820623 DOI: 10.1016/j.ajhg.2020.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Anna V Derrick
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - William O Pickrell
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Neurology department, Morriston Hospital, Swansea Bay University Hospital Health Board, Swansea SA6 6NL, UK
| | - Adam T Higgins
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Johann Te Water Naude
- Paediatric Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Martin A McClatchey
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Hui Jeen Tan
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Denise Williams
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Lauren I Brady
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Ronit Mesterman
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | | | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Faculty of Medicine and Health, Camperdown, University of Sydney, NSW 2006, Australia
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Kids Neuroscience Centre, Kids Research, Children Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, NSW 2050, Australia
| |
Collapse
|
31
|
Kim SY, Jang SS, Kim H, Hwang H, Choi JE, Chae JH, Kim KJ, Lim BC. Genetic diagnosis of infantile-onset epilepsy in the clinic: Application of whole-exome sequencing following epilepsy gene panel testing. Clin Genet 2021; 99:418-424. [PMID: 33349918 DOI: 10.1111/cge.13903] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the clinical utility of whole-exome sequencing in a group of infantile-onset epilepsy patients who tested negative for epilepsy using a gene panel test. Whole-exome sequencing was performed on 59 patients who tested negative on customized epilepsy gene panel testing. We identified eight pathogenic or likely pathogenic sequence variants in eight different genes (FARS2, YWHAG, KCNC1, DYRK1A, SMC1A, PIGA, OGT, and FGF12), one pathogenic structural variant (8.6 Mb-sized deletion on chromosome X [140 994 419-149 630 805]), and three putative low-frequency mosaic variants from three different genes (GABBR2, MTOR, and CUX1). Subsequent whole-exome sequencing revealed an additional 8% of diagnostic yield with genetic confirmation of epilepsy in 55.4% (62/112) of our cohort. Three genes (YWHAG, KCNC1, and FGF12) were identified as epilepsy-causing genes after the original gene panel was designed. The others were initially linked with mitochondrial encephalopathy or different neurodevelopmental disorders, although an epilepsy phenotype was listed as one of the clinical features. Application of whole-exome sequencing following epilepsy gene panel testing provided 8% of additional diagnostic yield in an infantile-onset epilepsy cohort. Whole-exome sequencing could provide an opportunity to reanalyze newly recognized epilepsy-linked genes without updating the gene panel design.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea
| | - Se Song Jang
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Kim MJ, Yum MS, Seo GH, Lee Y, Jang HN, Ko TS, Lee BH. Clinical Application of Whole Exome Sequencing to Identify Rare but Remediable Neurologic Disorders. J Clin Med 2020; 9:jcm9113724. [PMID: 33233562 PMCID: PMC7699758 DOI: 10.3390/jcm9113724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The aim of this study was to describe the application of whole exome sequencing (WES) in the accurate genetic diagnosis and personalized treatment of extremely rare neurogenetic disorders. Methods: From 2017 to 2019, children with neurodevelopmental symptoms were evaluated using WES in the pediatric neurology clinic and medical genetics center. The clinical presentation, laboratory findings including the genetic results from WES, and diagnosis-based treatment and outcomes of the four patients are discussed. Results: A total of 376 children with neurodevelopmental symptom were evaluated by WES, and four patients (1.1%) were diagnosed with treatable neurologic disorders. Patient 1 (Pt 1) showed global muscle hypotonia, dysmorphic facial features, and multiple anomalies beginning in the perinatal period. Pt 1 was diagnosed with congenital myasthenic syndrome 22 of PREPL deficiency. Pt 2 presented with hypotonia and developmental arrest and was diagnosed with autosomal recessive dopa-responsive dystonia due to TH deficiency. Pt 3, who suffered from intractable epilepsy and progressive cognitive decline, was diagnosed with epileptic encephalopathy 47 with a heterozygous FGF12 mutation. Pt 4 presented with motor delay and episodic ataxia and was diagnosed with episodic ataxia type II (heterozygous CACNA1A mutation). The patients’ major neurologic symptoms were remarkably relieved with pyridostigmine (Pt 1), levodopa (Pt 2), sodium channel blocker (Pt 3), and acetazolamide (Pt 4), and most patients regained developmental milestones in the follow-up period (0.4 to 3 years). Conclusions: The early application of WES helps in the identification of extremely rare genetic diseases, for which effective treatment modalities exist. Ultimately, WES resulted in optimal clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
- Correspondence: ; Tel.: +82-2-3010-3386; Fax: +82-2-3010-3356
| | - Go Hun Seo
- 3billion Inc., Seoul 06193, Korea; (G.H.S.); (B.H.L.)
| | - Yena Lee
- Department of Genetics, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea;
| | - Han Na Jang
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul 05505, Korea; (M.-J.K.); (H.N.J.); (T.-S.K.)
| | - Beom Hee Lee
- 3billion Inc., Seoul 06193, Korea; (G.H.S.); (B.H.L.)
| |
Collapse
|
33
|
Park DS, Shekhar A, Santucci J, Redel-Traub G, Solinas S, Mintz S, Lin X, Chang EW, Narke D, Xia Y, Goldfarb M, Fishman GI. Ionic Mechanisms of Impulse Propagation Failure in the FHF2-Deficient Heart. Circ Res 2020; 127:1536-1548. [PMID: 32962518 DOI: 10.1161/circresaha.120.317349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (NaV) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Nav availability in Fhf2 knockout (Fhf2KO) mice predisposes to abnormal excitability at the tissue level are not well defined. OBJECTIVE Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction. METHODS AND RESULTS Fhf2KO mice were challenged by reducing calcium conductance (gCaV) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in Fhf2KO mice, with Fhf2 wild-type (Fhf2WT) mice showing normal impulse propagation. To explore the ionic mechanisms of block in Fhf2KO hearts, multicellular linear strand models incorporating FHF2-deficient Nav inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCaV or diminished Gj are very different. Enhanced Nav inactivation due to FHF2 deficiency shifts dependence onto calcium current (ICa) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Nav inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation. CONCLUSIONS FHF2-dependent effects on Nav inactivation ensure adequate sodium current (INa) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.
Collapse
Affiliation(s)
- David S Park
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Akshay Shekhar
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine.,Regeneron Pharmaceuticals, Tarrytown, NY (A.S.)
| | - John Santucci
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Gabriel Redel-Traub
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Sergio Solinas
- University of Zurich, Institute of Neuroinformatics, Switzerland (S.S.).,Hunter College of City University, Department of Biological Sciences, New York (S.S., M.G.)
| | - Shana Mintz
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Xianming Lin
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Ernest Whanwook Chang
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Deven Narke
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| | - Yuhe Xia
- Department of Population Health (Y.X.), New York University School of Medicine
| | - Mitchell Goldfarb
- Hunter College of City University, Department of Biological Sciences, New York (S.S., M.G.)
| | - Glenn I Fishman
- The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine
| |
Collapse
|
34
|
Verheyen S, Speicher MR, Ramler B, Plecko B. Childhood-onset epileptic encephalopathy due to FGF12 exon 1-4 tandem duplication. NEUROLOGY-GENETICS 2020; 6:e494. [PMID: 32802954 PMCID: PMC7371371 DOI: 10.1212/nxg.0000000000000494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/15/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Sarah Verheyen
- Institute of Human Genetics (S.V., M.R.S., B.R.), Diagnostic and Research Center for MolecularBioMedicine, Medical University of Graz; and Department of Pediatrics and Adolescent Medicine (B.P.), Division of General Pediatrics, Medical University of Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics (S.V., M.R.S., B.R.), Diagnostic and Research Center for MolecularBioMedicine, Medical University of Graz; and Department of Pediatrics and Adolescent Medicine (B.P.), Division of General Pediatrics, Medical University of Graz, Austria
| | - Barbara Ramler
- Institute of Human Genetics (S.V., M.R.S., B.R.), Diagnostic and Research Center for MolecularBioMedicine, Medical University of Graz; and Department of Pediatrics and Adolescent Medicine (B.P.), Division of General Pediatrics, Medical University of Graz, Austria
| | - Barbara Plecko
- Institute of Human Genetics (S.V., M.R.S., B.R.), Diagnostic and Research Center for MolecularBioMedicine, Medical University of Graz; and Department of Pediatrics and Adolescent Medicine (B.P.), Division of General Pediatrics, Medical University of Graz, Austria
| |
Collapse
|
35
|
Trivisano M, Ferretti A, Bebin E, Huh L, Lesca G, Siekierska A, Takeguchi R, Carneiro M, De Palma L, Guella I, Haginoya K, Shi RM, Kikuchi A, Kobayashi T, Jung J, Lagae L, Milh M, Mathieu ML, Minassian BA, Novelli A, Pietrafusa N, Takeshita E, Tartaglia M, Terracciano A, Thompson ML, Cooper GM, Vigevano F, Villard L, Villeneuve N, Buyse GM, Demos M, Scheffer IE, Specchio N. Defining the phenotype of FHF1 developmental and epileptic encephalopathy. Epilepsia 2020; 61:e71-e78. [PMID: 32645220 PMCID: PMC8168379 DOI: 10.1111/epi.16582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/25/2023]
Abstract
Fibroblast growth-factor homologous factor (FHF1) gene variants have recently been associated with developmental and epileptic encephalopathy (DEE). FHF1 encodes a cytosolic protein that modulates neuronal sodium channel gating. We aim to refine the electroclinical phenotypic spectrum of patients with pathogenic FHF1 variants. We retrospectively collected clinical, genetic, neurophysiologic, and neuroimaging data of 17 patients with FHF1-DEE. Sixteen patients had recurrent heterozygous FHF1 missense variants: 14 had the recurrent p.Arg114His variant and two had a novel likely pathogenic variant p.Gly112Ser. The p.Arg114His variant is associated with an earlier onset and more severe phenotype. One patient carried a chromosomal microduplication involving FHF1. Twelve patients carried a de novo variant, five (29.5%) inherited from parents with gonadic or somatic mosaicism. Seizure onset was between 1 day and 41 months; in 76.5% it was within 30 days. Tonic seizures were the most frequent seizure type. Twelve patients (70.6%) had drug-resistant epilepsy, 14 (82.3%) intellectual disability, and 11 (64.7%) behavioral disturbances. Brain magnetic resonance imaging (MRI) showed mild cerebral and/or cerebellar atrophy in nine patients (52.9%). Overall, our findings expand and refine the clinical, EEG, and imaging phenotype of patients with FHF1-DEE, which is characterized by early onset epilepsy with tonic seizures, associated with moderate to severe ID and psychiatric features.
Collapse
Affiliation(s)
- Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Elizabeth Bebin
- University of Alabama at Birmingham, Department of Pediatric Neurology, Birmingham, AL, USA
| | - Linda Huh
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, BC, Canada
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon - Lyon – France and Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1 - Lyon - France
| | | | - Ryo Takeguchi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Maryline Carneiro
- Department of Pediatric Neurology, Femme Mère Enfant Hospital, Hospices Civils de Lyon, France
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Ilaria Guella
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, BC, Canada
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children’s Hopital, Sendai 989-3126, Japan
| | - Ruo Ming Shi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan and Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan and Division of Child Development, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Julien Jung
- Service de Génétique, Hospices Civils de Lyon - Lyon – France and Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1 - Lyon - France
| | - Lieven Lagae
- Department of Development and Regeneration, University Hospitals KU Leuven, Leuven, Belgium
| | - Mathieu Milh
- Department of Pediatric Neurology, Femme Mère Enfant Hospital, Hospices Civils de Lyon, France
| | - Marie L Mathieu
- Department of Pediatric Neurology, Femme Mère Enfant Hospital, Hospices Civils de Lyon, France
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Alessandra Terracciano
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | | | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | | | - Nathalie Villeneuve
- APHM, Department of Pediatric Neurology, Hopital de la Timone, Marseille, France
| | - Gunnar M Buyse
- Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, BC, Canada
| | - Ingrid E Scheffer
- University of Melbourne, Austin Health, and Royal Children’s Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
36
|
Willemsen MH, Goel H, Verhoeven JS, Braakman HMH, de Leeuw N, Freeth A, Minassian BA. Epilepsy phenotype in individuals with chromosomal duplication encompassing FGF12. Epilepsia Open 2020; 5:301-306. [PMID: 32524056 PMCID: PMC7278552 DOI: 10.1002/epi4.12396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022] Open
Abstract
Intragenic mutations in FGF12 are associated with intractable seizures, developmental regression, intellectual disability, ataxia, hypotonia, and feeding difficulties. FGF12 duplications are rarely reported, but it was suggested that those might have a similar gain-of-function effect and lead to a more or less comparable phenotype. A favorable response to the sodium blocker phenytoin was reported in several cases, both in patients with an intragenic mutation and in patients with a duplication of FGF12. We report three individuals from two families with FGF12 duplications. The duplications are flanked and probably mediated by two long interspersed nuclear elements (LINEs). The duplication cases show phenotypic overlap with the cases with intragenic mutations. Though the onset of epilepsy might be later, after the onset of seizures both groups show developmental stagnation and regression in several cases. This illustrates and further confirms that chromosomal FGF12 duplications and intragenic gain-of-function mutations yield overlapping phenotypes.
Collapse
Affiliation(s)
- Marjolein H Willemsen
- Department of Clinical Genetics Maastricht University Medical Centre Maastricht The Netherlands.,Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands.,Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen The Netherlands
| | - Himanshu Goel
- Hunter Genetics Waratah NSW Australia.,University of Newcastle Callaghan NSW Australia
| | - Judith S Verhoeven
- Department of Neurology Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ Heeze The Netherlands
| | - Hilde M H Braakman
- Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen The Netherlands.,Department of Pediatric Neurology Amalia Children's Hospital Radboud University Medical Center Nijmegen The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands.,Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen The Netherlands
| | - Alison Freeth
- Hunter Genetics Waratah NSW Australia.,University of Newcastle Callaghan NSW Australia
| | - Berge A Minassian
- Program in Genetics and Genome Biology Hospital for Sick Children Research Institute Toronto ON Canada.,Institute of Medical Science University of Toronto Toronto ON Canada.,Division of Neurology Department of Pediatrics University of Texas Southwestern Dallas TX USA
| |
Collapse
|
37
|
Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020; 62:178-191. [PMID: 31784983 DOI: 10.1111/dmcn.14407] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
An ever-increasing number of neurogenetic conditions presenting with both epilepsy and atypical movements are now recognized. These disorders within the 'genetic epilepsy-dyskinesia' spectrum are clinically and genetically heterogeneous. Increased clinical awareness is therefore necessary for a rational diagnostic approach. Furthermore, careful interpretation of genetic results is key to establishing the correct diagnosis and initiating disease-specific management strategies in a timely fashion. In this review we describe the spectrum of movement disorders associated with genetically determined epilepsies. We also propose diagnostic strategies and putative pathogenic mechanisms causing these complex syndromes associated with both seizures and atypical motor control. WHAT THIS PAPER ADDS: Implicated genes encode proteins with very diverse functions. Pathophysiological mechanisms by which epilepsy and movement disorder phenotypes manifest are often not clear. Early diagnosis of treatable disorders is essential and next generation sequencing may be required.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Federica Rachele Danti
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Robert Spaull
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Amy Mctague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
38
|
Entire FGF12 duplication by complex chromosomal rearrangements associated with West syndrome. J Hum Genet 2019; 64:1005-1014. [PMID: 31311986 DOI: 10.1038/s10038-019-0641-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/09/2022]
Abstract
Complex rearrangements of chromosomes 3 and 9 were found in a patient presenting with severe epilepsy, developmental delay, dysmorphic facial features, and skeletal abnormalities. Molecular cytogenetic analysis revealed 46,XX.ish der(9)(3qter→3q28::9p21.1→9p22.3::9p22.3→9qter)(RP11-368G14+,RP11-299O8-,RP11-905L2++,RP11-775E6++). Her dysmorphic features are consistent with 3q29 microduplication syndrome and inv dup del(9p). Trio-based WES of the patient revealed no pathogenic single nucleotide variants causing epilepsy, but confirmed a 3q28q29 duplication involving FGF12, which encodes fibroblast growth factor 12. FGF12 positively regulates the activity of voltage-gated sodium channels. Recently, only one recurrent gain-of-function variant [NM_021032.4:c.341G>A:p.(Arg114His)] in FGF12 was found in a total of 10 patients with severe early-onset epilepsy. We propose that the patient's entire FGF12 duplication may be analogous to the gain-of-function variant in FGF12 in the epileptic phenotype of this patient.
Collapse
|
39
|
Paprocka J, Jezela‐Stanek A, Koppolu A, Rydzanicz M, Kosińska J, Stawiński P, Płoski R. FGF12
p.Gly112Ser variant as a cause of phenytoin/phenobarbital responsive epilepsy. Clin Genet 2019; 96:274-275. [DOI: 10.1111/cge.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Justyna Paprocka
- Department of Paediatric NeurologySchool of Medicine in Katowice, Medical University of Silesia in Katowice Katowice Poland
| | - Aleksandra Jezela‐Stanek
- Department of Genetics and Clinical ImmunologyNational Institute of Tuberculosis and Lung Diseases Warsaw Poland
| | - Agniesz Koppolu
- Department of Medical GeneticsWarsaw Medical University Warsaw Poland
- Postgraduate School of Molecular MedicineWarsaw Medical University Warsaw Poland
| | | | - Joanna Kosińska
- Department of Medical GeneticsWarsaw Medical University Warsaw Poland
| | - Piotr Stawiński
- Department of Medical GeneticsWarsaw Medical University Warsaw Poland
| | - Rafał Płoski
- Department of Medical GeneticsWarsaw Medical University Warsaw Poland
| |
Collapse
|
40
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
The Epilepsy Genetics Initiative: Systematic reanalysis of diagnostic exomes increases yield. Epilepsia 2019; 60:797-806. [PMID: 30951195 PMCID: PMC6519344 DOI: 10.1111/epi.14698] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The Epilepsy Genetics Initiative (EGI) was formed in 2014 to create a centrally managed database of clinically generated exome sequence data. EGI performs systematic research-based reanalysis to identify new molecular diagnoses that were not possible at the time of initial sequencing and to aid in novel gene discovery. Herein we report on the efficacy of this approach 3 years after inception. METHODS One hundred sixty-six individuals with epilepsy who underwent diagnostic whole exome sequencing (WES) were enrolled, including 139 who had not received a genetic diagnosis. Sequence data were transferred to the EGI and periodically reevaluated on a research basis. RESULTS Eight new diagnoses were made as a result of updated annotations or the discovery of novel epilepsy genes after the initial diagnostic analysis was performed. In five additional cases, we provided new evidence to support or contradict the likelihood of variant pathogenicity reported by the laboratory. One novel epilepsy gene was discovered through dual interrogation of research and clinically generated WES. SIGNIFICANCE EGI's diagnosis rate of 5.8% represents a considerable increase in diagnostic yield and demonstrates the value of periodic reinterrogation of whole exome data. The initiative's contributions to gene discovery underscore the importance of data sharing and the value of collaborative enterprises.
Collapse
|
42
|
Ziegler A, Colin E, Goudenège D, Bonneau D. A snapshot of some pLI score pitfalls. Hum Mutat 2019; 40:839-841. [PMID: 30977936 DOI: 10.1002/humu.23763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 11/10/2022]
Abstract
The pLI score reflects the tolerance of a given gene to the loss of function on the basis of the number of protein truncating variants, that is, the frameshift, splice donor, splice acceptor, and stop-gain variants referenced for this gene in control databases weighted by the size of the gene and the sequencing coverage. It is frequently used to prioritize candidate genes when analyzing whole exome or whole genome data. We list here the main pitfalls to consider before using this score. Concrete illustrations are given for each of these pitfalls.
Collapse
Affiliation(s)
- Alban Ziegler
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France
| | - Estelle Colin
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France.,MitoLab, UMR CNRS 6015-INSERM, MitoVasc Institute, University of Angers, Angers, France
| | - David Goudenège
- MitoLab, UMR CNRS 6015-INSERM, MitoVasc Institute, University of Angers, Angers, France
| | - Dominique Bonneau
- Biochemistry and Genetics Department, University Hospital of Angers, Angers, France.,MitoLab, UMR CNRS 6015-INSERM, MitoVasc Institute, University of Angers, Angers, France
| |
Collapse
|
43
|
Møller RS, Hammer TB, Rubboli G, Lemke JR, Johannesen KM. From next-generation sequencing to targeted treatment of non-acquired epilepsies. Expert Rev Mol Diagn 2019; 19:217-228. [DOI: 10.1080/14737159.2019.1573144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rikke S. Møller
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Trine B. Hammer
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
Vevera J, Zarrei M, Hartmannová H, Jedličková I, Mušálková D, Přistoupilová A, Oliveriusová P, Trešlová H, Nosková L, Hodaňová K, Stránecký V, Jiřička V, Preiss M, Příhodová K, Šaligová J, Wei J, Woodbury-Smith M, Bleyer AJ, Scherer SW, Kmoch S. Rare copy number variation in extremely impulsively violent males. GENES BRAIN AND BEHAVIOR 2018; 18:e12536. [DOI: 10.1111/gbb.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Vevera
- Department of Psychiatry; Faculty of Medicine and University Hospital in Pilsen, Charles University; Prague Czech Republic
- Department of Psychiatry, First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
- Institute for Postgraduate Medical Education; Prague Czech Republic
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Petra Oliveriusová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Václav Jiřička
- Prison Service of the Czech Republic, Directorate General; Department of Psychology; Prague Czech Republic
| | - Marek Preiss
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
- Psychology Department; University of New York in Prague; Prague Czech Republic
| | - Kateřina Příhodová
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital; Department of Pediatrics and Adolescent Medicine; Kosice Slovakia
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine of Pavel Jozef Šafárik University Kosice; Kosice Slovakia
| | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary; Newcastle upon Tyne UK
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
- Section on Nephrology, Wake Forest School of Medicine; Medical Center Blvd.; Winston-Salem North Carolina USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics and McLaughlin Centre; University of Toronto; Toronto Ontario Canada
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| |
Collapse
|
45
|
Two Japanese cases of epileptic encephalopathy associated with an FGF12 mutation. Brain Dev 2018; 40:728-732. [PMID: 29699863 DOI: 10.1016/j.braindev.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
A heterozygous mutation in the fibroblast growth factor 12 (FGF12) gene, which elevates the voltage dependence of neuronal sodium channel fast inactivation, was recently identified in some patients with epileptic encephalopathy. Here we report 1 Japanese patient diagnosed with early infantile epileptic encephalopathy (EIEE) and another diagnosed with epilepsy of infancy with migrating focal seizures (EIMFS). These 2 patients had an identical heterozygous missense mutation [c.341G>A:p.(Arg114His)] in FGF12 , which was identified with whole-exome sequencing. This mutation is identical to previously reported mutations in cases with early onset epileptic encephalopathy. One of our cases exhibited EIMFS, and this case responded to phenytoin and high-dose phenobarbital (PB). FGF12-related epileptic encephalopathy may exhibit diverse phenotypes and may respond to sodium channel blockers or high-dose PB.
Collapse
|
46
|
Evaluating the pathogenic potential of genes with de novo variants in epileptic encephalopathies. Genet Med 2018; 21:17-27. [PMID: 29895856 PMCID: PMC6752304 DOI: 10.1038/s41436-018-0011-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Epileptic encephalopathies comprise a group of catastrophic epilepsies with heterogeneous genetic etiology. Although next-generation sequencing techniques can reveal a number of de novo variants in epileptic encephalopathies, evaluating the pathogenicity of these variants can be challenging. Determining the pathogenic potential of genes in epileptic encephalopathies is critical before evaluating the pathogenicity of variants identified in an individual. We reviewed de novo variants in epileptic encephalopathies, including their genotypes and functional consequences. We then evaluated the pathogenic potential of genes, with the following additional considerations: (1) recurrence of variants in unrelated cases, (2) information of previously defined phenotypes, and (3) data from genetic experimental studies. Genes related to epileptic encephalopathy revealed pathogenicity with distinct functional alterations, i.e., either a gain of function or loss of function in the majority; however, several genes warranted further study to confirm their pathogenic potential. Whether a gene was associated with distinct phenotype, the genotype (or functional alteration)-–phenotype correlation, and quantitative correlation between genetic impairment and phenotype severity were suggested to be specific evidence in determining the pathogenic role of genes. Data from epileptic encephalopathy-related genes would be helpful in outlining guidelines for evaluating the pathogenic potential of genes in other genetic disorders.
Collapse
|
47
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
48
|
Abstract
Epilepsy is a chronic neurological disorder affecting 65 million people worldwide. The etiologies of seizures can often be identified as genetic, metabolic, structural, immunologic or infectious, but in many cases the cause is unknown with the current diagnostic tools. Epileptogenesis is a process during which genetic or other acquired etiologies/insults lead to functional, structural, or network reorganization changes in the brain that may lead to the development of, or progression of, spontaneous seizures. During development, there are continuous changes in the structure, function, and network operation that also show sex specificity, which may alter the mechanisms underlying the generation of seizures (ictogenesis) and epileptogenesis. Understanding the mechanisms of early life epileptogenesis will enable the development of rationally designed age- and sex-appropriate therapies that would improve the overall quality of patients' lives. Here, we discuss some of these processes that may affect seizure generation and epileptogenesis in the neonatal brain.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA,Corresponding author. Address: Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Rose F. Kennedy Center, Rm 316, Bronx, NY 10461, USA. Tel.: +1 718-430-2447; fax: +1 718-430-8899. (S.L. Moshé)
| |
Collapse
|
49
|
Male secretory breast cancer: case in a 6-year-old boy with a peculiar gene duplication and review of the literature. Breast Cancer Res Treat 2018; 170:445-454. [DOI: 10.1007/s10549-018-4772-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
50
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|