1
|
Xu FH, Sun X, Zhu J, Kong LY, Chang Y, Li N, Hui WX, Zhang CP, Cheng YM, Han WX, Tian ZM, Qiao YN, Chen DF, Liu L, Feng DY, Han J. Significance of the gut tract in the therapeutic mechanisms of polydopamine for acute cerebral infarction: neuro-immune interaction through the gut-brain axis. Front Cell Infect Microbiol 2025; 14:1413018. [PMID: 40104260 PMCID: PMC11913817 DOI: 10.3389/fcimb.2024.1413018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/25/2024] [Indexed: 03/20/2025] Open
Abstract
Background Recent research has made significant progress in elucidating gastrointestinal complications following acute cerebral infarction (ACI), which includes disorders in intestinal motility and dysbiosis of the gut microbiota. Nevertheless, the role of the gut (which is acknowledged as being the largest immune organ) in the immunoreactive effects of polydopamine nanoparticles (PDA) on acute ischemic stroke remains inadequately understood. In addition to its function in nutrient absorption, the gut acts as a protective barrier against microbes. Systemic immune responses, which are triggered by the disruption of gut barrier integrity, are considered as one of the mechanisms underlying acute ischemic stroke, with the gut-brain axis (GBA) playing a pivotal role in this process. Methods In this study, we used a PDA intervention in an ACI model to investigate ACI-like behavior, intestinal barrier function, central and peripheral inflammation, and hippocampal neuron excitability, thus aiming to elucidate the mechanisms through which PDA improves ACI via the GBA. Results Our findings indicated that as ACI mice experienced dysbiosis of the gut microbiota and intestinal barrier damage, the levels of proinflammatory factors in the serum and brain significantly increased. Additionally, the activation of astrocytes in the hippocampal region and neuronal apoptosis were observed in ACI mice. Importantly, our study is the first to provide evidence demonstrating that PDA effectively suppresses the neuroimmune interactions of the gut-brain axis and significantly improves intestinal epithelial barrier integrity. Conclusion We hope that our discoveries will serve as a foundation for further explorations of the therapeutic mechanisms of PDA in ACI, particularly in elucidating the protective roles of gut microbiota and intestinal barrier function, as well as in the development of more targeted clinical interventions for ACI.
Collapse
Affiliation(s)
- Feng-Hua Xu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Xiao Sun
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Ling-Yang Kong
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yuan Chang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Ning Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen-Xiang Hui
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Cong-Peng Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yi-Ming Cheng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Xin Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Zhi-Min Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yan-Ning Qiao
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Dong-Feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Da-Yun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
Beytur L, Korkmaz E, Köse E, Taşlıdere A, Tekin S. Myrtenal Pretreatment Exerts a Protective Effect Against Renal Ischemia-Reperfusion Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70202. [PMID: 40025781 PMCID: PMC11873678 DOI: 10.1002/jbt.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Acute kidney injury (AKI) is a serious condition with high mortality in intensive care units and during vascular surgeries. Renal ischemia-reperfusion injury (IRI) significantly contributes to AKI. Preclinical studies have shown that myrtenal (Myrt) has anti-inflammatory and antioxidant properties. We hypothesized that Myrt might alleviate renal damage caused by IRI through the modulation of oxidative stress and inflammatory processes. This study aimed to investigate the renoprotective potential of Myrt against IRI using biochemical evaluations and histological examinations. Forty male Sprague Dawley rats were assigned to four groups: sham, IRI, Myrt40+IRI, and Myrt80+IRI. Animals received daily intraperitoneal injections of Myrt (40-80 mg/kg) or solvent for 9 days before surgery. The sham group underwent laparotomy, while the other groups had AKI induced via bilateral renal pedicle clamping for 45 min, followed by 24 h of reperfusion. Renal function was assessed by blood urea nitrogen (BUN), creatinine, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Inflammatory markers interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) were measured, along with oxidative stress parameters malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Renal damage was evaluated histopathologically using hematoxylin and eosin staining and apoptosis was assessed via caspase-3 immunohistochemistry. In the IRI group, serum BUN and creatinine levels were significantly higher than the sham group but were reduced by Myrt pretreatment (p < 0.05). IRI also led to significant increases in MDA, KIM-1, NGAL, IL-1β, and TNF-α in kidney tissue (p < 0.05), which were notably decreased by Myrt pretreatment (p < 0.05). Myrt also restored SOD and CAT enzyme activities and GSH levels reduced by IRI (p < 0.05). Histological analysis showed Myrt significantly alleviated renal tissue damage and reduced caspase-3 immunoreactivity due to IRI (p < 0.05). The findings suggest that Myrt has a protective effect against renal IRI.
Collapse
Affiliation(s)
- Leyla Beytur
- Department of Anatomy, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Engin Korkmaz
- Department of Physiology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Evren Köse
- Department of Anatomy, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Suat Tekin
- Department of Physiology, Faculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
3
|
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS, Shen J. Intrinsic immunomodulatory hydrogels for chronic inflammation. Chem Soc Rev 2025; 54:33-61. [PMID: 39499495 DOI: 10.1039/d4cs00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Collapse
Affiliation(s)
- Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Institute of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seyoung Koo
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jong Seung Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
4
|
Du T, Su H, Cao D, Meng Q, Zhang M, Liu Z, Li H. Mitochondria-targeted antioxidant mitoquinone mitigates vitrification-induced damage in mouse ovarian tissue by maintaining mitochondrial homeostasis via the p38 MAPK pathway. Eur J Med Res 2024; 29:593. [PMID: 39696534 DOI: 10.1186/s40001-024-02181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice. METHODS KGN cells were treated with various concentrations (0.1, 1, 10, and 50 μM) of MitoQ to determine the optimal concentration. Female ICR mice were divided into three groups: control, conventional vitrification, and MitoQ-supplemented vitrification. Ovarian samples were cryopreserved, thawed, and assessed for tissue morphology using Hematoxylin and Eosin (H&E) staining, and mitochondrial changes using immunofluorescence, transmission electron microscopy, and Western blot analysis. RNA sequencing (RNA-seq) was employed to explore potential protective mechanisms. Autotransplantation experiments were conducted, and the long-term effects of MitoQ on ovarian function were evaluated by counting follicle numbers through H&E staining and measuring serum estradiol and AMH levels using ELISA. RESULTS MitoQ at 1 μM was found to be the optimal concentration for maintaining follicular morphology after vitrification. It effectively reduced mitochondrial oxidative damage, preserved mitochondrial morphology, and regulated the expression of mitochondrial dynamics proteins (Drp1 and Mfn2). RNA-seq and Western blot analyses revealed that MitoQ inhibited the p38 MAPK pathway, thereby reducing apoptosis. Additionally, autotransplantation experiments showed that MitoQ treatment significantly increased follicle counts, estradiol (E2), and anti-Müllerian hormone (AMH) levels compared to conventional vitrification. CONCLUSIONS MitoQ effectively mitigates vitrification-induced oxidative damage, maintains mitochondrial homeostasis, and preserves both follicular reserve and endocrine function. These findings suggest that MitoQ is a valuable adjunct in ovarian tissue cryopreservation and could significantly improve fertility preservation outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianqi Du
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Han Su
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
- Obstetrics and Gynecology Department, BENQ Medical Center, Nanjing, China
| | - Dan Cao
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhouing, China
| | - Qingxia Meng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Ming Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
| | - Zhenxing Liu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China.
| |
Collapse
|
5
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T, Liu X. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv 2024; 31:2298514. [PMID: 38147501 PMCID: PMC10763895 DOI: 10.1080/10717544.2023.2298514] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
6
|
Yan T, Su J, Yan T, Bian J, Ali AR, Yuan W, Wei L, Wang Y, Gao M, Ding Q, Bi L, Wang S, Han X. Self-supply of hydrogen peroxide by a bimetal-based nanocatalytic platform to enhance chemodynamic therapy for tumor treatment. NANOTECHNOLOGY 2024; 36:045101. [PMID: 39476427 DOI: 10.1088/1361-6528/ad8ce5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
The tumor microenvironment (TME) is characterized by low pH, hypoxia, and overexpression of glutathione (GSH). Owing to the complexity of tumor pathogenesis and the heterogeneity of the TME, achieving satisfactory efficacy with a single treatment method is difficult, which significantly impedes tumor treatment. In this study, composite nanoparticles of calcium-copper/alginate-hyaluronic acid (HA) (CaO2-CuO2@SA/HA NC) with pH and GSH responsiveness were prepared for the first time through a one-step synthesis using HA as a targeting ligand. Nanoparticles loaded with H2O2can enhance the chemodynamic therapy effects. Simultaneously, Cu2+can generate oxygen in the TME and alleviate hypoxia in tumor tissue. Cu2+and H2O2undergo the Fenton reaction to produce cytotoxic hydroxyl radicals and Ca2+ions, which enhance the localization and clearance of nanoparticles in tumor cells. Additionally, HA and sodium alginate (SA) were utilized to improve the targeting and biocompatibility of the nanoparticles. Fourier transform infrared, x-ray diffraction, dynamic light scattering, SEM, transmission electron microscope, and other analytical methods were used to investigate their physical and chemical properties. The results indicate that the CaO2-CuO2@SA/HA NC prepared using a one-step method had a particle size of 220 nm, a narrow particle size distribution, and a uniform morphology. The hydrogen peroxide self-supplied nanodrug delivery system exhibited excellent pH-responsive release performance and glutathione-responsive •OH release ability while also reducing the level of reactive oxide species quenching.In vitrocell experiments, no obvious side effects on normal tissues were observed; however, the inhibition rate of malignant tumors HepG2 and DU145 exceeded 50%. The preparation of CaO2-CuO2@SA/HA NC nanoparticles, which can achieve both chemokinetic therapy and ion interference therapy, has demonstrated significant potential for clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Tingxuan Yan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Jiahao Su
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Tingyuan Yan
- China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jinlei Bian
- China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ahmed R Ali
- Faculty of Pharmacy, Mansoura University, El-Mansoura 35516, Egypt
| | - Wei Yuan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Linping Wei
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Yu Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Mengting Gao
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Qiang Ding
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Lei Bi
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Shuangshou Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Xinya Han
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| |
Collapse
|
7
|
Han D, Wang F, Jiang Q, Qiao Z, Zhuang Y, An Q, Li Y, Tang Y, Li C, Shen D. Enhancing Cardioprotection Through Neutrophil-Mediated Delivery of 18β-Glycyrrhetinic Acid in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406124. [PMID: 39264272 PMCID: PMC11558124 DOI: 10.1002/advs.202406124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18β-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.
Collapse
Affiliation(s)
- Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Fuhang Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Qingjiao Jiang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Zhentao Qiao
- Department of Vascular and Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Yuansong Zhuang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Quanxu An
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yuhang Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yazhe Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Chenyao Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Deliang Shen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| |
Collapse
|
8
|
Raveena Nagareddy, Kim JH, Kim JH, Thomas RG, Choi KH, Jeong YY. Reactive Oxygen Species-Responsive Chitosan-Bilirubin Nanoparticles Loaded with Statin for Treatment of Cerebral Ischemia. Biomater Res 2024; 28:0097. [PMID: 39450150 PMCID: PMC11499631 DOI: 10.34133/bmr.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebral ischemia impairs blood circulation, leading to elevated reactive oxygen species (ROS) production. A ROS-responsive delivery of drugs can enhance the therapeutic efficacy and minimize the side effects. There is insufficient evidence on the impact of ROS-responsive nanoparticles on ischemic stroke. We developed ROS-responsive chitosan-bilirubin (ChiBil) nanoparticles to target acute ischemic lesions and investigated the effect of atorvastatin-loaded ROS-responsive ChiBil. We randomly assigned rats with transient middle cerebral artery occlusion (MCAO) to 4 groups: saline, Statin, ChiBil, and ChiBil-Statin. These groups were treated daily via the tail vein for 7 d. Behavioral assessment, magnetic resonance (MR) imaging, evaluation of neuroinflammation, blood-brain barrier (BBB) integrity, apoptosis, and neurogenesis after stroke were conducted. In vitro, results showed nanoparticle uptake and reduced intracellular ROS, lipid peroxidation, and inflammatory cytokines (IL-6 and TNF-α). In vivo, results showed improved motor deficits and decreased infarct volumes on MR images in the ChiBil-Statin group compared with the Control group on day 7 (P < 0.05). Furthermore, the expression of inflammatory cytokines such as IL-1β and IL-6 was reduced in the ChiBil-Statin group compared with the Control group (P < 0.05). Improvements in BBB integrity, apoptosis, and neurogenesis were observed in the ChiBil-Statin group. The findings demonstrated that intravenous ROS-responsive multifunctional ChiBil-Statin could effectively deliver drugs to the ischemic brain, exerting marked synergistic pleiotropic neuroprotective effects. Therefore, ChiBil-Statin holds promise as a targeted therapy for ischemic vascular diseases characterized by increased ROS production, leading to new avenues for future research and potential clinical applications.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Ja-Hae Kim
- Department of Nuclear Medicine,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji-Hye Kim
- Department of Neurology,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Reju George Thomas
- Department of Radiology,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Kang-Ho Choi
- Department of Neurology,
Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Yong-Yeon Jeong
- Department of Radiology,
Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| |
Collapse
|
9
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
10
|
Xie DG, Li JH, Zhong YL, Han H, Zhang JJ, Zhang ZQ, Li ST. Role of TRPC6 in apoptosis of skeletal muscle ischemia/reperfusion injury. Cell Signal 2024; 121:111289. [PMID: 38971570 DOI: 10.1016/j.cellsig.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Skeletal muscle ischaemia-reperfusion injury (IRI) is a prevalent condition encountered in clinical practice, characterised by muscular dystrophy. Owing to limited treatment options and poor prognosis, it can lead to movement impairments, tissue damage, and disability. This study aimed to determine and verify the influence of transient receptor potential canonical 6 (TRPC6) on skeletal muscle IRI, and to explore the role of TRPC6 in the occurrence of skeletal muscle IRI and the signal transduction pathways activated by TRPC6 to provide novel insights for the treatment and intervention of skeletal muscle IRI. METHODS In vivo ischaemia/reperfusion (I/R) and in vitro hypoxia/reoxygenation (H/R) models were established, and data were comprehensively analysed at histopathological, cellular, and molecular levels, along with the evaluation of the exercise capacity in mice. RESULTS By comparing TRPC6 knockout mice with wild-type mice, we found that TRPC6 knockout of TRPC6 could reduced skeletal muscle injury after I/R or H/R, of skeletal muscle, so as therebyto restoringe some exercise capacity inof mice. TRPC6 knockdown can reduced Ca2+ overload in cells, therebyo reducinge apoptosis. In additionAdditionally, we also found that TRPC6 functionsis not only a key ion channel involved in skeletal muscle I/R injury, but also can affects Ca2+ levels and then phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway. by knocking downTherefore, knockdown of TRPC6, so as to alleviated the injury inducedcaused by skeletal muscle I/R or and H/R. CONCLUSIONS These findingsdata indicate that the presence of TRPC6 exacerbatescan aggravate the injury of skeletal muscle injury after I/Rischemia/reperfusion, leading towhich not only causes Ca2+ overload and apoptosis., Additionally, it impairsbut also reduces the self- repair ability of cells by inhibiting the expression of the PI3K/Akt/mTOR signalling pathway. ETo exploringe the function and role of TRPC6 in skeletal muscle maycan presentprovide a novelew approachidea for the treatment of skeletal muscle ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dong-Ge Xie
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Jun-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Yun-Long Zhong
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Han Han
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Jia-Ji Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Zhong-Qing Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China
| | - Shou-Tian Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, No.2 Xuefu West Road, Honghuagang District, Zunyi, Guizhou, China.
| |
Collapse
|
11
|
Chiang CC, Liu CH, Rethi L, Nguyen HT, Chuang AEY. Phototactic/Photosynthetic/Magnetic-Powered Chlamydomonas Reinhardtii-Metal-Organic Frameworks Micro/Nanomotors for Intelligent Thrombolytic Management and Ischemia Alleviation. Adv Healthc Mater 2024:e2401383. [PMID: 39155411 DOI: 10.1002/adhm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Collapse
Affiliation(s)
- Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
12
|
Bekmez H, Kocak MN, Tavaci T, Halici H, Toktay E, Celik M, Bagci HH. Inflammation in cerebral ischemia reperfusion improved by avanafil via nod-like receptor protein-3 inflammasome: an experimental study in rats. Brain Inj 2024; 38:708-715. [PMID: 38676710 DOI: 10.1080/02699052.2024.2346147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE The aim of study was to investigate the effect of avanafil, a second-generation phosphodiesterase-5 (PDE5) inhibitor, on cerebral ischemia reperfusion (CI/R) model. METHODS 32 male albino Wistar rats were used. Four groups were constituted, as I: the healthy (sham), II: the CI/R group, III: the CI/R +I 10 mg/kg avanafil group, and IV: the CI/R + 20 mg/kg avanafil group. Avanafil was administered twice via oral gavage, first shortly after ischemia reperfusion and once more after 12 h. The rats were euthanized after 24 h. Histopathological and Real Time PCR analyzes were performed on cerebral tissues. RESULTS IL-1β, NLRP3 and TNF-α mRNA expressions were statistically higher in the CI/R group when compared to healthy (sham) group. Conversely, the IL-1β, NLRP3, and TNF-α mRNA expressions were significantly decreased in both of the avanafil-treated groups when compared to CI/R group. Histopathological results showed that both doses of avanafil also decreased cellular damage in cerebral tissue that occurred after CI/R. CONCLUSION Avanafil, was found to have ameliorated inflammatory response and cellular injury caused by CI/R. The mRNA expression of IL-1β, NLRP3, and TNF-α decreased in the I/R groups and approached the control group levels with a high dose of avanafil.
Collapse
Affiliation(s)
- Huseyin Bekmez
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Mehmet Nuri Kocak
- Faculty of Medicine, Department of Neurology, Ataturk University, Erzurum, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
- Department of Hınıs Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Embryology and Histology, Kafkas University, Kars, Turkey
| | - Muhammet Celik
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Hamit Harun Bagci
- General Directorate of Administrative Services, Republic of Türkiye Ministry of Health, Ankara, Turkey
| |
Collapse
|
13
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
14
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Jameel M, Sheikh IS, Kakar N, Yousuf MR, Riaz A, Shehzad W, Khan D, Iqbal M, Tareen AM. Effect of asiatic acid supplementation in tris-extender on post-thaw functional competence, antioxidant enzyme activity and in vivo fertility of bull sperm. J S Afr Vet Assoc 2024; 95:28-34. [PMID: 38533817 DOI: 10.36303/jsava.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Reactive oxygen species at supra-physiological levels trigger oxidative stress during cryopreservation, which can be neutralised by incorporating suitable antioxidants into the semen extender medium. This study was intended to explore the effect of asiatic acid (AA) as an antioxidant in semen extender on frozen-thawed sperm quality and in vivo fertility of bull sperm. Semen was collected from Holstein Friesian bulls for 10 consecutive weeks (total ejaculates = 60). Semen was cryopreserved with a Tris citric acid egg yolk-based extender supplemented with 0 (control), 20, 40, 60, and 100 μM AA. The supplementation of the extender with 40 and 60 μM AA improved (p < 0.05) post-thaw motility kinematics, plasma membrane integrity, acrosome integrity, sperm viability, and DNA integrity of bull sperm. Mitochondrial membrane potential was high (p < 0.05) with 60 μM of AA concentration in extender media. The catalase activity in seminal plasma was maintained (p < 0.05) when semen was added with 20, 40, and 60 μM of AA. The in vivo fertility was found to be significantly high with the semen extended with 60 μM AA. Conclusively, this study showed that AA supplementation in semen extender significantly improved sperm motility kinematics and cell integrity, conserved antioxidant enzyme activity, and improved in vivo fertility.
Collapse
Affiliation(s)
- M Jameel
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - I S Sheikh
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Pakistan
| | - N Kakar
- Department of Natural and Basic Sciences, University of Turbat, Pakistan
| | - M R Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - A Riaz
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - W Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Pakistan
| | - D Khan
- Livestock and Dairy Development Department, Government of Balochistan, Pakistan
| | - M Iqbal
- Semen Production Unit, Livestock and Dairy Development Department, Government of Balochistan, Pakistan
| | - A M Tareen
- Department of Microbiology, University of Baluchistan, Quetta Pakistan
| |
Collapse
|
16
|
Yang Y, Zhang JY, Ma ZJ, Wang SC, He P, Tang XQ, Yang CF, Luo X, Yang X, Li L, Zhang MC, Li Y, Yu JH. Visualization of therapeutic intervention for acute liver injury using low-intensity pulsed ultrasound-responsive phase variant nanoparticles. Biomater Sci 2024; 12:1281-1293. [PMID: 38252410 DOI: 10.1039/d3bm01423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Acute liver injury (ALI) is a highly fatal condition characterized by sudden massive necrosis of liver cells, inflammation, and impaired coagulation function. Currently, the primary clinical approach for managing ALI involves symptom management based on the underlying causes. The association between excessive reactive oxygen species originating from macrophages and acute liver injury is noteworthy. Therefore, we designed a novel nanoscale phase variant contrast agent, denoted as PFP@CeO2@Lips, which effectively scavenges reactive oxygen species, and enables visualization through low intensity pulsed ultrasound activation. The efficacy of the nanoparticles in scavenging excess reactive oxygen species from RAW264.7 and protective AML12 cells has been demonstrated through in vitro and in vivo experiments. Additionally, these nanoparticles have shown a protective effect against LPS/D-GalN attack in C57BL/6J mice. Furthermore, when exposed to LIPUS irritation, the nanoparticles undergo liquid-gas phase transition and enable ultrasound imaging.
Collapse
Affiliation(s)
- You Yang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Ju-Ying Zhang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Zi-Jun Ma
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Shi-Chun Wang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Ping He
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Xiao-Qing Tang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Chao-Feng Yang
- Department of Radiology, Affifiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xia Luo
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Xing Yang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Ling Li
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Mao-Chun Zhang
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Yang Li
- Department of Ultrasound, Yuechi People's Hospital, Guangan, 638300, Sichuan, China
- Department of Radiology, Affifiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jin-Hong Yu
- Department of Ultrasound, Affifiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Ultrasound, Yuechi People's Hospital, Guangan, 638300, Sichuan, China
| |
Collapse
|
17
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
18
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
19
|
Geng H, Chen J, Tu K, Tuo H, Wu Q, Guo J, Zhu Q, Zhang Z, Zhang Y, Huang D, Zhang M, Xu Q. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis. J Nanobiotechnology 2023; 21:500. [PMID: 38129928 PMCID: PMC10734184 DOI: 10.1186/s12951-023-02234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a pathophysiological process during liver transplantation, characterized by insufficient oxygen supply and subsequent restoration of blood flow leading to an overproduction of reactive oxygen species (ROS), which in turn activates the inflammatory response and leads to cellular damage. Therefore, reducing excess ROS production in the hepatic microenvironment would provide an effective way to mitigate oxidative stress injury and apoptosis during HIRI. Nanozymes with outstanding free radical scavenging activities have aroused great interest and enthusiasm in oxidative stress treatment. RESULTS We previously demonstrated that carbon-dots (C-dots) nanozymes with SOD-like activity could serve as free radicals scavengers. Herein, we proposed that C-dots could protect the liver from ROS-mediated inflammatory responses and apoptosis in HIRI, thereby improving the therapeutic effect. We demonstrated that C-dots with anti-oxidative stress and anti-inflammatory properties improved the survival of L-02 cells under H2O2 and LPS-treated conditions. In the animal model, Our results showed that the impregnation of C-dots could effectively scavenge ROS and reduce the expression of inflammatory cytokines, such as IL-1β, IL-6, IL-12, and TNF-α, resulting in a profound therapeutic effect in the HIRI. To reveal the potential therapeutic mechanism, transcriptome sequencing was performed and the relevant genes were validated, showing that the C-dots exert hepatoprotective effects by modulating the hepatic inflammatory network and inhibiting apoptosis. CONCLUSIONS With negligible systemic toxicity, our findings substantiate the potential of C-dots as a therapeutic approach for HIRI, thereby offering a promising intervention strategy for clinical implementation.
Collapse
Affiliation(s)
- Haoge Geng
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jiayu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Hang Tuo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qingsong Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qingwei Zhu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhe Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
20
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
21
|
Fan H, Liu J, Sun J, Feng G, Li J. Advances in the study of B cells in renal ischemia-reperfusion injury. Front Immunol 2023; 14:1216094. [PMID: 38022595 PMCID: PMC10646530 DOI: 10.3389/fimmu.2023.1216094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for clinicians in surgeries such as renal transplantation. Functional loss of renal tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury, delayed graft function (DGF), and allograft rejection. The available evidence indicates that cellular oxidative stress, cell death, microvascular dysfunction, and immune response play an important role in the pathogenesis of IRI. A variety of immune cells, including macrophages and T cells, are actively involved in the progression of IRI in the immune response. The role of B cells in IRI has been relatively less studied, but there is a growing body of evidence for the involvement of B cells, which involve in the development of IRI through innate immune responses, adaptive immune responses, and negative immune regulation. Therefore, therapies targeting B cells may be a potential direction to mitigate IRI. In this review, we summarize the current state of research on the role of B cells in IRI, explore the potential effects of different B cell subsets in the pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in renal IRI.
Collapse
Affiliation(s)
- Hongzhao Fan
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, China
| | - Jiajia Sun
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Wan Ismail WFNB, Bin Wan Sulaiman WA, Saad AZBM, Mokthar AMB, Paiman MB, Jusoh MHB, Mamat AZB, Eu CS. The heart-lung machine in major limb replantation: Report of two cases. Microsurgery 2023; 43:722-729. [PMID: 37424321 DOI: 10.1002/micr.31086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Replantation of amputated limbs after long ischemic hours almost always comes with reperfusion syndrome and poor outcomes. An ischemic time of greater than 6 h is often considered unsuitable for major limb replantation. However, usage of extracorporeal perfusion has been shown to prolong the viability of major limbs in animal studies. The aim of this report is to show that extracorporeal perfusion with cardiopulmonary bypass machine (CPBM) is a safe and reliable technique in improving limb survival as illustrated by our cases. We report two cases of successful major limb replantation with late presentation. One case involved a 31-year-old man with shoulder disarticulation and the other involved a 30-year-old man sustained proximal transtibial amputation. Both patients, who were generally fit, were involved in major road traffic accidents. The amputated segments were connected to a CPBM to expedite reperfusion and to flush away anaerobic metabolic products. The major vessels were cannulated and connected to a bypass machine that was initially primed with heparinized saline and perfused with packed cells at 100% oxygen concentration. The perfusion was carried out at 35°C with low pressure to prevent edema and low flow to reduce reperfusion injury. Venous blood was drained completely before replantation. Total ischemia times were 7 h 40 min and 9 h, respectively. No evidences of perioperative reperfusion syndrome were seen. Both of the replanted limbs survived and patients had regained better-than-expected limb functional outcomes at 5-year and 2-year follow-up, respectively. CPBM may be safely used in major replantation surgery to enhance limb survival and therefore warrants further research.
Collapse
Affiliation(s)
- Wan Faisham Numan B Wan Ismail
- Department of Orthopaedic, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Wan Azman Bin Wan Sulaiman
- Department of Reconstructive Sciences, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Arman Zaharil Bin Mat Saad
- Plastic & Reconstructive Unit, MSUMC, Management and Science University, University Drive, Off Persiaran Olahraga, Shah Alam, Selangor, Malaysia
| | - Ariffin Marzuki Bin Mokthar
- Department of Anaesthesiology, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Mohammad Bin Paiman
- Department of Orthopaedic, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Mohd Hanifah Bin Jusoh
- Department of Orthopaedic, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Ahmad Zuhdi Bin Mamat
- Cardiothoracic Unit, Department of Surgery, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Chong Soon Eu
- Department of Anaesthesiology, Hospital USM, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
23
|
Tian Y, Zhang Y, Zhao J, Luan F, Wang Y, Lai F, Ouyang D, Tao Y. Combining MSC Exosomes and Cerium Oxide Nanocrystals for Enhanced Dry Eye Syndrome Therapy. Pharmaceutics 2023; 15:2301. [PMID: 37765270 PMCID: PMC10536361 DOI: 10.3390/pharmaceutics15092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Dry eye syndrome (DES) is a prevalent ocular disorder involving diminishe·d tear production and increased tear evaporation, leading to ocular discomfort and potential surface damage. Inflammation and reactive oxygen species (ROS) have been implicated in the pathophysiology of DES. Inflammation is one core cause of the DES vicious cycle. Moreover, there are ROS that regulate inflammation in the cycle from the upstream, which leads to treatment failure in current therapies that merely target inflammation. In this study, we developed a novel therapeutic nanoparticle approach by growing cerium oxide (Ce) nanocrystals in situ on mesenchymal stem cell-derived exosomes (MSCExos), creating MSCExo-Ce. The combined properties of MSCExos and cerium oxide nanocrystals aim to target the "inflammation-ROS-injury" pathological mechanism in DES. We hypothesized that this approach would provide a new treatment option for patients with DES. Our analysis confirmed the successful in situ crystallization of cerium onto MSCExos, and MSCExo-Ce displayed excellent biocompatibility. In vitro and in vivo experiments have demonstrated that MSCExo-Ce promotes corneal cell growth, scavenges ROS, and more effectively suppresses inflammation compared with MSCExos alone. MSCExo-Ce also demonstrated the ability to alleviate DES symptoms and reverse pathological alterations at both the cellular and tissue levels. In conclusion, our findings highlight the potential of MSCExo-Ce as a promising therapeutic candidate for the treatment of DES.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yiquan Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiawei Zhao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingjie Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
24
|
Lu Y, Pan X, Cao C, Fan S, Tan H, Cui S, Liu Y, Cui D. MnO 2 Coated Mesoporous PdPt Nanoprobes for Scavenging Reactive Oxygen Species and Solving Acetaminophen-Induced Liver Injury. Adv Healthc Mater 2023; 12:e2300163. [PMID: 37184887 DOI: 10.1002/adhm.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/23/2023] [Indexed: 05/16/2023]
Abstract
As one of the most widely used drugs, acetaminophen, is the leading cause of acute liver injury. In addition, acetaminophen-induced liver injury (AILI) has a strong relationship with the overproduced reactive oxygen species, which can be effectively eliminated by nanozymes. To address these challenges, mesoporous PdPt@MnO2 nanoprobes (PPM NPs) mimicking peroxide, catalase, and superoxide dismutase-like properties are synthesized. They demonstrate nontoxicity, high colloidal stability, and exceptional reactive oxygen species (ROS)-scavenging ability. By scavenging excessive ROS, decreasing inflammatory cytokines, and inhibiting the recruitment and activation of monocyte/macrophage cells and neutrophils, the pathology mechanism of PPM NPs in AILI is confirmed. Moreover, PPM NPs' therapeutic effect and good biocompatibility may facilitate the clinical treatment of AILI.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shanshan Fan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengsheng Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Zhang Y, Shan L, Yang F, Liu Z, Xu M. Editorial: The pharmacological effects and mechanisms of drugs against human diseases by modulating redox homeostasis. Front Pharmacol 2023; 14:1200137. [PMID: 37521464 PMCID: PMC10381933 DOI: 10.3389/fphar.2023.1200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Ying Zhang
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Luchen Shan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ming Xu
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
26
|
Li Y, Wang Y, Yang W, Wu Z, Ma D, Sun J, Tao H, Ye Q, Liu J, Ma Z, Qiu L, Li W, Li L, Hu M. ROS-responsive exogenous functional mitochondria can rescue neural cells post-ischemic stroke. Front Cell Dev Biol 2023; 11:1207748. [PMID: 37465011 PMCID: PMC10350566 DOI: 10.3389/fcell.2023.1207748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Background: The transfer of mitochondria from healthy mesenchymal stem cells (MSCs) to injured MSCs has been shown to have potential therapeutic benefits for neural cell post-ischemic stroke. Specifically, functional mitochondria can perform their normal functions after being internalized by stressed cells, leading to host cell survival. However, while this approach shows promise, there is still a lack of understanding regarding which neural cells can internalize functional mitochondria and the regulatory mechanisms involved. To address this gap, we investigated the ability of different neural cells to internalize exogenous functional mitochondria extracted from MSCs. Methods: Functional mitochondria (F-Mito) isolated from umbilical cord derived-MSCs (UCMSCs) were labeled with lentivirus of HBLV-mito-dsred-Null-PURO vector. The ability of stressed cells to internalize F-Mito was analyzed using a mouse (C57BL/6 J) middle cerebral artery occlusion (MCAO) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. The cell viability was measured by CCK-8 kit. Time-course of intracellular ROS levels in stressed cells were analyzed by DCFH-DA staining after OGD/R and F-Mito treatment. MitoSOX, Mitotracker and WGA labeling were used to assess the relationship between ROS levels and the uptake of F-Mito at the single-cell level. Pharmacological modulation of ROS was performed using acetylcysteine (ROS inhibitor). Results: Our findings demonstrate that neurons and endothelial cells are more effective at internalizing mitochondria than astrocytes, both in vitro and in vivo, using an ischemia-reperfusion model. Additionally, internalized F-Mito decreases host cell reactive oxygen species (ROS) levels and rescues survival. Importantly, we found that the ROS response in stressed cells after ischemia is a crucial determinant in positively mediating the internalization of F-Mito by host cells, and inhibiting the generation of ROS chemicals in host cells may decrease the internalization of F-Mito. These results offer insight into how exogenous mitochondria rescue neural cells via ROS response in an ischemic stroke model. Overall, our study provides solid evidence for the translational application of MSC-derived mitochondria as a promising treatment for ischemic stroke.
Collapse
Affiliation(s)
- Yanjiao Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Yachao Wang
- Department of Neurosurgery, The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weiqi Yang
- Department of Burn Plastic Surgery, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhen Wu
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Daiping Ma
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Jianxiu Sun
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Huixian Tao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
| | - Qinlian Ye
- Department of Neurosurgery, The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jingnan Liu
- Department of Pathophysiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases and Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, China
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, China
| |
Collapse
|
27
|
She R, Liu D, Liao J, Wang G, Ge J, Mei Z. Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: from pathology to therapeutic potential. Front Cell Neurosci 2023; 17:1191629. [PMID: 37293623 PMCID: PMC10244524 DOI: 10.3389/fncel.2023.1191629] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Ischemic stroke (IS) accounts for more than 80% of the total stroke, which represents the leading cause of mortality and disability worldwide. Cerebral ischemia/reperfusion injury (CI/RI) is a cascade of pathophysiological events following the restoration of blood flow and reoxygenation, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, further aggravate the damage of brain tissue. Paradoxically, there are still no effective methods to prevent CI/RI, since the detailed underlying mechanisms remain vague. Mitochondrial dysfunctions, which are characterized by mitochondrial oxidative stress, Ca2+ overload, iron dyshomeostasis, mitochondrial DNA (mtDNA) defects and mitochondrial quality control (MQC) disruption, are closely relevant to the pathological process of CI/RI. There is increasing evidence that mitochondrial dysfunctions play vital roles in the regulation of programmed cell deaths (PCDs) such as ferroptosis and PANoptosis, a newly proposed conception of cell deaths characterized by a unique form of innate immune inflammatory cell death that regulated by multifaceted PANoptosome complexes. In the present review, we highlight the mechanisms underlying mitochondrial dysfunctions and how this key event contributes to inflammatory response as well as cell death modes during CI/RI. Neuroprotective agents targeting mitochondrial dysfunctions may serve as a promising treatment strategy to alleviate serious secondary brain injuries. A comprehensive insight into mitochondrial dysfunctions-mediated PCDs can help provide more effective strategies to guide therapies of CI/RI in IS.
Collapse
Affiliation(s)
- Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
28
|
Bao B, Liu H, Han Y, Xu L, Xing W, Li Z. Simultaneous Elimination of Reactive Oxygen Species and Activation of Nrf2 by Ultrasmall Nanoparticles to Relieve Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16460-16470. [PMID: 36946292 DOI: 10.1021/acsami.3c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excess reactive oxygen species (ROS) can induce serious acute kidney injury (AKI) to result in numerous deaths annually in clinical practice. Elimination of excess ROS by advanced nanotechnology is a very promising AKI therapy. In this Article, we report that PVP-stabilized and quercetin-functionalized ultrasmall Cu2-xSe nanoparticles (abbreviated as CSPQ NPs) can efficiently scavenge ROS and increase the expression of intracellular antioxidative enzymes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) protein, which drastically alleviates the cellular oxidative stress. Our ultrasmall nanoparticles exhibit excellent biocompatibility. They can be rapidly accumulated into the injured kidney to simultaneously eliminate ROS and activate Nrf2 to improve the renal function. This work demonstrates the great potential of simultaneous elimination of ROS and activation of intracellular Nrf2 in treatment of AKI. It also highlights the potential of CSPQ NPs in protection and prevention of AKI.
Collapse
Affiliation(s)
- Bolin Bao
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Liyao Xu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P. R. China
| | - Zhen Li
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| |
Collapse
|
29
|
Xu L, Luo Y, Du Q, Zhang W, Hu L, Fang N, Wang J, Liu J, Zhou J, Zhong Y, Liu Y, Ran H, Guo D, Xu J. Magnetic Response Combined with Bioactive Ion Therapy: A RONS-Scavenging Theranostic Nanoplatform for Thrombolysis and Renal Ischemia-Reperfusion Injury. ACS NANO 2023; 17:5695-5712. [PMID: 36930590 DOI: 10.1021/acsnano.2c12091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the limited efficacy of antithrombotic treatments is attributed to the inadequacy of pure drugs and the low ability of drugs to target the thrombus site. More importantly, timely thrombolysis is essential to reduce the sequelae of cardiovascular disease, but ischemia-reperfusion injury (IRI) remains a major challenge that must be solved after blood flow recovery. Herein, a multifunctional therapeutic nanoparticle (NP) based on Fe3O4 and strontium ions encapsulated in mesoporous polydopamine was successfully constructed and then loaded with TNK-tPA (FeM@Sr-TNK NPs). The NPs (59.9 min) significantly prolonged the half-life of thrombolytic drugs, which was 3.04 times that of TNK (19.7 min), and they had good biological safety. The NPs were shown to pass through vascular models with different inner diameters, curvatures, and stenosis under magnetic targeting and to enable accurate diagnosis of thrombi by photoacoustic imaging. NPs combined with the magnetic hyperthermia technique were used to accelerate thrombolysis and quickly open blocked blood vessels. Then, renal IRI-induced functional metabolic disorder and tissue damage were evidently attenuated by scavenging toxic reactive oxygen and nitrogen species and through the protective effects of bioactive ion therapy, including reduced apoptosis, increased angiogenesis, and inhibited fibrosis. In brief, we constructed a multifunctional nanoplatform for integrating a "diagnosis-therapy-protection" approach to achieve comprehensive management from thrombus to renal IRI, promoting the advancement of related technologies.
Collapse
Affiliation(s)
- Lian Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Qianying Du
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jia Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
30
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
31
|
Li Y, Luo Y, Wang J, Shi H, Liao J, Wang Y, Chen Z, Xiong L, Zhang C, Wang T. Discovery of novel danshensu derivatives bearing pyrazolone moiety as potential anti-ischemic stroke agents with antioxidant activity. Bioorg Chem 2023; 131:106283. [PMID: 36436417 DOI: 10.1016/j.bioorg.2022.106283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Neuroprotective agents with attenuation of oxidative stress by directly scavenging ROS and indirectly through Keap1-Nrf2 signal pathway activation may be a promising cerebral ischemic stroke therapeutic strategy. In this study, a series of novel danshensu derivatives bearing pyrazolone moieties with dual antioxidant effects were synthesized for the treatment of ischemic stroke. Most compounds exhibited considerable DPPH free radical scavenging ability and neuroprotective activity against H2O2-induced oxidative injury in PC12 neuronal cells, without cytotoxicity. Among these target compounds, Del03 displayed the strongest dose-dependent neuroprotective activity in vitro, directly downregulated intracellular ROS levels, and improved the oxidative stress parameters MDA, SOD, and LDH. Del03 also promoted Nrf2 translocation to the nucleus, subsequently increasing the expression of the Nrf2 downstream target HO-1. Molecular docking analysis revealed that Del03 could anchor to the key site of Keap1. Del03 possessed the ability to penetrate blood-brain barrier and displayed good ability on pharmacokinetic properties in rats Del03 possessed good BBB penetration efficiency, suitable pharmacokinetic properties in vivo. Del03 reduced cerebral infarction volume and promoted neurological function in a middle cerebral artery occlusion (MCAO) mouse model at a dose of 20 mg/kg by intravenous injection. The characteristics of Del03 detailed in this study demonstrate its potential as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Hao Shi
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Baoshan Zhaohui New Drug R & D and Transformation Functional Platform, Zhaohui Pharmaceutical, Shanghai 201908, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
32
|
Xie X, Cao Y, Dai L, Zhou D. Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis. Mol Med 2023; 29:3. [PMID: 36627572 PMCID: PMC9830826 DOI: 10.1186/s10020-022-00595-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) is a pathological process that occurs in ischemic stroke. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been verified to relieve cerebral I/R-induced inflammatory injury. Hence, we intended to clarify the function of BMSC-Exos-delivered lncRNA KLF3-AS1 (BMSC-Exos KLF3-AS1) in neuroprotection and investigated its potential mechanism. METHODS To mimic cerebral I/R injury in vivo and in vitro, middle cerebral artery occlusion (MCAO) mice model and oxygen-glucose deprivation (OGD) BV-2 cell model were established. BMSC-Exos KLF3-AS1 were administered in MCAO mice or OGD-exposed cells. The modified neurological severity score (mNSS), shuttle box test, and cresyl violet staining were performed to measure the neuroprotective functions, while cell injury was evaluated with MTT, TUNEL and reactive oxygen species (ROS) assays. Targeted genes and proteins were detected using western blot, qRT-PCR, and immunohistochemistry. The molecular interactions were assessed using RNA immunoprecipitation, co-immunoprecipitation and luciferase assays. RESULTS BMSC-Exos KLF3-AS1 reduced cerebral infarction and improved neurological function in MCAO mice. Similarly, it also promoted cell viability, suppressed apoptosis, inflammatory injury and ROS production in cells exposed to OGD. BMSC-Exos KLF3-AS1 upregulated the decreased Sirt1 induced by cerebral I/R. Mechanistically, KLF3-AS1 inhibited the ubiquitination of Sirt1 protein through inducing USP22. Additionally, KLF3-AS1 sponged miR-206 to upregulate USP22 expression. Overexpression of miR-206 or silencing of Sirt1 abolished KLF3-AS1-mediated protective effects. CONCLUSION BMSC-Exos KLF3-AS1 promoted the Sirt1 deubiquitinating to ameliorate cerebral I/R-induced inflammatory injury via KLF3-AS1/miR-206/USP22 network.
Collapse
Affiliation(s)
- Xiaowei Xie
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan People’s Republic of China
| | - Yu Cao
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Liangping Dai
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Dingzhou Zhou
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| |
Collapse
|
33
|
Lan T, Guo H, Lu X, Geng K, Wu L, Luo Y, Zhu J, Shen X, Guo Q, Wu S. Dual-Responsive Curcumin-Loaded Nanoparticles for the Treatment of Cisplatin-Induced Acute Kidney Injury. Biomacromolecules 2022; 23:5253-5266. [PMID: 36382792 DOI: 10.1021/acs.biomac.2c01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute kidney injury (AKI) has been a global public health concern leading to high patient morbidity and mortality in the world. Nanotechnology-mediated antioxidative therapy has facilitated the treatment of AKI. Herein, a hierarchical curcumin-loaded nanodrug delivery system (NPS@Cur) was fabricated for antioxidant therapy to ameliorate AKI. The nanoplatform could respond to subacidic and reactive oxygen species (ROS) microenvironments. The subacidic microenvironment led to a smaller size (from 140.9 to 99.36 nm) and positive charge (from -4.9 to 12.6 mV), contributing to the high accumulation of nanoparticles. An excessive ROS microenvironment led to nanoparticle degradation and drug release. In vitro assays showed that NPS@Cur could scavenge excessive ROS and relieve oxidative stress in H2O2-induced HK-2 cells through reduced apoptosis, activated autophagy, and decreased endoplasmic reticulum stress. Results from cisplatin-induced AKI models revealed that NPS@Cur could effectively alleviate mitochondria injury and protect kidneys via antioxidative protection, activated autophagy, decreased endoplasmic reticulum stress, and reduced apoptosis. NPS@Cur showed excellent biocompatibility and low toxicity to primary tissues in mice. These results revealed that NPS@Cur may be a potential therapeutic strategy for efficiently treating cisplatin or other cause-induced AKI.
Collapse
Affiliation(s)
- Tianyu Lan
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou510640, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Honglei Guo
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Jingfeng Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing210029, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou550025, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou510640, China
| |
Collapse
|
34
|
Cai Q, Sun Z, Xu S, Jiao X, Guo S, Li Y, Wu H, Yu X. Disulfiram ameliorates ischemia/reperfusion-induced acute kidney injury by suppressing the caspase-11-GSDMD pathway. Ren Fail 2022; 44:1169-1181. [PMID: 35837696 PMCID: PMC9291718 DOI: 10.1080/0886022x.2022.2098764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Acute kidney injury (AKI) is a serious condition with high mortality. The most common cause is kidney ischemia/reperfusion (IR) injury, which is thought to be closely related to pyroptosis. Disulfiram is a well-known alcohol abuse drug, and recent studies have shown its ability to mitigate pyroptosis in mouse macrophages. This study investigated whether disulfiram could improve IR-induced AKI and elucidated the possible molecular mechanism. We generated an IR model in mouse kidneys and a hypoxia/reoxygenation (HR) injury model with murine tubular epithelial cells (MTECs). The results showed that IR caused renal dysfunction in mice and triggered pyroptosis in renal tubular epithelial cells, and disulfiram improved renal impairment after IR. The expression of proteins associated with the classical pyroptosis pathway (Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-related specific protein (ASC), caspase-1, N-GSDMD) and nonclassical pyroptosis pathway (caspase-11, N-GSDMD) were upregulated after IR. Disulfiram blocked the upregulation of nonclassical but not all classical pyroptosis pathway proteins (NLRP3 and ASC), suggesting that disulfiram might reduce pyroptosis by inhibiting the caspase-11-GSDMD pathway. In vitro, HR increased intracellular ROS levels, the positive rate of PI staining and LDH levels in MTECs, all of which were reversed by disulfiram pretreatment. Furthermore, we performed a computer simulation of the TIR domain of TLR4 using homology modeling and identified a small molecular binding energy between disulfiram and the TIR domain. We concluded that disulfiram might inhibit pyroptosis by antagonizing TLR4 and inhibiting the caspase-11-GSDMD pathway.
Collapse
Affiliation(s)
- Qiaoting Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Yingxiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
35
|
Zhou X, Chen Q, Guo C, Su Y, Guo H, Cao M, Liu Z, Zhang D, Diao N, Fan H, Chen D. CD44 Receptor-Targeted and Reactive Oxygen Species-Responsive H 2S Donor Micelles Based on Hyaluronic Acid for the Therapy of Renal Ischemia/Reperfusion Injury. ACS OMEGA 2022; 7:42339-42346. [PMID: 36440107 PMCID: PMC9686187 DOI: 10.1021/acsomega.2c05407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
For the therapy attenuating renal ischemia-reperfusion (IR) injury, a novel drug delivery system was urgently needed, which could precisely deliver drugs to the pathological renal tissue. Here, we have prepared new nanomaterials with a reactive oxygen species (ROS)-responsive hydrogen sulfide (H2S) donor and hyaluronic acid that targets CD44 receptor. The novel material was synthesized and characterized via related experiments. Then, rapamycin was loaded, which inhibited kidney damage. In the in vitro study, we found that the micelles had ROS-responsiveness, biocompatibility, and cell penetration. In addition, the experimental results showed that the intracellular H2S concentration after administration was threefold higher than that of the control group. The western blot assay revealed that they have anti-inflammatory effects via H2S donor blocking the NF-κB signaling pathway. Consequently, the rising CD44 receptor-targeting and ROS-sensitive H2S donor micelles would provide a promising way for renal IR injury. This work provides a strategy for improving ischemia/reperfusion injury for pharmaceuticals.
Collapse
Affiliation(s)
- Xiudi Zhou
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
- Department
of Pharmacy, Binzhou People’s Hospital
Affiliated to Shandong First Medical University, China, Binzhou256600, P. R. China
| | - Qiang Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Chunjing Guo
- College
of Marine Life Science, Ocean University
of China, Qingdao266003, P. R. China
| | - Yanguo Su
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huimin Guo
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Min Cao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Zhongxin Liu
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Dandan Zhang
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Ningning Diao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huaying Fan
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Daquan Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| |
Collapse
|
36
|
Zheng QY, Li Y, Liang SJ, Chen XM, Tang M, Rao ZS, Li GQ, Feng JL, Zhong Y, Chen J, Xu GL, Zhang KQ. LIGHT deficiency attenuates acute kidney disease development in an in vivo experimental renal ischemia and reperfusion injury model. Cell Death Dis 2022; 8:399. [PMID: 36163116 PMCID: PMC9512920 DOI: 10.1038/s41420-022-01188-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion (I/R), a leading risk factor of acute kidney injury (AKI), is associated with high mortality and risk of progression to chronic kidney disease. However, the molecular mechanism of I/R-AKI remains not fully understood, which hinders its efficient clinical treatment. In this study, we observed that LIGHT deficiency remarkably attenuated I/R-AKI, as evidenced by rescued renal function, ameliorated tubular cell apoptosis, and alleviated inflammatory responses. Consistently, blocking LIGHT signaling with its soluble receptor fusion proteins (HVEM-IgG-Fc or LTβR-IgG-Fc) improved I/R renal dysfunction. RNA-sequencing and corresponding results indicated that LIGHT promoted oxidative stress and inflammation triggered by ischemic injury. Moreover, LIGHT signaling augmented ischemic stress-induced mitochondrial dysfunction characterized by an imbalance in mitochondrial fission and fusion, decreased mtDNA copies, impaired mitophagy, and increased mitochondrial membrane potential (ΔΨm). Mechanistically, LIGHT promoted mitochondrial fission by enhancing Drp1 phosphorylation (Ser616) and its translocation to the mitochondria. In conclusion, these results suggest that LIGHT-HVEM/LTβR signaling is critical for the I/R-AKI pathogenesis and it is further confirmed to be related to the increase in I/R-induced oxidative stress and mitochondria dysfunction, which may be the underlying mechanism of LIGHT signaling-mediated I/R-AKI.
Collapse
Affiliation(s)
- Quan-You Zheng
- Department of Urology, The 958th Hospital, The First Affiliated Hospital, Army Medical University, Chongqing, 400020, China.,Department of Immunology, Army Medical University, Chongqing, 400038, China
| | - You Li
- Department of Immunology, Army Medical University, Chongqing, 400038, China.,Department of Nephrology, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.,Department of ICU, The Third Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Shen-Ju Liang
- Department of Rheumatism and Immunology, The Third Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Xi-Ming Chen
- Urinary Nephropathy Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400065, China
| | - Ming Tang
- Urinary Nephropathy Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400065, China
| | - Zheng-Sheng Rao
- Urinary Nephropathy Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400065, China
| | - Gui-Qing Li
- Department of Immunology, Army Medical University, Chongqing, 400038, China
| | - Jian-Li Feng
- Department of Urology, The 958th Hospital, The First Affiliated Hospital, Army Medical University, Chongqing, 400020, China
| | - Yu Zhong
- Department of Urology, The 958th Hospital, The First Affiliated Hospital, Army Medical University, Chongqing, 400020, China.,Department of Immunology, Army Medical University, Chongqing, 400038, China
| | - Jian Chen
- Department of Immunology, Army Medical University, Chongqing, 400038, China
| | - Gui-Lian Xu
- Department of Immunology, Army Medical University, Chongqing, 400038, China.
| | - Ke-Qin Zhang
- Department of Nephrology, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China. .,Urinary Nephropathy Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400065, China.
| |
Collapse
|
37
|
Perera MR, Sinclair JH. The Human Cytomegalovirus β2.7 Long Non-Coding RNA Prevents Induction of Reactive Oxygen Species to Maintain Viral Gene Silencing during Latency. Int J Mol Sci 2022; 23:ijms231911017. [PMID: 36232315 PMCID: PMC9569889 DOI: 10.3390/ijms231911017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a significant source of disease for the immunosuppressed and immunonaive. The treatment of HCMV is made more problematic by viral latency, a lifecycle stage in which the virus reduces its own gene expression and produces no infectious virus. The most highly expressed viral gene during HCMV latency is the viral β2.7 long non-coding RNA. Although we have recently shown that the β2.7 lncRNA lowers levels of reactive oxygen species (ROS) during infection in monocytes, how this impacts latency is unclear. We now show that β2.7 is important for establishing and maintaining HCMV latency by aiding the suppression of viral lytic gene expression and that this is directly related to its ability to quench reactive oxygen species (ROS). Consistent with this, we also find that exogenous inducers of ROS cause reactivation of latent HCMV. These effects can be compensated by treatment with an antioxidant to lower ROS levels. Finally, we show that ROS-mediated reactivation is independent of myeloid differentiation, but instead relies on NF-κB activation. Altogether, these results reveal a novel factor that is central to the complex process that underpins HCMV latency. These findings may be of particular relevance in the transplant setting, in which transplanted tissue/organs are subject to very high ROS levels, and HCMV reactivation poses a significant threat.
Collapse
|
38
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
39
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
40
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
41
|
Sun JD, Sun Y, Qiao T, Zhang SE, Dyce PW, Geng YW, Wang P, Ge W, Shen W, Cheng SF. Cryopreservation of porcine skin-derived stem cells using melatonin or trehalose maintains their ability to self-renew and differentiate. Cryobiology 2022; 107:23-34. [PMID: 35716769 DOI: 10.1016/j.cryobiol.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 μm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 μm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.
Collapse
Affiliation(s)
- Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuan-Wei Geng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
42
|
Ai Y, He M, Wan C, Luo H, Xin H, Wang Y, Liang Q. Nanoplatform‐Based Reactive Oxygen Species Scavengers for Therapy of Ischemia‐Reperfusion Injury. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Meng‐Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Chengxian Wan
- Jiangxi Provincial People's Hospital The First Affiliated Hospital of Nanchang Medical College The Affiliated People's Hospital of Nanchang University Nanchang Jiangxi 330006 P. R. China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 P. R. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
43
|
Liang Y, Liao S, Zhang X. A Bibliometric Analysis of Reactive Oxygen Species Based Nanotechnology for Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:940769. [PMID: 35865387 PMCID: PMC9294284 DOI: 10.3389/fcvm.2022.940769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of health problems around the world. Because of its unique properties, reactive oxygen species (ROS)-based nanotechnology offers novel solutions to the diagnosis and treatment of CVDs. In order to identify and further promote the development of ROS-based nanotechnology in CVDs, we here provide a bibliometric analysis. 701 eligible articles about the ROS–based nanotechnology for CVD up to May 26th, 2022, were taken from the Web of Science Core Collection database. The VOSviewer was used to analyze annual publications, countries/institutions, funding agencies, journals and research category, and the research hotspots. From the publication of the first article in 2005 to 2021, the output and the number of citations of articles are on the rise. Based on the bibliometric analysis, we found that the current research focuses on the correlation between diagnosis (sensors and), treatment (oxidative stress, inflammation, and drug delivery) and safety (toxicity). Since 2019, research on nanomedicine and drug delivery has become a hotspot. So, more research in chemistry, materials, biology, and medicine is required to further develop and construct ROS-based nanomaterials.
Collapse
Affiliation(s)
- Yun Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shenjie Liao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Xiaoshen Zhang,
| |
Collapse
|
44
|
Barakat M, Hussein AM, Salama MF, Awadalla A, Barakat N, Serria M, El-Shafey M, El-Sherbiny M, El Adl MA. Possible Underlying Mechanisms for the Renoprotective Effect of Retinoic Acid-Pretreated Wharton's Jelly Mesenchymal Stem Cells against Renal Ischemia/Reperfusion Injury. Cells 2022; 11:1997. [PMID: 35805083 PMCID: PMC9266019 DOI: 10.3390/cells11131997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives: The current work investigated the effect of Wharton jelly mesenchymal stem cells (WJ-MSCs) pretreated with all-trans-retinoic acid (ATRA) on renal ischemia in rats and the possible role of oxidative stress, apoptotic and Wnt/β-Catenin signaling pathways, and inflammatory cytokines in their effects. Methods: The study included 90 male Sprague Dawley rats that were allocated to five groups (n = 18 rats): (I) Sham-operated group (right nephrectomy was performed); (II) Ischemia/reperfusion injury (IRI) group, a sham group with 45-min renal ischemia on the left kidney; (III) ATRA group, an ischemic group with an intravenous (i.v.) administration of ATRA 10 µM, 10 min post-surgery); (IV) WJ-MSCs group, an IRI group with an i.v. administration of 150 µL containing 7 × 106 WJ-MSCs, 10 min post-surgery; (V) WJ-MSCs + ATRA group, an IRI group with an i.v. administration of 150 µL of 7 × 106 WJ-MSCs pretreated with 10 µM ATRA. At the end of the experiments, serum creatinine, BUN micro-albuminuria (MAU), urinary protein, markers of redox state in the left kidney (MDA, CAT, SOD, and GSH), and the expression of Bax, IL-6, HIF-1α, Wnt7B, and β-catenin genes at the level of mRNA as well as for immunohistochemistry for NFkB and β-Catenin markers were analyzed. Results: The current study found that 45-min of renal ischemia resulted in significant impairment of kidney function (evidenced by the increase in serum creatinine, BUN, and urinary proteins) and deterioration of the kidney morphology, which was associated with a significant increase in redox state (evidenced by an increase in MDA and a decrease in GSH, SOD, and CAT), and a significant increase in inflammatory and apoptotic processes (evidenced by an increase in Bax and IL-6, NFkB, Wnt7B, β-catenin and HIF-1α) in kidney tissues (p < 0.05). On the other hand, treatment with ATRA, WJ-MSCs, or a combination of both, caused significant improvement in kidney function and morphology, which was associated with significant attenuation of oxidative stress, apoptotic markers, and inflammatory cytokines (IL6 and NFkB) with the upregulation of HIF-1α and β-catenin in kidney tissues (p < 0.05). Moreover, the renoprotective effect of WJ-MSCs pretreated with ATRA was more potent than WJ-MSCs alone. Conclusions: It is concluded that preconditioning of WJ-MSCs with ATRA may enhance their renoprotective effect. This effect could be due to the upregulation of the beta-catenin/Wnt pathway and attenuation of apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mai Barakat
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
- Institute of Global Public Health and Human Ecology, School of Science and Engineering, American University, Cairo 11835, Egypt
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Salama
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
| | - Amira Awadalla
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (A.A.); (N.B.)
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (A.A.); (N.B.)
| | - Mohamed Serria
- Department of Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia;
| | - Mohamed A. El Adl
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
| |
Collapse
|
45
|
Roesel MJ, Sharma NS, Schroeter A, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Primary Graft Dysfunction: The Role of Aging in Lung Ischemia-Reperfusion Injury. Front Immunol 2022; 13:891564. [PMID: 35686120 PMCID: PMC9170999 DOI: 10.3389/fimmu.2022.891564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Transplant centers around the world have been using extended criteria donors to remedy the ongoing demand for lung transplantation. With a rapidly aging population, older donors are increasingly considered. Donor age, at the same time has been linked to higher rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to inferior short- and long-term survival. Understanding and improving the condition of older lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both experimental and clinical data on the effects of aging in augmenting the consequences of IRI and PGD in lung transplantation.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Nirmal S Sharma
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Toll-like receptors and damage-associated molecular patterns in the pathogenesis of heart transplant rejection. Mol Cell Biochem 2022; 477:2841-2850. [PMID: 35678986 DOI: 10.1007/s11010-022-04491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Significant strides have been made in our understanding of the immune system and its role in cardiac transplant rejection. Despite the growing knowledge of immune responses, the mortality rate following cardiac transplantation remains grim. Related to procedural and pathological complications, toll-like receptor (TLR) and damage-associated molecular pattern (DAMP) signaling is the most direct and earliest interface between tissue integration and the innate immune response. This in turn can activate an adaptive immune response that further damages myocardial tissue. Furthermore, relevant literature on the status of DAMPs in the context of heart-transplantation remains limited, warranting further attention in clinical and translational research. This review aims to critically appraise the perspectives, advances, and challenges on DAMP-mediated innate immune response in the immune-mediated rejection of cardiac transplantation. Detailed analysis of the influence of TLR and DAMP signaling in mounting the immune response against the transplanted heart holds promise for improving outcomes through early detection and prevention of varied forms of organ rejection.
Collapse
|
47
|
Xie J, Ekpo MD, Xiao J, Zhao H, Bai X, Liang Y, Zhao G, Liu D, Tan S. Principles and Protocols For Post-Cryopreservation Quality Evaluation of Stem Cells in Novel Biomedicine. Front Pharmacol 2022; 13:907943. [PMID: 35592426 PMCID: PMC9113563 DOI: 10.3389/fphar.2022.907943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
Stem cell therapy is a thriving topic of interest among researchers and clinicians due to evidence of its effectiveness and promising therapeutic advantage in numerous disease conditions as presented by novel biomedical research. However, extensive clinical application of stem cells is limited by its storage and transportation. The emergence of cryopreservation technology has made it possible for living organs, tissues, cells and even living organisms to survive for a long time at deep low temperatures. During the cryopreservation process, stem cell preparations are subject to three major damages: osmotic damage, mechanical damage, and peroxidative damage. Therefore, Assessing the effectiveness and safety of stem cells following cryopreservation is fundamental to the quality control of stem cell preparations. This article presents the important biosafety and quality control parameters to be assessed during the manufacturing of clinical grade stem cell products, highlights the significance of preventing cryodamage. and provides a reference for protocols in the quality control of stem cell preparations.
Collapse
Affiliation(s)
- Jingxian Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Zhao
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Xiaoyong Bai
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Yijie Liang
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Guang Zhao
- Hunan Sheng Bao Biological Technology Co., Ltd (in Yinfeng Biological Group., Ltd), Changsha, China
| | - Dong Liu
- Hunan Sheng Bao Biological Technology Co., Ltd (in Yinfeng Biological Group., Ltd), Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
48
|
Bellini C, Antonucci S, Morillas-Becerril L, Scarpa S, Tavano R, Mancin F, Di Lisa F, Papini E. Nanoparticles Based on Cross-Linked Poly(Lipoic Acid) Protect Macrophages and Cardiomyocytes from Oxidative Stress and Ischemia Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11050907. [PMID: 35624771 PMCID: PMC9137738 DOI: 10.3390/antiox11050907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The control of radical damage and oxidative stress, phenomena involved in a large number of human pathologies, is a major pharmaceutical and medical goal. We here show that two biocompatible formulations of Pluronic-stabilized, poly (lipoic acid)-based nanoparticles (NP) effectively antagonized the formation of radicals and reactive oxygen species (ROS). These NPs, not only intrinsically scavenged radicals in a-cellular DPPH/ABTS assays, but also inhibited the overproduction of ROS induced by tert-Butyl hydroperoxide (t-BHP) in tumor cells (HeLa), human macrophages and neonatal rat ventricular myocytes (NRVMs). NPs were captured by macrophages and cardiomyocytes much more effectively as compared to HeLa cells and non-phagocytic leukocytes, eventually undergoing intracellular disassembly. Notably, NPs decreased the mitochondrial ROS generation induced by simulated Ischemia/Reperfusion Injury (IRI) in isolated cardiomyocytes. NPs also prevented IRI-triggered cardiomyocyte necrosis, mitochondrial dysfunction, and alterations of contraction-related intracellular Ca2+ waves. Hence, NPs appear to be an effective and cardiomyocyte-selective drug to protect against damages induced by post-ischemic reperfusion.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
| | - Lucía Morillas-Becerril
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy; (L.M.-B.); (F.M.)
| | - Sara Scarpa
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy; (L.M.-B.); (F.M.)
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- Correspondence: (F.D.L.); (E.P.)
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (S.A.); (S.S.); (R.T.)
- CRIBI—Centre for Innovative Biotechnology Research, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
- Correspondence: (F.D.L.); (E.P.)
| |
Collapse
|
49
|
Yan X, Tan XY, Li YX, Wang HB, Jin JB, Mao YR, Hu JB, Wu LH. A Stepwise Targeting Curcumin Derivative, Ser@TPP@CUR, for Acute Kidney Injury. ACS Med Chem Lett 2022; 13:554-559. [PMID: 35450367 PMCID: PMC9014501 DOI: 10.1021/acsmedchemlett.1c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Based on the pathological mechanisms of acute kidney injury (AKI), a stepwise targeting curcumin derivative, Ser@TPP@CUR, was developed in this study. Ser@TPP@CUR can be specifically internalized by renal tubular epithelial cells via KIM-1 receptor-mediated endocytosis and then actively distributed in mitochondria under the effect of TPP, a mitochondrial targeting molecule. Both in vitro and in vivo results showed that Ser@TPP@CUR effectively ameliorated injured renal tubular epithelial cells and improved renal functions of AKI mice.
Collapse
Affiliation(s)
- Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xue-Ying Tan
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Yi-Xuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hong-Bo Wang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao 315400, China
| | - Jian-Bo Jin
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao 315400, China
| | - Ying-Rui Mao
- Medical College, Ningbo University, Ningbo 315211, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ling-Hui Wu
- Department of Nephrology, The People’s Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| |
Collapse
|
50
|
Zhang S, Cao Y, Xu B, Zhang H, Zhang S, Sun J, Tang Y, Wang Y. An antioxidant nanodrug protects against hepatic ischemia-reperfusion injury by attenuating oxidative stress and inflammation. J Mater Chem B 2022; 10:7563-7569. [PMID: 35389415 DOI: 10.1039/d1tb02689e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver transplantation is currently recognized as the only effective therapeutic option for end-stage liver disease. Hepatic ischemia-reperfusion injury (IRI) remains a major cause of graft damage or dysfunction, and is mediated by the abundant production of reactive oxygen species (ROS) and a complex cascade of inflammation during the reperfusion period. However, no universal antioxidant has been applied in clinical practice due to its low bioavailability and non-specific targeting. Herein, cerium oxide and manganese oxide nanocomposites (CM NCs), with the advantages of high biocompatibility, passive liver-targeting and short-term metabolic excretion, were synthesized as a nanodrug for hepatic IRI therapy. The CM NCs exhibited excellent superoxide dismutase (SOD) and catalase (CAT) mimetic activity to scavenge ROS and generate oxygen (O2). Therefore, CM NCs could alleviate oxidative stress, subsequently suppress the activation of Kupffer cells (KCs) and neutrophils, and reduce the secretion of inflammatory factors due to the synergistic effect of ROS scavenging and O2 production. By exploring the underlying mechanisms of the CM NCs in the treatment of hepatic IRI, we suggest that the CM NCs with ROS scavenging and inflammation regulation capacity show clinical potential for hepatic IRI management and provide new perspectives in the treatment of other oxidative-stress-related diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China.
| | - Yue Cao
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Bo Xu
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China
| | - Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China.
| | - Ying Tang
- Department of Gastroenterol, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, Jilin, China.
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|