1
|
He Z, Huang Y, Wen Y, Zou Y, Nie K, Liu Z, Li X, Zou H, Wang Y. Tumor Treatment by Nano-Photodynamic Agents Embedded in Immune Cell Membrane-Derived Vesicles. Pharmaceutics 2025; 17:481. [PMID: 40284476 PMCID: PMC12030688 DOI: 10.3390/pharmaceutics17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Non-invasive phototherapy includes modalities such as photodynamic therapy (PDT) and photothermal therapy (PTT). When combined with tumor immunotherapy, these therapeutic approaches have demonstrated significant efficacy in treating advanced malignancies, thus attracting considerable attention from the scientific community. However, the progress of these therapies is hindered by inherent limitations and potential adverse effects. Recent findings indicate that certain therapeutic strategies, including phototherapy, can induce immunogenic cell death (ICD), thereby opening new avenues for the integration of phototherapy with tumor immunotherapy. Currently, the development of biofilm nanomaterial-encapsulated drug delivery systems has reached a mature stage. Immune cell membrane-encapsulated nano-photosensitizers hold great promise, as they can enhance the tumor immune microenvironment. Based on bioengineering technology, immune cell membranes can be designed according to the tumor immune microenvironment, thereby enhancing the targeting and immune properties of nano-photosensitizers. Additionally, the space provided by the immune cell membrane allows for the co-encapsulation of immunotherapeutic agents and chemotherapy drugs, achieving a synergistic therapeutic effect. At the same time, the timing of photodynamic therapy (PDT) can be precisely controlled to regulate the action timing of both immunotherapeutic and chemotherapy drugs. This article summarizes and analyzes current research based on the aforementioned advancements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Z.H.); (Y.H.); (Y.W.); (Y.Z.); (K.N.); (Z.L.); (X.L.)
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Z.H.); (Y.H.); (Y.W.); (Y.Z.); (K.N.); (Z.L.); (X.L.)
| |
Collapse
|
2
|
Zhang G, Wu J, Ji M, Liu X, Shi M. SLC25A1 promotes lymph node metastasis of esophageal squamous cell carcinoma by regulating lipid metabolism. Int J Oncol 2025; 66:15. [PMID: 39821659 PMCID: PMC11753767 DOI: 10.3892/ijo.2025.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025] Open
Abstract
Solute carrier family 25 member 1 (SLC25A1) affects lipid metabolism and energy regulation in multiple types of tumor cell, affecting their proliferation and survival. To the best of our knowledge, however, the impact of SLC25A1 on the proliferation and survival of esophageal squamous cell carcinoma (ESCC) cells has yet to be explored. Here, SLC25A1 expression was detected in ESCC tissues and cell lines. SLC25A1 was silenced or blocked by lentivirus transfection or 2‑[(4‑chloro‑3‑nitrophenyl)sulfonylamino]benzoic acid in ESCC cells. To evaluate the impact of SLC25A1 on in vivo and in vitro proliferation, invasion and migration of ESCC cells, Cell Counting‑Kit, wound healing, colony formation, Transwell, EdU, flow cytometry, tumor xenograft in nude mice, lipid metabolism and energy metabolism detection assays were performed. Reverse transcription‑quantitative PCR and western blot analysis were performed to determine expression of downstream molecules and pathway proteins following the silencing and blockade of SLC25A1. SLC25A1 was significantly overexpressed in ESCC tissue and cell lines. The targeted silencing of SLC25A1 or inhibition of its protein led to a significant decrease in proliferative, invasive and migratory capabilities of ESCC cells, accompanied by increased apoptosis. Additionally, silencing of the SLC25A1 gene significantly inhibited xenograft tumor growth in vivo. The present results indicate that knockdown or blockade of SLC25A1 can significantly impede the malignant biological behavior of ESCC.
Collapse
Affiliation(s)
- Guoquan Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jingru Wu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Minghao Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Llevenes P, Chen A, Lawton M, Qiu Y, Seen M, Monti S, Denis GV. Plasma Exosomes in Insulin Resistant Obesity Exacerbate Progression of Triple Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617639. [PMID: 39416125 PMCID: PMC11482917 DOI: 10.1101/2024.10.10.617639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Breast cancer, the most common cancer among women worldwide, continues to pose significant public health challenges. Among the subtypes of breast cancer, triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat due to the absence of receptors for estrogen, progesterone, or human epidermal growth factor receptor 2, rendering TNBC refractory to conventional targeted therapies. Emerging research underscores the exacerbating role of metabolic disorders, such as type 2 diabetes and obesity, on TNBC aggressiveness. Here, we investigate the critical cellular and molecular factors underlying this link. We explore the pivotal role of circulating plasma exosomes in modulating the tumor microenvironment and enhancing TNBC aggressiveness. We find that plasma exosomes from diet-induced obesity mice induce epithelial- mesenchymal transition features in TNBC cells, leading to increased migration in vitro and enhanced metastasis in vivo . We build on our previous reports demonstrating that plasma exosomes from obese, diabetic patients, and exosomes from insulin-resistant 3T3-L1 adipocytes, upregulate key transcriptional signatures of epithelial- mesenchymal transition in breast cancer. Bioinformatic analysis reveals that TNBC cells exhibit higher expression and activation of proteins related to the Rho-GTPase cascade, particularly the small Ras-related protein Rac1. Our approach suggests novel therapeutic targets and exosomal biomarkers, ultimately to improve prognosis for TNBC patients with co-morbid metabolic disorders.
Collapse
|
5
|
Shultes PV, Weaver DT, Tadele DS, Barker-Clarke RJ, Scott JG. Cell-cell fusion in cancer: The next cancer hallmark? Int J Biochem Cell Biol 2024; 175:106649. [PMID: 39186970 PMCID: PMC11752790 DOI: 10.1016/j.biocel.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
In this review, we consider the role of cell-cell fusion in cancer development and progression through an evolutionary lens. We begin by summarizing the origins of fusion proteins (fusogens), of which there are many distinct classes that have evolved through convergent evolution. We then use an evolutionary framework to highlight how the persistence of fusion over generations and across different organisms can be attributed to traits that increase fitness secondary to fusion; these traits map well to the expanded hallmarks of cancer. By studying the tumor microenvironment, we can begin to identify the key selective pressures that may favor higher rates of fusion compared to healthy tissues. The paper concludes by discussing the increasing number of research questions surrounding fusion, recommendations for how to answer them, and the need for a greater interest in exploring cell fusion and evolutionary principles in oncology moving forward.
Collapse
Affiliation(s)
- Paulameena V Shultes
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Davis T Weaver
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Dagim S Tadele
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Rowan J Barker-Clarke
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA
| | - Jacob G Scott
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA; Physics Department, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
6
|
Ciufolini G, Zampieri S, Cesaroni S, Pasquale V, Bonanomi M, Gaglio D, Sacco E, Vanoni M, Pastore M, Marra F, Cicero DO, Raggi C, Petrella G. 3D Modeling: Insights into the Metabolic Reprogramming of Cholangiocarcinoma Cells. Cells 2024; 13:1536. [PMID: 39329720 PMCID: PMC11430555 DOI: 10.3390/cells13181536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Developing accurate in vitro models that replicate the in vivo tumor environment is essential for advancing cancer research and therapeutic development. Traditional 2D cell cultures often fail to capture the complex structural and functional heterogeneity of tumors, limiting the translational relevance of findings. In contrast, 3D culture systems, such as spheroids, provide a more physiologically relevant context by replicating key aspects of the tumor microenvironment. This study aimed to compare the metabolism of three intrahepatic cholangiocarcinoma cell lines in 2D and 3D cultures to identify metabolic shifts associated with spheroid formation. Cells were cultured in 2D on adhesion plates and in 3D using ultra-low attachment plates. Metabolic exchange rates were measured using NMR, and intracellular metabolites were analyzed using LC-MS. Significant metabolic differences were observed between 2D and 3D cultures, with notable changes in central carbon and glutathione metabolism in 3D spheroids. The results suggest that 3D cultures, which more closely mimic the in vivo environment, may offer a more accurate platform for cancer research and drug testing.
Collapse
Affiliation(s)
- Giorgia Ciufolini
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Serena Zampieri
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Simona Cesaroni
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Valentina Pasquale
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Marcella Bonanomi
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
- Institute of Bioimaging and Complex Biological Systems (IBSBC), 20054 Segrate, Italy
| | - Daniela Gaglio
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
- Institute of Bioimaging and Complex Biological Systems (IBSBC), 20054 Segrate, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (V.P.); (E.S.); (M.V.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy; (M.B.); (D.G.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (M.P.); (F.M.)
| | - Greta Petrella
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.C.); (S.Z.); (S.C.); (D.O.C.)
| |
Collapse
|
7
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol 2024; 201:104438. [PMID: 38977145 DOI: 10.1016/j.critrevonc.2024.104438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, UK
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
8
|
D’Amora P, Silva IDCG, Evans SS, Nagourney AJ, Kirby KA, Herrmann B, Cavalheiro D, Francisco FR, Bernard PJ, Nagourney RA. Diagnostic and Prognostic Performance of Metabolic Signatures in Pancreatic Ductal Adenocarcinoma: The Clinical Application of Quantitative NextGen Mass Spectrometry. Metabolites 2024; 14:148. [PMID: 38535308 PMCID: PMC10972340 DOI: 10.3390/metabo14030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 10/24/2024] Open
Abstract
With 64,050 new diagnoses and 50,550 deaths in the US in 2023, pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of all human malignancies. Early detection and improved prognostication remain critical unmet needs. We applied next-generation metabolomics, using quantitative tandem mass spectrometry on plasma, to develop biochemical signatures that identify PDAC. We first compared plasma from 10 PDAC patients to 169 samples from healthy controls. Using metabolomic algorithms and machine learning, we identified ratios that incorporate amino acids, biogenic amines, lysophosphatidylcholines, phosphatidylcholines and acylcarnitines that distinguished PDAC from normal controls. A confirmatory analysis then applied the algorithms to 30 PDACs compared with 60 age- and sex-matched controls. Metabolic signatures were then analyzed to compare survival, measured in months, from date of diagnosis to date of death that identified metabolite ratios that stratified PDACs into distinct survival groups. The results suggest that metabolic signatures could provide PDAC diagnoses earlier than tumor markers or radiographic measures and offer insights into disease severity that could allow more judicious use of therapy by stratifying patients into metabolic-risk subgroups.
Collapse
Affiliation(s)
- Paulo D’Amora
- Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA; (P.D.); (I.D.C.G.S.); (S.S.E.); (P.J.B.)
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
- Gynecology Department, School of Medicine of the Federal University of São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 781—4th Floor, São Paulo 04039-032, SP, Brazil
| | - Ismael D. C. G. Silva
- Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA; (P.D.); (I.D.C.G.S.); (S.S.E.); (P.J.B.)
- Gynecology Department, School of Medicine of the Federal University of São Paulo (EPM-UNIFESP), Rua Pedro de Toledo 781—4th Floor, São Paulo 04039-032, SP, Brazil
| | - Steven S. Evans
- Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA; (P.D.); (I.D.C.G.S.); (S.S.E.); (P.J.B.)
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Adam J. Nagourney
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Katharine A. Kirby
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, (UC Irvine), 843 Health Science Rd., Irvine, CA 92697, USA;
| | - Brett Herrmann
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Daniela Cavalheiro
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Federico R. Francisco
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Paula J. Bernard
- Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA; (P.D.); (I.D.C.G.S.); (S.S.E.); (P.J.B.)
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
| | - Robert A. Nagourney
- Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA; (P.D.); (I.D.C.G.S.); (S.S.E.); (P.J.B.)
- Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA; (A.J.N.); (B.H.); (D.C.); (F.R.F.)
- Department of Obstetrics and Gynecology, University of California Irvine (UC Irvine), 101 The City Dr S, Orange, CA 92868, USA
| |
Collapse
|
9
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B, Li J. Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol 2024; 12:1310442. [PMID: 38404689 PMCID: PMC10884319 DOI: 10.3389/fcell.2024.1310442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key immunosuppressive cells in the tumor microenvironment (TME) that play critical roles in promoting tumor growth and metastasis. Tumor-associated platelets (TAPs) help cancer cells evade the immune system and promote metastasis. In this paper, we describe the interaction between MDSCs and TAPs, including their generation, secretion, activation, and recruitment, as well as the effects of MDSCs and platelets on the generation and changes in the immune, metabolic, and angiogenic breast cancer (BC) microenvironments. In addition, we summarize preclinical and clinical studies, traditional Chinese medicine (TCM) therapeutic approaches, and new technologies related to targeting and preventing MDSCs from interacting with TAPs to modulate the BC TME, discuss the potential mechanisms, and provide perspectives for future development. The therapeutic strategies discussed in this review may have implications in promoting the normalization of the BC TME, reducing primary tumor growth and distant lung metastasis, and improving the efficiency of anti-tumor therapy, thereby improving the overall survival (OS) and progression-free survival (PFS) of patients. However, despite the significant advances in understanding these mechanisms and therapeutic strategies, the complexity and heterogeneity of MDSCs and side effects of antiplatelet agents remain challenging. This requires further investigation in future prospective cohort studies.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Hematology-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Xiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Lenahan SM, Sarausky HM, Deming P, Seward DJ. STK11 loss leads to YAP1-mediated transcriptional activation in human KRAS-driven lung adenocarcinoma cell lines. Cancer Gene Ther 2024; 31:1-8. [PMID: 37968341 PMCID: PMC10794139 DOI: 10.1038/s41417-023-00687-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Serine Threonine Kinase 11 (STK11) loss of function (LoF) correlates with anti-PD-1 therapy resistance in patients with KRAS-driven lung adenocarcinoma (LUAD). The molecular mechanisms governing this observation remain unclear and represent a critical outstanding question in the field of lung oncology. As an initial approach to understand this phenomenon, we knocked-out (KO) STK11 in multiple KRAS-driven, STK11-competent human LUAD cell lines and performed whole transcriptome analyses to identify STK11-loss-dependent differential gene expression. Subsequent pathway enrichment studies highlighted activation of the HIPPO/YAP1 signaling axis, along with the induction of numerous tumor-intrinsic cytokines. To validate that YAP1-mediated transcriptional activation occurs in response to STK11 loss, we pursued YAP1 perturbation as a strategy to restore an STK11-competent gene expression profile in STK11-KO LUAD cell lines. Together, our data link STK11 loss with YAP1-mediated transcriptional activation, including the upregulation of immune-evasion promoting cytokines IL-6, CXCL8 and CXCL2. Further, our results raise the intriguing possibility that YAP1 antagonism may represent a therapeutic approach to counter anti-PD-1 therapy resistance in STK11-null, KRAS-driven LUADs by modulating tumor-intrinsic gene expression to promote a "hot" tumor immune microenvironment.
Collapse
Affiliation(s)
- Sean M Lenahan
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Hailey M Sarausky
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Paula Deming
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
- University of Vermont Cancer Center, Burlington, VT, USA.
| |
Collapse
|
12
|
Wu Y, Wang Y, He C, Wang Y, Ma J, Lin Y, Zhou L, Xu S, Ye Y, Yin W, Ye J, Lu J. Precise diagnosis of breast phyllodes tumors using Raman spectroscopy: Biochemical fingerprint, tumor metabolism and possible mechanism. Anal Chim Acta 2023; 1283:341897. [PMID: 37977771 DOI: 10.1016/j.aca.2023.341897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Breast fibroadenomas and phyllodes tumors are both fibroepithelial tumors with comparable histological characteristics. However, rapid and precise differential diagnosis is a tough point in clinical pathology. Given the tendency of phyllodes tumors to recur, the difficulty in differential diagnosis with fibroadenomas leads to the difficulty in optimal management for these patients. METHOD In this study, we used Raman spectroscopy to differentiate phyllodes tumors from breast fibroadenomas based on the biochemical and metabolic composition and develop a classification model. The model was validated by 5-fold cross-validation in the training set and tested in an independent test set. The potential metabolic differences between the two types of tumors observed in Raman spectroscopy were confirmed by targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 204 patients with formalin-fixed paraffin-embedded (FFPE) tissue samples, including 100 fibroadenomas and 104 phyllodes tumors were recruited from April 2014 to August 2021. All patients were randomly divided into the training cohort (n = 153) and the test cohort (n = 51). The Raman classification model could differentiate phyllodes tumor versus fibroadenoma with cross-validation accuracy, sensitivity, precision, and area under curve (AUC) of 85.58 % ± 1.77 %, 83.82 % ± 1.01 %, 87.65 % ± 4.22 %, and 93.18 % ± 1.98 %, respectively. When tested in the independent test set, it performed well with the test accuracy, sensitivity, specificity, and AUC of 83.50 %, 86.54 %, 80.39 %, and 90.71 %. Furthermore, the AUC was significantly higher for the Raman model than that for ultrasound (P = 0.0017) and frozen section diagnosis (P < 0.0001). When it came to much more difficult diagnosis between fibroadenoma and benign or small-size phyllodes tumor for pathological examination, the Raman model was capable of differentiating with AUC up to 97.45 % and 95.61 %, respectively. On the other hand, targeted metabolomic analysis, based on fresh-frozen tissue samples, confirmed the differential metabolites (including thymine, dihydrothymine, trans-4-hydroxy-l-proline, etc.) identified from Raman spectra between phyllodes tumor and fibroadenoma. SIGNIFICANCE AND NOVELTY In this study, we obtained the molecular information map of breast phyllodes tumors provided by Raman spectroscopy for the first time. We identified a novel Raman fingerprint signature with the potential to precisely characterize and distinguish phyllodes tumors from fibroadenoma as a quick and accurate diagnostic tool. Raman spectroscopy is expected to further guide the precise diagnosis and optimal treatment of breast fibroepithelial tumors in the future.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Chang He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jiayi Ma
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yumei Ye
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Jingsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
13
|
Chen X, Deng M, Wang Z, Huang C. MMP3C: an in-silico framework to depict cancer metabolic plasticity using gene expression profiles. Brief Bioinform 2023; 25:bbad471. [PMID: 38145946 PMCID: PMC10749788 DOI: 10.1093/bib/bbad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Metabolic plasticity enables cancer cells to meet divergent demands for tumorigenesis, metastasis and drug resistance. Landscape analysis of tumor metabolic plasticity spanning different cancer types, in particular, metabolic crosstalk within cell subpopulations, remains scarce. Therefore, we proposed a new in-silico framework, termed as MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to depict tumor metabolic plasticity based on transcriptome data. Next, we performed an extensive metabo-plastic analysis of over 6000 tumors comprising 13 cancer types. The metabolic plasticity within distinct cell subpopulations, particularly interplay with tumor microenvironment, were explored at single-cell resolution. Ultimately, the metabo-plastic events were screened out for multiple clinical applications via machine learning methods. The pilot research indicated that 6 out of 13 cancer types exhibited signs of the Warburg effect, implying its high reliability and robustness. Across 13 cancer types, high metabolic organized heterogeneity was found, and four metabo-plastic subtypes were determined, which link to distinct immune and metabolism patterns impacting prognosis. Moreover, MMP3C analysis of approximately 60 000 single cells of eight breast cancer patients unveiled several metabo-plastic events correlated to tumorigenesis, metastasis and immunosuppression. Notably, the metabolic features screened out by MMP3C are potential biomarkers for diagnosis, tumor classification and prognosis. MMP3C is a practical cross-platform tool to capture tumor metabolic plasticity, and our study unveiled a core set of metabo-plastic pairs among diverse cancer types, which provides bases toward improving response and overcoming resistance in cancer therapy.
Collapse
Affiliation(s)
- Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Min Deng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Zihan Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| |
Collapse
|
14
|
Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-Modulated Epithelial-to-Mesenchymal Transition in Cancer Cells. Biomolecules 2023; 13:1604. [PMID: 38002286 PMCID: PMC10669774 DOI: 10.3390/biom13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geyon L. Garcia
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard G. Frisbie
- Department of Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women’s Research Institute, Pittsburgh, PA15213, USA
| |
Collapse
|
15
|
Gauthier-Coles G, Rahimi F, Bröer A, Bröer S. Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites 2023; 13:1064. [PMID: 37887389 PMCID: PMC10609202 DOI: 10.3390/metabo13101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
- School of Medicine, Yale University, New Haven, CT 06504, USA
| | - Farid Rahimi
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| |
Collapse
|
16
|
Vera-Siguenza E, Escribano-Gonzalez C, Serrano-Gonzalo I, Eskla KL, Spill F, Tennant D. Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model. PLoS Comput Biol 2023; 19:e1011374. [PMID: 37713666 PMCID: PMC10503963 DOI: 10.1371/journal.pcbi.1011374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/19/2023] [Indexed: 09/17/2023] Open
Abstract
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.
Collapse
Affiliation(s)
- Elias Vera-Siguenza
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Irene Serrano-Gonzalo
- Instituto de Investigación Sanitaria Aragón, Fundación Española para el Estudio y Terapéutica de la enfermedad de Gaucher y otras Lisosomales, Zaragoza, España
| | - Kattri-Liis Eskla
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fabian Spill
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets 2023; 27:939-952. [PMID: 37736880 PMCID: PMC11034819 DOI: 10.1080/14728222.2023.2261631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Drugs targeting mitochondria are emerging as promising antitumor therapeutics in preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mitochondria-targeted modified natural compounds and US FDA-approved drugs with increased therapeutic index in cancer is discussed as an alternative strategy. AREAS COVERED Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the mitochondria of cancer cells due to their increased negative membrane potential, target the oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor proliferation. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can sensitize radiation and immunotherapies. EXPERT OPINION TPP+-based drugs targeting the tumor mitochondrial electron transport chain are a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
18
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cellular and Molecular Players in the Tumor Microenvironment of Renal Cell Carcinoma. J Clin Med 2023; 12:3888. [PMID: 37373581 DOI: 10.3390/jcm12123888] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Globally, clear-cell renal cell carcinoma (ccRCC) represents the most prevalent type of kidney cancer. Surgery plays a key role in the treatment of this cancer, although one third of patients are diagnosed with metastatic ccRCC and about 25% of patients will develop a recurrence after nephrectomy with curative intent. Molecular-target-based agents, such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), are recommended for advanced cancers. In addition to cancer cells, the tumor microenvironment (TME) includes non-malignant cell types embedded in an altered extracellular matrix (ECM). The evidence confirms that interactions among cancer cells and TME elements exist and are thought to play crucial roles in the development of cancer, making them promising therapeutic targets. In the TME, an unfavorable pH, waste product accumulation, and competition for nutrients between cancer and immune cells may be regarded as further possible mechanisms of immune escape. To enhance immunotherapies and reduce resistance, it is crucial first to understand how the immune cells work and interact with cancer and other cancer-associated cells in such a complex tumor microenvironment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
19
|
Apiz Saab JJ, Dzierozynski LN, Jonker PB, AminiTabrizi R, Shah H, Menjivar RE, Scott AJ, Nwosu ZC, Zhu Z, Chen RN, Oh M, Sheehan C, Wahl DR, Pasca di Magliano M, Lyssiotis CA, Macleod KF, Weber CR, Muir A. Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis. eLife 2023; 12:e81289. [PMID: 37254839 PMCID: PMC10260022 DOI: 10.7554/elife.81289] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.
Collapse
Affiliation(s)
- Juan J Apiz Saab
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Patrick B Jonker
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Rosa Elena Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Andrew J Scott
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zhou Zhu
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Riona N Chen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Moses Oh
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | | | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kay F Macleod
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
20
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
21
|
Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023; 41:421-433. [PMID: 36801000 PMCID: PMC10023409 DOI: 10.1016/j.ccell.2023.01.009] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Increased glucose metabolism and uptake are characteristic of many tumors and used clinically to diagnose and monitor cancer progression. In addition to cancer cells, the tumor microenvironment (TME) encompasses a wide range of stromal, innate, and adaptive immune cells. Cooperation and competition between these cell populations supports tumor proliferation, progression, metastasis, and immune evasion. Cellular heterogeneity leads to metabolic heterogeneity because metabolic programs within the tumor are dependent not only on the TME cellular composition but also on cell states, location, and nutrient availability. In addition to driving metabolic plasticity of cancer cells, altered nutrients and signals in the TME can lead to metabolic immune suppression of effector cells and promote regulatory immune cells. Here we discuss how metabolic programming of cells within the TME promotes tumor proliferation, progression, and metastasis. We also discuss how targeting metabolic heterogeneity may offer therapeutic opportunities to overcome immune suppression and augment immunotherapies.
Collapse
Affiliation(s)
- Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA.
| |
Collapse
|
22
|
Crosstalk between fatty acid metabolism and tumour-associated macrophages in cancer progression. Biomedicine (Taipei) 2023; 12:9-19. [PMID: 36816174 PMCID: PMC9910230 DOI: 10.37796/2211-8039.1381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Over the last few decades, cancer has been regarded as an independent and self sustaining progression. The earliest hallmarks of cancer comprise of sustaining proliferative signalling, avoiding growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Nonetheless, two emerging hallmarks are being described: aberrant metabolic pathways and evasion of immune destruction. Changes in tumour cell metabolism are not restricted to tumour cells alone; the products of the altered metabolism have a direct impact on the activity of immune cells inside the tumour microenvironment, particularly tumour-associated macrophages (TAMs). The complicated process of cancer growth is orchestrated by metabolic changes dictating the tight mutual connection between these cells. Here, we discuss approaches to exploit the interaction of cancer cells' abnormal metabolic activity and TAMs. We also describe ways to exploit it by reprogramming fatty acid metabolism via TAMs.
Collapse
|
23
|
Abstract
The capacity of cells to organize complex biochemical reactions in intracellular space is a fundamental organizational principle of life. Key to this organization is the compartmentalization of the cytoplasm into distinct organelles, which is frequently achieved through intracellular membranes. Recent evidence, however, has added a new layer of flexibility to cellular compartmentalization. As such, in response to specific stimuli, liquid-liquid phase separations can lead to the rapid rearrangements of the cytoplasm to form membraneless organelles. Stress granules (SGs) are one such type of organelle that form specifically when cells are faced with stress stimuli, to aid cells in coping with stress. Inherently, altered SG formation has been linked to the pathogenesis of diseases associated with stress and inflammatory conditions, including cancer. Exciting discoveries have indicated an intimate link between SGs and tumorigenesis. Several pro-tumorigenic signaling molecules including the RAS oncogene, mTOR, and histone deacetylase 6 (HDAC6) have been shown to upregulate SG formation. Based on these studies, SGs have emerged as structures that can integrate oncogenic signaling and tumor-associated stress stimuli to enhance cancer cell fitness. In addition, growing evidence over the past decade suggests that SGs function not only to regulate the switch between survival and cell death, but also contribute to cancer cell proliferation, invasion, metastasis, and drug resistance. Although much remains to be learned about the role of SGs in tumorigenesis, these studies highlight SGs as a key regulatory hub in cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Min-Seok Song
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elda Grabocka
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
25
|
Choi KM, Kim JJ, Yoo J, Kim KS, Gu Y, Eom J, Jeong H, Kim K, Nam KT, Park YS, Chung JY, Seo JY. The interferon-inducible protein viperin controls cancer metabolic reprogramming to enhance cancer progression. J Clin Invest 2022; 132:157302. [PMID: 36227691 PMCID: PMC9753993 DOI: 10.1172/jci157302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is an important cancer hallmark. However, the mechanisms driving metabolic phenotypes of cancer cells are unclear. Here, we show that the interferon-inducible (IFN-inducible) protein viperin drove metabolic alteration in cancer cells. Viperin expression was observed in various types of cancer and was inversely correlated with the survival rates of patients with gastric, lung, breast, renal, pancreatic, or brain cancer. By generating viperin knockdown or stably expressing cancer cells, we showed that viperin, but not a mutant lacking its iron-sulfur cluster-binding motif, increased lipogenesis and glycolysis via inhibition of fatty acid β-oxidation in cancer cells. In the tumor microenvironment, deficiency of fatty acids and oxygen as well as production of IFNs upregulated viperin expression via the PI3K/AKT/mTOR/HIF-1α and JAK/STAT pathways. Moreover, viperin was primarily expressed in cancer stem-like cells (CSCs) and functioned to promote metabolic reprogramming and enhance CSC properties, thereby facilitating tumor growth in xenograft mouse models. Collectively, our data indicate that viperin-mediated metabolic alteration drives the metabolic phenotype and progression of cancer.
Collapse
Affiliation(s)
- Kyung Mi Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Yoo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ku Sul Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngeun Gu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - John Eom
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
27
|
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022; 11:cells11223556. [PMID: 36428985 PMCID: PMC9688315 DOI: 10.3390/cells11223556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
Collapse
|
28
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
29
|
Esperança-Martins M, F.Duarte I, Rodrigues M, Soares do Brito J, López-Presa D, Costa L, Fernandes I, Dias S. On the Relevance of Soft Tissue Sarcomas Metabolic Landscape Mapping. Int J Mol Sci 2022; 23:11430. [PMID: 36232732 PMCID: PMC9570318 DOI: 10.3390/ijms231911430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcomas (STS) prognosis is disappointing, with current treatment strategies being based on a "fit for all" principle and not taking distinct sarcoma subtypes specificities and genetic/metabolic differences into consideration. The paucity of precision therapies in STS reflects the shortage of studies that seek to decipher the sarcomagenesis mechanisms. There is an urge to improve STS diagnosis precision, refine STS classification criteria, and increase the capability of identifying STS prognostic biomarkers. Single-omics and multi-omics studies may play a key role on decodifying sarcomagenesis. Metabolomics provides a singular insight, either as a single-omics approach or as part of a multi-omics strategy, into the metabolic adaptations that support sarcomagenesis. Although STS metabolome is scarcely characterized, untargeted and targeted metabolomics approaches employing different data acquisition methods such as mass spectrometry (MS), MS imaging, and nuclear magnetic resonance (NMR) spectroscopy provided important information, warranting further studies. New chromatographic, MS, NMR-based, and flow cytometry-based methods will offer opportunities to therapeutically target metabolic pathways and to monitorize the response to such metabolic targeting therapies. Here we provide a comprehensive review of STS omics applications, comprising a detailed analysis of studies focused on the metabolic landscape of these tumors.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Iola F.Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Rodrigues
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joaquim Soares do Brito
- Orthopedics Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Dolores López-Presa
- Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| |
Collapse
|
30
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
31
|
The Role of Neural Signaling in the Pancreatic Cancer Microenvironment. Cancers (Basel) 2022; 14:cancers14174269. [PMID: 36077804 PMCID: PMC9454556 DOI: 10.3390/cancers14174269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignant disease with a dense stroma, called the tumor microenvironment. Accumulating evidence indicates the important role of sympathetic, parasympathetic, and sensory nerves in the tumor microenvironment of various cancers, including pancreatic cancer. Cancer cells and neural cells interact with each other to form a complex network and cooperatively promote cancer growth and invasion. In this review article, we describe the current understanding of the role of nerves in the tumor microenvironment. Abstract Pancreatic cancer is one of the most lethal malignant diseases. Various cells in the tumor microenvironment interact with tumor cells and orchestrate to support tumor progression. Several kinds of nerves are found in the tumor microenvironment, and each plays an essential role in tumor biology. Recent studies have shown that sympathetic, parasympathetic, and sensory neurons are found in the pancreatic cancer microenvironment. Neural signaling not only targets neural cells, but tumor cells and immune cells via neural receptors expressed on these cells, through which tumor growth, inflammation, and anti-tumor immunity are affected. Thus, these broad-range effects of neural signaling in the pancreatic cancer microenvironment may represent novel therapeutic targets. The modulation of neural signaling may be a therapeutic strategy targeting the whole tumor microenvironment. In this review, we describe the current understanding of the role of nerves in the tumor microenvironment of various cancers, with an emphasis on pancreatic cancer. We also discuss the underlying mechanisms and the possibility of therapeutic applications.
Collapse
|
32
|
Taghipour YD, Zarebkohan A, Salehi R, Rahimi F, Torchilin VP, Hamblin MR, Seifalian A. An update on dual targeting strategy for cancer treatment. J Control Release 2022; 349:67-96. [PMID: 35779656 DOI: 10.1016/j.jconrel.2022.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine and Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
33
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
34
|
Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022; 14:pharmaceutics14061303. [PMID: 35745875 PMCID: PMC9227908 DOI: 10.3390/pharmaceutics14061303] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Collapse
|
35
|
Huo J, Cai J, Wu L. Comprehensive analysis of metabolic pathway activity subtypes derived prognostic signature in hepatocellular carcinoma. Cancer Med 2022; 12:898-912. [PMID: 35651292 PMCID: PMC9844627 DOI: 10.1002/cam4.4858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Metabolic reprogramming is one of the hallmarks of cancer, but metabolic pathway activity-related subtypes of hepatocellular carcinoma (HCC) have not been identified. METHODS Based on the quantification results of 41 metabolic pathway activities by gene set variation analysis, the training cohort (n = 609, merged by TCGA and GSE14520) was clustered into three subtypes (C1, C2, and C3) with the nonnegative matrix factorization method. Totally 1371 differentially expressed genes among C1, C2, and C3 were identified, and an 8-gene risk score was established by univariable Cox regression analysis, least absolute shrinkage and selection operator method, and multivariable Cox regression analysis. RESULTS C1 had the strongest metabolic activity, good prognosis, the highest CTNNB1 mutation rate, with massive infiltration of eosinophils and natural killer cells. C2 had the weakest metabolic activity, poor prognosis, was younger, was inclined to vascular invasion and advanced stage, had the highest TP53 mutation rate, exhibited a higher expression level of immune checkpoints, accompanied by massive infiltration of regulatory T cells. C3 had moderate metabolic activity and prognosis, the highest LRP1B mutation rate, and a higher infiltration level of neutrophils and macrophages. Internal cohorts (TCGA, n = 370; GSE14520, n = 239), external cohorts (ICGC, n = 231; GSE116174, n = 64), and clinical subgroup validation showed that the risk score was applicable for patients with diverse clinical features and was effective in predicting the prognosis and malignant progression of patients with HCC. Compared with the low-risk group, the high-risk group had a poor prognosis, enhanced cancer stem cell characteristics, activated DNA damage repair, weakened metabolic activity, cytolytic activity, and interferon response. CONCLUSION We identified HCC subtypes from the perspective of metabolism-related pathway activity and proposed a robust prognostic signature for HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jinzhen Cai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Liqun Wu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
36
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
37
|
Peltanová B, Holcová Polanská H, Raudenská M, Balvan J, Navrátil J, Vičar T, Gumulec J, Čechová B, Kräter M, Guck J, Kalfeřt D, Grega M, Plzák J, Betka J, Masařík M. mRNA Subtype of Cancer-Associated Fibroblasts Significantly Affects Key Characteristics of Head and Neck Cancer Cells. Cancers (Basel) 2022; 14:2286. [PMID: 35565415 PMCID: PMC9102192 DOI: 10.3390/cancers14092286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters.
Collapse
Affiliation(s)
- Barbora Peltanová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Hana Holcová Polanská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Jiří Navrátil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Jaromír Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Barbora Čechová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Martin Kräter
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic;
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250 Vestec, Czech Republic
| |
Collapse
|
38
|
Gouirand V, Gicquel T, Lien EC, Jaune‐Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022; 41:e110466. [PMID: 35307861 PMCID: PMC9058543 DOI: 10.15252/embj.2021110466] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that β-hydroxybutyrate (βOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while βOHB stimulates metastatic dissemination to the liver. These findings suggest that βOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.
Collapse
|
39
|
To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines 2022; 10:biomedicines10050986. [PMID: 35625723 PMCID: PMC9138893 DOI: 10.3390/biomedicines10050986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple efforts are currently underway to develop targeted therapeutic deliveries to the site of glioblastoma progression. The use of carriers represents advancement in the delivery of various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic payloads to tumors. Two of the main properties that carrier cells should possess are their ability to specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared the morphological and molecular features of each type of stem cell that underlie their migration capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid molecules that are released by GBM to attract stem cells.
Collapse
|
40
|
Chadet S, Allard J, Brisson L, Lopez-Charcas O, Lemoine R, Heraud A, Lerondel S, Guibon R, Fromont G, Le Pape A, Angoulvant D, Jiang LH, Murrell-Lagnado R, Roger S. P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition. Oncogene 2022; 41:2920-2931. [DOI: 10.1038/s41388-022-02297-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
41
|
Kalyanaraman B. Exploiting the tumor immune microenvironment and immunometabolism using mitochondria-targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research. FASEB J 2022; 36:e22226. [PMID: 35233843 PMCID: PMC9242412 DOI: 10.1096/fj.202101862r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Black and Hispanic cancer patients have a higher incidence of cancer mortality. Many factors (e.g., socioeconomic differences, insufficient access to healthcare) contribute to racial disparity. Emerging research implicates biological disparity in cancer outcomes. Studies show distinct differences in the tumor immune microenvironment (TIME) in Black cancer patients. Studies also have linked altered mitochondrial metabolism to changes in immune cell activation in TIME. Recent publications revealed a novel immunomodulatory role for triphenylphosphonium-based mitochondrial-targeted drugs (MTDs). These are synthetically modified, naturally occurring molecules (e.g., honokiol, magnolol, metformin) or FDA-approved small molecule drugs (e.g., atovaquone, hydroxyurea). Modifications involve conjugating the parent molecule via an alkyl linker chain to a triphenylphosphonium moiety. These modified molecules (e.g., Mito-honokiol, Mito-magnolol, Mito-metformin, Mito-atovaquone, Mito-hydroxyurea) accumulate in tumor cell mitochondria more effectively than in normal cells and inhibit mitochondrial respiration, induce reactive oxygen species, activate AMPK and redox transcription factors, and inhibit cancer cell proliferation. Besides these intrinsic effects of MTDs in redox signaling and proliferation in tumors, MTDs induced extrinsic effects in the TIME of mouse xenografts. MTD treatment inhibited tumor-suppressive immune cells, myeloid-derived suppressor cells, and regulatory T cells, and activated T cells and antitumor immune effects. One key biological disparity in Black cancer patients was related to altered mitochondrial oxidative metabolism; MTDs targeting vulnerabilities in tumor cells and the TIME may help us understand this biological disparity. Clinical trials should include an appropriate number of Black and Hispanic cancer patients and should validate the intratumoral, antihypoxic effects of MTDs with imaging.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
42
|
Zhu X, Li L, Tang J, Yang C, Yu H, Liu K, Zheng Z, Gu X, Yu Q, Xu FJ, Gan Z. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells. Biomaterials 2021; 280:121305. [PMID: 34890970 DOI: 10.1016/j.biomaterials.2021.121305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Metastasis has been widely recognized as the most lethal threats for cancer patients. Due to their special genetic and environmental context, cancer stem cells (CSCs) which are resistant to most cytotoxic drugs and radiation, are considered as the dominant culprit for metastasis. Thus, the efficient targeting and thorough elimination of CSCs are significantly urgent for the enhancement of therapeutic efficacy. Herein, we developed a facile and smart photothermal-chemo therapeutic nano-assembly system, of which the surface was modified by a sheddable PEG shell and acid-activatable pro-penetration peptide, to surmount the physiological barriers in targeting CSCs. A highly-efficient diradical-featured croconium-based photothermal agent and a natural cytotoxic heat shock protein (HSP) inhibitor were co-loaded in redox-sensitive chitosan matrices to realize the synergistic photothermal-chemo therapy. Within solid tumors, the PEG shell that prevents the nano-assembly from mononuclear phagocytic clearance could rapidly leave to expose the positively charged chitosan, and the detached iRGD could further actuate the tumor penetration of chitosan nanoparticles, and allow the CSCs targeting by selective recognition of CD44 protein. Owing to the HSP inhibition and chemo-sensitization, both the CSCs and non-CSCs could be thoroughly eliminated by the designed nano-assembly, largely inhibiting the tumor growth and metastasis. This work provides a potential strategy for CSCs-targeting drug delivery to solve the CSCs-related metastasis.
Collapse
Affiliation(s)
- Xianqi Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyu Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunpeng Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyan Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qingsong Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fu-Jian Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
43
|
SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer. Cell Death Dis 2021; 12:1108. [PMID: 34839347 PMCID: PMC8627508 DOI: 10.1038/s41419-021-04411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Abnormal lipid metabolism has been commonly observed in various human cancers, including colorectal cancer (CRC). The mitochondrial citrate carrier SLC25A1 (also known as mitochondrial citrate/isocitrate carrier, CIC), has been shown to play an important role in lipid metabolism regulation. Our bioinformatics analysis indicated that SLC25A1 was markedly upregulated in CRC. However, the role of SLC25A1 in the pathogenesis and aberrant lipid metabolism in CRC remain unexplored. Here, we found that SLC25A1 expression was significantly increased in tumor samples of CRC as compared with paired normal samples, which is associated with poor survival in patients with CRC. Knockdown of SLC25A1 significantly inhibited the growth of CRC cells by suppressing the progression of the G1/S cell cycle and inducing cell apoptosis both in vitro and in vivo, whereas SLC25A1 overexpression suppressed the malignant phenotype. Additionally, we demonstrated that SLC25A1 reprogrammed energy metabolism to promote CRC progression through two mechanisms. Under normal conditions, SLC25A1 increased de novo lipid synthesis to promote CRC growth. During metabolic stress, SLC25A1 increased oxidative phosphorylation (OXPHOS) to protect protects CRC cells from energy stress-induced cell apoptosis. Collectively, SLC25A1 plays a pivotal role in the promotion of CRC growth and survival by reprogramming energy metabolism. It could be exploited as a novel diagnostic marker and therapeutic target in CRC.
Collapse
|
44
|
Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2021; 16:333-348. [PMID: 34611852 DOI: 10.1007/s12079-021-00648-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulating antitumor immunity is an attractive idea for suppressing tumors. CD4 + and CD8 + T cells as well as natural killer cells (NK) are the primary antitumor immune cells in the tumor microenvironment (TME). In contrast to these cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) release several molecules to suppress antitumor immunity and stimulate cancer cell invasion and proliferation. Adjuvant treatment with certain nontoxic agents is interesting to boost antitumor immunity. Metformin, which is known as an antidiabetes drug, can modulate both antitumor and protumor immune cells within TME. It has the ability to induce the proliferation of CD8 + T lymphocytes and NK cells. On the other hand, metformin attenuates polarization toward TAMs, CAFs, and Tregs. Metformin also may stimulate the antitumor activity of immune system cells, while it interrupts the positive cross-talk and interactions between immunosuppressive cells and cancer cells. The purpose of this review is to explain the basic mechanisms for the interactions and communications between immunosuppressive, anti-tumoral, and cancer cells within TME. Next, we discuss the modulating effects of metformin on various cells and secretions in TME.
Collapse
Affiliation(s)
- Zihong Wu
- Department of Oncology, The NO.3 People's Hospital of Hubei Province, Jianghan University, Wuhan, 430033, Hubei, China
| | - Caidie Zhang
- Emergency Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
45
|
Balalaeva IV, Mishchenko TA, Turubanova VD, Peskova NN, Shilyagina NY, Plekhanov VI, Lermontova SA, Klapshina LG, Vedunova MV, Krysko DV. Cyanoarylporphyrazines with High Viscosity Sensitivity: A Step towards Dosimetry-Assisted Photodynamic Cancer Treatment. Molecules 2021; 26:molecules26195816. [PMID: 34641360 PMCID: PMC8510116 DOI: 10.3390/molecules26195816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the significant relevance of photodynamic therapy (PDT) as an efficient strategy for primary and adjuvant anticancer treatment, several challenges compromise its efficiency. In order to develop an "ideal photosensitizer" and the requirements applied to photosensitizers for PDT, there is still a need for new photodynamic agents with improved photophysical and photobiological properties. In this study, we performed a detailed characterization of two tetracyanotetra(aryl)porphyrazine dyes with 4-biphenyl (pz II) and 4-diethylaminophenyl (pz IV) groups in the periphery of the porphyrazine macrocycle. Photophysical properties, namely, fluorescence quantum yield and lifetime of both photosensitizers, demonstrate extremely high dependence on the viscosity of the environment, which enables them to be used as viscosity sensors. PzII and pz IV easily enter cancer cells and efficiently induce cell death under light irradiation. Using fluorescence lifetime imaging microscopy, we demonstrated the possibility of assessing local intracellular viscosity and visualizing viscosity changes driven by PDT treatment with the compounds. Thus, pz II and pz IV combine the features of potent photodynamic agents and viscosity sensors. These data suggest that the unique properties of the compounds provide a tool for PDT dosimetry and tailoring the PDT treatment regimen to the individual characteristics of each patient.
Collapse
Affiliation(s)
- Irina V. Balalaeva
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (I.V.B.); (N.N.P.); (N.Y.S.)
| | - Tatiana A. Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (T.A.M.); (V.D.T.); (M.V.V.)
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (T.A.M.); (V.D.T.); (M.V.V.)
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Nina N. Peskova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (I.V.B.); (N.N.P.); (N.Y.S.)
| | - Natalia Y. Shilyagina
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (I.V.B.); (N.N.P.); (N.Y.S.)
| | - Vladimir I. Plekhanov
- Department of Radiophysical Methods in Medicine, Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia;
| | - Svetlana A. Lermontova
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Larisa G. Klapshina
- Sector of Chromophors for Medicine, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin st., 603137 Nizhny Novgorod, Russia; (S.A.L.); (L.G.K.)
| | - Maria V. Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia; (T.A.M.); (V.D.T.); (M.V.V.)
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Department of Basic and Medical Genetics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory (CDIT), Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, C. Heymanslaan 10, Building B3, 4th Floor, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., 119991 Moscow, Russia
- Correspondence: ; Tel.: +32-9-332-3396
| |
Collapse
|
46
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
47
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Martirosian V, Deshpande K, Zhou H, Shen K, Smith K, Northcott P, Lin M, Stepanosyan V, Das D, Remsik J, Isakov D, Boire A, De Feyter H, Hurth K, Li S, Wiemels J, Nakamura B, Shao L, Danilov C, Chen T, Neman J. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep 2021; 35:109302. [PMID: 34192534 PMCID: PMC8848833 DOI: 10.1016/j.celrep.2021.109302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Vazgen Stepanosyan
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jan Remsik
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danielle Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Wiemels
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Brooke Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Camelia Danilov
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
49
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
50
|
Cai M, Tan R, Huang Y, Chen X, Kong Q, Guo K, Xu M. High Expression of Tomm34 and Its Correlations With Clinicopathology in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:641042. [PMID: 34257607 PMCID: PMC8262227 DOI: 10.3389/pore.2021.641042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Tomm34, as a member of the outer mitochondrial membrane proteins, is evenly distributed between the cytoplasm and the outer mitochondrial membrane. It is up-regulated in a variety of tumors and correlates with poor prognosis. This study aimed to investigate expression of Tomm34 and its correlations with clinicopathology in oral squamous cell carcinoma (OSCC). Oncomine database and UALCAN database were utilized to predict the expression and prognosis values of Tomm34 in head and neck squamous cell carcinoma (HNSCC). By immunohistochemistry, a retrospective study was performed to verify the bioinformatics results to evaluate the Tomm34 expression and clinicopathological variables in both HPV-positive OSCC and HPV-negative OSCC. Immunohistochemistry of our cohort revealed that 48 cases fulfilled the Tomm34 high expression judgment criteria, and the overall positive rate was 60% (48/80), and 27 cases fulfilled the p16 expression judgment criteria (33.75%, 27/80). The high expression of Tomm34 was closely related with the TNM classification of OSCC (p < 0.01) and tumor size (p < 0.01) both in HPV-negative OSCC and HPV-positive OSCC, while related with lymph node metastasis (p = 0.001) in HPV-negative OSCC and drinking history (p = 0.044) in HPV-positive OSCC. In addition, the Kaplan-Meier curves indicated that higher level of Tomm34 was correlated with poorer overall survival (OS) and disease-free survival (DFS) in HPV-negative OSCC (OS, p = 0.046; DFS, p = 0.020) but not in HPV-positive OSCC (OS, p = 0.824; DFS, p = 0.782). In conclusion, Tomm34 is highly expressed in OSCC and may be a useful factor to provide prognostic information, especially in HPV-negative OSCC group.
Collapse
Affiliation(s)
- Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Rukeng Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yunyi Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuanyi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kaixin Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Meng Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|