1
|
Zheng S, Zhang Y, Cai R, Cai B, Luo S, He S, Peng T, Wang W, Cui H, Li H, Lu X. The untold story of CD82: Exploring its non-canonical roles in cancer. Pathol Res Pract 2025; 270:155979. [PMID: 40252385 DOI: 10.1016/j.prp.2025.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
CD82, traditionally recognized as a metastasis suppressor within the tetraspanin family, has emerged as a key player in diverse cancer-related processes beyond its canonical functions. This review highlights recent research on the non-canonical roles of CD82 in cancer progression, with a particular focus on its regulation of immune cell interactions, its impact on tumor microenvironment modulation, and its potential as both a therapeutic target and a biomarker. By examining the novel functions of CD82 in immune modulation and its influence on key signaling pathways, we propose that CD82 offers promising avenues for therapeutic interventions in cancer. This paper provides a comprehensive synthesis of the current understanding of CD82's expanded roles, underscoring its potential in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Yao Zhang
- Beijing Beanstalk International Bilingual School, Beijing 100016, PR China
| | - Ren Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Bangwu Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shujuan Luo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Wei Wang
- Department of Digestive Internal Medicine, the Affiliated Tumor Hospital of Xinjiang Medical University, PR China
| | - Hong Cui
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Huifang Li
- Department of Breast Surgery, the First Affiliated Hospital of Xinjiang Medical University, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China.
| |
Collapse
|
2
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Choi M, Choi YJ, Lee YJ, Lee Y, Chung JH, Kang KW. Dickkopf-1 promotes tumor progression of gefitinib- resistant non-small cell lung cancer through cancer cell-fibroblast interactions. Exp Hematol Oncol 2025; 14:24. [PMID: 40025612 PMCID: PMC11871833 DOI: 10.1186/s40164-025-00616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/15/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Cancer cell-secreted proteins play a critical role in tumor progression and chemoresistance by influencing intercellular interactions within the tumor microenvironment. Investigating the intratumoral functions of these secretory proteins may provide insights into understanding and treating chemoresistant cancers. This study aims to identify potential anticancer target(s) in gefitinib-resistant non-small cell lung cancer (NSCLC), with a focus on secretory proteins and their effects on intercellular interactions. METHODS Differentially expressed secretory proteins were identified in gefitinib-resistant human NSCLC cell lines (PC9-GR and HCC827-GR), revealing an elevation in Dickkopf-1 (DKK1) expression and secretion. To elucidate the role of DKK1 in gefitinib-resistant cancer, the anticancer effects of a neutralizing antibody against DKK1 were evaluated in tumors comprising either cancer cells alone or cancer cells co-injected with human lung fibroblasts (MRC-5). Following the confirmation of the importance of cancer cell-fibroblast interactions in the protumorigenic activity of DKK1, the fibroblast traits modulated by DKK1 were further analyzed. RESULTS Gefitinib-resistant NSCLC cells exhibited increased DKK1 protein expression. Although elevated DKK1 levels were linked to poor prognosis, DKK1 did not directly affect cancer cell proliferation. However, DKK1 blockade showed significant anticancer effects in gefitinib-resistant tumors containing lung fibroblasts, suggesting that DKK1's pro-tumorigenic roles are mediated through cancer cell-fibroblast interactions. DKK1 altered fibroblast characteristics, enhancing inflammatory fibroblast traits while diminishing myofibroblast traits in tumor microenvironment. These DKK1-induced changes were mediated via activation of the c-JUN pathway in fibroblasts. Moreover, DKK1 was identified as a potential anticancer target across various cancer types beyond gefitinib-resistant lung cancer. CONCLUSIONS This study clarifies that DKK1 mediates interactions between cancer cells and fibroblasts in gefitinib-resistant lung cancer, contributing to tumor progression. Therefore, we propose DKK1 as a promising anticancer target for the treatment of gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Munkyung Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong June Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yujeong Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Qu C, Zeng P, Li C, Hu W, Yang D, Wang H, Yuan H, Cao J, Xiu D. A machine learning model based on preoperative multiparametric quantitative DWI can effectively predict the survival and recurrence risk of pancreatic ductal adenocarcinoma. Insights Imaging 2025; 16:38. [PMID: 39962007 PMCID: PMC11833029 DOI: 10.1186/s13244-025-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE To develop a machine learning (ML) model combining preoperative multiparametric diffusion-weighted imaging (DWI) and clinical features to better predict overall survival (OS) and recurrence-free survival (RFS) following radical surgery for pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS A retrospective analysis was conducted on 234 PDAC patients who underwent radical resection at two centers. Among 101 ML models tested for predicting postoperative OS and RFS, the best-performing model was identified based on comprehensive evaluation metrics, including C-index, Brier scores, AUC curves, clinical decision curves, and calibration curves. This model's risk stratification capability was further validated using Kaplan-Meier survival analysis. RESULTS The random survival forest model achieved the highest C-index (0.828/0.723 for OS and 0.781/0.747 for RFS in training/validation cohorts). Incorporating nine key factors-D value, T-stage, ADC-value, postoperative 7th day CA19-9 level, AJCC stage, tumor differentiation, type of operation, tumor location, and age-optimized the model's predictive accuracy. The model had integrated Brier score below 0.13 and C/D AUC values above 0.85 for both OS and RFS predictions. It also outperformed traditional models in predictive ability and clinical benefit, as shown by clinical decision curves. Calibration curves confirmed good predictive consistency. Using cut-off scores of 16.73/29.05 for OS/RFS, Kaplan-Meier analysis revealed significant prognostic differences between risk groups (p < 0.0001), highlighting the model's robust risk prediction and stratification capabilities. CONCLUSION The random survival forest model, combining DWI and clinical features, accurately predicts survival and recurrence risk after radical resection of PDAC and effectively stratifies risk to guide clinical treatment. CRITICAL RELEVANCE STATEMENT The construction of 101 ML models based on multiparametric quantitative DWI combined with clinical variables has enhanced the prediction performance for survival and recurrence risks in patients undergoing radical resection for PDAC. KEY POINTS This study first develops DWI-based radiological-clinical ML models predicting PDAC prognosis. Among 101 models, RFS is the best and outperforms other traditional models. Multiparametric DWI is the key prognostic predictor, with model interpretations through SurvSHAP.
Collapse
Affiliation(s)
- Chao Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Piaoe Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Changlei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiyu Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongxia Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hangyan Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Wahab A, Siddique HR. An update understanding of stemness and chemoresistance of prostate cancer. Expert Rev Anticancer Ther 2025. [PMID: 39935028 DOI: 10.1080/14737140.2025.2466680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Globally, prostate cancer (CaP) is a leading cause of death and disability among men and a substantial public health burden. Despite advancements in cancer treatment, chemoresistance remains a significant issue in cancer therapy, accounting for the majority of patient relapses and poor survival. Cancer stem cells (CSCs) are considered the main cause of cancer recurrence, chemoresistance, and poor survival of patients. These CSCs acquire stemness and chemoresistance by certain mechanisms such as enhanced DNA repair processes, increased expression of drug efflux pumps, resistance to apoptosis, and altered cell cycle and tumor microenvironment (TME). AREA COVERED We cover the latest developments in this field and give an overview of future research directions. EXPERT OPINION CSCs show dysregulation of several signaling pathways, mostly related to conferring chemoresistance phenotype, such as high drug efflux, apoptotic resistance, quiescent cell cycle, tumor microenvironment, and DNA repair. There are several research articles published on this topic. However, still, this field warrants further investigations to identify the therapeutic molecule that can either chemosensitize CSCs or kill them effectively. This can only be possible when we know the complete mechanisms to comprehend the fundamental causes of cancer stemness and therapy resistance.
Collapse
Affiliation(s)
- Afiya Wahab
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
8
|
Zheng Y, Xu R, Chen T, Wang Y, Chen X, Chen H, Gao Y. Four-pronged reversal of chemotherapy resistance by mangiferin amphiphile. J Control Release 2025; 378:776-790. [PMID: 39724947 DOI: 10.1016/j.jconrel.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Despite significant advances in diverse cancer treatment methods, chemotherapy remains the primary approach, and the development of chemoresistance is still a persistent problem during treatment. Here, we developed a derivative of the natural product mangiferin as a carrier for delivering chemotherapeutic drug, aiming to overcome drug resistance through a distinctive four-pronged strategy, including modulation of inflammatory tumor microenvironment (TME), induction of ferroptosis, deep tumor penetration, and the combinatory anticancer effects. After clarifying the promotion effects of the cancer associated fibroblasts (CAFs) in chemoresistance, and leveraging our previous elucidation of the anti-inflammatory and ferroptosis-inducing ability of mangiferin, we synthesized mangiferin amphiphile (MMF) and developed a self-assembled carrier-free nanomedicine, named MP, through the self-assembly of MMF and the representative chemotherapeutic drug paclitaxel (PTX). MP possessed a particle size of approximately 68 nm with compact filamentous nanostructures. MP demonstrated efficient tumor-targeting and deep tumor penetration abilities. Furthermore, MP effectively suppressed glutathione peroxidase 4 (GPX4) expression to induce ferroptosis, mitigated the activation of IL-6/STAT3 pathway to deactivate CAFs within the inflammatory TME, and exhibited robust anti-cancer effects against PTX-resistant breast cancer both in vitro and in vivo. This mangiferin derivative represents a promising "all-in-one" nanocarrier for delivering chemotherapeutic drugs, offering a green, safe, and convenient self-assembled carrier-free nanomedicine to effectively overcome drug resistance.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruofei Xu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Tingyan Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaoye Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
9
|
Zeng T, Lu C, Wang M, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. The effect of microenvironmental viscosity on the emergence of colon cancer cell resistance to doxorubicin. J Mater Chem B 2025; 13:2180-2191. [PMID: 39803934 DOI: 10.1039/d4tb02334j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells. In this study, the influence of viscosity on their chemoresistance was elucidated by culturing colon cancer cells in media of different viscosities supplemented with doxorubicin (DOX). The viscosity range was adjusted from 99.4 mPa s to 776.6 mPa s by adding polyethylene glycol of different molecular weights in culture medium. Cell viability in the high viscosity medium was higher than that in the low viscosity medium. Expression of chemoresistance-related genes such as ABCC2 and ABCG2 increased when cells were cultured in the high viscosity medium. Furthermore, cell migration increased while proliferation decreased when cells were cultured in the high viscosity medium. The colon cancer cells cultured in the high viscosity medium exhibited high expression of p21 mRNA. The results suggested that viscosity could affect the resistance of colon cancer cells to DOX by regulating the expression of chemoresistance-related and proliferation-related genes.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environment Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
Świerczewska M, Nowacka M, Stasiak P, Iżycki D, Sterzyńska K, Płóciennik A, Nowicki M, Januchowski R. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother 2025; 183:117804. [PMID: 39787968 DOI: 10.1016/j.biopha.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions. Molecular analyses identified overexpression of essential drug resistance-related genes, including MDR1 and BCRP, and extracellular matrix (ECM) components, such as MYOT and SPP1, which were more pronounced in resistant cell lines. MDR1 and BCRP overexpression contribute to chemotherapy resistance in OC by expelling drugs like DOX and TOP. Targeting these transporters with inhibitors or gene silencing could improve drug efficacy, making them key therapeutic targets to enhance treatment outcomes for drug-resistant OC. The study further showed that EMT-associated markers, including VIM, SNAIL1, and SNAIL2, were upregulated in the 3D spheroids, reflecting a more mesenchymal phenotype. These findings suggest that factors beyond gene expression, such as spheroid architecture, cell-cell interactions, and drug penetration, contribute to the enhanced resistance observed in 3D cultures. These results highlight the importance of 3D cell culture models for a more accurate representation of tumour drug resistance mechanisms in ovarian cancer, providing valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland; Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Piotr Stasiak
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., Poznan 61-866, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Wieniawskiego 1 St., Poznan 61-712, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| |
Collapse
|
11
|
Zhang H, Tang H, Tu W, Peng F. Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:4. [PMID: 39935428 PMCID: PMC11810461 DOI: 10.20517/cdr.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Gastrointestinal (GI) cancers are becoming a growing cause of morbidity and mortality globally, posing a significant risk to human life and health. The main treatment for this kind of cancer is chemotherapy based on 5-fluorouracil (5-FU). However, the issue of 5-FU resistance is becoming increasingly prominent, which greatly limits its effectiveness in clinical treatment. Recently, numerous studies have disclosed that some non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), exert remarkable physiological functions within cells. In addition, these ncRNAs can also serve as important information communication molecules in the tumor microenvironment and regulate tumor chemotherapy resistance. In particular, they have been shown to play multiple roles in regulating 5-FU resistance in GI cancers. Herein, we summarize the targets, pathways, and mechanisms involved in regulating 5-FU resistance by ncRNAs and briefly discuss the application potential of ncRNAs as biomarkers or therapeutic targets for 5-FU resistance in GI cancers, aiming to offer a reference to tackle issues related to 5-FU resistance.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510700, Guangdong, China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu 610051, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Tatlı Doğan H, Doğan M, Kahraman S, Çanakçı D, Şendur MAN, Tahtacı M, Erdoğan F. Impact of HIF-1α, LOX and ITGA5 Synergistic Interaction in the Tumor Microenvironment on Colorectal Cancer Prognosis. Diagnostics (Basel) 2025; 15:184. [PMID: 39857068 PMCID: PMC11764385 DOI: 10.3390/diagnostics15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background: As colorectal cancers are histopathologically and molecularly highly heterogeneous tumors, it is necessary to consider the tumor's microenvironment as well as its cellular characteristics in order to determine the biological behavior of the tumor. This study included 100 patients who underwent resection for colorectal cancer. We aimed to investigate the relationships between the expression status of the HIF-1α, LOX and ITGA5 proteins and clinicopathologic parameters. Methods: HIF-1α, LOX and ITGA5 antibodies were applied immunohistochemically to tissue microarrays prepared from tumor samples. Expression status in the tumor microenvironment were evaluated using a combined scoring system based on staining intensity and the percentage of positively stained cells. Nuclear HIF-1α expression in tumor cells was quantified, with >1% considered positive. The staining of HIF-1α, ITGA5 and LOX was analyzed in relation to prognostic and molecular features. Results: The staining of HIF-1α, ITGA5 and LOX in the tumor microenvironment demonstrated a positive correlation with one another and with HIF-1α and LOX expression in tumor cells. In patients with KRAS, NRAS or BRAF mutation and the moderate to strong expression of all three of these proteins in the tumor microenvironment, the number of metastatic lymph nodes was higher than in other patients. Stage IV patients with the moderate to strong expression of HIF-1α, ITGA5 or LOX in the microenvironment had lower progression-free survival than those with weak expression (p < 0.05). In addition, female gender; moderate to strong HIF-1α, LOX and ITGA5 stromal expression; and metastatic first line chemotherapy only were found to be independently associated with an increased risk of progression. Conclusions: These markers may be useful in predicting treatment responses and may also guide the development of alternative or combined treatments that specifically target molecules such as HIF and LOX. Our study should be supported by more comprehensive studies addressing the tumor stroma and its prognostic importance.
Collapse
Affiliation(s)
- Hayriye Tatlı Doğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Mehmet Doğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Seda Kahraman
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Doğukan Çanakçı
- Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | | | - Mustafa Tahtacı
- Department of Gastroenterology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Fazlı Erdoğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| |
Collapse
|
13
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
14
|
Sato A, Takagi K, Yoshida M, Yamaguchi-Tanaka M, Sagehashi M, Miki Y, Miyashita M, Suzuki T. Discoidin Domain Receptor 2 Contributes to Breast Cancer Progression and Chemoresistance by Interacting with Collagen Type I. Cancers (Basel) 2024; 16:4285. [PMID: 39766183 PMCID: PMC11674238 DOI: 10.3390/cancers16244285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chemoresistance is an important issue to be solved in breast cancer. It is well known that the content and morphology of collagens in tumor tissues are drastically altered following chemotherapy, and discoidin domain receptor 2 (DDR2) is a unique type of receptor tyrosine kinase (RTK). This RTK is activated by collagens, playing important roles in human malignancies. However, the contribution to the chemoresistance of DDR2 in terms of the association with collagens remains largely unclear in breast cancer. Methods: We immunolocalized DDR2 and collagen type I in 224 breast cancer tissues and subsequently conducted in vitro studies to confirm the role of DDR2 in breast cancer chemoresistance using chemosensitive and chemoresistant cell lines. Results: DDR2 immunoreactivity was positively correlated with aggressive behaviors of breast cancer and was significantly associated with an increased risk of recurrence, especially in those who received chemotherapy. Moreover, in vitro experiments demonstrated that DDR2 promoted the proliferative activity of breast cancer cells, and cell viability after epirubicin treatment was significantly maintained by DDR2 in a collagen I-dependent manner. Conclusions: These data suggested that DDR2 could be a poor prognostic factor associated with cell proliferation and chemotherapy resistance in human breast cancer.
Collapse
Affiliation(s)
- Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Momoka Yoshida
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mikoto Sagehashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| |
Collapse
|
15
|
Kinoshita J, Doden K, Sakimura Y, Hayashi S, Saito H, Tsuji T, Yamamoto D, Moriyama H, Minamoto T, Inaki N. Crosstalk Between Omental Adipose-Derived Stem Cells and Gastric Cancer Cells Regulates Cancer Stemness and Chemotherapy Resistance. Cancers (Basel) 2024; 16:4275. [PMID: 39766174 PMCID: PMC11674675 DOI: 10.3390/cancers16244275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells. Methods: ASCs were isolated from the human omentum and their cellular characteristics were analyzed during co-culturing with GC cells. Results: ASCs express CAF markers and promote desmoplasia in cancer stroma in a mouse xenograft model. When co-cultured with GC cells, ASCs enhanced the sphere-forming efficiency of MKN45 and MKN74 cells. ASCs increased IL-6 secretion and enhanced the expression of Nanog and CD44v6 in GC cells; however, these changes were suppressed by the inhibition of IL-6. Xenograft mouse models co-inoculated with MKN45 cells and ASCs showed enhanced CD44v6 and Nanog expression and markedly reduced apoptosis induced by 5-FU treatment. Conclusion: This study improves our understanding of ASCs' role in PM treatment resistance and has demonstrated the potential for new treatment strategies targeting ASCs.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Kenta Doden
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Yusuke Sakimura
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Saki Hayashi
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshikatsu Tsuji
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Daisuke Yamamoto
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hideki Moriyama
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshinari Minamoto
- Japan Community Health Care Organization Kanazawa Hospital, Kanazawa 920-8610, Japan;
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa 920-8640, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| |
Collapse
|
16
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
17
|
Choi D, Lee JG, Heo SH, Cho MK, Nam HS, Lee SH, Lee YJ. Curcumin and Its Potential to Target the Glycolytic Behavior of Lactate-Acclimated Prostate Carcinoma Cells with Docetaxel. Nutrients 2024; 16:4338. [PMID: 39770959 PMCID: PMC11677565 DOI: 10.3390/nu16244338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined. Results: PC-3AcT and DU145AcT cells that preadapted to lactic acid displayed increased growth behavior, increased dependence on glycolysis, and reduced sensitivity to docetaxel compared to parental PC-3 and DU145 cells. Molecular analyses revealed activation of the c-Raf/MEK/ERK pathway, upregulation of cyclin D1, cyclin B1, and p-cdc2Thr161, and increased levels and activities of key regulatory enzymes in glycolysis, including HK2, in lactate-acclimated cells. HK2 knockdown resulted in decreased cell growth and glycolytic activity, decreased levels of complexes I-V in the mitochondrial electron transport chain, loss of mitochondrial membrane potential, and depletion of intracellular ATP, ultimately leading to cell death. In a xenograft animal model, curcumin combined with docetaxel reduced tumor size and weight, induced downregulation of glycolytic enzymes, and stimulated the upregulation of apoptotic and necroptotic proteins. This was consistent with the in vitro results from 2D monolayer and 3D spheroid cultures, suggesting that the efficacy of curcumin is not affected by docetaxel. Conclusions: Overall, our findings suggest that metabolic plasticity through enhanced glycolysis observed in lactate-acclimated PC cells may be one of the underlying causes of docetaxel resistance, and targeting glycolysis by curcumin may provide potential for drug development that could improve treatment outcomes in PC patients.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Jun Gi Lee
- Biochemistry and Molecular Biology, Marquette University, Milwaukee, WI 53233, USA;
| | - Su-Hak Heo
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University Glocal Campus, Chungju 27478, Republic of Korea;
| | - Moon-Kyen Cho
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Hae-Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| |
Collapse
|
18
|
Moura SPSP, Marín S, Rufino I, Guedes RC, Cascante M, Salvador JAR. Design, Synthesis, and Biological Evaluation of Novel Urea-Containing Carnosic Acid Derivatives with Anticancer Activity. Int J Mol Sci 2024; 25:13332. [PMID: 39769100 PMCID: PMC11728001 DOI: 10.3390/ijms252413332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
A series of novel carnosic acid 1 derivatives incorporating urea moieties at the C-20 position was synthesized and evaluated for their antiproliferative activity against the HCT116 colorectal cancer cell line. Most derivatives demonstrated enhanced antiproliferative activity compared to that of carnosic acid 1. The most promising derivatives were tested in other colorectal cancer cell lines (SW480, SW620, and Caco-2), melanoma (A375), and pancreatic cancer (MiaPaca-2). Derivative 14 consistently demonstrated the highest activity across all tested cancer cell lines, showing selectivity for cancer cells over normal cells. Further investigation of the mechanism of action in SW480 cells revealed that compound 14 induced cell cycle arrest at the G0/G1 phase by downregulating CDK4 and CDK6. Molecular docking studies revealed that compound 14 established several interactions with key residues in the active site of CDK6. Additionally, compound 14 also reduced ROS production. In summary, our results strongly indicate that compound 14 has potential as a lead compound in the development of innovative anticancer drugs.
Collapse
Affiliation(s)
- Sara P. S. P. Moura
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Silvia Marín
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ismael Rufino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisboa, 1649-003 Lisboa, Portugal; (I.R.); (R.C.G.)
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisboa, 1649-003 Lisboa, Portugal; (I.R.); (R.C.G.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
19
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
20
|
Fang G, Hao P, Qiao R, Liu BX, Shi X, Wang Z, Sun P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int J Biol Macromol 2024; 283:137709. [PMID: 39549789 DOI: 10.1016/j.ijbiomac.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Chitosan, obtained through deacetylation of chitin, has been shown to a promising biopolymer for the development of nano- and micro-particles. In spite of inherent anti-cancer activity of chitosan, the employment of this carbohydrate polymer for the synthesis of nanoparticles opens a new gate in disease therapy. The properties of chitosan including biocompatibility, biodegradability, and modifiability are vital in enhancing these nanoparticles, allowing for improved solubility and interaction with cellular targets. Among the pathological events, cancer has demonstrated an increase in incidence rate and therefore, the chitosan nanoparticles have been significantly utilized in cancer therapy. The present review emphasizes on the role of stimuli-responsive chitosan nanoparticles in the field of cancer therapy. The stimuli-responsive nanoparticles can release the cargo in the tumor site that not only improves the anti-cancer activity of chemotherapy drugs, but also diminishes their systemic toxicity. The stimuli-responsive chitosan nanoparticles can respond to endogenous and exogenous stimuli including pH, redox and light to release cargo. This improves the specificity towards tumor cells and enhances accumulation of drugs and/or drugs. The light-responsive chitosan nanoparticles can cause photothermal and photodynamic therapy in tumor ablation and provide theranostic feature that is cancer diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
- Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Peng Hao
- Department of Joint Surgery, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing 400038, PR China
| | - Ruonan Qiao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bi-Xia Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Shi
- School of Medicine, Tongji university, Shanghai 200092, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital, Inner Mongolia Campus, Afliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, China.
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
22
|
Liu W, Wang X, Wu W. Role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer (Review). Oncol Rep 2024; 52:144. [PMID: 39219271 PMCID: PMC11378154 DOI: 10.3892/or.2024.8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.
Collapse
Affiliation(s)
- Wanli Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
23
|
Ghosh S, Tanbir SE, Mitra T, Roy SS. Unveiling stem-like traits and chemoresistance mechanisms in ovarian cancer cells through the TGFβ1-PITX2A/B signaling axis. Biochem Cell Biol 2024; 102:394-409. [PMID: 38976906 DOI: 10.1139/bcb-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy, having a high mortality rate due to its asymptomatic nature, chemoresistance, and recurrence. However, the proper mechanistic knowledge behind these phenomena is still inadequate. Cancer recurrence is commonly observed due to cancer stem cells which also show chemoresistance. We aimed to decipher the molecular mechanism behind chemoresistance and stemness in OC. Earlier studies suggested that PITX2, a homeobox transcription factor and, its different isoforms are associated with OC progression upon regulating different signaling pathways. Moreover, they regulate the expression of drug efflux transporters in kidney and colon cancer, rendering chemoresistance properties in the tumor cell. Considering these backgrounds, we decided to look for the role of PITX2 isoforms in promoting stemness and chemoresistance in OC cells. In this study, PITX2A/B has been shown to promote stemness and to enhance the transcription of ABCB1. PITX2 has been discovered to augment ABCB1 gene expression by directly binding to its promoter. To further investigate the regulatory mechanism of PITX2 gene expression, we found that TGFβ signaling could augment the PITX2A/B expression through both SMAD and non-SMAD signaling pathways. Collectively, we conclude that TGFβ1-activated PITX2A/B induces stem-like features and chemoresistance properties in the OC cells.
Collapse
Affiliation(s)
- Sampurna Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sk Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
25
|
Bharadwaj D, Mandal M. Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer 2024; 1879:189158. [PMID: 39032537 DOI: 10.1016/j.bbcan.2024.189158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tumor microenvironment is formed by various cellular and non-cellular components which interact with one another and form a complex network of interactions. Some of these cellular components also attain a secretory phenotype and release growth factors, cytokines, chemokines etc. in the surroundings which are capable of inducing even greater number of signalling networks. All these interactions play a decisive role in determining the course of tumorigenesis. The treatment strategies against cancer also exert their impact on the local microenvironment. Such interactions and anticancer therapies have been found to induce more deleterious outcomes like immunosuppression and chemoresistance in the process of tumor progression. Hence, understanding the tumor microenvironment is crucial for dealing with cancer and chemoresistance. This review is an attempt to develop some understanding about the tumor microenvironment and different factors which modulate it, thereby contributing to tumorigenesis. Along with summarising the major components of tumor microenvironment and various interactions taking place between them, it also throws some light on how the existing and potential therapies exert their impact on these dynamics.
Collapse
Affiliation(s)
- Deblina Bharadwaj
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
26
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Gao X, Caruso BR, Li W. Advanced Hydrogels in Breast Cancer Therapy. Gels 2024; 10:479. [PMID: 39057502 PMCID: PMC11276203 DOI: 10.3390/gels10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common malignancy among women and is the second leading cause of cancer-related death for women. Depending on the tumor grade and stage, breast cancer is primarily treated with surgery and antineoplastic therapy. Direct or indirect side effects, emotional trauma, and unpredictable outcomes accompany these traditional therapies, calling for therapies that could improve the overall treatment and recovery experiences of patients. Hydrogels, biomimetic materials with 3D network structures, have shown great promise for augmenting breast cancer therapy. Hydrogel implants can be made with adipogenic and angiogenic properties for tissue integration. 3D organoids of malignant breast tumors grown in hydrogels retain the physical and genetic characteristics of the native tumors, allowing for post-surgery recapitulation of the diseased tissues for precision medicine assessment of the responsiveness of patient-specific cancers to antineoplastic treatment. Hydrogels can also be used as carrier matrices for delivering chemotherapeutics and immunotherapeutics or as post-surgery prosthetic scaffolds. The hydrogel delivery systems could achieve localized and controlled medication release targeting the tumor site, enhancing efficacy and minimizing the adverse effects of therapeutic agents delivered by traditional procedures. This review aims to summarize the most recent advancements in hydrogel utilization for breast cancer post-surgery tissue reconstruction, tumor modeling, and therapy and discuss their limitations in clinical translation.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Benjamin R. Caruso
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
28
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Nocquet L, Roul J, Lefebvre CC, Duarte L, Campone M, Juin PP, Souazé F. Low BCL-xL expression in triple-negative breast cancer cells favors chemotherapy efficacy, and this effect is limited by cancer-associated fibroblasts. Sci Rep 2024; 14:14177. [PMID: 38898061 PMCID: PMC11187150 DOI: 10.1038/s41598-024-64696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Triple negative breast cancers (TNBC) present a poor prognosis primarily due to their resistance to chemotherapy. This resistance is known to be associated with elevated expression of certain anti-apoptotic members within the proteins of the BCL-2 family (namely BCL-xL, MCL-1 and BCL-2). These regulate cell death by inhibiting pro-apoptotic protein activation through binding and sequestration and they can be selectively antagonized by BH3 mimetics. Yet the individual influences of BCL-xL, MCL-1, and BCL-2 on the sensitivity of TNBC cells to chemotherapy, and their regulation by cancer-associated fibroblasts (CAFs), major components of the tumor stroma and key contributors to therapy resistance remain to be delineated. Using gene editing or BH3 mimetics to inhibit anti-apoptotic BCL-2 family proteins in TNBC line MDA-MB-231, we show that BCL-xL and MCL-1 promote cancer cell survival through compensatory mechanisms. This cell line shows limited sensitivity to chemotherapy, in line with the clinical resistance observed in TNBC patients. We elucidate that BCL-xL plays a pivotal role in therapy response, as its depletion or pharmacological inhibition heightened chemotherapy effectiveness. Moreover, BCL-xL expression is associated with chemotherapy resistance in patient-derived tumoroids where its pharmacological inhibition enhances ex vivo response to chemotherapy. In a co-culture model of cancer cells and CAFs, we observe that even in a context where BCL-xL reduced expression renders cancer cells more susceptible to chemotherapy, those in contact with CAFs display reduced sensitivity to chemotherapy. Thus CAFs exert a profound pro-survival effect in breast cancer cells, even in a setting highly favoring cell death through combined chemotherapy and absence of the main actor of chemoresistance, BCL-xL.
Collapse
Affiliation(s)
- Lisa Nocquet
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Julie Roul
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Chloé C Lefebvre
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Laurine Duarte
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Mario Campone
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- ICO René Gauducheau, Saint Herblain, France
| | - Philippe P Juin
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
- ICO René Gauducheau, Saint Herblain, France.
| | - Frédérique Souazé
- INSERM, CNRS, CRCI2NA, Université de Nantes, 44000, Nantes, France.
- Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
- SIRIC ILIAD, Nantes, Angers, France.
| |
Collapse
|
32
|
Ryu KB, Seo JA, Lee K, Choi J, Yoo G, Ha JH, Ahn MR. Drug-Resistance Biomarkers in Patient-Derived Colorectal Cancer Organoid and Fibroblast Co-Culture System. Curr Issues Mol Biol 2024; 46:5794-5811. [PMID: 38921017 PMCID: PMC11202770 DOI: 10.3390/cimb46060346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer, the third most commonly occurring tumor worldwide, poses challenges owing to its high mortality rate and persistent drug resistance in metastatic cases. We investigated the tumor microenvironment, emphasizing the role of cancer-associated fibroblasts in the progression and chemoresistance of colorectal cancer. We used an indirect co-culture system comprising colorectal cancer organoids and cancer-associated fibroblasts to simulate the tumor microenvironment. Immunofluorescence staining validated the characteristics of both organoids and fibroblasts, showing high expression of epithelial cell markers (EPCAM), colon cancer markers (CK20), proliferation markers (KI67), and fibroblast markers (VIM, SMA). Transcriptome profiling was conducted after treatment with anticancer drugs, such as 5-fluorouracil and oxaliplatin, to identify chemoresistance-related genes. Changes in gene expression in the co-cultured colorectal cancer organoids following anticancer drug treatment, compared to monocultured organoids, particularly in pathways related to interferon-alpha/beta signaling and major histocompatibility complex class II protein complex assembly, were identified. These two gene groups potentially mediate drug resistance associated with JAK/STAT signaling. The interaction between colorectal cancer organoids and fibroblasts crucially modulates the expression of genes related to drug resistance. These findings suggest that the interaction between colorectal cancer organoids and fibroblasts significantly influences gene expression related to drug resistance, highlighting potential biomarkers and therapeutic targets for overcoming chemoresistance. Enhanced understanding of the interactions between cancer cells and their microenvironment can lead to advancements in personalized medical research..
Collapse
Affiliation(s)
| | | | | | | | | | - Ji-hye Ha
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (K.-B.R.)
| | - Mee Ryung Ahn
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (K.-B.R.)
| |
Collapse
|
33
|
Mendoza-Rodríguez MG, Medina-Reyes D, Sánchez-Barrera CA, Fernández-Muñoz KV, García-Castillo V, Ledesma-Torres JL, González-González MI, Reyes JL, Pérez-Plascencia C, Rodríguez-Sosa M, Vaca-Paniagua F, Meraz MA, Terrazas LI. Helminth-derived molecules improve 5-fluorouracil treatment on experimental colon tumorigenesis. Biomed Pharmacother 2024; 175:116628. [PMID: 38663106 DOI: 10.1016/j.biopha.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent fatal neoplasias worldwide. Despite efforts to improve the early diagnosis of CRC, the mortality rate of patients is still nearly 50%. The primary treatment strategy for CRC is surgery, which may be accompanied by chemotherapy and radiotherapy. The conventional and first-line chemotherapeutic agent utilized is 5-fluorouracil (5FU). However, it has low efficiency. Combination treatment with leucovorin and oxaliplatin or irinotecan improves the effectiveness of 5FU therapy. Unfortunately, most patients develop drug resistance, leading to disease progression. Here, we evaluated the effect of a potential alternative adjuvant treatment for 5FU, helminth-derived Taenia crassiceps (TcES) molecules, on treating advanced colitis-associated colon cancer. The use of TcES enhanced the effects of 5FU on established colonic tumors by downregulating the expression of the immunoregulatory cytokines, Il-10 and Tgf-β, and proinflammatory cytokines, Tnf-α and Il-17a, and reducing the levels of molecular markers associated with malignancy, cyclin D1, and Ki67, both involved in apoptosis inhibition and the signaling pathway of β-catenin. TcES+5FU therapy promoted NK cell recruitment and the release of Granzyme B1 at the tumor site, consequently inducing tumor cell death. Additionally, it restored P53 activity which relates to decreased Mdm2 expression. In vitro assays with human colon cancer cell lines showed that therapy with TcES+5FU significantly reduced cell proliferation and migration by modulating the P53 and P21 signaling pathways. Our findings demonstrate, for the first time in vivo, that helminth-derived excreted/secreted products may potentiate the effect of 5FU on established colon tumors.
Collapse
Affiliation(s)
- Mónica G Mendoza-Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
| | - Daniela Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Cuauhtémoc A Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Karen V Fernández-Muñoz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Jorge L Ledesma-Torres
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Marisol I González-González
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plascencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Marco A Meraz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
| |
Collapse
|
34
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
35
|
Huang G, Du S, Gao S, Guo L, Zhao R, Bian X, Xie L, Zhang L. Molecular subtypes of breast cancer identified by dynamically enhanced MRI radiomics: the delayed phase cannot be ignored. Insights Imaging 2024; 15:127. [PMID: 38816553 PMCID: PMC11139827 DOI: 10.1186/s13244-024-01713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVES To compare the diagnostic performance of intratumoral and peritumoral features from different contrast phases of breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building radiomics models for differentiating molecular subtypes of breast cancer. METHODS This retrospective study included 377 patients with pathologically confirmed breast cancer. Patients were divided into training set (n = 202), validation set (n = 87) and test set (n = 88). The intratumoral volume of interest (VOI) and peritumoral VOI were delineated on primary breast cancers at three different DCE-MRI contrast phases: early, peak, and delayed. Radiomics features were extracted from each phase. After feature standardization, the training set was filtered by variance analysis, correlation analysis, and least absolute shrinkage and selection (LASSO). Using the extracted features, a logistic regression model based on each tumor subtype (Luminal A, Luminal B, HER2-enriched, triple-negative) was established. Ten models based on intratumoral or/plus peritumoral features from three different phases were developed for each differentiation. RESULTS Radiomics features extracted from delayed phase DCE-MRI demonstrated dominant diagnostic performance over features from other phases. However, the differences were not statistically significant. In the full fusion model for differentiating different molecular subtypes, the most frequently screened features were those from the delayed phase. According to the Shapley additive explanation (SHAP) method, the most important features were also identified from the delayed phase. CONCLUSIONS The intratumoral and peritumoral radiomics features from the delayed phase of DCE-MRI can provide additional information for preoperative molecular typing. The delayed phase of DCE-MRI cannot be ignored. CRITICAL RELEVANCE STATEMENT Radiomics features extracted and radiomics models constructed from the delayed phase of DCE-MRI played a crucial role in molecular subtype classification, although no significant difference was observed in the test cohort. KEY POINTS The molecular subtype of breast cancer provides a basis for setting treatment strategy and prognosis. The delayed-phase radiomics model outperformed that of early-/peak-phases, but no differently than other phases or combinations. Both intra- and peritumoral radiomics features offer valuable insights for molecular typing.
Collapse
Affiliation(s)
- Guoliang Huang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Siyao Du
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Si Gao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liangcun Guo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ruimeng Zhao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoqian Bian
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lizhi Xie
- GE Healthcare, Beijing, 100176, China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, China.
- Department of Radiology, The Fourth Hospital of China Medical University, Shenyang, 110165, Liaoning Province, China.
| |
Collapse
|
36
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
37
|
El-Tanani M, Rabbani SA, Babiker R, Rangraze I, Kapre S, Palakurthi SS, Alnuqaydan AM, Aljabali AA, Rizzo M, El-Tanani Y, Tambuwala MM. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett 2024; 591:216894. [PMID: 38626856 DOI: 10.1016/j.canlet.2024.216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Imran Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Sushesh Srivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Manfredi Rizzo
- (D)epartment of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
38
|
Viana Cabral F, Quilez Alburquerque J, Roberts HJ, Hasan T. Shedding Light on Chemoresistance: The Perspective of Photodynamic Therapy in Cancer Management. Int J Mol Sci 2024; 25:3811. [PMID: 38612619 PMCID: PMC11011502 DOI: 10.3390/ijms25073811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The persistent failure of standard chemotherapy underscores the urgent need for innovative and targeted approaches in cancer treatment. Photodynamic therapy (PDT) has emerged as a promising photochemistry-based approach to address chemoresistance in cancer regimens. PDT not only induces cell death but also primes surviving cells, enhancing their susceptibility to subsequent therapies. This review explores the principles of PDT and discusses the concept of photodynamic priming (PDP), which augments the effectiveness of treatments like chemotherapy. Furthermore, the integration of nanotechnology for precise drug delivery at the right time and location and PDT optimization are examined. Ultimately, this study highlights the potential and limitations of PDT and PDP in cancer treatment paradigms, offering insights into future clinical applications.
Collapse
Affiliation(s)
- Fernanda Viana Cabral
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Jose Quilez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Harrison James Roberts
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Zeng T, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Effect of Hydrogel Stiffness on Chemoresistance of Breast Cancer Cells in 3D Culture. Gels 2024; 10:202. [PMID: 38534620 DOI: 10.3390/gels10030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Chemotherapy is one of the most common strategies for cancer treatment, whereas drug resistance reduces the efficiency of chemotherapy and leads to treatment failure. The mechanism of emerging chemoresistance is complex and the effect of extracellular matrix (ECM) surrounding cells may contribute to drug resistance. Although it is well known that ECM plays an important role in orchestrating cell functions, it remains exclusive how ECM stiffness affects drug resistance. In this study, we prepared agarose hydrogels of different stiffnesses to investigate the effect of hydrogel stiffness on the chemoresistance of breast cancer cells to doxorubicin (DOX). Agarose hydrogels with a stiffness range of 1.5 kPa to 112.3 kPa were prepared and used to encapsulate breast cancer cells for a three-dimensional culture with different concentrations of DOX. The viability of the cells cultured in the hydrogels was dependent on both DOX concentration and hydrogel stiffness. Cell viability decreased with DOX concentration when the cells were cultured in the same stiffness hydrogels. When DOX concentration was the same, breast cancer cells showed higher viability in high-stiffness hydrogels than they did in low-stiffness hydrogels. Furthermore, the expression of P-glycoprotein mRNA in high-stiffness hydrogels was higher than that in low-stiffness hydrogels. The results suggested that hydrogel stiffness could affect the resistance of breast cancer cells to DOX by regulating the expression of chemoresistance-related genes.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
40
|
Reyes ME, Pulgar V, Vivallo C, Ili CG, Mora-Lagos B, Brebi P. Epigenetic modulation of cytokine expression in gastric cancer: influence on angiogenesis, metastasis and chemoresistance. Front Immunol 2024; 15:1347530. [PMID: 38455038 PMCID: PMC10917931 DOI: 10.3389/fimmu.2024.1347530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Cytokines are proteins that act in the immune response and inflammation and have been associated with the development of some types of cancer, such as gastric cancer (GC). GC is a malignant neoplasm that ranks fifth in incidence and third in cancer-related mortality worldwide, making it a major public health issue. Recent studies have focused on the role these cytokines may play in GC associated with angiogenesis, metastasis, and chemoresistance, which are key factors that can affect carcinogenesis and tumor progression, quality, and patient survival. These inflammatory mediators can be regulated by epigenetic modifications such as DNA methylation, histone protein modification, and non-coding RNA, which results in the silencing or overexpression of key genes in GC, presenting different targets of action, either direct or mediated by modifications in key genes of cytokine-related signaling pathways. This review seeks insight into the relationship between cytokine-associated epigenetic regulation and its potential effects on the different stages of development and chemoresistance in GC.
Collapse
Affiliation(s)
- María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victoria Pulgar
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carolina Vivallo
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Bárbara Mora-Lagos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
41
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
42
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
43
|
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY, Hong SH. Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics 2024; 14:460-479. [PMID: 38169528 PMCID: PMC10758057 DOI: 10.7150/thno.87329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Platinum-based chemotherapy is commonly used for treating solid tumors, but drug resistance often limits its effectiveness. Cancer-associated fibroblast (CAF)-derived extracellular vesicle (EV), which carry various miRNAs, have been implicated in chemotherapy resistance. However, the molecular mechanism through which CAFs modulate cisplatin resistance in oral squamous cell carcinoma (OSCC) is not well understood. We employed two distinct primary CAF types with differential impacts on cancer progression: CAF-P, representing a more aggressive cancer-promoting category, and CAF-D, characterized by properties that moderately delay cancer progression. Consequently, we sought to investigate whether the two CAF types differentially affect cisplatin sensitivity and the underlying molecular mechanism. Methods: The secretion profile was examined by utilizing an antibody microarray with conditioned medium obtained from the co-culture of OSCC cells and two types of primary CAFs. The effect of CAF-dependent factors on cisplatin resistance was investigated by utilizing conditioned media (CM) and extracellular vesicle (EVs) derived from CAFs. The impacts of candidate genes were confirmed using gain- and loss-of-function analyses in spheroids and organoids, and a mouse xenograft. Lastly, we compared the expression pattern of the candidate genes in tissues from OSCC patients exhibiting different responses to cisplatin. Results: When OSCC cells were cultured with conditioned media (CM) from the two different CAF groups, cisplatin resistance increased only under CAF-P CM. OSCC cells specifically expressed insulin-like growth factor binding protein 3 (IGFBP3) after co-culture with CAF-D. Meanwhile, IGFBP3-knockdown OSCC cells acquired cisplatin resistance in CAF-D CM. IGFBP3 expression was promoted by GATA-binding protein 1 (GATA1), a transcription factor targeted by miR-876-3p, which was enriched only in CAF-P-derived EV. Treatment with CAF-P EV carrying miR-876-3p antagomir decreased cisplatin resistance compared to control miRNA-carrying CAF-P EV. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, there was a positive correlation between IGFBP3 and GATA1 expression and cisplatin sensitivity in OSCC tissues from patients. Conclusion: These results provide insights for overcoming cisplatin resistance, especially concerning EVs within the tumor microenvironment. Furthermore, it is anticipated that the expression levels of GATA1 and miR-876-3p, along with IGFBP3, could aid in the prediction of cisplatin resistance.
Collapse
Affiliation(s)
- Soo Hyun Kang
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kah-Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Mee-Seon Kim
- Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
44
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
45
|
Kashyap D, Bhattacharya S, Irinike S, Khare S, Das A, Singh G, Bal A. Cancer associated fibroblasts modulate the cytotoxicity of anti-cancer drugs in breast cancer: An in vitro study. Breast Dis 2024; 43:25-36. [PMID: 38517765 DOI: 10.3233/bd-230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Tumour microenvironment (TME) contributes to resistance to anti-cancer drugs through multiple mechanisms including secretion of pro-survival factors by cancer associated fibroblasts (CAFs). In this study, we determined the chemotherapy resistance producing potential of CAFs in molecular subtypes of breast cancer. METHODS The CAFs were isolated from fresh lumpectomy/mastectomy specimens of different molecular subtypes of breast cancer. The CAFs were cultured and secretome was collected from each breast cancer subtype. Breast cancer cell lines MCF-7, SK-BR3, MDA-MB-231, and MDA-MB-468 were treated with different doses of tamoxifen, trastuzumab, cisplatin, and doxorubicin alone respectively and in combination with secretome of CAFs from respective subtypes. MTT assay was done to check cell death after drug treatment. Liquid chromatography-mass spectrometry (LCMS) analysis of CAF secretome was also done. RESULTS MTT assay showed that anti-cancer drugs alone had growth inhibitory effect on the cancer cells however, presence of CAF secretome reduced the anti-cancer effect of the drugs. Resistant to drugs in the presence of secretome, was determined by increased cell viability i.e., MCF-7, 51.02% to 63.02%; SK-BR-3, 34.22% to 44.88%; MDA-MB-231, 52.59% to 78.63%; and MDA-MB-468, 48.92% to 55.08%. LCMS analysis of the secretome showed the differential abundance of CAFs secreted proteins across breast cancer subtypes. CONCLUSIONS The treatment of breast cancer cell lines with anti-cancer drugs in combination with secretome isolated from molecular subtype specific CAFs, reduced the cytotoxic effect of the drugs. In addition, LCMS data also highlighted different composition of secreted proteins from different breast cancer associated fibroblasts. Thus, TME has heterogenous population of CAFs across the breast cancer subtypes and in vitro experiments highlight their contribution to chemotherapy resistance which needs further validation.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Shalmoli Bhattacharya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Santosh Irinike
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Siddhant Khare
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Gurpreet Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| |
Collapse
|
46
|
Tailor D, Garcia-Marques FJ, Bermudez A, Pitteri SJ, Malhotra SV. Guanylate-binding protein 1 modulates proteasomal machinery in ovarian cancer. iScience 2023; 26:108292. [PMID: 38026225 PMCID: PMC10665831 DOI: 10.1016/j.isci.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J. Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V. Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
47
|
Wang T, Xin C, Zhang S, Tian X, Hu Y, Wang Y, Wang J, Ji N, Zeng X, Li J. Circular RNA from Tyrosylprotein Sulfotransferase 2 Gene Inhibits Cisplatin Sensitivity in Head and Neck Squamous Cell Carcinoma by Sponging miR-770-5p and Interacting with Nucleolin. Cancers (Basel) 2023; 15:5351. [PMID: 38001611 PMCID: PMC10669990 DOI: 10.3390/cancers15225351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Chemoresistance poses a significant challenge in the treatment of advanced head and neck squamous cell cancer (HNSCC). The role and mechanism of circular RNAs (circRNAs) in HNSCC chemoresistance remain understudied. We conducted circRNA microarray analysis to identify differentially expressed circRNAs in HNSCC. The expression of circRNAs from the tyrosylprotein sulfotransferase 2 (TPST2) gene and miRNAs was evaluated through qPCR, while the circular structure of circTPST2 was verified using Sanger sequencing and RNase R. Through Western blotting, biotin-labeled RNA pulldown, RNA immunoprecipitation, mass spectrometry, and rescue experiments, we discovered miR-770-5p and nucleolin as downstream targets of circTPST2. Functional tests, including CCK8 assays and flow cytometry, assessed the chemoresistance ability of circTPST2, miR-770-5p, and Nucleolin. Additionally, FISH assays determined the subcellular localization of circTPST2, miR-770-5p, and Nucleolin. IHC staining was employed to detect circTPST2 and Nucleolin expression in HNSCC patients. circTPST2 expression was inversely correlated with cisplatin sensitivity in HNSCC cell lines. Remarkably, high circTPST2 expression correlated with lower overall survival rates in chemotherapeutic HNSCC patients. Mechanistically, circTPST2 reduced chemosensitivity through sponge-like adsorption of miR-770-5p and upregulation of the downstream protein Nucleolin in HNSCC cells. The TCGA database revealed improved prognosis for patients with low circTPST2 expression after chemotherapy. Moreover, analysis of HNSCC cohorts demonstrated better prognosis for patients with low Nucleolin protein expression after chemotherapy. We unveil circTPST2 as a circRNA associated with chemoresistance in HNSCC, suggesting its potential as a marker for selecting chemotherapy regimens in HNSCC patients. Further exploration of the downstream targets of circTPST2 advanced our understanding and improved treatment strategies for HNSCC.
Collapse
Affiliation(s)
- Tianqing Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Chuan Xin
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Yuting Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| |
Collapse
|
48
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
49
|
Dorna D, Paluszczak J. Targeting cancer stem cells as a strategy for reducing chemotherapy resistance in head and neck cancers. J Cancer Res Clin Oncol 2023; 149:13417-13435. [PMID: 37453969 PMCID: PMC10587253 DOI: 10.1007/s00432-023-05136-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, including alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies. METHODS This narrative review was prepared based on the search of the PubMed database for relevant papers. RESULTS Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of certain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for chemoresistance induction. CONCLUSIONS Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| |
Collapse
|
50
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|