1
|
Lesen D, Nillian E, Thung TY. Isolation, characterization, and application of a novel Vibrio parahaemolyticus bacteriophage from retail shrimp in Sarawak, Malaysia. Microb Pathog 2025; 203:107517. [PMID: 40154853 DOI: 10.1016/j.micpath.2025.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/25/2024] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Shrimp farming, a highly profitable sector in global aquaculture, has seen remarkable growth in recent years. This increasing demand and the expansion of farming operations, including in Sarawak, Malaysia, highlight the sector's potential. However, the industry faces significant challenges, particularly the prevalence of vibriosis, a bacterial infection caused by Vibrio species. Contamination of food products has also increased the risk of vibriosis in humans. The widespread use of antibiotics to combat this disease has led to the rapid emergence of antimicrobial resistance (AMR) bacteria. This study specifically focuses on the isolation and characterization of phage EniLVP02, a novel bacteriophage with the potential to combat V. parahaemolyticus infections. EniLVP02 was successfully isolated from shrimp purchased at a retail market and exhibited strong lytic activity against V. parahaemolyticus strains. Structural analysis categorized EniLVP02 within the Straboviridae family, belonging to the class Caudoviricetes. The phage displayed a narrow host range and lytic nature only towards V. parahaemolyticus strains isolated from the Telaga Air shrimp farm. Phage EniLVP02 exhibited long latent period of 120 min and large burst size of 144 phages per infected cells. Stability studies revealed EniLVP02's resilience across various pH (pH 4.0-9.0) and temperature (28 °C-65 °C) conditions, particularly at physiological temperatures. Comparative genome analyses indicated its distinct evolutionary relationship and low homology with other Vibriophages, suggesting its novelty. EniLVP02 demonstrated significant potential in biofilm prevention and destruction, with absorbance (OD600 nm) reduction from 0.592 ± 0.055 to 0.204± 0.016 and from 0.843± 0.003 to 0.174± 0.026 respectively. Moreover, in the treatment of V. parahaemolyticus-contaminated shrimp meat, EniLVP02 effectively inhibit bacterial concentrations by 75.2 % at room temperature and 16.2 % at 4 °C after 24 h. Genomic sequencing revealed low similarity between EniLVP02 with other phages, suggesting its novelty. Importantly, the absence of lysogeny-related, antibiotic resistance, and virulence genes in its genome supports EniLVP02's safety for therapeutic use. This study underscores the importance of exploring phages from retail food products for therapeutic applications and highlights the promising attributes of phage EniLVP02 in combating V. parahaemolyticus infections in aquaculture. Further investigations on its compatibility with other phages and application in diverse food matrices are warranted to assess its full potential.
Collapse
Affiliation(s)
- Dalene Lesen
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Elexson Nillian
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Tze Young Thung
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
2
|
Kim J, Liao X, Zhang S, Ding T, Ahn J. Application of phage-derived enzymes for enhancing food safety. Food Res Int 2025; 209:116318. [PMID: 40253159 DOI: 10.1016/j.foodres.2025.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
Foodborne pathogens such as Salmonella, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus present significant public health threats, causing widespread illness and economic loss. Contaminated food is responsible for an estimated 600 million illnesses and 420,000 deaths annually, with low- and middle-income countries facing losses of approximately $110 billion each year. Traditional methods to ensure food safety, including antimicrobials and preservatives, can contribute to the development of antimicrobial-resistant bacteria, highlighting the need for alternative strategies. Bacteriophages are gaining renewed attention as promising alternatives to conventional antibiotics due to their specifically target bacteria and their lower potential for causing adverse effects. However, their practical application is limited by challenges such as narrow host ranges, the emergence of phage-resistant bacteria, and stability issues. Recent research has shifted focus towards phage-derived enzymes, including endolysins, depolymerases, holins, and spanins, which are involved in the phage lytic cycle. These enzymes, as potential approaches to food safety, have demonstrated significant efficacy in targeting and lysing bacterial pathogens, making them suitable for controlling foodborne pathogens and preventing foodborne illnesses. Phage-derived enzymes also show promise in controlling biofilms and enhancing antimicrobial activity when combined with other antimicrobials. Therefore, this review emphasizes recent advancements in the use of the phage-derived enzymes for food safety, addresses their limitations, and suggests strategies to enhance their effectiveness in food processing and storage environments.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
3
|
Berryhill BA, Gil-Gil T, Smith AP, Levin BR. The future of phage therapy in the USA. Trends Mol Med 2025:S1471-4914(25)00084-X. [PMID: 40268588 DOI: 10.1016/j.molmed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Fueled by the increasing abundance of antibiotic-resistant pathogens, there has been a resurrection in the use of bacterial viruses (bacteriophages or 'phage') for therapeutic applications. Phage therapy was used in the early 20th century to limited success, which we attribute to its haphazard employment. To avoid repeating the mistakes of the past, this Opinion first evaluates the historical reasons for the failure of phage therapy, analyzes the current state of the field, and ultimately makes recommendations for how to proceed with contemporary phage therapy. Despite many advances in phage biology, crucial gaps in our knowledge persist. Our recommendations require physicians, scientists, and public-policy leaders to cooperate to bridge the outstanding gaps around phage therapy to develop phage into a useful therapeutic tool.
Collapse
Affiliation(s)
- Brandon A Berryhill
- Department of Biology, Emory University, Atlanta, GA 30322, USA; Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
| | - Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | - Andrew P Smith
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Abdelaziz AA, Doghish AS, Salah AN, Mansour RM, Moustafa YM, Mageed SSA, Moustafa HAM, El-Dakroury WA, Doghish SA, Mohammed OA, Abdel-Reheim MA, Abbass SO, Abbass SO, Abbass MO, Samy AM, Elrebehy MA, Doghish YA. When oral health affects overall health: biofilms, dental infections, and emerging antimicrobial strategies. Infection 2025:10.1007/s15010-025-02533-9. [PMID: 40261483 DOI: 10.1007/s15010-025-02533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025]
Abstract
Dental health is a crucial component of overall health, yet it is frequently overlooked in discussions about well-being. This article explores the multifaceted aspects of dental infections, primarily focusing on biofilms formed by pathogenic bacteria such as Streptococcus mutans and Porphyromonas gingivalis. These biofilms contribute to dental caries and periodontal disease, conditions that affect oral health and have systemic consequences. Recent advancements in understanding biofilm formation and interactions have led to novel strategies for prevention and treatment, including using nanoparticles and smart hydrogels designed to disrupt biofilm integrity while promoting biocompatibility with human tissues. Furthermore, the article highlights the potential of natural remedies, including herbal extracts, as adjuncts in maintaining oral hygiene and combating microbial infections. A comprehensive overview of biofilm dynamics, including adhesion, maturation, and dispersion, is presented, alongside discussions on innovative therapeutic approaches addressing the limitations of conventional treatments. Ultimately, this article emphasizes the importance of maintaining dental health in preventing a wide spectrum of health issues, reinforcing that the mouth is a gateway to the body.
Collapse
Affiliation(s)
- Ahmed Adel Abdelaziz
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sama A Doghish
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | | | - Sara O Abbass
- Faculty of Dentistry, Modern University for Technology & Information, Cairo, Egypt
| | - Mariam O Abbass
- Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Amira Mohamed Samy
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt
| | - Youssef A Doghish
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
5
|
Hakim TA, Zaki BM, Mohamed DA, Blasdel B, Gad MA, Fayez MS, El-Shibiny A. Novel strategies for vancomycin-resistant Enterococcus faecalis biofilm control: bacteriophage (vB_EfaS_ZC1), propolis, and their combined effects in an ex vivo endodontic model. Ann Clin Microbiol Antimicrob 2025; 24:24. [PMID: 40223105 PMCID: PMC11995525 DOI: 10.1186/s12941-025-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Endodontic treatment failures are predominantly attributed to Enterococcus faecalis (E. faecalis) infection, a Gram-positive coccus. E. faecalis forms biofilms, resist multiple antibiotics, and can withstand endodontic disinfection protocols. Vancomycin-resistant strains, in particular, are challenging to treat and are associated with serious medical complications. METHODS A novel phage, vB_EfaS_ZC1, was isolated and characterized. Its lytic activity against E. faecalis was assessed in vitro through time-killing and biofilm assays. The phage's stability under various conditions was determined. Genomic analysis was conducted to characterize the phage and its virulence. The phage, propolis, and their combination were evaluated as an intracanal irrigation solution against a 4-week E. faecalis mature biofilm, using an ex vivo infected human dentin model. The antibiofilm activity was analyzed using a colony-forming unit assay, field emission scanning electron microscopy, and confocal laser scanning microscopy. RESULTS The isolated phage, vB_EfaS_ZC1, a siphovirus with prolate capsid, exhibited strong lytic activity against Vancomycin-resistant strains. In vitro assays indicated its effectiveness in inhibiting planktonic growth and disrupting mature biofilms. The phage remained stable under wide range of temperatures (- 80 to 60 °C), tolerated pH levels from 4 to 11; however the phage viability significantly reduced after UV exposure. Genomic analysis strongly suggests the phage's virulence and suitability for therapeutic applications; neither lysogeny markers nor antibiotic resistance markers were identified. Phylogenetic analysis clustered vB_EfaS_ZC1 within the genus Saphexavirus. The phage, both alone and in combination with propolis, demonstrated potent antibiofilm effects compared to conventional root canal irrigation. CONCLUSION Phage vB_EfaS_ZC1 demonstrates a promising therapy, either individually or in combination with propolis, for addressing challenging endodontic infections caused by E. faecalis.
Collapse
Affiliation(s)
- Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Bishoy Maher Zaki
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Dalia A Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
- Department of Endodontics, Faculty of Dentistry, Sinai University, Kantara-Shark, Ismailia, Egypt
| | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310, Noville-Sur-Mehaigne, Belgium
| | - Mohamed A Gad
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
6
|
Álvarez B, Biosca EG. Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the "One Health" Strategy. Viruses 2025; 17:549. [PMID: 40284992 PMCID: PMC12031508 DOI: 10.3390/v17040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
As bacteriophages (phages) are viruses that infect and destroy bacterial cells, they can be considered natural bactericides that can either directly or indirectly contribute to the achievement of the United Nations Sustainable Development Goals (UN SDGs) on health and well-being, food production and food security, as well as environmental protection and climate change mitigation, thus contributing to the success of the European "One Health" strategy to combat antimicrobial resistance in humans, animals, plants, and the environment. The biological activity of lytic bacteriophages can operate in the fields of microbiology and biotechnology for clinical, veterinary, agricultural, and industrial applications, among others, to achieve the proposed goals, mainly because the phages can help increase crop productivity by reducing bacterial diseases; constitute alternative therapies against infections caused by multidrug-resistant bacteria; can reduce populations of pathogenic bacteria that contaminate soil and water, therefore ensuring healthier and safer food production; and they can help reduce environmental pollution caused by the presence of agrochemicals and antibiotics. Phage-based therapies developed through research and innovation have the potential to promote greater global food security and health in a more environmentally friendly and eco-sustainable way.
Collapse
Affiliation(s)
- Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Área de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Madrid, Spain;
| | - Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| |
Collapse
|
7
|
Zou M, Chen C, Wang M, Lei C, Wang Y, Luo F, Huang D, Wang M, Zheng H, Wang B, Lin Z, Weng Z. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing. Adv Healthc Mater 2025; 14:e2404283. [PMID: 39888269 DOI: 10.1002/adhm.202404283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga3⁺) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga3⁺ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities. Importantly, the CTG hydrogels are effective against antibiotic-resistant pathogens due to the unique antibacterial mechanism of Ga3⁺. In vivo studies demonstrate that the CTG hydrogel promotes follicle formation and collagen deposition, accelerating the healing of infected wounds by inhibiting blood loss, suppressing bacterial growth, and modulating the inflammatory microenvironment. These findings highlight the CTG hydrogel's potential as an advanced and translational dressing for enhancing the healing of infected wounds.
Collapse
Affiliation(s)
- Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cuiping Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingda Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Meishui Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Houbing Zheng
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
8
|
Hou X, Pu J, Li Y, Xie W, Zhang L, Deng H. Isolation, identification, and genome analysis of the novel Escherichia coli phage XH12 and enhancement of the antibacterial activity of its lysozyme by chimeric cationic peptides. Arch Virol 2025; 170:91. [PMID: 40146388 DOI: 10.1007/s00705-025-06274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 03/28/2025]
Abstract
Antibiotics are no longer adequate to address the threat of antibiotic resistance, especially in Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and other Gram-negative pathogens that pose a serious threat to human health worldwide. The antibiotic resistance pandemic has brought about a need to search for new antimicrobials as alternatives that are effective and less prone to resistance. Phages and their lysozymes have become an attractive alternative to currently available antibiotics. However, Gram-negative bacteria have an outer membrane that acts as a strong barrier, so lysozymes are often used in combination with an outer membrane permeator or are modified to overcome the outer membrane barrier. To combat drug-resistant E. coli, in this study, we used the multidrug-resistant E. coli isolate Eco-3 as a host to isolate a lytic phage, XH12, from sewage. Phage XH12 was found to lyse 81% (30/37) of the E. coli isolates tested. The biological characteristics and genome sequence of phage XH12 were analyzed, and we found that lysozyme lys12 encoded by phage XH12, when combined with ethylenediaminetetraacetic acid (EDTA), exhibited antibacterial activity against E. coli. Two modified lysozymes were obtained by fusing cationic amino acid polypeptides to the C-terminus of lys12. The fusion lysozymes increased the antibacterial activity against E. coli in the extracellular space. This study of phage XH12 and its lysozyme provides basic information for further study of the treatment of multidrug-resistant E. coli infections.
Collapse
Affiliation(s)
- Xuhao Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jiaqi Pu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Yu Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Wenhai Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Limei Zhang
- Department of Endocrinology, Central Hospital of Zibo, Zibo, 255000, People's Republic of China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- Department of Endocrinology, Central Hospital of Zibo, Zibo, 255000, People's Republic of China.
| |
Collapse
|
9
|
Sui B, Li X, Li N, Tao Y, Wang L, Xu Y, Hou Y, Hu B, Tan D. Synergistic action of mucoactive drugs and phages against Pseudomonas aeruginosa and Klebsiella pneumoniae. Microbiol Spectr 2025; 13:e0160124. [PMID: 39912676 DOI: 10.1128/spectrum.01601-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
N-acetylcysteine (NAC) and ambroxol hydrochloride (AMB) are commonly prescribed alongside antibiotics to alleviate sputum retention in lower respiratory tract infections, which are often caused by bacterial pathogens. With the rising threat of antibiotic resistance, phage therapy has emerged as a promising alternative alongside. However, no studies have explored the potential interactions between phages and these mucoactive agents despite their frequent concurrent use during phage therapy. Therefore, investigating the potential synergy and its subsequent impact on phage infection dynamics could enhance clinical strategies for treating bacterial infections with phages. Our study utilized Pseudomonas aeruginosa strain ZS-PA-35 and Klebsiella pneumoniae strain Kp36, alongside their respective phages, to investigate their interactions in the presence of NAC or AMB. Our findings indicate that, under specific conditions, these mucoactive agents can function as adjuvants to lytic phages, enhancing bacterial susceptibility to phage infection and facilitating subsequent phage proliferation. Our study revealed that these synergistic interactions are strongly influenced by the physiological characteristics of the phages, the surrounding microenvironments, and the physiology of host tissues, as varying outcomes of phage-host interactions were observed among different phages and across distinct media. Taken together, our results emphasize the complexity of interactions between phages and NAC or AMB, underscoring the need for caution when using combination treatments.IMPORTANCEN-acetylcysteine (NAC) and ambroxol hydrochloride (AMB) are used in medical treatment of patients with acute and chronic bronchitis. Often, the choice of NAC or AMB is empirically determined by physicians. However, the potential impact of combining NAC or AMB with phage therapy remains unclear. To address this gap, a comprehensive understanding of their interplay is crucial to determine any potential synergistic effects. This study aims to elucidate how NAC or AMB influence phages targeting different receptors, thereby affecting their antibacterial activity against Pseudomonas aeruginosa and Klebsiella pneumoniae. Our results suggest that, under certain conditions, NAC or AMB provides an adjuvant effect by rendering the cells more susceptible to phage infection. These results contribute to advancing our understanding of the clinical combination of mucoactive agents and phage therapy, offering insights for optimizing treatment efficacy.
Collapse
Affiliation(s)
- Bingrui Sui
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Na Li
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Tao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yumin Hou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Faruk O, Jewel ZA, Bairagi S, Rasheduzzaman M, Bagchi H, Tuha ASM, Hossain I, Bala A, Ali S. Phage treatment of multidrug-resistant bacterial infections in humans, animals, and plants: The current status and future prospects. INFECTIOUS MEDICINE 2025; 4:100168. [PMID: 40104270 PMCID: PMC11919290 DOI: 10.1016/j.imj.2025.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 03/20/2025]
Abstract
Phages, including the viruses that lyse bacterial pathogens, offer unique therapeutic advantages, including their capacity to lyse antibiotic-resistant bacteria and disrupt biofilms without harming the host microbiota. The lack of new effective antibiotics and the growing limitations of existing antibiotics have refocused attention on phage therapy as an option in complex clinical cases such as burn wounds, cystic fibrosis, and pneumonia. This review describes clinical cases and preclinical studies in which phage therapy has been effective in both human and veterinary medicine, and in an agricultural context. In addition, critical challenges, such as the narrow host range of bacteriophages, the possibility of bacterial resistance, and regulatory constraints on the widespread use of phage therapy, are addressed. Future directions include optimizing phage therapy through strategies ranging from phage cocktails to broadening phage host range through genetic modification, and using phages as vaccines or biocontrol agents. In the future, if phage can be efficiently delivered, maintained in a stable state, and phage-antibiotic synergy can be achieved, phage therapy will offer much needed treatment options. However, the successful implementation of phage therapy within the current standards of practice will also require the considerable development of regulatory infrastructure and greater public acceptance. In closing, this review highlights the promise of phage therapy as a critical backup or substitute for antibiotics. It proposes a new role as a significant adjunct to, or even replacement for, antibiotics in treating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Omor Faruk
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Zilhas Ahmed Jewel
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sanjoy Bairagi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Mohammad Rasheduzzaman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hindol Bagchi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Akber Subahan Mahbub Tuha
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Imran Hossain
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ayon Bala
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
11
|
Wintachai P, Santini JM, Thonguppatham R, Stroyakovski M, Surachat K, Atipairin A. Isolation, Characterization, and Anti-Biofilm Activity of a Novel Kaypoctavirus Against K24 Capsular Type, Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2025; 14:157. [PMID: 40001401 PMCID: PMC11852161 DOI: 10.3390/antibiotics14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The significant outbreak of multidrug-resistant Klebsiella pneumoniae has emerged as a primary global concern associated with high morbidity and mortality rates. Certain strains of K. pneumoniae are highly resistant to most antibiotics available in clinical practice, exacerbating the challenge of bacterial infections. Methods: Phage vB_KpnP_PW7 (vKPPW7) was isolated and characterized. Its morphology, stability, adsorption rate, one-step growth curve, lytic activity, whole-genome sequence analysis, and antibacterial and antibiofilm activities were evaluated. Results: The virulent phage has a 73,658 bp linear dsDNA genome and was classified as a new species of the genus Kaypoctavirus, subfamily Enquatrovirinae, and family Schitoviridae. Phage vKPPW7 has a high adsorption rate, a short latent period, and a large burst size. The phage showed activity against 18 K. pneumoniae isolates with the K24 capsular type but was unable to lyse K. pneumoniae isolates whose capsular type was not classified as K24. Additionally, phage vKPPW7 demonstrated strong stability across various temperatures and pH values. The phage exhibited antibacterial activity, and scanning electron microscopy (SEM) confirmed its ability to lyse MDR K. pneumoniae with the K24 capsular type. Furthermore, phage vKPPW7 effectively removed preformed biofilm and prevented biofilm formation, resulting in reduced biofilm biomass and biofilm viability compared to controls. The architecture of phage-treated biofilms was confirmed under SEM. Conclusions: These findings suggest that phage vKPPW7 holds promise for development as a therapeutic or biocontrol agent.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- Bacteriophage Laboratory, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Joanne M. Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (J.M.S.); (M.S.)
| | - Renuka Thonguppatham
- Bacteriophage Laboratory, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Maria Stroyakovski
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (J.M.S.); (M.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Translational Medicine Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
12
|
Sudweeks J, Hauert C. The impact of simultaneous infections on phage-host ecology. Theor Popul Biol 2025; 161:42-49. [PMID: 39725170 DOI: 10.1016/j.tpb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Phages use bacterial host resources to replicate, intrinsically linking phage and host survival. To understand phage dynamics, it is essential to understand phage-host ecology. A key step in this ecology is infection of bacterial hosts. Previous work has explored single and multiple, sequential infections. Here we focus on the theory of simultaneous infections, where multiple phages simultaneously attach to and infect one bacterial host cell. Simultaneous infections are a relevant infection dynamic to consider, especially at high phage densities when many phages attach to a single host cell in a short time window. For high bacterial growth rates, simultaneous infection can result in bi-stability: depending on initial conditions phages go extinct or co-exist with hosts, either at stable densities or through periodic oscillations of a stable limit cycle. This bears important consequences for phage applications such as phage therapy: phages can persist even though they cannot invade. Consequently, through spikes in phage densities it is possible to infect a bacterial population even when the phage basic reproductive number is less than one. In the regime of stable limit cycles, if timed right, only small densities of phage may be necessary.
Collapse
Affiliation(s)
- Jaye Sudweeks
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver B.C., Canada, V6T 1Z2; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver B.C., Canada, V6T 1Z4.
| | - Christoph Hauert
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver B.C., Canada, V6T 1Z2; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver B.C., Canada, V6T 1Z4
| |
Collapse
|
13
|
Wang WX, Yu JY, Chen XZ, Fu SY, Li H, Yi PC, Ren YY, Gu SL, Gao JH, Fan J, Sun YM, Feng J, Wang SW, Chen W. Prophylactic phage administration provides a time window for delayed treatment of vancomycin-resistant Enterococcus faecalis in a murine bacteremia model. Front Microbiol 2025; 15:1504696. [PMID: 39925887 PMCID: PMC11802572 DOI: 10.3389/fmicb.2024.1504696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Vancomycin-resistant Enterococcus faecalis (VRE) poses a significant challenge in clinical settings due to its resistance to multiple antibiotics. Phage therapy offers a promising alternative to address this resistance crisis. However, critical gaps remain regarding optimal dosing, therapeutic design, and treatment timing for phage therapy targeting VRE-induced bacteremia. Methods The biological and genomic characteristics of a novel lytic phage specific to VRE were investigated. Its in vitro bactericidal and antibiofilm activities were evaluated, along with its synergy with antimicrobial agents. In vitro safety and protective efficacy were assessed using a mouse bacteremia model. The impact of phage therapy on gut microbiota was examined through 16S rDNA gene sequencing. Results We isolated and characterized a novel lytic phage, vB_EfaS-1017, specific to vancomycin-resistant E. faecalis. This phage features a circular, double-stranded DNA genome (40,766 bp), sharing 91.19% identity and 79% coverage with Enterococcus phage vB_EfaS_SRH2. vB_EfaS-1017 exhibited robust bactericidal and antibiofilm activity in vitro and demonstrated synergy with levofloxacin. Safety assessments confirmed its non-toxicity to mammalian cells and lack of hemolytic activity. In a mouse bacteremia model, phage treatment alone rescued 60% of infected mice, while combining phage with levofloxacin increased survival to 80%. Prophylactic administration of phage 24 hours prior to infection failed to prevent mortality. However, a combination of prophylactic phage administration and delayed treatment rescued 60% of mice, compared to 100% mortality in the delayed treatment alone group. Additionally, phage therapy helped maintain or restore gut microbiota balance. Discussion These findings underscore the potential of phage-antibiotic combinations as a superior therapeutic strategy against VRE infections. The observed synergy between phages and antibiotics highlights a promising approach to overcoming bacterial resistance and improving clinical outcomes. Furthermore, prophylactic phage administration may provide a critical time window for effective delayed treatment. Further preclinical research is essential to refine phage therapy protocols for clinical application.
Collapse
Affiliation(s)
- Wei-Xiao Wang
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao-Yang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiu-Zhen Chen
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi-Yong Fu
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng-Cheng Yi
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Yao Ren
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang-Lin Gu
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Han Gao
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Mei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Wei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Chen
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Azeem K, Fatima S, Ali A, Ubaid A, Husain FM, Abid M. Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention. Life (Basel) 2025; 15:49. [PMID: 39859989 PMCID: PMC11767195 DOI: 10.3390/life15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication. A comprehensive understanding of these resistance mechanisms provides a for exploring innovative therapeutic interventions. This study explores promising avenues for future research, emphasizing the necessity of uncovering the specific genetic and phenotypic adaptations occurring within biofilms. The identification of vulnerabilities in biofilm architecture and the elucidation of key biofilm-specific targets emerge as crucial focal points for the development of targeted therapeutic strategies. In addressing the limitations of traditional antibiotics, this review discusses innovative therapeutic approaches. Nanomaterials with inherent antimicrobial properties, quorum-sensing inhibitors disrupting bacterial communication, and bacteriophages as biofilm-specific viral agents are highlighted as potential alternatives. The exploration of combination therapies, involving antimicrobial agents, biofilm-disrupting enzymes, and immunomodulators, is emphasized to enhance the efficacy of existing treatments and overcome biofilm resilience.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Sadaf Fatima
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| |
Collapse
|
15
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
16
|
Mendes MB, Vidigal PMP, Soto Lopez ME, Hungaro HM. Combined Effects of the Pijolavirus UFJF_PfSW6 Phage and Sodium Hypochlorite for Reducing Pseudomonas fluorescens Biofilm. Microorganisms 2024; 12:2523. [PMID: 39770726 PMCID: PMC11678852 DOI: 10.3390/microorganisms12122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas are significant spoilage bacteria in raw milk and dairy products, primarily due to their ability to form biofilms and resist disinfection. This study explored the effects of the UFJF_PfSW6 phage combined with sodium hypochlorite in reducing Pseudomonas fluorescens biofilms on stainless steel at various temperatures and ages. Biofilms were formed using P. fluorescens UFV 041 in UHT milk, incubated at 4 °C and 30 °C for 2 and 7 days. Two lytic phages were compared, with UFJF_PfSW6 showing superior activity, reducing cell counts by 0.8 to 2.0 logs CFU/cm2 depending on conditions. Increasing the contact time of the UFJF_PfSW6 phage from 4 to 8 h did not significantly affect the reduction in mature biofilms. The individual treatments of the phage and sodium hypochlorite (100 mg/L) reduced bacterial counts by 0.9 and 0.6 log CFU/cm2 at 30 °C, and 1.3 and 1.2 log CFU/cm2 at 4 °C, respectively. However, their sequential application achieved greater reductions, reaching 1.3 and 1.8 log CFU/cm2 for biofilms formed at 30 °C and 4 °C, respectively. These findings suggest a promising strategy for controlling P. fluorescens in the food industry. Our findings suggest that the UFJF_PfSW6 phage combined with chlorine improves the removal of P. fluorescens biofilms.
Collapse
Affiliation(s)
- Matheus B. Mendes
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil;
| | - Pedro M. P. Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Maryoris E. Soto Lopez
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería 230002, Colombia;
| | - Humberto M. Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil;
| |
Collapse
|
17
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
18
|
Javanmard Z, Pourhajibagher M, Bahador A. Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy. J Basic Microbiol 2024; 64:e2400271. [PMID: 39392011 DOI: 10.1002/jobm.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wójcicki M, Shymialevich D, Średnicka P, Emanowicz P, Ostrowska A, Cieślak H, Sokołowska B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int J Mol Sci 2024; 25:12930. [PMID: 39684641 DOI: 10.3390/ijms252312930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella is one of the main foodborne pathogens. Irrational antibiotic management has led to an increase in the incidence of multidrug-resistant strains. Bacteriophages may be an alternative method of food biopreservation and contribute to reducing the number of food poisonings requiring pharmacotherapy. This study aimed to isolate a bacteriophage (phage) targeting indigenous multidrug-resistant (MDR) Salmonella strains, followed by their biological, morphological, and genomic characterization. In this study we isolated Salmonella phage KKP_3822, targeting MDR Salmonella Manchester strain KKP 1213. Salmonella phage KKP_3822 retained high activity in the temperature range from -20 °C to 40 °C and active acidity from pH 3 to 11. Temperatures of 70 °C and 80 °C and extreme pH values (2 and 12) significantly reduced the phage titer. Its activity decreased proportionally to the time of UV exposure. Genome analysis (linear dsDNA with a length of 114,843 bp) revealed the presence of 27 tRNA genes. Proteins encoded by the vB_Sen-IAFB3822 phage were divided into functional modules related to (i) phage structure/assembly, (ii) DNA replication/modification/regulation, (iii) phage lysis, and (iv) DNA packaging into the capsid. No genes associated with antibiotic resistance or integration into the host genome, markers of temperate bacteriophages, were annotated in the Salmonella phage KKP_3822 genome. Based on morphological features and whole-genome sequence analysis, the newly isolated Salmonella phage KKP_3822 shows the greatest similarity to representatives of tailed phages from the Caudoviricetes class, Demerecviridae family, and Epseptimavirus genus. Genome analysis confirmed the virulent nature of the Salmonella phage KKP_3822, making it a potential candidate for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Hanna Cieślak
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
20
|
Kraus K, Mikziński P, Widelski J, Paluch E. Prevention and Modern Strategies for Managing Methicillin-Resistant Staphylococcal Infections in Prosthetic Joint Infections (PJIs). Antibiotics (Basel) 2024; 13:1151. [PMID: 39766540 PMCID: PMC11672861 DOI: 10.3390/antibiotics13121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Periprosthetic joint infections (PJIs) are a dangerous complication of joint replacement surgeries which have become much more common in recent years (mostly hip and knee replacement surgeries). Such a condition can lead to many health issues and often requires reoperation. Staphylococci is a bacterial group most common in terms of the pathogens causing PJIs. S. aureus and coagulase-negative staphylococci are found in around two-thirds of PJI cases. Recently, the numbers of staphylococci that cause such infections and that are methicillin-resistant are increasing. This trend leads to difficulties in the treatment and prevention of such infections. That is why MRSA and MRSE groups require extraordinary attention when dealing with PJIs in order to successfully treat them. Controlling carriage, using optimal prosthetic materials, and implementing perioperative antimicrobial prophylaxis are crucial strategies in infection prevention and are as essential as quick diagnosis and effective targeted treatment. The comprehensive professional procedures presented in this review show how to deal with such cases.
Collapse
Affiliation(s)
- Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (K.K.); (P.M.)
| | - Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (K.K.); (P.M.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
21
|
Coleman HJ, Yang Q, Robert A, Padgette H, Funke HH, Catalano CE, Randolph TW. Formulation of three tailed bacteriophages by spray-drying and atomic layer deposition for thermal stability and controlled release. J Pharm Sci 2024; 113:3238-3245. [PMID: 39173744 DOI: 10.1016/j.xphs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.
Collapse
Affiliation(s)
- Holly J Coleman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Qin Yang
- Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda Robert
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Hannah Padgette
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Hans H Funke
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA
| | - Carlos E Catalano
- Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
22
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Pérez LM, Havryliuk O, Infante N, Muniesa M, Morató J, Mariychuk R, Tzanov T. Biofilm Prevention and Removal in Non-Target Pseudomonas Strain by Siphovirus-like Coliphage. Biomedicines 2024; 12:2291. [PMID: 39457603 PMCID: PMC11504082 DOI: 10.3390/biomedicines12102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives. Bacteriophages have gained significant interest as a potential solution to combat harmful bacteria, especially in the fight against antimicrobial resistance. With the rise in drug-resistant microorganisms, the medical community is increasingly exploring new alternatives to traditional antibiotics, and bacteriophages offer several advantages in this regard. However, phage applications still face some challenges, such as host specificity. Methods. In this study, a somatic Siphovirus-like coliphage (SOM7) was tested for inhibiting the biofilm-forming capacity of the non-target strain Pseudomonas aeruginosa (ATTC 10145). The phage-sensitive strain E. coli WG5 was used as a control. The selected microorganisms were first tested for growth in the presence of SOM7 at three different concentrations (105, 107, and 109 PFU/mL). Results. As expected, the phage-sensitive E. coli WG5 was fully inhibited by the coliphage, and no phage-related affection on the growth rate was observed for the SOM7-resistant P. aeruginosa. More notably, increasing concentrations of SOM7 significantly reduced both the biofilm-forming capacity and the amount of pre-established bacterial biofilm of the phage-insensitive P. aeruginosa (24.9% and 38.8% reduction in the biofilm-forming ability, and 18.8% and 28.0% biofilm degradation for 107 PFU/mL and 109 PFU/mL SOM7, respectively; p < 0.05). These results were supported by transmission electron microscopy (TEM) imaging, providing unprecedent evidence for the interaction of the somatic coliphage with the non-host strain. Conclusions. Although more studies in other biofilm models are necessary, our results show for the very first time that bacteriophages could potentially be used as an alternative to achieve desired anti-biofilm and biofilm-degrading activity in non-host bacterial strains.
Collapse
Affiliation(s)
- Leonardo Martín Pérez
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| | - Olesia Havryliuk
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Nury Infante
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 (Annex. Floor 0), 08028 Barcelona, Spain;
| | - Jordi Morató
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 08001 Presov, Slovakia
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| |
Collapse
|
24
|
Szymczak M, Golec P. Long-Term Effectiveness of Engineered T7 Phages Armed with Silver Nanoparticles Against Escherichia coli Biofilm. Int J Nanomedicine 2024; 19:10097-10105. [PMID: 39381027 PMCID: PMC11460280 DOI: 10.2147/ijn.s479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The escalating threat of antibiotic-resistant bacteria, particularly those forming biofilm structures, underscores the urgent need for alternative treatment strategies. Bacteriophages have emerged as promising agents for combating bacterial infections, especially those associated with biofilm formation. However, the efficacy of phage therapy can be limited by the development of bacterial resistance and biofilm regrowth. Interestingly, phages could be combined with other agents, such as metal nanoparticles, to enhance their antibacterial effectiveness. Since the therapeutic strategy of using phages and metal nanoparticles has been developed relatively recently, evaluating its efficacy under various conditions is essential, with a particular focus on the duration of activity. This study tested the hypothesis that a novel approach to combating bacterial biofilms, based on phages armed with silver nanoparticles (AgNPs), would exhibit enhanced activity over an extended period after application. In this work, we investigated the potential of engineered T7 phages armed with AgNPs for eradicating Escherichia coli biofilm. We demonstrated that such biomaterial exhibits sustained antimicrobial activity even after prolonged exposure. Compared to phages alone or AgNPs alone, the biomaterial significantly enhances biofilm eradication, particularly after 48 hours of treatment. These findings highlight the potential of synergistic phage-nanoparticle strategies for combatting biofilm-associated infections.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Szermer-Olearnik B, Filik-Matyjaszczyk K, Ciekot J, Czarny A. The Hydrophobic Stabilization of Pseudomonas aeruginosa Bacteriophage F8 and the Influence of Modified Bacteriophage Preparation on Biofilm Degradation. Curr Microbiol 2024; 81:370. [PMID: 39306818 PMCID: PMC11417074 DOI: 10.1007/s00284-024-03896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
The bacteriophage F8 belongs to the Myoviridae group of phages and is a pathogen of Pseudomonas aeruginosa. Since Pseudomonas aeruginosa is a multidrug-resistant opportunistic bacterium and can cause serious challenges for health services, studying the potential use of phages against them is a promising approach. Pseudomonas aeruginosa can be found on medical devices because bacteria can attach to surfaces and develop biofilms, which are difficult to eradicate because of their high resistance to environmental conditions and antimicrobial therapeutics. Phage therapy is becoming promising as an alternative for the treatment of antibiotic-resistant infections, but there is still a lack of standardized protocols approved by health organizations for possible use in the clinic. In our research, we focused on the potential use of 1-octanol, which was previously used by our team to develop a method for phage purification from bacterial lysate. 1-octanol is a fatty alcohol that is mostly used in the cosmetics industry, and its advantage is that it is approved by the FDA as a food additive. In this paper, we studied the protective properties of the addition of 1-octanol for storing phage liquid preparations. We demonstrated the stabilization effect of 1-octanol addition on F8 bacteriophage preparation during storage under various conditions. Interestingly, more effective biofilm reduction was observed after treatment with the purified bacteriophage and with 1-octanol addition compared to crude lysate.
Collapse
Affiliation(s)
- Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland.
| | - Karolina Filik-Matyjaszczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland
| | - Anna Czarny
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland
| |
Collapse
|
26
|
Haq IU, Rahim K, Paker NP. Exploring the historical roots, advantages and efficacy of phage therapy in plant diseases management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112164. [PMID: 38908799 DOI: 10.1016/j.plantsci.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In the drug-resistance era, phage therapy has received considerable attention from worldwide researchers. Phage therapy has been given much attention in public health but is rarely applied to control plant diseases. Herein, we discuss phage therapy as a biocontrol approach against several plant diseases. The emergence of antibiotic resistance in agriculturally important pathogenic bacteria and the toxic nature of different synthetic compounds used to control microbes has driven researchers to rethink the century-old strategy of phage therapy''. Compared to other treatment strategies, phage therapy offers remarkable advantages such as high specificity, less chances of drug resistance, non-harmful nature, and benefit to soil microbial flora. The optimizations and protective formulations of phages are significant accomplishments; however, steps towards a better understanding of the physiologic characteristics of phages need to be preceded to commercialize their use. The future of phage therapy in the context of plant disease management is promising and could play a significant role in sustainable agriculture. Ongoing research will likely affirm the safety of phage therapy, ensuring that it does not harm non-target organisms, including beneficial soil microbes. Phage therapy could become vital in addressing global food security challenges, particularly in regions heavily impacted by plant bacterial diseases. Efforts to create formulations that enhance the stability and shelf-life of phages will be crucial, especially for their use in varied environmental conditions.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland; Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais, Belo Horizonte, Brazil.
| | - Kashif Rahim
- School of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
27
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Wei J, Zhang X, Ismael M, Zhong Q. Anti-Biofilm Effects of Z102-E of Lactiplantibacillus plantarum against Listeria monocytogenes and the Mechanism Revealed by Transcriptomic Analysis. Foods 2024; 13:2495. [PMID: 39200422 PMCID: PMC11354177 DOI: 10.3390/foods13162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Lactic acid bacteria (LAB) are the most common probiotics, and they present excellent inhibitory effects on pathogenic bacteria. This study aimed to explore the anti-biofilm potential of the purified active substance of Lactiplantibacillus plantarum, named Z102-E. The effects of Z102-E on Listeria monocytogenes were investigated in detail, and a transcriptomic analysis was conducted to reveal the anti-biofilm mechanism. The results indicated that the sub-MIC of Z102-E (3.2, 1.6, and 0.8 mg/mL) decreased the bacterial growth and effectively reduced the self-aggregation, surface hydrophobicity, sugar utilization, motility, biofilm formation, AI-2 signal molecule, contents of extracellular polysaccharides, and extracellular protein of L. monocytogenes. Moreover, the inverted fluorescence microscopy observation confirmed the anti-biofilm effect of Z102-E. The transcriptomic analysis indicated that 117 genes were up-regulated and 214 were down-regulated. Z102-E regulated the expressions of genes related to L. monocytogenes quorum sensing, biofilm formation, etc. These findings suggested that Z102-E has great application potential as a natural bacteriostatic agent.
Collapse
Affiliation(s)
| | | | | | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.); (M.I.)
| |
Collapse
|
29
|
Principi N, Esposito S. Biofilm Production and Its Implications in Pediatrics. Microorganisms 2024; 12:1522. [PMID: 39203365 PMCID: PMC11356046 DOI: 10.3390/microorganisms12081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Biofilms, aggregates of bacteria enclosed in a self-produced matrix, have been implicated in various pediatric respiratory infections, including acute otitis media (AOM), otitis media with effusion (OME), adenoiditis, protracted bacterial bronchitis, and pulmonary exacerbations in cystic fibrosis. These infections are prevalent in children and often associated with biofilm-producing pathogens, leading to recurrent and chronic conditions. Biofilms reduce antibiotic efficacy, contributing to treatment failure and disease persistence. This narrative review discusses biofilm production by respiratory pathogens such as Streptococcus pneumoniae, non-typeable Haemophilus influenzae, Pseudomonas aeruginosa, and Staphylococcus aureus. It examines their mechanisms of biofilm formation, antibiotic resistance, and the challenges they present in clinical treatment. Various antibiofilm strategies have shown promise in vitro and in animal studies, including the use of N-acetylcysteine, enzymes like dispersin B, and agents disrupting quorum sensing and biofilm matrix components. However, their clinical application, particularly in children, remains limited. Traditional treatments for biofilm-associated diseases have not significantly evolved, even with biofilm detection. The transition from experimental findings to clinical practice is complex and requires robust clinical trials and standardized biofilm detection protocols. Addressing biofilms in pediatric respiratory infections is crucial for improving treatment outcomes and managing recurrent and chronic diseases effectively.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
30
|
Chakraborty S, Rohit A, Prasanthi SJ, Chauhan A. A New Casjensviridae Bacteriophage Isolated from Hospital Sewage for Inactivation of Biofilms of Carbapenem Resistant Klebsiella pneumoniae Clinical Isolates. Pharmaceutics 2024; 16:904. [PMID: 39065601 PMCID: PMC11280391 DOI: 10.3390/pharmaceutics16070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Klebsiella pneumoniae, a member of the ESKAPE pathogen group, is a prominent cause of hospital-acquired infections. The WHO has recognized carbapenem-resistant K. pneumoniae as a critical-one priority pathogen. These resilient superbugs have the ability to form biofilms and present a significant global threat. In the present study, we isolated and characterized a bacteriophage SAKp02, from hospital sewage, infectious to carbapenem-resistant K. pneumoniae patient isolates. SAKp02 could infect 43 of 72 clinical isolates, indicating a broad host spectrum. Whole genome analysis classified SAKp02 within the family Casjensviridae, with a 59,343 bp genome encoding 82 ORFs. Comparative genomic analysis revealed significant differences between SAKp02 and its closest viruses, indicating a distinct genetic makeup positioning it as a novel phage strain within the lineage. The SAKp02 genome comprises bacteriolytic enzymes, including holin, endolysin, and phage depolymerase, crucial for bacterial lysis and biofilm disruption. It reduced biofilm biomass by over threefold compared to the control and eradicated 99% of viable cells within a 4 h treatment period. Scanning electron microscopy corroborated the ability of the phage to dismantle biofilm matrices and lyse bacterial cells. Safe and effective treatments are warranted, and hence, the fully characterized lytic phages with therapeutic potential against drug-resistant clinical isolates of bacteria are needed. Our study is the first to report the antibacterial and antibiofilm activity of Casjensviridae phages, and our discovery of a novel K. pneumoniae phage broadens the arsenal against the bacteria.
Collapse
Affiliation(s)
- Sambuddha Chakraborty
- Department of Microbiology, Tripura University, Suryamaninagar 799022, India
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi 110021, India
| | - Anusha Rohit
- Madras Medical Mission Hospital, Chennai 600037, India
| | | | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Suryamaninagar 799022, India
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi 110021, India
| |
Collapse
|
31
|
Kennedy IW, Jones JD, Meek RMD. Phage therapy. Bone Joint J 2024; 106-B:522-524. [PMID: 38821504 DOI: 10.1302/0301-620x.106b6.bjj-2023-0878.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
32
|
Hu YG, Battini N, Fang B, Zhou CH. Discovery of indolylacryloyl-derived oxacins as novel potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 270:116392. [PMID: 38608408 DOI: 10.1016/j.ejmech.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 μg/mL) and hydroxyethyl IDO 10e (0.25-1 μg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.
Collapse
Affiliation(s)
- Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
33
|
Jothi Nayaki S, Roja A, Ravindhiran R, Sivarajan K, Arunachalam M, Dhandapani K. Pillar[ n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infect Dis 2024; 10:1080-1096. [PMID: 38546344 DOI: 10.1021/acsinfecdis.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The global surge in bacterial infections, compounded by the alarming escalation of drug-resistant strains, has evolved into a critical public health crisis. Among the challenges posed, biofilms stand out due to their formidable resistance to conventional antibiotics. This review delves into the burgeoning potential of pillar[n]arenes, distinctive macrocyclic host molecules, as promising anti-biofilm agents. The review is structured into two main sections, each dedicated to exploring distinct facets of pillar[n]arene applications. The first section scrutinizes functionalized pillar[n]arenes with a particular emphasis on cationic derivatives. This analysis reveals their significant efficacy in inhibiting biofilm formation, underscoring the pivotal role of specific chemical attributes in combating microbial communities. The second section of the review shifts its focus to inclusion complexes, elucidating how pillar[n]arenes serve as encapsulation platforms for antibiotics. This encapsulation enhances the stability of antibiotics and enables a controlled release, thereby amplifying their antibacterial activity. The examination of inclusion complexes provides valuable insights into the potential synergy between pillar[n]arenes and traditional antibiotics, offering a novel avenue for overcoming biofilm resistance. This comprehensive review highlights the escalating global threat of bacterial infections and the urgent need for innovative strategies to counteract drug-resistant biofilms. The unique properties of pillar[n]arenes, both as functionalized molecules and as inclusion complex hosts, position them as promising candidates in the quest for effective anti-biofilm agents. The exploration of their distinct mechanisms opens new avenues for research and development in the ongoing battle against bacterial infections and biofilm-related health challenges.
Collapse
Affiliation(s)
- Sekar Jothi Nayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Arivazhagan Roja
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| |
Collapse
|
34
|
Chen Z, Yang Y, Li G, Huang Y, Luo Y, Le S. Effective elimination of bacteria on hard surfaces by the combined use of bacteriophages and chemical disinfectants. Microbiol Spectr 2024; 12:e0379723. [PMID: 38483478 PMCID: PMC10986474 DOI: 10.1128/spectrum.03797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.
Collapse
Affiliation(s)
- Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Gaoming Li
- Disease Surveillance Division, Center for Disease Control and Prevention of Central Theater Command, Shijingshan, Beijing, China
| | - Youying Huang
- Biomedical Analysis Center, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Luo
- School of Nursing, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
35
|
Kunz Coyne AJ, Stamper K, Bleick C, Kebriaei R, Lehman SM, Rybak MJ. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms. Microbiol Spectr 2024; 12:e0321223. [PMID: 38411110 PMCID: PMC10986480 DOI: 10.1128/spectrum.03212-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
36
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
37
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
38
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
39
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
40
|
Song Q, Gao B, Zhang S, Hu C. Adopting the "Missile boats-Aircraft carrier" strategy via human-contact friendly oxidized starch to achieve rapid-sustainably antibacterial paperboards. Int J Biol Macromol 2024; 259:129066. [PMID: 38158062 DOI: 10.1016/j.ijbiomac.2023.129066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Polysaccharide-based antibacterial agents have received tremendous attention for the facile fabrication, low toxicity, and high compatibility with carbohydrate polymers. However, the antimicrobial mechanism, activity, and cytotoxicity for human-contact paperboards of oxidized starch (OST) with high carboxyl content, has not been explored. Herein, OST-27- 75 with 27- 75 wt% carboxyl contents were fabricated by H2O2 and coated on paperboards. Strikingly, OST-55 coating layer (16 g/m2) did not exfoliate from paperboard and possessed the rapid-sustainable antibacterial performance against Staphylococcus aureus and Escherichia coli. The soluble and insoluble components of OST-55 (OST55-S: OST55-IS mass ratio = 1: 2.1) presented different antimicrobial features and herein they were characterized by GC-MS, FT-IR, H-NMR, XRD, bacteriostatic activities, biofilm formation inhibition and intracellular constituent leakage to survey the antibacterial mechanism. The results revealed OST55-S displayed an amorphous structure and possessed superior antibacterial activity against S. aureus (MIC = 4 mg/mL) and E. coli (MIC = 8 mg/mL). Distinctively, OST55-S could rapidly ionize [H+] like "missile boats" from small molecule saccharides, while OST55-IS polyelectrolyte could continuously and slowly release for [H+] like an "aircraft carrier" to inhibit biofilm formation and disrupt cell structure. Eventually, the "Missile boats-Aircraft carrier" strategy provided a green methodology to fabricate polymeric antibacterial agents and expanded the use of cellulose-based materials.
Collapse
Affiliation(s)
- Qiaowei Song
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China
| | - Bingbing Gao
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Changying Hu
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China; Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China..
| |
Collapse
|
41
|
Yang R, Zhang H, Marfavi Z, Lv Q, Han Y, Sun K, Yuan C, Tao K. Infiltrating Perfluorocarbon Nanoemulsion and Sensitizing Ultrasound Cavitation to Eradicate Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3126-3138. [PMID: 38191301 DOI: 10.1021/acsami.3c15167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Developing strategies for the treatment of bacterial biofilms is challenging due to their complex and resilient structure, low permeability to therapeutics, and ability to protect resident pathogens. Herein, we demonstrate that a polylysine-stabilized perfluorocarbon nanoemulsion is favored for penetrating biofilms and sensitizing the cavitation effect of low-intensity ultrasound, resulting in the dispersal of extracellular polymeric substances and killing of the protected cells. Through experiments, we observed a complete penetration of the nanoemulsion in a 40 μm Pseudomonas aeruginosa biofilm and demonstrated that it was induced by the fluidic perfluorocarbon, possibly attributing to its low surface tension. Furthermore, we presented an almost complete antibiofilm effect with a low-intensity ultrasound (1 MHz, 0.75 W/cm2, 5 min) in diverse cases, including cultured biofilms, colonized urinary catheters, and chronic wounds. During the treatment process, the perfluorocarbon phase enhanced the number and imploding energy of ultrasound cavities, thoroughly divided the biofilm structure, prevented biofilm self-healing, and sterilized the resident pathogens. Thus, the penetration and sensitization of the nanoemulsion might serve as a facile and potent strategy for eradicating biofilms in various applications.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
42
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
43
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Samir S. Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications. Protein Pept Lett 2024; 31:85-96. [PMID: 38258777 DOI: 10.2174/0109298665181166231212051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
45
|
Ritter S, Wright ET, Serwer P. Extracellular Interaction of Bacillus thuringiensis, ATP and Phage 0105phi7-2: A Potential New Anti-Bacterial Strategy. Viruses 2023; 15:2409. [PMID: 38140651 PMCID: PMC10747076 DOI: 10.3390/v15122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The following hypothesis proposes non-diffusive, environmental bacteriophage (phage) motion. (1) Some phage-hosting, motile bacteria undergo chemotaxis down ATP concentration gradients to escape lysis-inducing conditions, such as phage infection. (2) Some phages respond by non-infective binding to the motile bacteria. (3) When the bacteria reach a lower ATP concentration, which is a condition that signals increased density of phage-susceptible bacteria, the phage converts, Trojan-horse-like, to productive binding and infection. This hypothesis was previously proposed for Bacillus thuringiensis siphophage 0105phi7-2. It is tested here and confirmed with the following observations. (1) B. thuringiensis is found, macroscopically, preferentially located at low ATP concentrations when propagated in-gel after inoculation in the center of an artificially generated ATP concentration gradient. (2) Inoculating phage 0105phi7-2 at the bacteria inoculation site, 2-3 h after inoculation of bacteria, results in cell lysing activity that moves with the bacteria, without a visible trail of lysis. Trojan-horse-like behavior is consistent with only biofilm-inhabiting phages because environmental selection for this behavior requires limited fluid flows. We propose using artificial ATP concentration gradients to instigate Trojan-horse-like phage behavior during phage therapy of bacterial biofilms.
Collapse
Affiliation(s)
- Samantha Ritter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA;
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| |
Collapse
|
46
|
Moryl M, Różalski A, de Figueiredo JAP, Palatyńska-Ulatowska A. How Do Phages Disrupt the Structure of Enterococcus faecalis Biofilm? Int J Mol Sci 2023; 24:17260. [PMID: 38139094 PMCID: PMC10744153 DOI: 10.3390/ijms242417260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biofilms are composed of multicellular communities of microbial cells and their self-secreted extracellular polymeric substances (EPS). The viruses named bacteriophages can infect and lyze bacterial cells, leading to efficient biofilm eradication. The aim of this study was to analyze how bacteriophages disrupt the biofilm structure by killing bacterial cells and/or by damaging extracellular polysaccharides, proteins, and DNA. The use of colorimetric and spectrofluorimetric methods and confocal laser scanning microscopy (CLSM) enabled a comprehensive assessment of phage activity against E. faecalis biofilms. The impact of the phages vB_Efa29212_2e and vB_Efa29212_3e was investigated. They were applied separately or in combination on 1-day and 7-day-old biofilms. Phages 2e effectively inhibited the growth of planktonic cells with a limited effect on the biofilm. They did not notably affect extracellular polysaccharides and proteins; however, they increased DNA levels. Phages 3e demonstrated a potent and dispersing impact on E. faecalis biofilms, despite being slightly less effective than bacteriophages 2e against planktonic cells. Phages 3e reduced the amount of extracellular polysaccharides and increased eDNA levels in both 1-day-old and 7-day-old biofilm cultures. Phage cocktails had a strong antimicrobial effect on both planktonic and biofilm-associated bacteria. A significant reduction in the levels of polysaccharides, proteins, and eDNA in 1-day-old biofilm samples was noted, which confirms that phages interfere with the structure of E. faecalis biofilm by killing bacterial cells and affecting extracellular polymer levels.
Collapse
Affiliation(s)
- Magdalena Moryl
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Antoni Różalski
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | | | - Aleksandra Palatyńska-Ulatowska
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
47
|
Stevenson P, Marguet M, Regulski M. Biofilm and Hospital-Acquired Infections in Older Adults. Crit Care Nurs Clin North Am 2023; 35:375-391. [PMID: 37838413 DOI: 10.1016/j.cnc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Biofilm infections are a serious threat to public health, resistant to traditional treatments and host immune defenses. Biofilm infections are often polymicrobial, related to chronic wounds, medical devices (eg, knee replacements, catheters, tubes, contact lenses, or prosthetic valves) and chronic recurring diseases. Biofilms are more complex than nonadhered planktonic bacteria and produce a structure that prevents damage to the bacteria within the biofilm structure. The structure provides a hidden route to feed and nurture the bacteria allowing for ongoing spread of the bacteria.
Collapse
Affiliation(s)
- Patricia Stevenson
- Next Science™ LLC, 10550 Deerwood Park Boulevard, Suite 300, Jacksonville, FL 32256, USA.
| | - Melissa Marguet
- Next Science™ LLC, 10550 Deerwood Park Boulevard, Suite 300, Jacksonville, FL 32256, USA
| | - Matthew Regulski
- Next Science™ LLC, 10550 Deerwood Park Boulevard, Suite 300, Jacksonville, FL 32256, USA; The Wound Institute of Ocean County, 54 Bey Lea Road Tom's River, NJ 08759, USA
| |
Collapse
|
48
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
49
|
Campoccia D, Ravaioli S, Mirzaei R, Bua G, Daglia M, Arciola CR. Interactions of Neutrophils with the Polymeric Molecular Components of the Biofilm Matrix in the Context of Implant-Associated Bone and Joint Infections. Int J Mol Sci 2023; 24:17042. [PMID: 38069365 PMCID: PMC10707472 DOI: 10.3390/ijms242317042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In the presence of orthopedic implants, opportunistic pathogens can easily colonize the biomaterial surfaces, forming protective biofilms. Life in biofilm is a central pathogenetic mechanism enabling bacteria to elude the host immune response and survive conventional medical treatments. The formation of mature biofilms is universally recognized as the main cause of septic prosthetic failures. Neutrophils are the first leukocytes to be recruited at the site of infection. They are highly efficient in detecting and killing planktonic bacteria. However, the interactions of these fundamental effector cells of the immune system with the biofilm matrix, which is the true interface of a biofilm with the host cells, have only recently started to be unveiled and are still to be fully understood. Biofilm matrix macromolecules consist of exopolysaccharides, proteins, lipids, teichoic acids, and the most recently described extracellular DNA. The latter can also be stolen from neutrophil extracellular traps (NETs) by bacteria, who use it to strengthen their biofilms. This paper aims to review the specific interactions that neutrophils develop when they physically encounter the matrix of a biofilm and come to interact with its polymeric molecular components.
Collapse
Affiliation(s)
- Davide Campoccia
- Laboratorio di Patologia Delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.); (G.B.)
| | - Stefano Ravaioli
- Laboratorio di Patologia Delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.); (G.B.)
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Gloria Bua
- Laboratorio di Patologia Delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
50
|
Adefisoye MA, Olaniran AO. Antimicrobial resistance expansion in pathogens: a review of current mitigation strategies and advances towards innovative therapy. JAC Antimicrob Resist 2023; 5:dlad127. [PMID: 38089461 PMCID: PMC10712721 DOI: 10.1093/jacamr/dlad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Martins A Adefisoye
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|