1
|
|
Misiak P, Niemirowicz-laskowska K, Markiewicz KH, Wielgat P, Kurowska I, Czarnomysy R, Misztalewska-turkowicz I, Car H, Bielawski K, Wilczewska AZ. Doxorubicin-loaded polymeric nanoparticles containing ketoester-based block and cholesterol moiety as specific vehicles to fight estrogen-dependent breast cancer. Cancer Nanotechnol 2023;14:23. [DOI: 10.1186/s12645-023-00176-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023] Open
Abstract
AbstractThe presented research concerns the preparation of polymer nanoparticles (PNPs) for the delivery of doxorubicin. Several block and statistical copolymers, composed of ketoester derivative, N-isopropylacrylamide, and cholesterol, were synthesized. In the nanoprecipitation process, doxorubicin (DOX) molecules were kept in spatial polymeric systems. DOX-loaded PNPs show high efficacy against estrogen-dependent MCF-7 breast cancer cell lines despite low doses of DOX applied and good compatibility with normal cells. Research confirms the effect of PNPs on the degradation of the biological membrane, and the accumulation of reactive oxygen species (ROS), and the ability to cell cycle arrest are strictly linked to cell death.
Graphical Abstract
Collapse
|
2
|
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023;30:2161670. [PMID: 36587630 DOI: 10.1080/10717544.2022.2161670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
|
3
|
|
Zhang W, Ma J, Sun DW. Dual-signal fluorescent test strips for spoilage sensing of packaged seafood: Visual monitoring of volatile basic nitrogens. Food Chem 2023;416:135725. [PMID: 36934615 DOI: 10.1016/j.foodchem.2023.135725] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023]
Abstract
With the food safety issues abounding, exploring reliable and efficient methods for evaluating food safety is crucial. Herein, a ratiometric test strip was proposed by using green-yellow fluorescent d-penicillamine capped silver nanocluster (DPA-AgNCs) as indicator and red-emitting bimetallic gold/silver nanoclusters (AuAgNCs) as an internal reference, providing a real-time and visual monitoring system for food freshness. Results showed that the as-prepared DPA-AgNCs displayed an excellent response and good sensitivity for volatile basic nitrogens (VBNs), with a limit of detection (LOD) of 0.51 μM and 0.08 ppm for spermidine and ammonia hydroxide, respectively. Subsequently, a ratiometric test strip was developed to visually monitor ammonia vapour, displaying an obvious fluorescence colour variation from mustard to deep-red. Moreover, the presented ratiometric test strip was successfully applied for non-contact and visual evaluating and monitoring VBNs in the shrimp sample, showing high potential for in-situ monitoring.
Collapse
|
4
|
|
Baesso AS, da Silva DJ, Soares AK, Silva Paula MMD, de Cademartori PHG. Biosynthesis of gold nanoparticles using papaya seed extract for the functionalization of nanocellulose membranes. Ind Crops Prod 2023;197:116601. [DOI: 10.1016/j.indcrop.2023.116601] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023]
|
5
|
|
Gao Y, Liu K, Zhang Y, Sun Z, Song B, Wang Y, Zhang B, Chen X, Hu D, Wen J, Wang H, Wang K, Wang L. Hyaluronic acid-modified curcumin-copper complex nano delivery system for rapid healing of bacterial prostatitis. Carbohydr Polym 2023;310:120668. [PMID: 36925265 DOI: 10.1016/j.carbpol.2023.120668] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/19/2023]
Abstract
Bacterial prostatitis is a bacterial infection of the prostate gland presenting with lower quadrant abdominal pain, urination disorders and poor fertility. In recent years, reports have emerged on the significantly reduced efficacy of fluoroquinolone drugs attributed to multiple drug-resistant bacteria, emphasizing the need for new drugs. In this study, we designed a targeting drug delivery system via curcumin copper complex grafted with hyaluronic acid. Subsequently, the prepared system was characterized using FT-IR, XRD, SEM, XPS and 1H NMR methods. In addition to the substantial improvement in the solubility of the carrier, its antibacterial performance and targeting ability were improved. Interestingly, the grafting of hyaluronic acid endowed the carrier with excellent CD44 receptor targeting function and good water solubility, and the complexation of copper ions greatly enhanced its antibacterial capability, especially the inhibitory effect on E. coli. The anti-prostatitis effect of the drug was evaluated comprehensively by establishing a bacterial prostatitis model infected by E. coli. Assessment of the anti-prostatitis effects in vivo indicated that the Cur-Cu@HA delivery system could effectively promote recovery from bacterial prostatitis by downregulating inflammation. In conclusion, our Cur-Cu@HA delivery system has great potential for treating bacterial prostatitis.
Collapse
|
6
|
|
Yang S, Wang F, Han H, Santos HA, Zhang Y, Zhang H, Wei J, Cai Z. Fabricated technology of biomedical micro-nano hydrogel. Biomedical Technology 2023;2:31-48. [DOI: 10.1016/j.bmt.2022.11.012] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/14/2022]
|
7
|
|
Tang J, Li Z, Qiang C, Han Y, Yang L, Zhu L, Dang T, Chen G, Ye Y. A long-wavelength mitochondria-targeted fluorescent probe for imaging of peroxynitrite during dexamethasone treatment. Spectrochim Acta A Mol Biomol Spectrosc 2023;292:122429. [PMID: 36750010 DOI: 10.1016/j.saa.2023.122429] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
Peroxynitrite (ONOO-), as a strong oxidizing reactive nitrogen substance (RNS), is generated endogenously by cells. Its visualization research is crucial to understand relevant disease processes. Herein, we reported a long-wavelength mitochondria-targeted fluorescence "turn on" probe TL. The probe TL could react with ONOO- by using 4-(Bromomethyl)benzeneboronic as a reactive site, which exhibited outstanding characteristics for detection of ONOO-, thus improving response time (about 50 s), sensitivity (DL, 10.1 nM), and emission wavelength (667 nm). Besides, TL displayed well mitochondria targeting and biological visualizing of exogenous and endogenous ONOO- in biological systems. Finally, TL was used to monitor high concentration of dexamethasone-induced an up-regulation of ONOO-. This indicated that TL has excellent potential to study the fluctuation of ONOO- in the physiological and pathological system.
Collapse
|
8
|
|
Wang G, Feng N, Wu H, Liu Y, Jin Y, Kang X, Hu T, Zhao X, Xu G, Liu H, Xie J. Sedimentable polyethyleneimine-modified yeast residue enhances the selective adsorption of Pd(II) by altering isoelectric point. J Mol Liq 2023;377:121529. [DOI: 10.1016/j.molliq.2023.121529] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/03/2023]
|
9
|
|
Bravo I, Viejo L, de Los Ríos C, García-Frutos EM, Darder M. Cellulose/pectin-based materials incorporating Laponite-indole derivative hybrid for oral administration and controlled delivery of the neuroprotective drug. Int J Biol Macromol 2023;234:123765. [PMID: 36812973 DOI: 10.1016/j.ijbiomac.2023.123765] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
Bionanocomposite materials based on clays have been designed for oral administration and controlled release of a neuroprotective drug derivative of 5-methylindole, which had featured an innovative pharmacological mechanism for the treatment of neurodegenerative diseases such as Alzheimer's. This drug was adsorbed in the commercially available Laponite® XLG (Lap). X-ray diffractograms confirmed its intercalation in the interlayer region of the clay. The loaded drug was 62.3 meq/100 g Lap, close to the cation exchange capacity of Lap. Per se toxicity studies and neuroprotective experiments versus the neurotoxin okadaic acid, a potent and selective inhibitor of protein phosphatase 2A (PP2A), confirmed that the clay-intercalated drug did not exert toxicity in cell cultures and provided neuroprotection. Release tests of the hybrid material performed in media mimicking the gastrointestinal tract indicated a drug release in acid medium close to 25 %. The hybrid was encapsulated in a micro/nanocellulose matrix and processed as microbeads, with pectin coating for additional protection, to minimize release under acidic conditions. Alternatively, low density materials based on a microcellulose/pectin matrix were evaluated as orodispersible foams showing fast disintegration times, sufficient mechanical resistance for handling, and release profiles in simulated media that confirmed a controlled release of the encapsulated neuroprotective drug.
Collapse
|
10
|
|
Wu J, Gao T, Guo H, Zhao L, Lv S, Lv J, Yao R, Yu Y, Ma F. Application of molecular dynamics simulation for exploring the roles of plant biomolecules in promoting environmental health. Sci Total Environ 2023;869:161871. [PMID: 36708839 DOI: 10.1016/j.scitotenv.2023.161871] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Understanding the dynamic changes of plant biomolecules is vital for exploring their mechanisms in the environment. Molecular dynamics (MD) simulation has been widely used to study structural evolution and corresponding properties of plant biomolecules at the microscopic scale. Here, this review (i) outlines structural properties of plant biomolecules, and the crucial role of MD simulation in advancing studies of the biomolecules; (ii) describes the development of MD simulation in plant biomolecules, determinants of simulation, and analysis parameters; (iii) introduces the applications of MD simulation in plant biomolecules, including the response of the biomolecules to multiple stresses, their roles in corrosive environments, and their contributions in improving environmental health; (iv) reviews techniques integrated with MD simulation, such as molecular biology, quantum mechanics, molecular docking, and machine learning modeling, which bridge gaps in MD simulation. Finally, we make suggestions on determination of force field types, investigation of plant biomolecule mechanisms, and use of MD simulation in combination with other techniques. This review provides comprehensive summaries of the mechanisms of plant biomolecules in the environment revealed by MD simulation and validates it as an applicable tool for bridging gaps between macroscopic and microscopic behavior, providing insights into the wide application of MD simulation in plant biomolecules.
Collapse
|
11
|
|
Hosseini S, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Mater Today Chem 2023;29:101400. [DOI: 10.1016/j.mtchem.2023.101400] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/17/2023]
|
12
|
|
Liu Z, Tang Q, Liu R, Yu M, Peng H, Zhang C, Zhu Z, Wei X. Laponite intercalated biomimetic multilayer coating prevents glucocorticoids induced orthopedic implant failure. Bioact Mater 2023;22:60-73. [PMID: 36203962 DOI: 10.1016/j.bioactmat.2022.09.013] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/25/2022] Open
|
13
|
|
Kirakci K, Shestopalov MA, Lang K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord Chem Rev 2023;481:215048. [DOI: 10.1016/j.ccr.2023.215048] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/10/2023]
|
14
|
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. J Nanopart Res 2023;25:68. [DOI: 10.1007/s11051-023-05701-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/30/2023]
|
15
|
|
Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023;232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
16
|
|
Dai Y, Wang W, Zhou X, li L, Tang Y, Shao M, Lyu F. Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.3c00374] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023]
|
17
|
|
Farasati Far B, Isfahani AA, Nasiriyan E, Pourmolaei A, Mahmoudvand G, Karimi Rouzbahani A, Namiq Amin M, Naimi-jamal MR. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. Livers 2023;3:161-189. [DOI: 10.3390/livers3020012] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/29/2023] Open
Abstract
More than 90% of all liver malignancies are hepatocellular carcinomas (HCCs), for which chemotherapy and immunotherapy are the ideal therapeutic choices. Hepatocellular carcinoma is descended from other liver diseases, such as viral hepatitis, alcoholism, and metabolic syndrome. Normal cells and tissues may suffer damage from common forms of chemotherapy. In contrast to systemic chemotherapy, localized chemotherapy can reduce side effects by delivering a steady stream of chemotherapeutic drugs directly to the tumor site. This highlights the significance of controlled-release biodegradable hydrogels as drug delivery methods for chemotherapeutics. This review discusses using hydrogels as drug delivery systems for HCC and covers thermosensitive, pH-sensitive, photosensitive, dual-sensitive, and glutathione-responsive hydrogels. Compared to conventional systemic chemotherapy, hydrogel-based drug delivery methods are more effective in treating cancer.
Collapse
|
18
|
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1127162] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
|
19
|
|
Zhang S, Yang B, Yuan B, Zhou C, Zhang M, Zhao Y, Ye P, Li L, Li H. Dual-State Fluorescent Probe for Ultrafast and Sensitive Detection of Nerve Agent Simulants in Solution and Vapor. ACS Sens 2023;8:1220-9. [PMID: 36795893 DOI: 10.1021/acssensors.2c02611] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/18/2023]
Abstract
The development of fluorescent probes for detecting nerve agents has been the main concern focus of research because of their lethal toxicity for humans. Herein, a probe (PQSP) based on the quinoxalinone unit and the styrene pyridine group was synthesized and could visually detect a sarin simulant diethyl chlorophosphate (DCP) with excellent sensing properties in solution and solid states. Interestingly, PQSP showed an apparent intramolecular charge-transfer process by catalytic protonation after reacting with DCP in methanol, accompanied with the aggregation recombination effect. The sensing process was also verified by nuclear magnetic resonance spectra, scanning electron microscopy, and theoretical calculations. In addition, the papered test strips of loading probe PQSP exhibited an ultrafast response time within 3 s and high sensitivity with a limit of detection of 3 ppb for the detection of DCP vapor. Therefore, this research provides a designed strategy for developing the probes with dual-state emission fluorescence in solution and solid states for detecting DCP sensitively and rapidly, which can be fabricated as chemosensors to visually detect nerve agents in practice.
Collapse
|
20
|
|
Chen J, Shen Y, Yu Q, Gan Z. Paclitaxel Prodrug Nanomedicine for Potential CT-imaging Guided Breast Cancer Therapy. CHINESE J POLYM SCI 2023. [DOI: 10.1007/s10118-023-2958-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023]
|
21
|
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023;15:1026. [PMID: 36986886 DOI: 10.3390/pharmaceutics15031026] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
|
22
|
|
Wang S, Chen J, Feng C, Lan H, Xu J, Yang R, Li C, Li W. Effects of simulated digestion on the structural characteristics and dendritic cell activation of longan polysaccharides. Int J Biol Macromol 2023;:124114. [PMID: 36963540 DOI: 10.1016/j.ijbiomac.2023.124114] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/26/2023]
Abstract
An active polysaccharide (LP) from longan was purified and characterized. LP consisted of galactose and glucose in a molar ratio of 1.5: 98.5, with a molecular weight of 4.67 × 107 g/mol. The main backbone of LP was T-α-D-Glcp-[(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp]n. After simulated gastrointestinal digestion, the molecular weight distribution, monosaccharide composition, and major glycosidic bonds of LP were not significantly changed. LP and digested LP (DLP) reduced phagocytosis and promoted IL-10 and IL-12 secretion of dendritic cells. In addition, the effects of LP and DLP on activating dendritic cells showed no significant difference. This study helps to illuminate the potential mode of immunomodulatory action of longan polysaccharides in vivo.
Collapse
|
23
|
|
Zhang J, Zhou J, Zhang T, Tang Y, Zeng L. A colorimetric and fluorescent sensor for non-destructive screening of the freshness of shrimp and fish. Spectrochim Acta A Mol Biomol Spectrosc 2023;296:122647. [PMID: 36963279 DOI: 10.1016/j.saa.2023.122647] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/26/2023]
Abstract
The freshness of fish and shrimp is closely associated with food safety, hence it is a wide concern to develop a facile and effective method for fast, non-destructive and visual screening the freshness of fish and shrimp. Herein, we developed a chromogenic and fluorogenic sensor (RFCC) based on resorufin for sensing of biogenic amines including cadaverine and putrescine. RFCC underwent aminolysis with cadaverine or putrescine, displaying a remarkable fluorescence turn on response at 593 nm along with obvious color change from colorless to pink. RFCC was fabricated into test strips to sense cadaverine vapor, and the RGB value of test strips showed a good linear relationship with the concentration of cadaverine (0.5 - 8.2 × 103 ppm). The RFCC tag was used to in situ screen the freshness of fish and shrimp according to obvious fluorescence change, and satisfactory results were achieved. Furthermore, this test strip was validated by total volatile base nitrogen (TVBN), providing a simple, low cost and portable tool to screen the freshness of fish and shrimp for consumers and suppliers without expensive instrumentation.
Collapse
|
24
|
|
Amano Y, Misawa T, Miyazaki T, Ando D, Koide T, Izutsu KI, Kanazawa H, Hanaoka K, Yamamoto E. Real-time in situ X-ray micro-computed tomography study of the effect of impurities on the crystallization of amorphous nifedipine. J Pharm Biomed Anal 2023;226:115248. [PMID: 36645986 DOI: 10.1016/j.jpba.2023.115248] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/13/2023]
Abstract
Controlling the physical stability of noncrystalline active pharmaceutical ingredients remains a major challenge in the development of amorphous formulations such as amorphous solid-dispersion (ASD) formulations. To establish new evaluation and formulation strategies, the spatial distribution of the crystal phase in bulk amorphous nifedipine (NFD) was investigated as a model. The crystallization of amorphous NFD and the effect of a deliberately added impurity were investigated using powder X-ray diffraction (PXRD), differential scanning calorimetry and real-time in situ X-ray micro-computed tomography (X-ray CT). The stability data of amorphous samples, i.e., NFD and a mixture of NFD with an oxidative degradation product of NFD, impurity A (Imp A), at a weight ratio of 90:10, presented as percent amorphous remaining, suggests that Imp A accelerates the bulk crystal growth of NFD. Real-time in situ X-ray CT results showed surface-enhanced crystal growth and cavity formation in solid NFD samples. Moreover, the crystals were heterogeneous in density. These results suggest that Imp A affects the physical stability of the amorphous NFD. X-ray CT equipped with a heating unit can aid in-situ evaluation and assessment of physicochemical properties and physical stability of amorphous samples and formulations.
Collapse
|
25
|
|
Miao X, Wu C, Li F, Zhang M. Fast and Visual Detection of Biogenic Amines and Food Freshness Based on ICT‐Induced Ratiometric Fluorescent Probes. Adv Funct Mater 2023. [DOI: 10.1002/adfm.202212980] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/20/2023]
|
26
|
|
Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, Alexander C, Ashford MB. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J Control Release 2023;356:580-94. [PMID: 36918085 DOI: 10.1016/j.jconrel.2023.03.011] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023]
Abstract
Here, we aimed to chemically modify PAMAM dendrimers using lysine as a site-selective anchor for successfully delivering mRNA while maintaining a low toxicity profile. PAMAM dendrimers were multi-functionalised by amidation reactions in a regioselective, quantitative and stepwise manner with carefully selected property-modifying surface groups. Alternatively, novel lysine-based dendrimers were prepared in the same manner with the aim to unlock their potential in gene delivery. The modified dendrimers were then formulated with Cy5-EGFP mRNA by bulk mixing via liquid handling robotics across different nitrogen to phosphate ratios. The resulting dendriplexes were characterised by size, charge, mRNA encapsulation, and mRNA binding affinity. Finally, their in-vitro delivery activity was systematically investigated across key cellular trafficking stages to relate chemical design to cellular effect. We demonstrate our findings in different cell lines and benchmarked relative to a commercially available transfection agent, jetPEI®. We demonstrate that specific surface modifications are required to generate small, reliable and well-encapsulated positively charged dendriplex complexes. Furthermore, we show that introduction of fusogenic groups is essential for driving endosomal escape and achieving cellular delivery and translation of mRNA in these cell lines.
Collapse
|
27
|
|
Oledzka E, Paśnik K, Domańska I, Zielińska-pisklak M, Piotrowska U, Sobczak M, Szeleszczuk Ł, Laskowska A. Poly(amidoamine) Dendrimer/Camptothecin Complex: From Synthesis to In Vitro Cancer Cell Line Studies. Molecules 2023;28:2696. [PMID: 36985668 DOI: 10.3390/molecules28062696] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
Camptothecin (CPT), an alkaloid with potent anticancer activity, is still not used in clinical practice due to its high hydrophobicity, toxicity, and poor active-form stability. To address these shortcomings, our research focuses on the encapsulation of this drug in the poly(amidoamine) (PAMAM) dendrimer macromolecule. The PAMAM dendrimer/CPT complex was synthesized and thoroughly characterized. The in vitro drug release study revealed that the drug was released in a slow and controlled manner in acidic and physiological conditions and that more than 80% of the drug was released after 168 h of incubation. Furthermore, it was demonstrated that CPT was released with first-order kinetics and non-Fickian transport. The studies on the hemolytic activity of the synthesized complex indicated that it is hemocompatible for potential intravenous administration at a concentration ≤ 5 µg/mL. Additionally, the developed product was shown to reduce the viability of non-small-cell lung cancer cells (A549) in a concentration- and time-dependent manner, and cancer cells were more susceptible to the complex than normal fibroblasts. Lastly, molecular modeling studies revealed that the lactone or carboxylic forms of CPT had a significant impact on the shape and stability of the complex and that its formation with the lactone form of CPT was more energetically favorable for each subsequent molecule than the carboxylic form. The report represents a systematic and structured approach to develop a PAMAM dendrimer/CPT complex that can be used as an effective drug delivery system (DDS) for the potential treatment of non-small-cell lung cancer.
Collapse
|
28
|
|
Ji Y, Wang C. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells. Front Bioeng Biotechnol 2023;11. [DOI: 10.3389/fbioe.2023.1130523] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
Introduction: Non-invasive photothermal therapy (PTT) is a competitive treatment for solid tumors, while the efficacy is largely dependent on the effective retention of photothermal converters in tumor tissues.Methods: Herein, the development of iron oxide (Fe3O4) nanoparticle-loaded alginate (ALG) hydrogel platform for PTT of colorectal cancer cells is reported. Fe3O4 nanoparticles synthesized via coprecipitation method after reaction of 30 min have a small size (61.3 nm) and more suitable surface potential, and can mediate PTT under near-infrared (NIR) laser irradiation. The premix of Fe3O4 nanoparticles and ALG hydrogel precursors can be gelatinized by Ca2+-mediated cross-linking to form this therapeutic hydrogel platform.Results: The formed Fe3O4 nanoparticles can be effectively taken up by CT26 cancer cells and induce the death of CT26 cells in vitro under NIR laser irradiation because of their excellent photothermal property. In addition, Fe3O4 nanoparticle-loaded ALG hydrogels show negligible cytotoxicity at the studied concentration range, but can significantly kill cancer cells after PTT effect.Conclusion: This ALG-based hydrogel platform provides a valuable reference for subsequent in vivo studies and other related studies on Fe3O4 nanoparticle-loaded hydrogels.
Collapse
|
29
|
|
Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023]
Abstract
Carbon dots (CDs) have great potential for cancer diagnosis and treatment. Photodynamic therapy and chemodynamic therapy are promising treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive, having no multi-drug resistance, and having no systemic toxic side effects. However, the tumor microenvironment (TME) and poor targetability often reduce the therapeutic effect. In this work, we have successfully prepared folate-based carbon dots (FCP-CDs) from folic acid (FA), citric acid (CA), and polyethyleneimine (PEI) for tumor-targeting. The surface of FCP-CDs was modified using organic disulfide, 3,3'-dithiodipropionic acid (DTPA), and a photosensitizer (PS) pyropheophorbide-a (PPa) to form a tumor microenvironment-responsive nanoplatform, FCP-CDs@DTPA@PPa (named FCPPD), for synergistic cancer therapy. The results showed that FCPPD effectively preserved the tumor target specificity of folic acid and the photodynamic therapeutic (PDT) activity of PPa, and could provide additional chemodynamic therapeutic (CDT) function by reacting with hydrogen peroxide (H2O2) to generate ˙OH. The introduction of DTPA, which contains disulfide bonds, endows FCPPD with an excellent ability to deplete glutathione (GSH) in tumors via intracellular redox reactions, amplifying intracellular oxidative strain and enhancing ROS-based therapeutic effects. Systematic in vitro and in vivo studies under various conditions have shown that the obtained FCPPD nanoparticles have good biocompatibility and could be a promising therapeutic agent for imaging-guided PDT/CDT combination therapy.
Collapse
|
30
|
|
García-Machorro J, Gutiérrez-Sánchez M, Rojas-Ortega DA, Bello M, Andrade-Ochoa S, Díaz-Hernández S, Correa-Basurto J, Rojas-Hernández S. Identification of peptide epitopes of the gp120 protein of HIV-1 capable of inducing cellular and humoral immunity. RSC Adv 2023;13:9078-90. [PMID: 36950073 DOI: 10.1039/d2ra08160a] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 03/24/2023] Open
Abstract
The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.
Collapse
|
31
|
|
Na Y, Zhang N, Zhong X, Gu J, Yan C, Yin S, Lei X, Zhao J, Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (Lond) 2023. [PMID: 36916394 DOI: 10.2217/nnm-2022-0287] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.
Collapse
|
32
|
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023. [PMID: 36912242 DOI: 10.1049/nbt2.12122] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
|
33
|
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. Environ Res 2023;225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
|
34
|
|
Zhao W, Yuan J, He J, Zhang Y. Controlled Ring-opening (Co)Polymerization of Renewable Macrolactones by Al-based Catalysts with Different Sidearms. CHINESE J POLYM SCI 2023. [DOI: 10.1007/s10118-023-2947-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
35
|
|
Shiba H, Hirose T, Fu Y, Michigami M, Fujii I, Nakase I, Matsumoto A, Kojima C. T Cell-Association of Carboxy-Terminal Dendrimers with Different Bound Numbers of Phenylalanine and Their Application to Drug Delivery. Pharmaceutics 2023;15:888. [PMID: 36986747 DOI: 10.3390/pharmaceutics15030888] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
T cells play important roles in various immune reactions, and their activation is necessary for cancer immunotherapy. Previously, we showed that polyamidoamine (PAMAM) dendrimers modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe) underwent effective uptake by various immune cells, including T cells and their subsets. In this study, we synthesized various carboxy-terminal dendrimers modified with different bound numbers of Phe and investigated the association of these dendrimers with T cells to evaluate the influence of terminal Phe density. Carboxy-terminal dendrimers conjugating Phe at more than half of the termini exhibited a higher association with T cells and other immune cells. The carboxy-terminal Phe-modified dendrimers at 75% Phe density tended to exhibit the highest association with T cells and other immune cells, which was related to their association with liposomes. A model drug, protoporphyrin IX (PpIX), was encapsulated into carboxy-terminal Phe-modified dendrimers, which were then used for drug delivery into T cells. Our results suggest the carboxy-terminal Phe-modified dendrimers are useful for delivery into T cells.
Collapse
|
36
|
|
Roy BC, Mahapatra TS. Recent advances in the development of europium(III) and terbium(III)-based luminescent supramolecular metallogels. Soft Matter 2023;19:1854-72. [PMID: 36820826 DOI: 10.1039/d2sm00999d] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
In the recent past, special attention has been paid to the development of metallogels as novel luminescent materials from rationally designed gelators with lanthanide ions, especially europium (Eu(III)) and terbium (Tb(III)) metal ions. Lanthanide (Ln(III)) based metallogels possess various useful properties with an extensive range of applications in the field of advanced materials, and electronic and bio-technologies. Lanthanide ions in coordination with appropriate sensitizer ligands can reproduce metal-based optical, redox, and electronic properties in soft gel materials. The optical properties of the luminescent Ln(III) based metallogels can be tuned over the complete visible spectrum (400-750 nm) including the generation of white light by mixing both Eu(III) and Tb(III) with the ligand in various stoichiometric ratios. Additionally, the dynamic nature of the lanthanide-ligand (Ln-N) coordination bond allows the Ln(III) based metallogels to respond to various external stimuli. Luminescent self-healing supramolecular gels using organic ligands as 'hosts' and Ln(III) ions as 'guests' are also a current topic of research interest. In this review, we discuss and summarize some selected recent examples of newly developed luminescent Eu(III) and Tb(III) based supramolecular metallogels with potential applications in the fields of optoelectronic devices, stimuli responsiveness, self-healing, luminescent films, and sensors.
Collapse
|
37
|
|
Szota M, Jachimska B. Effect of Alkaline Conditions on Forming an Effective G4.0 PAMAM Complex with Doxorubicin. Pharmaceutics 2023;15:875. [PMID: 36986735 DOI: 10.3390/pharmaceutics15030875] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/30/2023] Open
Abstract
In this study, special attention was paid to the correlation between the degree of ionization of the components and the effective formation of the complex under alkaline conditions. Using UV-Vis, 1H NMR, and CD, structural changes of the drug depending on the pH were monitored. In the pH range of 9.0 to 10.0, the G4.0 PAMAM dendrimer can bind 1 to 10 DOX molecules, while the efficiency increases with the concentration of the drug relative to the carrier. The binding efficiency was described by the parameters of loading content (LC = 4.80-39.20%) and encapsulation efficiency (EE = 17.21-40.16%), whose values increased twofold or even fourfold depending on the conditions. The highest efficiency was obtained for G4.0PAMAM-DOX at a molar ratio of 1:24. Nevertheless, regardless of the conditions, the DLS study indicates system aggregation. Changes in the zeta potential confirm the immobilization of an average of two drug molecules on the dendrimer's surface. Circular dichroism spectra analysis shows a stable dendrimer-drug complex for all the systems obtained. Since the doxorubicin molecule can simultaneously act as a therapeutic and an imaging agent, the theranostic properties of the PAMAM-DOX system have been demonstrated by the high fluorescence intensity observable on fluorescence microscopy.
Collapse
|
38
|
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. Small 2023;:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/10/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
|
39
|
|
Chen Q, Liu J, Liu S, Zhang J, He L, Liu R, Jiang H, Han X, Zhang K. Visual and Rapid Detection of Nerve Agent Mimics in Gas and Solution Phase by a Simple Fluorescent Probe. Anal Chem 2023;95:4390-4. [PMID: 36802493 DOI: 10.1021/acs.analchem.2c04891] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
Chemical nerve agents are highly toxic organophosphorus compounds that are easy to obtain and can be utilized by terrorists to threaten homeland security and human safety. Those organophosphorus nerve agents contain nucleophilic ability that can react with acetylcholinesterase leading to muscular paralysis and human death. Therefore, there is great importance to explore a reliable and simple method to detect chemical nerve agents. Herein, the o-phenylenediamine-linked dansyl chloride as a colorimetric and fluorescent probe has been prepared to detect specific chemical nerve agent stimulants in the solution and vapor phase. The o-phenylenediamine unit serves as a detection site that can react with diethyl chlorophosphate (DCP) in a rapid response within 2 min. A satisfied relationship line was obtained between fluorescent intensity and the concentration of DCP in the range of 0-90 μM. In the optimized conditions, we conducted the fluorescent titration to measure the limits of detection (0.082 μM) with the fluorescent enhancement up to 18-fold. Fluorescence titration and NMR studies were also conducted to explore the detection mechanism, indicating that the formation of phosphate ester causes the intensity of fluorescent change during the PET process. Finally, probe 1 coated with the paper test is utilized to detect DCP vapor and solution by the naked eye. We expect that this probe may give some admiration to design the small molecule organic probe and applied in the selectivity detection of chemical nerve agents.
Collapse
|
40
|
|
Fang Z, Lu C, Du W, Wang X, Yang H, Shi M, Liu T, Xie Y, Wang S, Xu X, Haihang L, Wang H, Zheng Y. Injectable self-assembled dual-crosslinked alginate/recombinant collagen-based hydrogel for endometrium regeneration. Int J Biol Macromol 2023;:123943. [PMID: 36889621 DOI: 10.1016/j.ijbiomac.2023.123943] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023]
Abstract
The disadvantages of mainstream therapies for endometrial injury are difficult to resolve, herein, we suggest an omnibearing improvement strategy by introducing an injectable multifunctional self-assembled dual-crosslinked sodium alginate/recombinant collagen hydrogel. The hydrogel possessed a reversible and dynamic double network based on dynamic covalent bonds and ionic interactions, which also contributed to excellent capability in viscosity and injectability. Moreover, it was also biodegradable with a suitable speed, giving off active ingredients during the degradation process and eventually disappearing completely. In vitro tests exhibited that the hydrogel was biocompatible and able to enhance endometrial stromal cells viability. These features synergistically promoted cell multiplication and maintenance of endometrial hormone homeostasis, which accelerated endometrial matrix regeneration and structural reconstruction after severe injury in vivo. Furthermore, we explored the interrelation between the hydrogel characteristics, endometrial structure, and postoperative uterine recovery, which would benefit deep research on regulation of uterine repair mechanism and optimization of hydrogel materials. The injectable hydrogel could achieve favourable therapeutic efficacy without the need of exogenous hormones or cells, which would be of clinical value in endometrium regeneration.
Collapse
|
41
|
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. Nanomaterials (Basel) 2023;13. [PMID: 36903831 DOI: 10.3390/nano13050953] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023] Open
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
|
42
|
|
Qian Q, Song J, Chen C, Pu Q, Liu X, Wang H. Recent advances in hydrogels for preventing tumor recurrence. Biomater Sci 2023. [PMID: 36877511 DOI: 10.1039/d3bm00003f] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023]
Abstract
Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.
Collapse
|
43
|
|
Li Y, Xiao L, Wei D, Liu S, Zhang Z, Lian R, Wang L, Chen Y, Jiang J, Xiao Y, Liu C, Li Y, Zhao J. Injectable Biomimetic Hydrogel Guided Functional Bone Regeneration by Adapting Material Degradation to Tissue Healing. Adv Funct Mater 2023. [DOI: 10.1002/adfm.202213047] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
44
|
|
Pei YY, Wang JT, Yuan L, Luo Y, Niu XY, Rong X, Jin L, Li QF. Multicolor, injectable BSA-based lanthanide luminescent hydrogels with biodegradability. Int J Biol Macromol 2023;235:123865. [PMID: 36870662 DOI: 10.1016/j.ijbiomac.2023.123865] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Protein hydrogels have attracted increasing attention because of their excellent biodegradability and biocompatibility, but frequently suffer from the single structures and functions. As a combination of luminescent materials and biomaterials, multifunctional protein luminescent hydrogels can exhibit wider applications in various fields. Herein, we report a novel, multicolor tunable, injectable, and biodegradable protein-based lanthanide luminescent hydrogel. In this work, urea was utilized to denature BSA to expose disulfide bonds, and tris(2-carboxyethyl)phosphine (TCEP) was employed to break the disulfide bonds in BSA to generate free thiols. A part of free thiols in BSA rearranged into disulfide bonds to form a crosslinked network. In addition, lanthanide complexes (Ln(4-VDPA)3), containing multiple active reaction sites, could react with the remaining thiols in BSA to form the second crosslinked network. The whole process avoids the use of nonenvironmentally friendly photoinitiators and free radical initiators. The rheological properties and structure of hydrogels were investigated, and the luminescent performances of hydrogels were studied in detail. Finally, the injectability and biodegradability of hydrogels were verified. This work will provide a feasible strategy for the design and fabrication of multifunctional protein luminescent hydrogels, which may have further applications in biomedicine, optoelectronics, and information technology.
Collapse
|
45
|
|
Couto RAA, Miguel RB, Vieira EG, Brendlé J, Limousy L, Constantino VRL, Ferreira AMDC. Synthetic beidellite clay as nanocarrier for delivery of antitumor oxindolimine-metal complexes. J Inorg Biochem 2023;240:112099. [PMID: 36584559 DOI: 10.1016/j.jinorgbio.2022.112099] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/13/2022]
Abstract
Studies on the immobilization of oxindolimine‑copper(II) or zinc(II) complexes [ML] in synthetic beidellite (BDL) clay were developed to obtain a suitable inorganic carrier capable of promoting the modified-release of metallopharmaceuticals. Previous investigations have shown that the studied metal complexes are promising antitumor agents, targeting DNA, mitochondria, and some proteins. They can bind to DNA, causing oxidative damage via formation of reactive oxygen species (ROS). In mitochondria they lead to a decrease in membrane potential, acting as decoupling agents, and therefore efficiently inducing apoptosis. Additionally, they inhibit human topoisomerase IB and cyclin dependent kinases, proteins involved in the cell cycle. BDL clays in the sodium form were synthesized under hydrothermal conditions and characterized by a set of physicochemical techniques while the BDL-[ML] hybrid materials were prepared by ion exchange method. The characterization of pristine clay and the obtained hybrids were performed by Infrared, Raman, electron paramagnetic resonance and energy dispersive X-ray spectroscopies, thermogravimetric analysis, scanning electron microscopy, X-ray powder diffraction, specific surface area, zeta potential and surface ionic charge measurements. The [ML] release assays under the same cell incubation conditions were performed monitoring metals by X-ray fluorescence. The BDL-[CuL] hybrid materials were stable and able to derail tumor HeLa cells, with corresponding IC50 values in the 0.11-0.41 mg mL-1 range. By contrast, the analogous hybrid samples of zinc(II) and the pristine BDL proved to be non-toxic facing the same cells. These results indicate a promising possibility of using synthetic beidellite as a carrier of such antitumor metal complexes.
Collapse
|
46
|
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023;23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
|
47
|
|
Maeng S, Ko J, Yoon Park T, Yun J, Hyun Park S, Jun Han S, Il Joo K, Ha S, Jee M, Im G, Joon Cha H. Adipose stem cell transplantation using adhesive protein-based viscous immiscible liquid for cartilage reconstruction. Chem Eng J 2023. [DOI: 10.1016/j.cej.2023.142379] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/13/2023]
|
48
|
|
Domeneguetti RR, Sakai VY, Perotti GF, Silva IC, Tercjak A, Barud HS, Pavan F, Constantino VR, Ribeiro SJ. Structural and morphological properties of in-situ biosynthesis of biocompatible bacterial cellulose/Laponite nanocomposites. Appl Clay Sci 2023;234:106851. [DOI: 10.1016/j.clay.2023.106851] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/19/2023]
|
49
|
|
Zhang J, Yue C, Ke Y, Qu H, Zeng L. Fluorescent probes for the detection of biogenic amines, nitrite and sulfite in food: Progress, challenges and perspective. Advanced Agrochem 2023. [DOI: 10.1016/j.aac.2023.03.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/13/2023]
|
50
|
|
Zhong G, Wang L, Jin H, Li X, Zhou D, Wang G, Lian R, Xie P, Zhang S, Zheng L, Qu X, Shen S, Shahbazi M, Xiao L, Li K, Gao J, Li Y. Tumor microenvironment double-responsive shrinkable nanoparticles fabricated via facile assembly of laponite with a bioactive oligosaccharide for anticancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104344] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/11/2023]
|