451
|
PRMT1 Is Critical for the Transcriptional Activity and the Stability of the Progesterone Receptor. iScience 2020; 23:101236. [PMID: 32563156 PMCID: PMC7305383 DOI: 10.1016/j.isci.2020.101236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.
Collapse
|
452
|
Alexandrova E, Pecoraro G, Sellitto A, Melone V, Ferravante C, Rocco T, Guacci A, Giurato G, Nassa G, Rizzo F, Weisz A, Tarallo R. An Overview of Candidate Therapeutic Target Genes in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061470. [PMID: 32512900 PMCID: PMC7352306 DOI: 10.3390/cancers12061470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer (OC) shows the highest mortality rate among gynecological malignancies and, because of the absence of specific symptoms, it is frequently diagnosed at an advanced stage, mainly due to the lack of specific and early biomarkers, such as those based on cancer molecular signature identification. Indeed, although significant progress has been made toward improving the clinical outcome of other cancers, rates of mortality for OC are essentially unchanged since 1980, suggesting the need of new approaches to identify and characterize the molecular mechanisms underlying pathogenesis and progression of these malignancies. In addition, due to the low response rate and the high frequency of resistance to current treatments, emerging therapeutic strategies against OC focus on targeting single factors and pathways specifically involved in tumor growth and metastasis. To date, loss-of-function screenings are extensively applied to identify key drug targets in cancer, seeking for more effective, disease-tailored treatments to overcome lack of response or resistance to current therapies. We review here the information relative to essential genes and functional pathways recently discovered in OC, often strictly interconnected with each other and representing promising biomarkers and molecular targets to treat these malignancies.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Teresa Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Anna Guacci
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi, Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- CRGS-Genome Research Center for Health, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
- Correspondence: (A.W.); (R.T.); Tel.: +39-089-965043 (A.W.); +39-089-965067 (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitan”, University of Salerno, 84081 Baronissi, Italy; (E.A.); (G.P.); (A.S.); (V.M.); (C.F.); (T.R.); (G.G.); (G.N.); (F.R.)
- Correspondence: (A.W.); (R.T.); Tel.: +39-089-965043 (A.W.); +39-089-965067 (R.T.)
| |
Collapse
|
453
|
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr Rev 2020; 41:bnaa002. [PMID: 32060528 PMCID: PMC7240781 DOI: 10.1210/endrev/bnaa002] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew T Birnie
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
454
|
Lin F, Tong F, He Q, Xiao S, Liu X, Yang H, Guo Y, Wang Q, Zhao H. In vitro effects of androgen on testicular development by the AR-foxl3-rec8/fbxo47 axis in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 292:113435. [PMID: 32057909 DOI: 10.1016/j.ygcen.2020.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
In orange-spotted grouper, androgen can promote the development of testis and spermatogenesis, but the effect of androgen on testis development is unclear. Forkhead box L 3 (Foxl3) is important in the development of fish testis. Rec8 and fbxo47 are involved in meiosis, which impacts spermatogenesis. The present study investigated the plausible role of testis development through the Foxl3 transcriptional regulation of rec8 and fbxo47. The results of tissue distribution showed that rec8 and fbxo47 are highly expressed in gonad. In addition, the highest expression of foxl3, rec8, and fbxo47 was in the testis and intersex compared with the other stages of gonadal development, suggesting that foxl3, rec8, and fbxo47 are important in testis development. In addition, by using dual-luciferase assays, we found that the androgen can increase foxl3 promoter activity and Foxl3 can upregulate rec8 and fbxo47 promoter activity. Furthermore, the addition of β-testosterone significantly increased foxl3, rec8, and fbxo47 promoter activity. Together, these results suggest that foxl3 plays a decisive role in testis development by regulating the expression of rec8 or fbxo47 and imply that AR-foxl3-rec8/fbxo47 affects the testis development pathway.
Collapse
Affiliation(s)
- Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Feng Tong
- South China Agricultural University Hospital, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
455
|
Li Y, Hamilton KJ, Perera L, Wang T, Gruzdev A, Jefferson TB, Zhang AX, Mathura E, Gerrish KE, Wharey L, Martin NP, Li JL, Korach KS. ESR1 Mutations Associated With Estrogen Insensitivity Syndrome Change Conformation of Ligand-Receptor Complex and Altered Transcriptome Profile. Endocrinology 2020; 161:bqaa050. [PMID: 32242619 PMCID: PMC7947601 DOI: 10.1210/endocr/bqaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
Estrogen insensitivity syndrome (EIS) arises from rare mutations in estrogen receptor-α (ERα, encoded by ESR1 gene) resulting in the inability of estrogen to exert its biological effects. Due to its rarity, mutations in ESR1 gene and the underlying molecular mechanisms of EIS have not been thoroughly studied. Here, we investigate known ESR1 mutants, Q375H and R394H, associated with EIS patients using in vitro and in vivo systems. Comparison of the transcriptome and deoxyribonucleic acid methylome from stable cell lines of both Q375H and R394H clinical mutants shows a differential profile compared with wild-type ERα, resulting in loss of estrogen responsiveness. Molecular dynamic simulation shows that both ESR1 mutations change the ERα conformation of the ligand-receptor complexes. Furthermore, we generated a mouse model Esr1-Q harboring the human mutation using CRISPR/Cas9 genome editing. Female and male Esr1-Q mice are infertile and have similar phenotypes to αERKO mice. Overall phenotypes of the Esr1-Q mice correspond to those observed in the patient with Q375H. Finally, we explore the effects of a synthetic progestogen and a gonadotropin-releasing hormone inhibitor in the Esr1-Q mice for potentially reversing the impaired female reproductive tract function. These findings provide an important basis for understanding the molecular mechanistic consequences associated with EIS.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Artiom Gruzdev
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Tanner B Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Austin X Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Emilie Mathura
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kevin E Gerrish
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Laura Wharey
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Negin P Martin
- Viral Vector Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
456
|
Kim NH, Jegal J, Kim YN, Heo JD, Rho JR, Yang MH, Jeong EJ. The Effects of Aronia melanocarpa Extract on Testosterone-Induced Benign Prostatic Hyperplasia in Rats, and Quantitative Analysis of Major Constituents Depending on Extract Conditions. Nutrients 2020; 12:nu12061575. [PMID: 32481550 PMCID: PMC7352698 DOI: 10.3390/nu12061575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the beneficial effects of A. melanocarpa on testosterone propionate (TP)-induced benign prostatic hyperplasia (BPH) in Wistar rats. Moreover, the bioactive constituents in the extract were determined using LC/MS and HPLC analyses. The dried fruits of A. melanocarpa were extracted using accelerated solvent extraction (ASE) under different extract conditions (temperature, 30 C or 100 C; extract solvent, 60% or 100% ethanol) to yield four extracts (T1~T4). Of the four A. melanocarpa extracts, T1 extracted under the condition of 100% ethanol/low temperature (30 C) exhibited the greatest inhibitory activity on TP-induced prostatic hyperplasia in rats. The administration of T1 (100 mg/kg body weight, p.o.) for six weeks attenuated TP-induced prostate enlargement and reduced the levels of dihydrotestosterone (DHT) and 5α-reductase in both serum and prostate tissue. The suppression of PCNA mRNA expression in prostate tissue was remarkable in T1-treated rats. In LC/MS analysis, the levels of main anthocyanins and phenolics were significantly higher in T1 than in the other extracts. Furthermore, the quantitative study showed that the contents of cyanidin-3-glucose and cyanidin-3-xylose in T1 exhibited 1.27~1.67 and 1.10~1.26 folds higher compared to those in the other extracts. These findings demonstrated that A. melanocarpa extract containing anthocyanins as bioactive constituents attenuated the development of testosterone-induced prostatic hyperplasia, and suggested that this extract has therapeutic potential to treat prostate enlargement and BPH.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, 17 Jegok-gil, Munsan-eup, Jinju-si, Gyeongsangnam-do 52834, Korea; (N.-H.K.); (J.-D.H.)
| | - Jonghwan Jegal
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Yun Na Kim
- Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Jeong-Doo Heo
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, 17 Jegok-gil, Munsan-eup, Jinju-si, Gyeongsangnam-do 52834, Korea; (N.-H.K.); (J.-D.H.)
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Kunsan 54150, Korea;
| | - Min Hye Yang
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (M.H.Y.); (E.J.J.); Tel.: +82-51-510-2811 (M.H.Y.); +82-55-751-3224 (E.J.J.); Fax: +82-51-513-6754 (M.H.Y.); +82-55-751-3229 (E.J.J.)
| | - Eun Ju Jeong
- Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
- Correspondence: (M.H.Y.); (E.J.J.); Tel.: +82-51-510-2811 (M.H.Y.); +82-55-751-3224 (E.J.J.); Fax: +82-51-513-6754 (M.H.Y.); +82-55-751-3229 (E.J.J.)
| |
Collapse
|
457
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
458
|
Ito-Harashima S, Matano M, Onishi K, Nomura T, Nakajima S, Ebata S, Shiizaki K, Kawanishi M, Yagi T. Construction of reporter gene assays using CWP and PDR mutant yeasts for enhanced detection of various sex steroids. Genes Environ 2020; 42:20. [PMID: 32514322 PMCID: PMC7251871 DOI: 10.1186/s41021-020-00159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sex steroid hormone receptors are classified into three classes of receptors: estrogen receptors (ER) α and β, androgen receptor (AR), and progesterone receptor (PR). They belong to the nuclear receptor superfamily and activate their downstream genes in a ligand-dependent manner. Since sex steroid hormones are involved in a wide variety of physiological processes and cancer development, synthetic chemical substances that exhibit sex steroid hormone activities have been applied as pharmaceuticals and consumed in large amounts worldwide. They are potentially hazardous contaminants as endocrine disruptors in the environment because they may induce inappropriate gene expression mediated by sex steroid hormone receptors in vivo. Results To develop simple reporter gene assays with enhanced sensitivity for the detection of sex steroid hormones, we newly established mutant yeast strains lacking the CWP and PDR genes encoding cell wall mannoproteins and plasma membrane drug efflux pumps, respectively, and expressing human ERα, ERβ, AR, and PR. Reporter gene assays with mutant yeast strains responded to endogenous and synthetic ligands more strongly than those with wild-type strains. Sex steroid hormone activities in some pharmaceutical oral tablets and human urine were also detectable in these yeast assays. Conclusions Yeast reporter gene assay systems for all six steroid hormone receptors, including previously established glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) assay yeasts, are now available. Environmental endocrine disrupters with steroid hormone activity will be qualitatively detectable by simple and easy procedures. The yeast-based reporter gene assay will be valuable as a primary screening tool to detect and evaluate steroid hormone activities in various test samples. Our assay system will strongly support the detection of agonists, antagonists, and inverse agonists of steroid hormone receptors in the field of novel drug discovery and assessments of environmental pollutants.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Mami Matano
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kana Onishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Tomofumi Nomura
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Saki Nakajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Shingo Ebata
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kazuhiro Shiizaki
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan.,Present address: Department of Applied Biosciences, Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 Japan
| | - Masanobu Kawanishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
459
|
Stancampiano MR, Lucas-Herald AK, Russo G, Rogol AD, Ahmed SF. Testosterone Therapy in Adolescent Boys: The Need for a Structured Approach. Horm Res Paediatr 2020; 92:215-228. [PMID: 31851967 DOI: 10.1159/000504670] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In adolescents, testosterone may have several effects including promotion of secondary sexual characteristics and pubertal growth, attainment of optimal muscle mass and peak bone mass, optimization of the metabolic profile, and psychosocial maturation and well-being. SUMMARY Testosterone therapy is a cornerstone of the management of hypogonadism in boys. Since the initial report of the chemical synthesis of testosterone, several formulations have continued to develop, and although many of these have been used in boys, none of them have been studied in detail in this age group. Given the wide ranging effects of testosterone, the level of evidence for their effects in boys and the heterogeneity of conditions that lead to early-onset hypogonadism, a standardized protocol for monitoring testosterone replacement in this age group is needed. Key Messages: In this review, we focus on the perceived benefits of androgen replacement in boys affected by pubertal delay and highlight the need to improve the health monitoring of boys who receive androgen replacement therapy, proposing different approaches based on the underlying pathophysiology.
Collapse
Affiliation(s)
- Marianna Rita Stancampiano
- Department of Pediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy, .,Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom,
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Gianni Russo
- Department of Pediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy
| | - Alan D Rogol
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
460
|
Rajan S, Jang Y, Kim CH, Kim W, Toh HT, Jeon J, Song B, Serra A, Lescar J, Yoo JY, Beldar S, Ye H, Kang C, Liu XW, Feitosa M, Kim Y, Hwang D, Goh G, Lim KL, Park HM, Lee CH, Oh SF, Petsko GA, Yoon HS, Kim KS. PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nat Chem Biol 2020; 16:876-886. [PMID: 32451509 DOI: 10.1038/s41589-020-0553-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The orphan nuclear receptor Nurr1 is critical for the development, maintenance and protection of midbrain dopaminergic (mDA) neurons. Here we show that prostaglandin E1 (PGE1) and its dehydrated metabolite, PGA1, directly interact with the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional function. We also report the crystallographic structure of Nurr1-LBD bound to PGA1 at 2.05 Å resolution. PGA1 couples covalently to Nurr1-LBD by forming a Michael adduct with Cys566, and induces notable conformational changes, including a 21° shift of the activation function-2 helix (H12) away from the protein core. Furthermore, PGE1/PGA1 exhibit neuroprotective effects in a Nurr1-dependent manner, prominently enhance expression of Nurr1 target genes in mDA neurons and improve motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse models of Parkinson's disease. Based on these results, we propose that PGE1/PGA1 represent native ligands of Nurr1 and can exert neuroprotective effects on mDA neurons, via activation of Nurr1's transcriptional function.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Paean Biotechnology, Daejeon, Korea
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jun Yeob Yoo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Nanos, Singapore, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Feitosa
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yeahan Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Dabin Hwang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Geraldine Goh
- National Neuroscience Institute, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Sungwhan F Oh
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
461
|
Kregel S, Bagamasbad P, He S, LaPensee E, Raji Y, Brogley M, Chinnaiyan A, Cieslik M, Robins DM. Differential modulation of the androgen receptor for prostate cancer therapy depends on the DNA response element. Nucleic Acids Res 2020; 48:4741-4755. [PMID: 32198885 PMCID: PMC7229860 DOI: 10.1093/nar/gkaa178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Androgen receptor (AR) action is a hallmark of prostate cancer (PCa) with androgen deprivation being standard therapy. Yet, resistance arises and aberrant AR signaling promotes disease. We sought compounds that inhibited genes driving cancer but not normal growth and hypothesized that genes with consensus androgen response elements (cAREs) drive proliferation but genes with selective elements (sAREs) promote differentiation. In a high-throughput promoter-dependent drug screen, doxorubicin (dox) exhibited this ability, acting on DNA rather than AR. This dox effect was observed at low doses for multiple AR target genes in multiple PCa cell lines and also occurred in vivo. Transcriptomic analyses revealed that low dox downregulated cell cycle genes while high dox upregulated DNA damage response genes. In chromatin immunoprecipitation (ChIP) assays with low dox, AR binding to sARE-containing enhancers increased, whereas AR was lost from cAREs. Further, ChIP-seq analysis revealed a subset of genes for which AR binding in low dox increased at pre-existing sites that included sites for prostate-specific factors such as FOXA1. AR dependence on cofactors at sAREs may be the basis for differential modulation by dox that preserves expression of genes for survival but not cancer progression. Repurposing of dox may provide unique opportunities for PCa treatment.
Collapse
Affiliation(s)
- Steven Kregel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pia Bagamasbad
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shihan He
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth LaPensee
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yemi Raji
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michele Brogley
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicine and Urology, University of Michigan, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diane M Robins
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
462
|
Light-induced protein proximity by activation of gibberellic acid derivatives in living cells. Methods Enzymol 2020. [PMID: 32416916 DOI: 10.1016/bs.mie.2020.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Light controlled tools are highly attractive for the modulation and manipulation of biological processes. As an external trigger light can be applied with high temporal and special control to various samples. In the recent years a number of optochemical and -genetic tools have been developed to translate the input of light into molecular changes that result in specific biological responses. Here we present a highly efficient system for light-induced protein dimerization in live cells using photocaged derivatives of the plant hormone gibberellic acid (GA3). We provide a precise protocol for a simple one-step synthesis of the photocaged CIP and its application for protein translocation in living cells.
Collapse
|
463
|
Zhou J, Lu Y, Li F, Wu W, Xie D, Feng Y. In vitro and in vivo Antiallergic Effects of Taurine on Allergic Rhinitis. Int Arch Allergy Immunol 2020; 181:404-416. [PMID: 32417836 DOI: 10.1159/000505209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The current treatment for allergic rhinitis (AR) is inadequate. OBJECTIVE The present study aimed to investigate the therapeutic effect of taurine on AR and to identify the underlying molecular mechanisms. METHODS The serum level of the antioxidant enzyme extracellular superoxide dismutase (SOD3) was determined in AR patients and in healthy controls. The antiallergic inflammatory effects of taurine were evaluated in a dinitrophenyl-human serum albumin (DNP-HSA)-stimulated human mast cell line (HMC-1) and in an ovalbumin (OVA)-induced AR mouse model. RESULTS Clinically, a reduction in serum level of SOD3 was observed in AR patients. Taurine treatment led to dose-dependent increases in SOD3 at both protein and mRNA levels in HMC-1 cells. SOD3 production was regulated by peroxisome proliferator-activated receptor-γ (PPAR-γ) in response to taurine. SOD3 overexpression inhibited the release of proinflammatory cytokines including tumor necrosis factor-α (, interleukin (IL)-4, and IL-6. Its overexpression also ameliorated the loss of interferon-γ. SOD3 and PPAR-γ influenced inflammatory cytokine production via regulation of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). An OVA-induced AR animal model study showed that taurine was efficacious in alleviating allergic inflammatory reactions by relieving behavior symptoms of AR mice and reducing eosinophilic and mast cell infiltration into the nasal cavity. In addition, taurine treatment increased the production of SOD3 and PPAR-γ, which, in turn, suppressed expression of proinflammatory cytokines through phosphorylation of ERK1/2. CONCLUSION Taurine could potentially serve as a therapeutic treatment for allergic disorders.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Dahua Hospital, Shanghai, China
| | - Yi Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Wei Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Yunhai Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Dahua Hospital, Shanghai, China,
| |
Collapse
|
464
|
Luan H, Xu P, Meng Y, Li Z, Bian J. A critical update on the strategies towards modulators targeting androgen receptors. Bioorg Med Chem 2020; 28:115554. [PMID: 32546299 DOI: 10.1016/j.bmc.2020.115554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most common carcinoma of the male urinary system in developed countries. Androgen deprivation therapy has been commonly used in the treatment of prostate cancer for decades, but most patients will inevitably develop into more aggressive castration-resistant prostate cancer. Therefore, novel strategies are urgent to address this resistance mechanism. In this review, we discussed some new strategies for targeting androgen receptors through degradation pathways as potential treatments for prostate cancer.
Collapse
Affiliation(s)
- Hongyu Luan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Pengfei Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ying Meng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
465
|
Andreano KJ, Baker JG, Park S, Safi R, Artham S, Oesterreich S, Jeselsohn R, Brown M, Sammons S, Wardell SE, Chang CY, Norris JD, McDonnell DP. The Dysregulated Pharmacology of Clinically Relevant ESR1 Mutants is Normalized by Ligand-activated WT Receptor. Mol Cancer Ther 2020; 19:1395-1405. [PMID: 32381587 DOI: 10.1158/1535-7163.mct-19-1148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
The estrogen receptor (ER/ESR1) is expressed in a majority of breast cancers and drugs that inhibit ER signaling are the cornerstone of breast cancer pharmacotherapy. Currently, aromatase inhibitors are the frontline endocrine interventions of choice although their durability in metastatic disease is limited by activating point mutations within the ligand-binding domain of ESR1 that permit ligand-independent activation of the receptor. It has been suggested that the most commonly occurring ESR1 mutations would likely compromise the clinical activity of selective estrogen receptor downregulators and selective estrogen receptor modulators (SERMs) when used as second-line therapies. It was unclear, however, how these mutations, which are likely coexpressed in cells with ERWT, may impact response to ER ligands in a clinically meaningful manner. To address this issue, we dissected the molecular mechanism(s) underlying ESR1-mutant pharmacology in models relevant to metastatic disease. These studies revealed that the response of ESR1 mutations to ligands was dictated primarily by the relative coexpression of ERWT in cells. Specifically, dysregulated pharmacology was only evident in cells in which the mutants were overexpressed relative to ligand-activated ERWT; a finding that highlights the role of allelism in determining ER-mutant pharmacology. Importantly, we demonstrated that the antagonist activity of the SERM, lasofoxifene, was not impacted by mutant status; a finding that has led to its clinical evaluation as a treatment for patients with advanced ER-positive breast cancer whose tumors harbor ESR1 mutations.
Collapse
Affiliation(s)
- Kaitlyn J Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jennifer G Baker
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, Pennsylvania
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Sammons
- Department of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
466
|
Xu HB, Tang ZQ, Wang J, Kong PS. Z-guggulsterone regulates MDR1 expression mainly through the pregnane X receptor-dependent manner in human brain microvessel endothelial cells. Eur J Pharmacol 2020; 874:173023. [PMID: 32087256 DOI: 10.1016/j.ejphar.2020.173023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Recently studies showed that pregnane X receptor (PXR) was expressed in human brain microvessel endothelial cells and coordinately induced multidrug resistance protein 1 (MDR1) expression. The present study aimed to investigate the regulatory effect of Z-guggulsterone on MDR1 in human brain microvessel endothelial cells, and explored whether it involved modulation of PXR. The results showed that Z-guggulsterone (30 μM) simultaneously inhibited the expression of PXR and MDR1 at 24 h in human brain-derived microvessel endothelial cells (hBDMECs). Meanwhile, the levels of PXR and MDR1 expression were simultaneously reduced in PXR siRNA-transfected hBDMECs; MDR-1 siRNA-transfected hBDMECs showed significant decrease in MDR1 expression, but no change in PXR expression. Furthermore, Z-guggulsterone inhibited the activation of PXR in hBDMECs through decreasing the release of cAMP/PKA. Z-guggulsterone reduced the co-activator SRC-1 expression in hBDMECs, as to prevent the activation of MDR1 gene transcription. In addition, Z-guggulsterone (30 μM) at 24 h significantly inhibited the expression of human constitutive androstane receptor (CAR) protein in hBDMECs. However, after treatment with Z-guggulsterone (≤30 μM), the level of MDR1 reporter gene activity was lower in human PXR-transfected cells than that in human CAR-transfected cells. The inhibition effect of Z-guggulsterones on MDR1 reporter gene activation was gradually enhanced with the increase of human PXR to CAR ratio, which was greater extent than that with the increase of human CAR to hPXR ratio. The present study suggested that Z-guggulsterone down-regulating the efflux function and expression of MDR1 in hBDMECs might be mainly through the PXR-dependent manner.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Scientific Research, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhao-Qi Tang
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Shi Kong
- Department of Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
467
|
Brakta S, Chorich LP, Kim HG, Coons LA, Katzenellenbogen JA, Hall JE, Korach KS, Layman LC. Long-Term Follow-Up and Treatment of a Female With Complete Estrogen Insensitivity. J Clin Endocrinol Metab 2020; 105:dgaa106. [PMID: 32152632 PMCID: PMC7108680 DOI: 10.1210/clinem/dgaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT We previously reported the first female with a causative ESR1 gene variant, who exhibited absent puberty and high estrogens. At age 15 years, she presented with lower abdominal pain, absent breast development, primary amenorrhea, and multicystic ovaries. The natural history of complete estrogen insensitivity (CEI) in women is unknown. OBJECTIVE The purpose of this report is to present the neuroendocrine phenotype of CEI, identify potential ligands, and determine the effect of targeted treatment. DESIGN We have characterized gonadotropin pulsatility and followed this patient's endocrine profile and bone density over 8 years. Seventy-five different compounds were tested for transactivation of the variant receptor. A personalized medicine approach was tailored to our patient. SETTING Academic medical center. PATIENT OR OTHER PARTICIPANTS A 24-year-old adopted white female with CEI. INTERVENTION(S) The patient was treated with diethylstilbestrol (DES) for approximately 2.5 years. MAIN OUTCOME MEASURE(S) Induction of secondary sexual characteristics. RESULTS Luteinizing hormone (LH) pulse studies demonstrated normal pulsatile LH secretion, elevated mean LH, and mildly elevated mean follicle-stimulating hormone (FSH) in the presence of markedly increased estrogens. DES transactivated the variant ESR1 in vitro. However, DES treatment did not induce secondary sexual characteristics in our patient. CONCLUSIONS Treatment with DES was not successful in our patient. She remains hypoestrogenic despite the presence of ovarian cysts with a hypoestrogenic vaginal smear, absent breast development, and low bone mineral mass. Findings suggest additional receptor mechanistic actions are required to elicit clinical hormone responses.
Collapse
Affiliation(s)
- Soumia Brakta
- Medical College of Georgia at Augusta University, Section of Reproductive Endocrinology, Infertility, & Genetics, Augusta, Georgia
| | - Lynn P Chorich
- Medical College of Georgia at Augusta University, Section of Reproductive Endocrinology, Infertility, & Genetics, Augusta, Georgia
| | - Hyung-Goo Kim
- Department of Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Laurel A Coons
- National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina
| | | | - Janet E Hall
- National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina
| | - Lawrence C Layman
- Medical College of Georgia at Augusta University, Section of Reproductive Endocrinology, Infertility, & Genetics, Augusta, Georgia
| |
Collapse
|
468
|
Moore NL, Hanson AR, Ebrahimie E, Hickey TE, Tilley WD. Anti-proliferative transcriptional effects of medroxyprogesterone acetate in estrogen receptor positive breast cancer cells are predominantly mediated by the progesterone receptor. J Steroid Biochem Mol Biol 2020; 199:105548. [PMID: 31805393 DOI: 10.1016/j.jsbmb.2019.105548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a first generation progestin that has been in clinical use for various hormonal conditions in women since the 1960s. Although developed as a progesterone receptor (PR) agonist, MPA also has strong binding affinity for other steroid receptors. This promiscuity confounds the mechanistic action of MPA in target cells that express multiple steroid receptors. This study is the first to assess the relative contribution of progesterone, androgen and glucocorticoid receptors in mediating the transcriptional activity of MPA on endogenous targets in breast cancer cells that endogenously express all three receptors at comparable levels. Gene expression profiling in estrogen receptor positive (ER+) ZR-75-1 breast cancer cells demonstrated that although the MPA-regulated transcriptome strongly overlapped with that of Progesterone (PROG), 5α-dihydrotestosterone (DHT) and Dexamethasone (DEX), it clustered most strongly with that of PROG, suggesting that MPA predominantly acts via the progesterone receptor (PR) rather than androgen receptor (AR) or glucocorticoid receptor (GR). Subsequent experiments manipulating levels of these receptors, either through specific culture conditions or with lentiviral shRNAs targeting individual receptors, also revealed a stronger contribution of PR compared to AR and GR on the expression of endogenous target genes that are either commonly regulated by all ligands or specifically regulated only by MPA. A predominant contribution of PR to MPA action in ER+ T-47D breast cancer cells was also observed, although a stronger role for AR was evident in T-47D compared to that observed in ZR-75-1 cells. Network analysis of ligand-specific and commonly regulated genes demonstrated that MPA utilises different transcription factors and signalling pathways to inhibit proliferation compared with PROG. This study reaffirms the importance of PR in mediating MPA action in an endogenous breast cancer context where multiple steroid receptors are co-expressed and has potential implications for PR-targeting therapeutic strategies in ER+ breast cancer.
Collapse
Affiliation(s)
- Nicole L Moore
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
469
|
Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol 2020; 79:217-230. [DOI: 10.1016/j.semcancer.2020.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
|
470
|
Lu D, Zhao M, Chen M, Wu B. Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics. Drug Metab Dispos 2020; 48:395-406. [PMID: 32114506 DOI: 10.1124/dmd.120.090472] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.
Collapse
Affiliation(s)
- Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China (D.L., M.Z., M.C., B.W.) and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China (B.W.)
| |
Collapse
|
471
|
In S, Cho H, Lee KW, Won EJ, Lee YM. Cloning and molecular characterization of estrogen-related receptor (ERR) and vitellogenin genes in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A and its structural analogues. MARINE POLLUTION BULLETIN 2020; 154:111063. [PMID: 32319896 DOI: 10.1016/j.marpolbul.2020.111063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Although it has previously been shown that bisphenol (BP) analogues may interfere with the normal hormonal regulation by acting as endocrine disrupting chemicals (EDCs), little information is available on effects of BP analogues in invertebrates, particularly on cladocerans. In the present study, we identified estrogen-related receptors (EER), vitellogenin (VTG), and VTG receptor (VtgR) from the brackish water flea Diaphanosoma celebensis, and examined the effects of BPA and the substitutes, BPF and BPS, in different sublethal concentrations. Gene expression varied with time well matched with brooding, suggesting that DcEER, DcVTG, and DcVtgR play a role in reproduction in D. celebensis. qRT-PCR analysis showed that BPA and its substitutes differently modulated mRNA expressions of DcEER, DcVTG, and DcVtgR, indicating that these compounds adversely affect the normal reproduction-related pathway. This study facilitates better understanding of the molecular mode of action of BP analogues on the reproductive system of D. celebensis.
Collapse
Affiliation(s)
- Soyeon In
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyun-Woo Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan 49111, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
472
|
Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules 2020; 25:molecules25092076. [PMID: 32365556 PMCID: PMC7248959 DOI: 10.3390/molecules25092076] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cytokine storm is an abnormal production of inflammatory cytokines, due to the over-activation of the innate immune response. This mechanism has been recognized as a critical mediator of influenza-induced lung disease, and it could be pivotal for COVID-19 infections. Thus, an immunomodulatory approach targeting the over-production of cytokines could be proposed for viral aggressive pulmonary disease treatment. In this regard, the peroxisome proliferator-activated receptor (PPAR)-γ, a member of the PPAR transcription factor family, could represent a potential target. Beside the well-known regulatory role on lipid and glucose metabolism, PPAR-γ also represses the inflammatory process. Similarly, the PPAR-γ agonist thiazolidinediones (TZDs), like pioglitazone, are anti-inflammatory drugs with ameliorating effects on severe viral pneumonia. In addition to the pharmacological agonists, also nutritional ligands of PPAR-γ, like curcuma, lemongrass, and pomegranate, possess anti-inflammatory properties through PPAR-γ activation. Here, we review the main synthetic and nutritional PPAR-γ ligands, proposing a dual approach based on the strengthening of the immune system using pharmacological and dietary strategies as an attempt to prevent/treat cytokine storm in the case of coronavirus infection.
Collapse
|
473
|
Shi L, Liu L, Lv X, Ma Z, Li C, Li Y, Zhao F, Sun D, Han B. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. Anim Genet 2020; 51:491-501. [PMID: 32301146 DOI: 10.1111/age.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/03/2020] [Accepted: 03/15/2020] [Indexed: 11/27/2022]
Abstract
Our previous GWAS revealed 83 significant SNPs and 20 promising candidate genes associated with milk fatty acid traits in dairy cattle. Out of them, the carboxypeptidase M (CPM) gene contains a genome-wide significant SNP, Hapmap49848-BTA-106779, which is strongly associated with myristic acid (C14:0; P = 0.0064). Herein, we aimed to confirm the genetic effects of CPM on milk fatty acids in Chinese Holstein. Seven SNPs were detected by re-sequencing the sequences of entire exons and 3000 bp of up-/downstream flanking regions of the CPM gene, of which three were in 5' flanking region, one in the 3' UTR and three were in the 3' flanking region. Using the Haploview 4.1, we estimated the LD among the identified SNPs and found two haplotype blocks. With the animal model, we performed the SNP- and haplotype-based association analyses, and observed that these SNPs and haplotype blocks mainly had strong genetic associations with medium-chain saturated fatty acids (caproic acid, C6:0; caprylic acid, C8:0; capric acid, C10:0; and lauric acid, C12:0) (P < 0.0001-0.0257). In addition, using the Genomatix software, we predicted that three SNPs in the 5' flanking region of CPM (g.45079507A>G, g.45080228C>A and g.45080335C>G) changed the transcription factor binding sites for PREF (progesterone receptor biding site), ZBRK1 (transcription factor with eight central zinc fingers and an N-terminal KRAB domain), SOX9 (sex-determining region Y-box 9, dimeric binding sites), SOX6 (sex-determining region Y-box 6) and FOXP1-ES (alternative splicing variant of FOXP1, activated in ESCs). Further, the dual-luciferase reporter assay showed these three SNPs altered the transcriptional activity of CPM gene (P ≤ 0.0006). In summary, using the post-GWAS strategy, we first confirmed the significant genetic effects of CPM with milk fatty acids in dairy cattle, and identified three potential causal mutations.
Collapse
Affiliation(s)
- L Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - X Lv
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Z Ma
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - C Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Y Li
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - F Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
474
|
Omori MA, Marañón‐Vásquez GA, Romualdo PC, Martins Neto EC, Stuani MBS, Matsumoto MAN, Nelson‐Filho P, Proff P, León JE, Kirschneck C, Küchler EC. Effect of ovariectomy on maxilla and mandible dimensions of female rats. Orthod Craniofac Res 2020; 23:342-350. [DOI: 10.1111/ocr.12376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Marjorie Ayumi Omori
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Guido Artemio Marañón‐Vásquez
- Department of Pediatric Dentistry and Orthodontics School of Dentistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Priscilla Coutinho Romualdo
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Evandro Carneiro Martins Neto
- Department of Oral & Maxillofacial Surgery, and Periodontology School of dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Maria Bernadete Sasso Stuani
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Paulo Nelson‐Filho
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Peter Proff
- Department of Orthodontics University Medical Centre of Regensburg Regensburg Germany
| | - Jorge Esquiche León
- Department of Stomatology, Public Health and Forensic Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Christian Kirschneck
- Department of Orthodontics University Medical Centre of Regensburg Regensburg Germany
| | - Erika C. Küchler
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
- Department of Dentistry Universidade Positivo Curitiba Brazil
| |
Collapse
|
475
|
Khatiwada P, Kannan A, Malla M, Dreier M, Shemshedini L. Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ 2020; 8:e8921. [PMID: 32296610 PMCID: PMC7151753 DOI: 10.7717/peerj.8921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor that regulates a number of genes involved in epithelial-to-mesenchymal transition (EMT), is upregulated in prostate cancer. Androgen regulation of Twist1 has been reported in a previous study. However, the mechanism of androgen regulation of the Twist1 gene is not understood because the Twist1 promoter lacks androgen receptor (AR)-responsive elements. Previous studies have shown that the Twist1 promoter has putative binding sites for PEA3 subfamily of ETS transcription factors. Our lab has previously identified Ets Variant 1 (ETV1), a member of the PEA3 subfamily, as a novel androgen-regulated gene that is involved in prostate cancer cell invasion through unknown mechanism. In view of these data, we hypothesized that androgen-activated AR upregulates Twist1 gene expression via ETV1. Our data confirmed the published work that androgen positively regulates Twist1 gene expression and further showed that this positive effect was directed at the Twist1 promoter. The positive effect of androgen on Twist1 gene expression was abrogated upon disruption of AR expression by siRNA or of AR activity by Casodex. More importantly, our data show that disruption of ETV1 leads to significant decrease in both androgen-mediated upregulation as well as basal level of Twist1, which we are able to rescue upon re-expression of ETV1. Indeed, we are able to show that ETV1 mediates the androgen upregulation of Twist1 by acting on the proximal region of Twist1 promoter. Additionally, our data show that Twist1 regulates prostate cancer cell invasion and EMT, providing a possible mechanism by which ETV1 mediates prostate cancer cell invasion. In conclusion, in this study we report Twist1 as an indirect target of AR and androgen regulation through ETV1.
Collapse
Affiliation(s)
- Prabesh Khatiwada
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Archana Kannan
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Megan Dreier
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
476
|
Krentzel AA, Proaño S, Patisaul HB, Meitzen J. Temporal and bidirectional influences of estradiol on voluntary wheel running in adult female and male rats. Horm Behav 2020; 120:104694. [PMID: 31978389 PMCID: PMC7117976 DOI: 10.1016/j.yhbeh.2020.104694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022]
Abstract
The sex steroid hormone 17β-estradiol (estradiol) regulates animal behavior as both a non-rapid hormone signal and as a rapid-acting neuromodulator. By practical necessity, estradiol's divergent temporal actions on rodent behavior are typically studied singularly and in one sex. We hypothesized that estradiol simultaneously acts through both temporal mechanisms to sex-specifically modulate a single behavior; and furthermore, that estradiol action in one temporal domain may regulate action in another. To test this hypothesis, we utilized one of the most robust rat behaviors exhibiting sex differences and estradiol-responsiveness, voluntary wheel running. Adult female and male rats were gonadectomized and exposed to daily repeated estradiol benzoate (EB) injections. Estradiol-sensitive running behavior was continually assessed in both the rapid and non-rapid temporal domains. We found that in female rats, estradiol rapidly decreased voluntary wheel running, but only after prior daily EB injections, supporting the hypothesis that non-rapid estradiol action influences rapid estradiol actions. Males exhibited a similar but less robust response, demonstrating sex-responsiveness. This rapid estradiol-induced decrease in running contrasted to non-rapid estradiol action which overall increased running in both sexes, revealing a bidirectional nature of estradiol's temporal influence. Non-rapid estradiol action also demonstrated sex-responsiveness, as a higher dose of EB was required to induce increased running in males compared to females. These findings indicate that estradiol rapidly, non-rapidly, and bidirectionally modulates wheel running in a sex-responsive manner, and that rapid estradiol action is modulated by non-rapid estradiol action. Overall, these data illustrate estradiol as a pleiotropic sex-responsive neuromodulator of a single behavior across temporal domains.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America.
| | - Stephanie Proaño
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States of America; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
477
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
478
|
Lee YO, Kim YJ. The Effect of Resampling on Data‐imbalanced Conditions for Prediction towards Nuclear Receptor Profiling Using Deep Learning. Mol Inform 2020; 39:e1900131. [DOI: 10.1002/minf.201900131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Oh Lee
- Smart Convergence GroupKIST Europe Saarbrücken 66123 Germany
| | - Young Jun Kim
- Environmental Safety GroupKIST Europe Saarbrücken 66123 Germany
| |
Collapse
|
479
|
Xiong Y, Ran J, Xu L, Tong Z, Adel Abdo MS, Ma C, Xu K, He Y, Wu Z, Chen Z, Hu P, Jiang L, Bao J, Chen W, Wu L. Reactivation of NR4A1 Restrains Chondrocyte Inflammation and Ameliorates Osteoarthritis in Rats. Front Cell Dev Biol 2020; 8:158. [PMID: 32258036 PMCID: PMC7090231 DOI: 10.3389/fcell.2020.00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease and uncontrolled inflammation is now recognized to play vital roles in OA development. Targeting the endogenous counterpart of inflammation may develop new therapeutic approaches in resolving inflammation persistence and treating inflammatory disease including OA. The orphan nuclear receptor 4A1 (NR4A1) is a key negative regulator of inflammatory responses but its role in osteoarthritis remains unclear. In the present study, we found that the NR4A1 expression was elevated in human osteoarthritis cartilage and in vitro OA model, which could be blocked by NF-κB signal inhibitor JSH23. The overexpression of NR4A1 inhibited, whereas knockdown of NR4A1 enhanced IL-1β induced COX-2, iNOS, MMP3, MMP9 and MMP13 expression, and luciferase reporter activity of NF-κB response element. Though NR4A1 was upregulated in inflammatory stimulation and creates a negative feedback loop, persistent inflammatory stimulation inhibited NR4A1 expression and activation. The expression of NR4A1 declined rapidly after an initial peak in conditions of chronic IL-1β stimulation, which could be partially restored by HDACs inhibitor SAHA. The phosphorylation of NR4A1 was increased in human osteoarthritis cartilage, and p38 inhibitor SB203580, JNK inhibitor SP600125 and ERK inhibitor FR180204 could significantly inhibited IL-1β induced NR4A1 phosphorylation. Reactivation of NR4A1 by its agonist cytosporone B could inhibit IL-1β induced chondrocyte inflammation and expression of COX-2, iNOS, MMP3, MMP9, and MMP13. In rat OA model, intra-articular injection of cytosporone B protected cartilage damage and ameliorated osteoarthritis. Thus, our study demonstrated that the NR4A1 is a key endogenous inhibitor of chondrocyte inflammation, which was relatively inactivated under chronic inflammatory stimulation through HDACs mediated transcriptional suppression and MAKP dependent phosphorylation in osteoarthritis. NR4A1 agonist cytosporone B could reactivate and restore the inhibitory regulatory ability of NR4A1, prevent excessive inflammation, and ameliorates osteoarthritis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Moqbel Safwat Adel Abdo
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiapeng Bao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiping Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
480
|
Unraveling the Hierarchy of cis and trans Factors That Determine the DNA Binding by Peroxisome Proliferator-Activated Receptor γ. Mol Cell Biol 2020; 40:MCB.00547-19. [PMID: 31932484 DOI: 10.1128/mcb.00547-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor essential for adipocyte development and the maintenance of the alternatively polarized macrophage phenotype. Biochemical studies have established that as an obligate heterodimer with retinoid X receptor (RXR), PPARγ binds directly repeated nuclear receptor half sites spaced by one nucleotide (direct repeat 1 [DR1]). However, it has not been analyzed systematically and genome-wide how cis factors such as the sequences of DR1s and adjacent sequences and trans factors such as cobinding lineage-determining transcription factors (LDTFs) contribute to the direct binding of PPARγ in different cellular contexts. We developed a novel motif optimization approach using sequence composition and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) densities from macrophages and adipocytes to complement de novo motif enrichment analysis and to define and classify high-affinity binding sites. We found that approximately half of the PPARγ cistrome represents direct DNA binding; both half sites can be extended upstream, and these are typically not of equal strength within a DR1. Strategically positioned LDTFs have greater impact on PPARγ binding than the quality of DR1, and the presence of the extension of DR1 provides a remarkable synergy with LDTFs. This approach of considering not only nucleotide frequencies but also their contribution to protein binding in a cellular context is applicable to other transcription factors.
Collapse
|
481
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
482
|
Sui Y, Meng Z, Park SH, Lu W, Livelo C, Chen Q, Zhou T, Zhou C. Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice. J Lipid Res 2020; 61:696-706. [PMID: 32170024 DOI: 10.1194/jlr.ra119000122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRΔMyeLDLR-/- mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRΔMyeLDLR-/- mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Zhaojie Meng
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Weiwei Lu
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Christopher Livelo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521. mailto:
| |
Collapse
|
483
|
Yang GS, Hou W, Ou JL. Rs739837 affects the severity of asthma by disrupting the binding of microRNA-885. Per Med 2020; 17:121-127. [PMID: 32157950 DOI: 10.2217/pme-2019-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aim: This study investigated the molecular mechanism underlying the involvement of miR-885 in the signaling pathways of VDR. Results: Based on their rs739837 genotype, the subjects were divided into a case group and a control group. Logistic regression was carried out to study the impact of rs739837 genotypes on the severity of asthma, and it was found that the minor allele (T) of rs739837 significantly increased the severity of asthma. Using a luciferase assay, VDR was confirmed as a miR-885 target, with a negative regulatory relationship established between VDR and miR-885. Conclusion: The findings of this study demonstrated that VDR is an miR-885 target, while the presence of rs739837 minor allele (T) in miR-885 interferes with the interaction between miR-885 and VDR to affect the severity of asthma.
Collapse
Affiliation(s)
- Guan-Shan Yang
- Section III, Department of Pediatric Internal Medicine, Ankang Hospital of Traditional Chinese Medicine, Ankang City, Shaanxi Province, PR China, 725000
| | - Wei Hou
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, PR China, 710004
| | - Jing-Lin Ou
- Section III, Department of Pediatric Internal Medicine, Ankang Hospital of Traditional Chinese Medicine, Ankang City, Shaanxi Province, PR China, 725000
| |
Collapse
|
484
|
Chen Y, Li J, Wu Z, Liu G, Li H, Tang Y, Li W. Computational Insight into the Allosteric Activation Mechanism of Farnesoid X Receptor. J Chem Inf Model 2020; 60:1540-1550. [PMID: 32097559 DOI: 10.1021/acs.jcim.9b00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The farnesoid X receptor (FXR) is a bile acid-sensing transcription factor with indispensable roles in regulating metabolic processes. Nowadays, FXR has become a highly promising drug target for severe liver disorders, especially nonalcoholic steatohepatitis (NASH). A recent study showed that imatinib and its analogues were able to allosterically enhance agonist-induced FXR activation and its target gene expression. However, the allosteric modulation mechanism of FXR by these compounds remains unclear. In this work, the most effective imatinib analogue, P16, was used as a probe to explore this issue by computational approaches. Our results identified one potential allosteric site surrounded by residues Ile335, Phe336, Lys338, Glu339, Leu340, and Leu348, which could efficiently accommodate P16. In addition, the long-time molecular dynamics simulations indicated that the binding of P16 could significantly decrease the fluctuation of the co-activator and enhance the communications between the endogenous ligand chenodeoxycholic acid (CDCA) and FXR. By analyzing the residue interaction network, we observed two unique communication pathways connecting P16 and CDCA through three key residues, Arg331, Ser332, and Phe336. The communications of network organization in the P16-bound complex may allow the synergistic effect of the two compounds via robust signal transmission between the binding sites and global network bridges, which coordinate allosteric transitions and modulate the receptor activity. Our study offers insights into the allosteric modulation occurring in FXR and would be helpful for discovery of new allosteric modulators targeting FXR for further clinical research.
Collapse
Affiliation(s)
- Yue Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
485
|
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci 2020; 21:E1723. [PMID: 32138313 PMCID: PMC7084905 DOI: 10.3390/ijms21051723] [Citation(s) in RCA: 640] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3' UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.
Collapse
Affiliation(s)
- Zainab Ali Syeda
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Siu Semar Saratu’ Langden
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; (Z.A.S.); (S.S.S.L.); (C.M.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
486
|
Heallen TR, Kadow ZA, Wang J, Martin JF. Determinants of Cardiac Growth and Size. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037150. [PMID: 31615785 DOI: 10.1101/cshperspect.a037150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the realm of zoological study, the question of how an organism reaches a specific size has been largely unexplored. Recently, studies performed to understand the regulation of organ size have revealed that both cellular signals and external cues contribute toward the determination of total cell mass within each organ. The establishment of final organ size requires the precise coordination of cell growth, proliferation, and survival throughout development and postnatal life. In the mammalian heart, the regulation of size is biphasic. During development, cardiomyocyte proliferation predominantly determines cardiac growth, whereas in the adult heart, total cell mass is governed by signals that regulate cardiac hypertrophy. Here, we review the current state of knowledge regarding the extrinsic factors and intrinsic mechanisms that control heart size during development. We also discuss the metabolic switch that occurs in the heart after birth and precedes homeostatic control of postnatal heart size.
Collapse
Affiliation(s)
- Todd R Heallen
- Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - James F Martin
- Cardiomyocyte Renewal Lab, Texas Heart Institute, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
487
|
Carlberg C. Vitamin D: A Micronutrient Regulating Genes. Curr Pharm Des 2020; 25:1740-1746. [PMID: 31298160 DOI: 10.2174/1381612825666190705193227] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND At sufficient sun exposure, humans can synthesize vitamin D3 endogenously in their skin, but today's lifestyle makes the secosteroid a true vitamin that needs to be taken up by diet or supplementation with pills. The vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 acts as a nuclear hormone activating the transcription factor vitamin D receptor (VDR). METHODS This review discusses the biological effects of micronutrient vitamin D ranging from calcium homeostasis and bone formation to the modulation of innate and adaptive immunity. RESULTS Since normal human diet is sufficient in vitamin D, the need for efficient vitamin D3 synthesis in the skin acts as an evolutionary driver for its lightening during the migration out of Africa towards North. Via activating the VDR, vitamin D has direct effects on the epigenome and the expression of more than 1000 genes in most human tissues and cell types. CONCLUSIONS The pleiotropic action of vitamin D in health and disease prevention is explained through complex gene regulatory events of the transcription factor VDR.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
488
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
489
|
Zhou LM, Qu RY, Yang GF. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discov 2020; 15:603-625. [PMID: 32106717 DOI: 10.1080/17460441.2020.1733526] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Spirooxindole, a unique and versatile scaffold, has been widely studied in some fields such as pharmaceutical chemistry and synthetic chemistry. Especially in the application of medicine, quite a few compounds featuring spirooxindole motif have displayed excellent and broad pharmacological activities. Many identified candidate molecules have been used in clinical trials, showing promising prospects.Areas covered: This article offers an overview of different applications and developments of spirooxindoles (including the related natural products and their derivatives) in the process of drug innovation, including such as in anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, antimalarial, and antiviral activities. Furthermore, the crucial structure-activity relationships, molecular mechanisms, pharmacokinetic properties, and main synthetic methods of spirooxindoles-based derivatives are also reviewed.Expert opinion: Recent progress in the biological activity profiles of spirooxindole derivatives have demonstrated their significant position in present-day drug discovery. Furthermore, we believe that the multidirectional development of novel drugs containing this core scaffold will continue to be the research hotspot in medicinal chemistry in the future.
Collapse
Affiliation(s)
- Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
490
|
Hashimoto N, Matsui I, Ishizuka S, Inoue K, Matsumoto A, Shimada K, Hori S, Lee DG, Yasuda S, Katsuma Y, Kajimoto S, Doi Y, Yamaguchi S, Kubota K, Oka T, Sakaguchi Y, Takabatake Y, Hamano T, Isaka Y. Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independent manner. Kidney Int 2020; 97:1164-1180. [PMID: 32354638 DOI: 10.1016/j.kint.2020.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Phosphate/calcium homeostasis is crucial for health maintenance. Lithocholic acid, a bile acid produced by intestinal bacteria, is an agonist of vitamin D receptor. However, its effects on phosphate/calcium homeostasis remain unclear. Here, we demonstrated that lithocholic acid increases intestinal phosphate/calcium absorption in an enterocyte vitamin D receptor-dependent manner. Lithocholic acid was found to increase serum phosphate/calcium levels and thus to exacerbate vascular calcification in animals with chronic kidney disease. Lithocholic acid did not affect levels of intestinal sodium-dependent phosphate transport protein 2b, Pi transporter-1, -2, or transient receptor potential vanilloid subfamily member 6. Everted gut sac analyses demonstrated that lithocholic acid increased phosphate/calcium absorption in a transcellular pathway-independent manner. Lithocholic acid suppressed intestinal mucosal claudin 3 and occludin in wild-type mice, but not in vitamin D receptor knockout mice. Everted gut sacs of claudin 3 knockout mice showed an increased permeability for phosphate, but not calcium. In patients with chronic kidney disease, serum 1,25(OH)2 vitamin D levels are decreased, probably as an intrinsic adjustment to reduce phosphate/calcium burden. In contrast, serum and fecal lithocholic acid levels and fecal levels of bile acid 7α-dehydratase, a rate-limiting enzyme involved in lithocholic acid production, were not downregulated. The effects of lithocholic acid were eliminated by bile acid adsorptive resin in mice. Thus, lithocholic acid and claudin 3 may represent novel therapeutic targets for reducing phosphate burden.
Collapse
Affiliation(s)
- Nobuhiro Hashimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Karin Shimada
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shota Hori
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Dong Geun Lee
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Seiichi Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Kubota
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Hamano
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
491
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
492
|
Scaffold attachment factor B: distribution and interaction with ERα in the rat brain. Histochem Cell Biol 2020; 153:323-338. [PMID: 32086573 DOI: 10.1007/s00418-020-01853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
Scaffold attachment factor (SAFB) 1 and its homologue SAFB2 are multifunctional proteins that are involved in various cellular mechanisms, including chromatin organization and transcriptional regulation, and are also corepressors of estrogen receptor alpha (ERα). Both SAFBs are expressed at high levels in the brain. However, the distributions of SAFB1 and SAFB2 have yet to be characterized in detail and it is unclear whether both proteins interact with ERα in the brain. In this study, we investigated the expression and distribution of both SAFBs and their interaction with ERα in adult male rat brain. Immunohistochemical staining showed that SAFB1 and SAFB2 have a similar distribution pattern and are widely expressed throughout the brain. Double-fluorescence immunohistochemical and immunocytochemical analyses in primary cultures showed that the two SAFB proteins are localized in nuclei of neurons, astrocytes, and oligodendrocytes. Of note, SAFB2 was also found in cytoplasmic regions in these cell lineages. Both SAFB proteins were also expressed in ERα-positive cells in the medial preoptic area (MPOA) and arcuate and ventromedial hypothalamic nuclei. Co-immunoprecipitation experiments revealed that both SAFB proteins from the MPOA reciprocally interact with endogenous ERα. These results indicate that, in addition to a role in basal cellular function in the brain, the SAFB proteins may serve as ERα corepressors in hormone-sensitive regions.
Collapse
|
493
|
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X, Xu Y. Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 2020; 56:1064-1074. [PMID: 32319568 DOI: 10.3892/ijo.2020.4990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are two common sex hormone‑related cancer types with high rates of morbidity, and are leading causes of cancer death globally in men and women, respectively. The biological function of androgen or estrogen is a key factor for PCa or BCa tumorigenesis, respectively. Nevertheless, after hormone deprivation therapy, the majority of patients ultimately develop hormone‑independent malignancies that are resistant to endocrinotherapy. It is widely recognized, therefore, that understanding of the mechanisms underlying the process from hormone dependence towards hormone independence is critical to discover molecular targets for the control of advanced PCa and BCa. This review aimed to dissect the important mechanisms involved in the therapeutic resistance of PCa and BCa. It was concluded that activation of the NF‑κB pathway is an important common mechanism for metastasis and therapeutic resistance of the two types of cancer; in particular, the RelB‑activated noncanonical NF‑κB pathway appears to be able to lengthen and strengthen NF‑κB activity, which has been a focus of recent investigations.
Collapse
Affiliation(s)
- Xiumei Wang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yao Fang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Yong Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
494
|
Li Y, Chen M, Zhou Y, Tang C, Zhang W, Zhong Y, Chen Y, Zhou H, Sheng L. NIK links inflammation to hepatic steatosis by suppressing PPARα in alcoholic liver disease. Theranostics 2020; 10:3579-3593. [PMID: 32206109 PMCID: PMC7069072 DOI: 10.7150/thno.40149] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Inflammation and steatosis are the main pathological features of alcoholic liver disease (ALD), in which, inflammation is one of the critical drivers for the initiation and development of alcoholic steatosis. NIK, an inflammatory pathway component activated by inflammatory cytokines, was suspected to link inflammation to hepatic steatosis during ALD. However, the underlying pathogenesis is not well-elucidated. Methods: Alcoholic steatosis was induced in mice by chronic-plus-binge ethanol feeding. Both the loss- and gain-of-function experiments by the hepatocyte-specific deletion, pharmacological inhibition and adenoviral transfection of NIK were utilized to elucidate the role of NIK in alcoholic steatosis. Rate of fatty acid oxidation was assessed in vivo and in vitro. PPARα agonists or antagonists of MEK1/2 and ERK1/2 were used to identify the NIK-induced regulation of PPARα, MEK1/2, and ERK1/2. The potential interactions between NIK, MEK1/2, ERK1/2 and PPARα and the phosphorylation of PPARα were clarified by immunoprecipitation, immunoblotting and far-western blotting analysis. Results: Hepatocyte-specific deletion of NIK protected mice from alcoholic steatosis by sustaining hepatic fatty acid oxidation. Moreover, overexpression of NIK contributed to hepatic lipid accumulation with disrupted fatty acid oxidation. The pathological effect of NIK in ALD may be attributed to the suppression of PPARα, the main controller of fatty acid oxidation in the liver, because PPARα agonists reversed NIK-mediated hepatic steatosis and malfunction of fatty acid oxidation. Mechanistically, NIK recruited MEK1/2 and ERK1/2 to form a complex that catalyzed the inhibitory phosphorylation of PPARα. Importantly, pharmacological intervention against NIK significantly attenuated alcoholic steatosis in ethanol-fed mice. Conclusions: NIK targeting PPARα via MEK1/2 and ERK1/2 disrupts hepatic fatty acid oxidation and exhibits high value in ALD therapy.
Collapse
Affiliation(s)
- Yaru Li
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingming Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yu Zhou
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chuanfeng Tang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Zhang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Zhong
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Rehabilitation Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
495
|
Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types. Sci Rep 2020; 10:1873. [PMID: 32024906 PMCID: PMC7002682 DOI: 10.1038/s41598-020-58842-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
The human nuclear receptor (NR) superfamily comprises 48 ligand-dependent transcription factors that play regulatory roles in physiology and pathophysiology. In cancer, NRs have long served as predictors of disease stratification, treatment response, and clinical outcome. The Cancer Genome Atlas (TCGA) Pan-Cancer project provides a wealth of genetic data for a large number of human cancer types. Here, we examined NR transcriptional activity in 8,526 patient samples from 33 TCGA ‘Pan-Cancer’ diseases and 11 ‘Pan-Cancer’ organ systems using RNA sequencing data. The web-based Kaplan-Meier (KM) plotter tool was then used to evaluate the prognostic potential of NR gene expression in 21/33 cancer types. Although, most NRs were significantly underexpressed in cancer, NR expression (moderate to high expression levels) was predominantly restricted (46%) to specific tissues, particularly cancers representing gynecologic, urologic, and gastrointestinal ‘Pan-Cancer’ organ systems. Intriguingly, a relationship emerged between recurrent positive pairwise correlation of Class IV NRs in most cancers. NR expression was also revealed to play a profound effect on patient overall survival rates, with ≥5 prognostic NRs identified per cancer type. Taken together, these findings highlighted the complexity of NR transcriptional networks in cancer and identified novel therapeutic targets for specific cancer types.
Collapse
|
496
|
Melnik D, Sahana J, Corydon TJ, Kopp S, Nassef MZ, Wehland M, Infanger M, Grimm D, Krüger M. Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity. Cells 2020; 9:cells9020367. [PMID: 32033410 PMCID: PMC7072698 DOI: 10.3390/cells9020367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Detachment and the formation of spheroids under microgravity conditions can be observed with various types of intrinsically adherent human cells. In particular, for cancer cells this process mimics metastasis and may provide insights into cancer biology and progression that can be used to identify new drug/target combinations for future therapies. By using the synthetic glucocorticoid dexamethasone (DEX), we were able to suppress spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells that were exposed to altered gravity conditions on a random positioning machine. DEX inhibited the growth of three-dimensional cell aggregates in a dose-dependent manner. In the first approach, we analyzed the expression of several factors that are known to be involved in key processes of cancer progression such as autocrine signaling, proliferation, epithelial–mesenchymal transition, and anoikis. Wnt/β-catenin signaling and expression patterns of important genes in cancer cell growth and survival, which were further suggested to play a role in three-dimensional aggregation, such as NFKB2, VEGFA, CTGF, CAV1, BCL2(L1), or SNAI1, were clearly affected by DEX. Our data suggest the presence of a more complex regulation network of tumor spheroid formation involving additional signal pathways or individual key players that are also influenced by DEX.
Collapse
Affiliation(s)
- Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721-267
| |
Collapse
|
497
|
Fernandes-Freitas I, Milona A, Murphy KG, Dhillo WS, Owen BM. Live Birth in Sex-Reversed XY Mice Lacking the Nuclear Receptor Dax1. Sci Rep 2020; 10:1703. [PMID: 32015477 PMCID: PMC6997165 DOI: 10.1038/s41598-020-58788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation in Sry mRNA-abundance would result in a spectrum of phenotypes even within-strain. We found that while all XY C57BL/6J mice lacking Dax1 presented as phenotypic females, there was a marked inter-individual variability in measures of fertility. Indeed, we report rare occasions where sex-reversed mice had measures of fertility comparable to those in control females. On two occasions, these sex-reversed XY mice were able to give birth to live offspring following mating to stud-males. As such, this work documents within-strain variability in phenotypes of XY mice lacking Dax1, and reports for the first time a complete sex-reversal capable of achieving live birth in these mice.
Collapse
Affiliation(s)
- Isabel Fernandes-Freitas
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Alexandra Milona
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
498
|
Cabrera OH, Gulvezan T, Symmes B, Quillinan N, Jevtovic-Todorovic V. Sex differences in neurodevelopmental abnormalities caused by early-life anaesthesia exposure: a narrative review. Br J Anaesth 2020; 124:e81-e91. [PMID: 31980157 DOI: 10.1016/j.bja.2019.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023] Open
Abstract
Exposure to anaesthetic drugs during the fetal or neonatal period induces widespread neuronal apoptosis in the brains of rodents and non-human primates. Hundreds of published preclinical studies and nearly 20 clinical studies have documented cognitive and behavioural deficits many months or years later, raising the spectre that early life anaesthesia exposure is a long-term, perhaps permanent, insult that might affect the quality of life of millions of humans. Although the phenomenon of anaesthesia-induced developmental neurotoxicity is well characterised, there are important and lingering questions pertaining to sex differences and neurodevelopmental sequelae that might occur differentially in females and males. We review the relevant literature on sex differences in the field of anaesthesia-induced developmental neurotoxicity, and present an emerging pattern of potential sex-dependent neurodevelopmental abnormalities in rodent models of human infant anaesthesia exposure.
Collapse
Affiliation(s)
- Omar H Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas Gulvezan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Symmes
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
499
|
Cerván-Martín M, Castilla JA, Palomino-Morales RJ, Carmona FD. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J Clin Med 2020; 9:jcm9020300. [PMID: 31973052 PMCID: PMC7074441 DOI: 10.3390/jcm9020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, different genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, Calle Maestro Bretón 1, 18004 Granada, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Facultad de Ciencias, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Correspondence: ; Tel.: +34-958-241-000 (ext 20170)
| |
Collapse
|
500
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|