451
|
Koseva NS, Rydz J, Stoyanova EV, Mitova VA. Hybrid protein-synthetic polymer nanoparticles for drug delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:93-119. [PMID: 25819277 DOI: 10.1016/bs.apcsb.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems.
Collapse
Affiliation(s)
- Neli S Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Joanna Rydz
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Violeta A Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
452
|
Zhang H, Ji Y, Chen Q, Jiao X, Hou L, Zhu X, Zhang Z. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J Drug Target 2015; 23:552-67. [DOI: 10.3109/1061186x.2015.1016437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
453
|
Rehor I, Lee KL, Chen K, Hajek M, Havlik J, Lokajova J, Masat M, Slegerova J, Shukla S, Heidari H, Bals S, Steinmetz NF, Cigler P. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv Healthc Mater 2015; 4:460-8. [PMID: 25336437 PMCID: PMC4411186 DOI: 10.1002/adhm.201400421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/03/2014] [Indexed: 01/17/2023]
Abstract
Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.
Collapse
Affiliation(s)
- Ivan Rehor
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kevin Chen
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Miroslav Hajek
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jan Havlik
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Jana Lokajova
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Milan Masat
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Slegerova
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 121 08, Prague 2, Czech Republic
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hamed Heidari
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Radiology, Department of Materials Science and Engineering, Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
454
|
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine 2015; 10:1399-414. [PMID: 25733832 PMCID: PMC4337502 DOI: 10.2147/ijn.s74514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (K D). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments.
Collapse
Affiliation(s)
- Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Justyna Meissner
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
455
|
Li ZJ, Li C, Zheng MG, Pan JD, Zhang LM, Deng YF. Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells. Int J Clin Exp Med 2015; 8:1844-1852. [PMID: 25932112 PMCID: PMC4402759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
AIM This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. MATERIAL AND METHODS The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. RESULTS Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P < 0.05). CONCLUSION The nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.
Collapse
Affiliation(s)
- Zhong-Jun Li
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University Guangzhou 510120, China
| | - Chao Li
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University Guangzhou 510120, China
| | - Mei-Guang Zheng
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University Guangzhou 510120, China
| | - Jia-Dong Pan
- Polymer Chemistry Institute of Sun Yat-Sen University Guangzhou 510275, China
| | - Li-Ming Zhang
- Polymer Chemistry Institute of Sun Yat-Sen University Guangzhou 510275, China
| | - Yue-Fei Deng
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University Guangzhou 510120, China
| |
Collapse
|
456
|
Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, He F, Zhao J. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 2015; 10:1223-33. [PMID: 25709444 PMCID: PMC4334334 DOI: 10.2147/ijn.s77837] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. Methods Firstly, Tf-conjugated ligands were synthesized. Secondly, PTX- and DNA-loaded NLC (PTX-DNA-NLC) was prepared. Finally, Tf-containing ligands were used for the surface decoration of NLC. Their average size, zeta potential, drug, and gene loading were evaluated. Human non-small cell lung carcinoma cell line (NCl-H460 cells) was used for the testing of in vitro transfection efficiency, and in vivo transfection efficiency of NLC was evaluated on mice bearing NCl-H460 cells. Results Tf-decorated PTX and DNA co-encapsulated NLC (Tf-PTX-DNA-NLC) were nano-sized particles with positive zeta potential. Tf-PTX-DNA-NLC displayed low cytotoxicity, high gene transfection efficiency, and enhanced antitumor activity in vitro and in vivo. Conclusion The results demonstrated that Tf-PTX-DNA-NLC can achieve impressive antitumor activity and gene transfection efficiency. Tf decoration also enhanced the active targeting ability of the carriers to NCl-H460 cells. The novel drug and gene delivery system offers a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhenyu Shao
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jingyu Shao
- Affiliated Hospital of Northwest Institute of Mechanical and Electrical Engineering, Xianyang, Shaanxi, People's Republic of China
| | - Bingxu Tan
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Shanghui Guan
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zhulong Liu
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zengjun Zhao
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Fangfang He
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jian Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| |
Collapse
|
457
|
Kos P, Lächelt U, He D, Nie Y, Gu Z, Wagner E. Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. J Pharm Sci 2015; 104:464-75. [DOI: 10.1002/jps.24194] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
|
458
|
The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol Ther 2015; 146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
|
459
|
Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 2015; 44:4853-921. [DOI: 10.1039/c4cs00486h] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultra-stability and low-toxicity of silicon quantum dots and fluorescent nanodiamonds for long-termin vitroandin vivobioimaging are demonstrated.
Collapse
Affiliation(s)
- M. Montalti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - A. Cantelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - G. Battistelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
460
|
Martínez-Carmona M, Baeza A, Rodriguez-Milla MA, García-Castro J, Vallet-Regí M. Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. J Mater Chem B 2015; 3:5746-5752. [DOI: 10.1039/c5tb00304k] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel phototriggered drug delivery nanocarrier, which exhibits very high tumor cytotoxicity against human tumoral cells, is presented.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Dpto. Química Inorgánica y Bioinorgánica
- UCM
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
- Madrid
| | - Alejandro Baeza
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Dpto. Química Inorgánica y Bioinorgánica
- UCM
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
- Madrid
| | | | | | - Maria Vallet-Regí
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- Dpto. Química Inorgánica y Bioinorgánica
- UCM
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12
- Madrid
| |
Collapse
|
461
|
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 2014; 6:88-100. [PMID: 25476483 PMCID: PMC4312762 DOI: 10.1007/s13238-014-0119-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
462
|
Huang W, Rollett A, Kaplan DL. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin Drug Deliv 2014; 12:779-91. [PMID: 25476201 DOI: 10.1517/17425247.2015.989830] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. AREAS COVERED An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. EXPERT OPINION The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
Collapse
Affiliation(s)
- Wenwen Huang
- Tufts University, Department of Biomedical Engineering , 4 Colby Street, Medford, MA 02155 , USA
| | | | | |
Collapse
|
463
|
Leoh LS, Morizono K, Kershaw KM, Chen ISY, Penichet ML, Daniels-Wells TR. Gene delivery in malignant B cells using the combination of lentiviruses conjugated to anti-transferrin receptor antibodies and an immunoglobulin promoter. J Gene Med 2014; 16:11-27. [PMID: 24436117 DOI: 10.1002/jgm.2754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/05/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND We previously developed an antibody-avidin fusion protein (ch128.1Av) specific for the human transferrin receptor 1 (TfR1; CD71) to be used as a delivery vector for cancer therapy and showed that ch128.1Av delivers the biotinylated plant toxin saporin-6 into malignant B cells. However, as a result of widespread expression of TfR1, delivery of the toxin to normal cells is a concern. Therefore, we explored the potential of a dual targeted lentiviral-mediated gene therapy strategy to restrict gene expression to malignant B cells. Targeting occurs through the use of ch128.1Av or its parental antibody without avidin (ch128.1) and through transcriptional regulation using an immunoglobulin promoter. METHODS Flow cytometry was used to detect the expression of enhanced green fluorescent protein (EGFP) in a panel of cell lines. Cell viability after specific delivery of the therapeutic gene FCU1, a chimeric enzyme consisting of cytosine deaminase genetically fused to uracil phosphoribosyltransferse that converts the 5-fluorocytosine (5-FC) prodrug into toxic metabolites, was monitored using the MTS or WST-1 viability assay. RESULTS We found that EGFP was specifically expressed in a panel of human malignant B-cell lines, but not in human malignant T-cell lines. EGFP expression was observed in all cell lines when a ubiquitous promoter was used. Furthermore, we show the decrease of cell viability in malignant plasma cells in the presence of 5-FC and the FCU1 gene. CONCLUSIONS The present study demonstrates that gene expression can be restricted to malignant B cells and suggests that this dual targeted gene therapy strategy may help to circumvent the potential side effects of certain TfR1-targeted protein delivery approaches.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
464
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
465
|
Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2014; 2:69. [PMID: 25202689 PMCID: PMC4142601 DOI: 10.3389/fchem.2014.00069] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 01/31/2023] Open
Abstract
The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics, tumor accumulation, and biodistribution. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.
Collapse
Affiliation(s)
- Charlene M Dawidczyk
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
466
|
Akam EA, Chang TM, Astashkin AV, Tomat E. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators. Metallomics 2014; 6:1905-12. [PMID: 25100578 DOI: 10.1039/c4mt00153b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Eman A Akam
- University of Arizona, Department of Chemistry and Biochemistry, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| | | | | | | |
Collapse
|
467
|
Frasco MF, Almeida GM, Santos-Silva F, Pereira MDC, Coelho MAN. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. J Biomed Mater Res A 2014; 103:1476-84. [PMID: 25046528 DOI: 10.1002/jbm.a.35286] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/23/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022]
Abstract
The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Manuela F Frasco
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | | | | |
Collapse
|
468
|
Abouzeid AH, Patel NR, Sarisozen C, Torchilin VP. Transferrin-targeted polymeric micelles co-loaded with curcumin and paclitaxel: efficient killing of paclitaxel-resistant cancer cells. Pharm Res 2014; 31:1938-45. [PMID: 24522815 PMCID: PMC4133314 DOI: 10.1007/s11095-013-1295-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/31/2013] [Indexed: 01/12/2023]
Abstract
PURPOSE The ability to successfully treat advanced forms of cancer remains a challenge due to chemotherapy resistance. Numerous studies indicate that NF-κB, a protein complex that controls the expression of numerous genes, as being a key factor in producing chemo-resistant tumors. In this study, the therapeutic potential of transferrin (TF)-targeted mixed micelles, made of PEG-PE and vitamin E co-loaded with curcumin (CUR), a potent NF-κB inhibitor, and paclitaxel (PCL), was examined. METHODS The cytotoxicity of non-targeted and TF-targeted CUR and PCL micelles as a single agent or in combination was investigated against SK-OV-3 human ovarian adenocarcinoma along with its multi-drug resistant (MDR) version SK-OV-3-PCL-resistant (SK-OV-3TR) cells in vitro. RESULTS Our results indicated that the TF-targeted combination micelles were able to improve the net cytotoxic effect of CUR and PCL to clear synergistic one against the SK-OV-3 cells. In addition, even though the non-targeted combination treatment demonstrated a synergistic effect against the SK-OV-3TR cells, the addition of the TF-targeting moiety significantly increased this cytotoxic effect. While keeping CUR constant at 5 and 10 μM and varying the PCL concentration, the PCL IC50 decreased from ~1.78 to 0.68 μM for the non-targeted formulations to ~0.74 and 0.1 μM for the TF-targeted ones, respectively. CONCLUSION Our results indicate that such co-loaded targeted mixed micelles could have significant clinical advantages for the treatment of resistant ovarian cancer and provide a clear rational for further in vivo investigation.
Collapse
Affiliation(s)
- Abraham H. Abouzeid
- Northeastern University, Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, 140 The Fenway, Room 236, 360 Huntington Ave, Boston, MA 02115
| | - Niravkumar R. Patel
- Northeastern University, Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, 140 The Fenway, Room 236, 360 Huntington Ave, Boston, MA 02115
| | - Can Sarisozen
- Northeastern University, Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, 140 The Fenway, Room 225, 360 Huntington Ave, Boston, MA 02115
| | - Vladimir P. Torchilin
- Distinguished Professor, Northeastern University, Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, 140 The Fenway, Room 211/214, 360 Huntington Ave, Boston, MA 02115
| |
Collapse
|
469
|
Sriraman SK, Aryasomayajula B, Torchilin VP. Barriers to drug delivery in solid tumors. Tissue Barriers 2014; 2:e29528. [PMID: 25068098 PMCID: PMC4106925 DOI: 10.4161/tisb.29528] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic.
Collapse
Affiliation(s)
- Shravan Kumar Sriraman
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Bhawani Aryasomayajula
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| |
Collapse
|
470
|
Sarisozen C, Abouzeid AH, Torchilin VP. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm 2014; 88:539-50. [PMID: 25016976 DOI: 10.1016/j.ejpb.2014.07.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and in spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for the evaluation of co-delivery of anticancer compounds in targeted micelles.
Collapse
Affiliation(s)
- Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Abraham H Abouzeid
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
471
|
Gupta AS. Nanotechnology applications in diagnosis and treatment of metastasis. Nanomedicine (Lond) 2014; 9:1517-29. [DOI: 10.2217/nnm.14.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lethality of solid tumors is in large part dependent on their ability to metastasize through hematologic and lymphatic transport pathways. The dissemination of cancer cells from the primary tumor to undergo transport, their ability to survive in transit and then to subsequently form metastatic colonies, is facilitated by a complex concert of signaling pathways and cell–cell and cell–matrix interactions. Elucidating these mechanistic components is highly valuable to guide the development of technologies for efficiently detecting and treating metastasis. To this end, in recent years nanotechnology approaches have provided several unique detection, characterization and treatment strategies. The current article will review these approaches to discuss their promise and challenges, specifically in metastatic cancer, above and beyond the usual nanomedicine applications in cancer therapy.
Collapse
|
472
|
Kim SS, Rait A, Kim E, Pirollo KF, Nishida M, Farkas N, Dagata JA, Chang EH. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS NANO 2014; 8:5494-5514. [PMID: 24811110 PMCID: PMC4076028 DOI: 10.1021/nn5014484] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/08/2014] [Indexed: 05/31/2023]
Abstract
Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O(6)-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057, United States
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057, United States
| | - Eric Kim
- SynerGene Therapeutics, Inc., Potomac, Maryland 20854, United States
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057, United States
| | - Maki Nishida
- SynerGene Therapeutics, Inc., Potomac, Maryland 20854, United States
| | - Natalia Farkas
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John A. Dagata
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C. 20057, United States
| |
Collapse
|
473
|
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 2014; 187:133-44. [PMID: 24874289 DOI: 10.1016/j.jconrel.2014.05.036] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 12/14/2022]
Abstract
The ability to efficiently deliver a drug to a tumor site is dependent on a wide range of physiologically imposed design constraints. Nanotechnology provides the possibility of creating delivery vehicles where these design constraints can be decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing targeting efficiency and efficacy. Here we review the design strategies of the two FDA-approved antibody-drug conjugates (Brentuximab vedotin and Trastuzumab emtansine) and the four FDA-approved nanoparticle-based drug delivery platforms (Doxil, DaunoXome, Marqibo, and Abraxane) in the context of the challenges associated with systemic targeted delivery of a drug to a solid tumor. The lessons learned from these nanomedicines provide an important insight into the key challenges associated with the development of new platforms for systemic delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Charlene M Dawidczyk
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Chloe Kim
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jea Ho Park
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kwan Hyi Lee
- KIST Biomedical Research Institute, 5 Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Martin G Pomper
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Johns Hopkins Center of Cancer Nanotechnology Excellence, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
474
|
Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacol Ther 2014; 142:126-39. [DOI: 10.1016/j.pharmthera.2013.12.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/26/2013] [Indexed: 12/23/2022]
|
475
|
Nielsen C, Kjems J, Sørensen KR, Engelholm LH, Behrendt N. Advances in targeted delivery of small interfering RNA using simple bioconjugates. Expert Opin Drug Deliv 2014; 11:791-822. [PMID: 24669756 DOI: 10.1517/17425247.2014.896898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. AREAS COVERED This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive functionalities associated with each strategy, in order to identify key elements of successful siRNA delivery strategies with potential for further exploration. EXPERT OPINION By evaluating the current literature on this subject, we identify strategies and concepts that are suitable for future studies, to enable the development of highly efficient simple bioconjugates for targeted siRNA delivery with therapeutic application.
Collapse
Affiliation(s)
- Christoffer Nielsen
- University of Copenhagen, Copenhagen University Hospital and Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Finsen Laboratory , Ole Maaloes Vej 5, DK-2200 Copenhagen N , Denmark +45 35 45 60 33 ;
| | | | | | | | | |
Collapse
|
476
|
Wang JJ, Huang SW. Research Progress on Novel Carrier-modified Methods and Evaluation of Active Targeting Antitumor Preparation. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
477
|
Gao LY, Liu XY, Chen CJ, Wang JC, Feng Q, Yu MZ, Ma XF, Pei XW, Niu YJ, Qiu C, Pang WH, Zhang Q. Core-Shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 2014; 35:2066-78. [DOI: 10.1016/j.biomaterials.2013.11.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 11/26/2022]
|
478
|
Abstract
Nanoparticles are rapidly being developed and trialed to overcome several limitations of traditional drug delivery systems and are coming up as a distinct therapeutics for cancer treatment. Conventional chemotherapeutics possess some serious side effects including damage of the immune system and other organs with rapidly proliferating cells due to nonspecific targeting, lack of solubility, and inability to enter the core of the tumors resulting in impaired treatment with reduced dose and with low survival rate. Nanotechnology has provided the opportunity to get direct access of the cancerous cells selectively with increased drug localization and cellular uptake. Nanoparticles can be programmed for recognizing the cancerous cells and giving selective and accurate drug delivery avoiding interaction with the healthy cells. This review focuses on cell recognizing ability of nanoparticles by various strategies having unique identifying properties that distinguish them from previous anticancer therapies. It also discusses specific drug delivery by nanoparticles inside the cells illustrating many successful researches and how nanoparticles remove the side effects of conventional therapies with tailored cancer treatment.
Collapse
|
479
|
Modery-Pawlowski CL, Gupta AS. Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 2014; 35:2568-79. [PMID: 24411677 DOI: 10.1016/j.biomaterials.2013.12.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022]
Abstract
Active targeting has become an important component of nanomedicine design where nanovehicles are surface-decorated with cell receptor-specific or disease matrix-specific ligands to enable site-selective binding, retention and delivery of theranostic cargo. In this context, there have been numerous reports regarding surface-modification of nanovehicles with antibodies, antibody fragments, carbohydrates, aptamers and peptides as targeting ligands. However, majority of these reports have focused on using a single type of targeting moiety on the vehicle surface. In any disease development and progression, multiple receptors and proteins are often spatio-temporally upregulated simultaneously and heterogeneously. Rationalizing from this, a significant advantage can be envisioned in targeting multiple entities simultaneously using vehicle co-decoration with multiple types of ligands, to enhance binding activity and targeting specificity. To this end, we present a comprehensive up-to-date review on research endeavors in heteromultivalent ligand-modification of nanovehicles and provide a mechanistic rationale as well as an insightful discussion of this promising area, including findings from our own research.
Collapse
Affiliation(s)
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.
| |
Collapse
|
480
|
Parenti R, Salvatorelli L, Magro G. Anaplastic Thyroid Carcinoma: Current Treatments and Potential New Therapeutic Options with Emphasis on TfR1/CD71. Int J Endocrinol 2014; 2014:685396. [PMID: 25097549 PMCID: PMC4102021 DOI: 10.1155/2014/685396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/15/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers. Actually, ATC is refractory to conventional therapies, including surgery, chemotherapy, radiotherapy, and radioiodine ((131)I) therapy. Accordingly, genetic and molecular characterizations of ATC have been frequently and periodically reviewed in order to identify potential biological markers exploitable for target therapy. This review briefly focuses on main molecular events that characterize ATC and provides an update about preclinical studies. In addition, the overexpression of transferrin receptor 1 (TfR1/CD71) by neoplastic cells of ATC is emphasized in that it could represent a potential therapeutic target. In this regard, new therapeutic approaches based on the use of monoclonal or recombinant antibodies, or transferrin-gallium-TfR1/CD71 molecular complexes, or lastly small interfering RNAs (siRNAs) are proposed.
Collapse
Affiliation(s)
- Rosalba Parenti
- Department of Bio-Medical Sciences, Physiology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- *Rosalba Parenti:
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
481
|
Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:925804. [PMID: 24454991 PMCID: PMC3886269 DOI: 10.1155/2013/925804] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/27/2013] [Accepted: 10/05/2013] [Indexed: 12/28/2022]
Abstract
Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.
Collapse
|
482
|
del Castillo T, Marales-Sanfrutos J, Santoyo-González F, Magez S, Lopez-Jaramillo FJ, Garcia-Salcedo JA. Monovinyl sulfone β-cyclodextrin. A flexible drug carrier system. ChemMedChem 2013; 9:383-9. [PMID: 24339407 DOI: 10.1002/cmdc.201300385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/20/2013] [Indexed: 11/06/2022]
Abstract
Cyclodextrins have been conjugated to target various receptors and have also been functionalized with carbohydrates for targeting specific organs. However, this approach is based on a rigid design that implies the ad hoc synthesis of each cyclodextrin-targeting agent conjugate. We hypothesized that: 1)a modular design that decouples the carrier function from the targeting function leads to a flexible system, 2) combining the reactivity of the vinyl sulfone group toward biomolecules that act as targeting agents with the ability of cyclodextrin to form complexes with a wide range of drugs may yield a versatile system that allows the targeting of different organs with different drugs, and 3) the higher reactivity of histidine residues toward the vinyl sulfone group can be exploited to couple the cyclodextrin to the targeting system with a degree of regioselectivity. As a proof of concept, we synthesized a monovinyl sulfone β-cyclodextrin (module responsible for the payload), which, after coupling to recombinant antibody fragments raised against Trypanosoma brucei (module responsible for targeting) and loading with nitrofurazone (module responsible for therapeutic action) resulted in an effective delivery system that targets the surface of the parasites and shows trypanocidal activity.
Collapse
Affiliation(s)
- Teresa del Castillo
- Hospital Universitario San Cecilio, Instituto de Investigaciones Biosanitarias de Granada, FIBAO, Granada (Spain); Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada (Spain)
| | | | | | | | | | | |
Collapse
|
483
|
Chang Q, Jing H, Sun M, Xu P. Exploring the role of short-course cyclosporin a therapy in preventing homograft valve calcification after transplantation. Cell Immunol 2013; 287:36-45. [PMID: 24374105 DOI: 10.1016/j.cellimm.2013.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 01/30/2023]
Abstract
This study was designed to explore the role of short-course cyclosporin A therapy in preventing calcification. Homograft valves heterotopically allografted onto abdominal aorta from SD to Wistar rats. The expression of CD25, CD40L, CD71, calcium content and morphological change were observed. In control group, expression of immune indices got maximal at early stage postoperatively, and then gradually declined, remained at low level 12 weeks afterwards. In test group with Cyclosporin A, the expression of immune indices were lower than that of control group at 2-4 weeks postoperatively, but no significant difference was found 8 weeks afterwards. The calcification began from 4 weeks postoperatively, increased gradually and reached highest level at 12 weeks. In test group calcium content was much lower from 4 to 16 weeks postoperatively. It is concluded that cyclosporine A treatment can prevent calcification of homograft valves because it inhibited immune response at early stage after transplantation.
Collapse
Affiliation(s)
- Qing Chang
- Cardiovascular Surgery Department, The Affiliated Hospital of Medical College, Qingdao University, 266003 Qingdao, China.
| | - Hui Jing
- Cardiovascular Surgery Department, The Affiliated Hospital of Medical College, Qingdao University, 266003 Qingdao, China
| | - Mingshu Sun
- Rheumatology Department, The Affiliated Hospital of Medical College, Qingdao University, 266003 Qingdao, China
| | - Ping Xu
- Cardiovascular Surgery Department, The Affiliated Hospital of Medical College, Qingdao University, 266003 Qingdao, China
| |
Collapse
|
484
|
Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 2013; 11:139-54. [DOI: 10.1517/17425247.2014.866651] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
485
|
Koudelka KJ, Ippoliti S, Medina E, Shriver LP, Trauger SA, Catalano CE, Manchester M. Lysine Addressability and Mammalian Cell Interactions of Bacteriophage λ Procapsids. Biomacromolecules 2013; 14:4169-76. [DOI: 10.1021/bm401577f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kristopher J. Koudelka
- Departments
of Chemistry and Biology, Carthage College, Kenosha, Wisconsin, United States
| | - Shannon Ippoliti
- Department
of Chemistry, University of San Diego, San Diego, California, United States
| | - Elizabeth Medina
- School
of Pharmacy, University of Washington, Seattle, Washington, United States
- Department
of Medicine, University of Colorado, Denver, Colorado, United States
| | - Leah P. Shriver
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California, United States
| | - Sunia A. Trauger
- Small
Molecule
Mass Spectrometry Facility, Harvard University, Cambridge, Massachusetts, United States
| | - Carlos E. Catalano
- School
of Pharmacy, University of Washington, Seattle, Washington, United States
| | - Marianne Manchester
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California, United States
| |
Collapse
|
486
|
Abe K, Zhao L, Periasamy A, Intes X, Barroso M. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One 2013; 8:e80269. [PMID: 24278268 PMCID: PMC3836976 DOI: 10.1371/journal.pone.0080269] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/11/2013] [Indexed: 12/05/2022] Open
Abstract
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments.
Collapse
Affiliation(s)
- Ken Abe
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
487
|
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65:1866-79. [PMID: 24120656 PMCID: PMC5812459 DOI: 10.1016/j.addr.2013.09.019] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
Abstract
Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Janet L Markman
- Nanomedicine Research Center, Department of Neurosurgery at Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | | |
Collapse
|
488
|
The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther 2013; 22:278-291. [PMID: 24113515 DOI: 10.1038/mt.2013.231] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity.
Collapse
|
489
|
Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy. Biochim Biophys Acta Gen Subj 2013; 1830:4628-33. [PMID: 23707714 DOI: 10.1016/j.bbagen.2013.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022]
|
490
|
van der Meel R, Vehmeijer LJC, Kok RJ, Storm G, van Gaal EVB. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 2013; 65:1284-98. [PMID: 24018362 DOI: 10.1016/j.addr.2013.08.012] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/09/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
Since the introduction of Doxil® on the market nearly 20years ago, a number of nanomedicines have become part of treatment regimens in the clinic. With the exception of antibody-drug conjugates, these nanomedicines are all devoid of targeting ligands and rely solely on their physicochemical properties and the (patho)physiological processes in the body for their biodistribution and targeting capability. At the same time, many preclinical studies have reported on nanomedicines exposing targeting ligands, or ligand-targeted nanomedicines, yet none of these have been approved at this moment. In the present review, we provide a concise overview of 13 ligand-targeted particulate nanomedicines (ligand-targeted PNMs) that have progressed into clinical trials. The progress of each ligand-targeted PNM is discussed based on available (pre)clinical data. Main conclusions of these analyses are that (a) ligand-targeted PNMs have proven to be safe and efficacious in preclinical models; (b) the vast majority of ligand-targeted PNMs is generated for the treatment of cancer; (c) contribution of targeting ligands to the PNM efficacy is not unambiguously proven; and (d) targeting ligands do not cause localization of the PNM within the target tissue, but rather provide benefits in terms of target cell internalization and target tissue retention once the PNM has arrived at the target site. Increased understanding of the in vivo fate and interactions of the ligand-targeted PNMs with proteins and cells in the human body is mandatory to rationally advance the clinical translation of ligand-targeted PNMs. Future perspectives for ligand-targeted PNM approaches include the delivery of drugs that are unable or inefficient in passing cellular membranes, treatment of drug resistant tumors, targeting of the tumor blood supply, the generation of targeted vaccines and nanomedicines that are able to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Roy van der Meel
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
491
|
Abstract
Cancer is one of the major causes of mortality worldwide and advanced techniques for therapy are urgently needed. The development of novel nanomaterials and nanocarriers has allowed a major drive to improve drug delivery in cancer. The major aim of most nanocarrier applications has been to protect the drug from rapid degradation after systemic delivery and allowing it to reach tumor site at therapeutic concentrations, meanwhile avoiding drug delivery to normal sites as much as possible to reduce adverse effects. These nanocarriers are formulated to deliver drugs either by passive targeting, taking advantage of leaky tumor vasculature or by active targeting using ligands that increase tumoral uptake potentially resulting in enhanced antitumor efficacy, thus achieving a net improvement in therapeutic index. The rational design of nanoparticles plays a critical role since structural and physical characteristics, such as size, charge, shape, and surface characteristics determine the biodistribution, pharmacokinetics, internalization and safety of the drugs. In this review, we focus on several novel and improved strategies in nanocarrier design for cancer therapy.
Collapse
|
492
|
Tros de Ilarduya C, Düzgüneş N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv 2013; 10:1583-91. [PMID: 24050263 DOI: 10.1517/17425247.2013.837447] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The overexpression of transferrin (Tf) receptors on cancer cells renders them a useful target for the delivery of small-molecule drugs and nucleic acid therapeutics to these cells. This approach could alleviate the non-target effects of the drugs. AREAS COVERED The function of the Tf receptor, the development of Tf-lipid-DNA complexes (Tf lipoplexes), therapeutic use of lipoplexes and polymer-DNA complexes (poylplexes), and the therapeutic use of Tf-lipoplexes and anti-Tf-receptor antibody-lipoplexes are outlined. The literature search for this review was based primarily on the terms 'lipoplexes,' 'lipopolyplexes' 'transferrin,' 'transferrin receptor,' and 'gene therapy.' However, the review was not intended to be comprehensive. EXPERT OPINION Complexes of Tf with cationic liposomes and nucleic acids, or liposomes with covalently attached Tf or anti-transferrin receptor antibodies have been used for the delivery of therapeutic genes, antisense oligodeoxynucleotides, and short interfering RNA. Although such targeted nonviral delivery vehicles may benefit from further enhancement of their efficacy, current achievements at the cell culture and animal model level should be translated into clinical applications, restricted initially to localized delivery into accessible tissues to avoid potential systemic side-effects and non-target delivery.
Collapse
Affiliation(s)
- Conchita Tros de Ilarduya
- University of Navarra, School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology , Pamplona , Spain
| | | |
Collapse
|
493
|
Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, Shoshan-Barmatz V. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis 2013; 4:e809. [PMID: 24052077 PMCID: PMC3789174 DOI: 10.1038/cddis.2013.316] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022]
Abstract
The voltage-dependent anion channel 1 (VDAC1), localized in the outer mitochondrial membrane, mediates metabolic cross-talk between the mitochondrion and the cytoplasm and thus serves a fundamental role in cell energy metabolism. VDAC1 also plays a key role in mitochondria-mediated apoptosis, interacting with anti-apoptotic proteins. Resistance of cancer cells to apoptosis involves quenching the mitochondrial apoptotic pathway by over-expression of anti-apoptotic/pro-survival hexokinase (HK) and Bcl-2 family proteins, proteins that mediate their anti-apoptotic activities via interaction with VDAC1. Using specifically designed VDAC1-based cell-penetrating peptides, we targeted these anti-apoptotic proteins to prevent their pro-survival/anti-apoptotic activities. Anti-apoptotic proteins are expressed at high levels in B-cell chronic lymphocytic leukemia (CLL), an incurable disease requiring innovative new approaches to improve therapeutic outcome. CLL is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Specifically, we demonstrate that the VDAC1-based peptides (Antp-LP4 and N-Terminal-Antp) selectively kill peripheral blood mononuclear cells (PBMCs) obtained from CLL patients, yet spare those obtained from healthy donors. The cell death induction competence of the peptides was well correlated with the amount of double positive CD19/CD5 cancerous CLL PBMCs, further illustrating their selectivity toward cancer cells. Moreover, these VDAC1-based peptides induced apoptosis by activating the mitochondria-mediated pathway, reflected in membrane blebbing, condensation of nuclei, DNA fragmentation, release of mitochondrial cytochrome c, loss of mitochondrial membrane potential, decreased cellular ATP levels and detachment of HK, all leading to apoptotic cell death. Thus, the mode of action of the peptides involves decreasing energy production and inducing apoptosis. Over 27 versions of cell-penetrating VDAC1-based peptides were designed and screened to identify the most stable, short and apoptosis-inducing peptides toward CLL-derived lymphocytes. In this manner, three optimized peptides suitable for in vivo studies were identified. This study thus reveals the potential of VDAC1-based peptides as an innovative and effective anti-CLL therapy.
Collapse
Affiliation(s)
- T Prezma
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, BeerSheva, Israel
| | | | | | | | | | | | | |
Collapse
|
494
|
Rasanen K, Sriswasdi S, Valiga A, Tang HY, Zhang G, Perego M, Somasundaram R, Li L, Speicher K, Klein-Szanto AJ, Basu D, Rustgi AK, Speicher DW, Herlyn M. Comparative secretome analysis of epithelial and mesenchymal subpopulations of head and neck squamous cell carcinoma identifies S100A4 as a potential therapeutic target. Mol Cell Proteomics 2013; 12:3778-92. [PMID: 24037664 DOI: 10.1074/mcp.m113.029587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key contributor in tumor progression and metastasis. EMT produces cellular heterogeneity within head and neck squamous cell carcinomas (HNSCC) by creating a phenotypically distinct mesenchymal subpopulation that is resistant to conventional therapies. In this study, we systematically characterized differences in the secretomes of E-cadherin high epithelial-like and E-cadherin low mesenchymal-like subpopulations using unbiased and targeted proteomics. A total 1765 proteins showed significant changes with 177 elevated in the epithelial subpopulation and 173 elevated in the mesenchymal cells. Key nodes in affected networks included NFκB, Akt, and ERK, and most implicated cellular components involved various aspects of the extracellular matrix. In particular, large changes were observed in multiple collagens with most affected collagens at much higher abundance levels in the mesenchymal subpopulation. These cells also exhibited a secretome profile resembling that of cancer-associated fibroblastic cells (CAF). S100A4, a commonly used marker for cancer-associated fibroblastic cells, was elevated more than 20-fold in the mesenchymal cells and this increase was further verified at the transcriptome level. S100A4 is a known mediator of EMT, leading to metastasis and EMT has been proposed as a potential source of cancer-associated fibroblastic cells in solid tumors. S100A4 knockdown by small interfering RNA led to decreased expression, secretion and activity of matrix metalloproteinase 2, as verified by quantitative PCR, multiple reaction monitoring and zymography analyses, and reduced invasion in collagen-embedded spheroids. Further confirmation in three-dimensional organotypic reconstructs showed less invasion and advanced differentiation in the S100A4 RNA interference samples. Orthotopic metastasis model, developed to validate the findings in vivo, demonstrated a decrease in spontaneous metastasis and augmented differentiation in the primary tumor in siS100A4 xenografts. These results demonstrate the value of secretome profiling to evaluate phenotypic conversion and identify potential novel therapeutic targets such as S100A4.
Collapse
|
495
|
Nanoparticles targeting mechanisms in cancer therapy: current limitations and emerging solutions. Ther Deliv 2013; 4:1197-209. [DOI: 10.4155/tde.13.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been more than one century since Paul Ehrlich spoke about the idea of targeting specific molecules in the cell when he coined the ‘Magic Bullet‘ principle. In most occasions, we seek new pharmacodynamic models for therapy, but nanoparticles provide a chance to modify the already existing pharmacokinetics of drugs to meet needed pharmacodynamic models. In the scope of ‘nanoscale‘, every entity has different characters, and no general rules control pharmacokinetics of nanoparticulate drugs as new physical and physicochemical properties are added to equations. However, such remarkable drug models are still quite far from achieving their potential in clinical application. Among the major obstacles is that most available results in nanoparticles targeting rely upon in vitro and animal models that do not match the tumor environment characteristics in humans. This Review discusses the concept of targeting tumor cells with nanoparticles, the limitations that lead to its incomplete application in clinical practice along with some of the promising solutions to such limitations.
Collapse
|
496
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
497
|
Ford SJ, Obeidy P, Lovejoy DB, Bedford M, Nichols L, Chadwick C, Tucker O, Lui GYL, Kalinowski DS, Jansson PJ, Iqbal TH, Alderson D, Richardson DR, Tselepis C. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br J Pharmacol 2013; 168:1316-28. [PMID: 23126308 DOI: 10.1111/bph.12045] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence implicates iron in the aetiology of gastrointestinal cancer. Furthermore, studies demonstrate that iron chelators possess potent anti-tumour activity, although whether iron chelators show activity against oesophageal cancer is not known. EXPERIMENTAL APPROACH The effect of the iron chelators, deferoxamine (DFO) and deferasirox, on cellular iron metabolism, viability and proliferation was assessed in two oesophageal adenocarcinoma cell lines, OE33 and OE19, and the squamous oesophageal cell line, OE21. A murine xenograft model was employed to assess the effect of deferasirox on oesophageal tumour burden. The ability of chelators to overcome chemoresistance and to enhance the efficacy of standard chemotherapeutic agents (cisplatin, fluorouracil and epirubicin) was also assessed. KEY RESULTS Deferasirox and DFO effectively inhibited cellular iron acquisition and promoted intracellular iron mobilization. The resulting reduction in cellular iron levels was reflected by increased transferrin receptor 1 expression and reduced cellular viability and proliferation. Treating oesophageal tumour cell lines with an iron chelator in addition to a standard chemotherapeutic agent resulted in a reduction in cellular viability and proliferation compared with the chemotherapeutic agent alone. Both DFO and deferasirox were able to overcome cisplatin resistance. Furthermore, in human xenograft models, deferasirox was able to significantly suppress tumour growth, which was associated with decreased tumour iron levels. CONCLUSIONS AND IMPLICATIONS The clinically established iron chelators, DFO and deferasirox, effectively deplete iron from oesophageal tumour cells, resulting in growth suppression. These data provide a platform for assessing the utility of these chelators in the treatment of oesophageal cancer patients.
Collapse
Affiliation(s)
- S J Ford
- School of Cancer Sciences, Department of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Abstract
Docetaxel has been recognized as one of the most efficient anticancer drugs over the past decade; however, its poor water solubility and systemic toxicity have greatly limited its clinical application. In recent decades, the emergence of nanotechnology has provided new drug delivery systems for docetaxel, which can improve its water solubility, minimize the side effects and increase the tumor-targeting distribution by passive or active targeting. This review focuses on the research progress in nanoformulations related to docetaxel delivery – such as polymer-based, lipid-based, and lipid-polymer hybrid nanocarriers, as well as inorganic nanoparticles – addressing their structures, characteristics, preparation, physicochemical properties, methods by which drugs are loaded into them, and their in vitro and in vivo efficacies. Further, the targeted ligands used in the docetaxel nanoformulations, such as monoclonal antibodies, peptides, folic acid, transferrin, aptamers and hyaluronic acid, are described. The issues to overcome before docetaxel nanoformulations can be used in clinical and commercial applications are also discussed.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmaceutical Science, Shandong University, Shandong Province, People's Republic of China
| | | |
Collapse
|
499
|
Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer--potential therapeutic implications. Nutrients 2013; 5:2836-59. [PMID: 23887041 PMCID: PMC3775231 DOI: 10.3390/nu5082836] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/04/2023] Open
Abstract
Iron is essential for normal cellular function. It participates in a wide variety of cellular processes, including cellular respiration, DNA synthesis, and macromolecule biosynthesis. Iron is required for cell growth and proliferation, and changes in intracellular iron availability can have significant effects on cell cycle regulation, cellular metabolism, and cell division. Perhaps not surprisingly then, neoplastic cells have been found to have higher iron requirements than normal, non-malignant cells. Iron depletion through chelation has been explored as a possible therapeutic intervention in a variety of cancers. Here, we will review iron homeostasis in non-malignant and malignant cells, the widespread effects of iron depletion on the cell, the various iron chelators that have been explored in the treatment of cancer, and the tumor types that have been most commonly studied in the context of iron chelation.
Collapse
Affiliation(s)
- Jessica L. Heath
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Joshua M. Weiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Catherine P. Lavau
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
| | - Daniel S. Wechsler
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; E-Mails: (J.L.H.); (J.M.W.); (C.P.L.)
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-3401; Fax: +1-919-681-7950
| |
Collapse
|
500
|
Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther Deliv 2013; 4:629-40. [PMID: 23647279 DOI: 10.4155/tde.13.21] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The potential use of many promising novel drugs is limited by their inability to specifically reach their site of action after intravenous administration, without secondary effects on healthy tissues. In order to remediate this problem, the protein transferrin (Tf) has been extensively studied as a targeting molecule for the transport of drug and gene delivery systems to the brain and cancer cells. A wide range of delivery approaches have been developed to target the Tf receptor and they have already improved the specific delivery of Tf-bearing therapeutic agents to their site of action. This review provides a summary of the numerous delivery strategies used to target the Tf receptor and focuses on recent therapeutic advances.
Collapse
|