451
|
Miller TE, Liau BB, Wallace LC, Morton AR, Xie Q, Dixit D, Factor DC, Kim LJY, Morrow JJ, Wu Q, Mack SC, Hubert CG, Gillespie SM, Flavahan WA, Hoffmann T, Thummalapalli R, Hemann MT, Paddison PJ, Horbinski CM, Zuber J, Scacheri PC, Bernstein BE, Tesar PJ, Rich JN. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature 2017; 547:355-359. [PMID: 28678782 PMCID: PMC5896562 DOI: 10.1038/nature23000] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Tyler E Miller
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Brian B Liau
- Harvard Medical School, Boston, Massachusetts 02114, USA.,Epigenomics Program, Broad Institute, Cambridge, Massachusetts 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Lisa C Wallace
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Andrew R Morton
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Deobrat Dixit
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Leo J Y Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - James J Morrow
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Shawn M Gillespie
- Harvard Medical School, Boston, Massachusetts 02114, USA.,Epigenomics Program, Broad Institute, Cambridge, Massachusetts 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William A Flavahan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Rohit Thummalapalli
- Harvard Medical School, Boston, Massachusetts 02114, USA.,Epigenomics Program, Broad Institute, Cambridge, Massachusetts 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60615, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Bradley E Bernstein
- Harvard Medical School, Boston, Massachusetts 02114, USA.,Epigenomics Program, Broad Institute, Cambridge, Massachusetts 02142, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
452
|
Arthur RK, An N, Khan S, McNerney ME. The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters. Nucleic Acids Res 2017; 45:6350-6361. [PMID: 28369554 PMCID: PMC5499738 DOI: 10.1093/nar/gkx218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
One third of tumor suppressors are haploinsufficient transcriptional regulators, yet it remains unknown how a 50% reduction of a transcription factor is translated at the cis-regulatory level into a malignant transcriptional program. We studied CUX1, a haploinsufficient transcription factor that is recurrently mutated in hematopoietic and solid tumors. We determined CUX1 DNA-binding and target gene regulation in the wildtype and haploinsufficient states. CUX1 binds with transcriptional activators and cohesin at distal enhancers across three different human cell types. Haploinsufficiency of CUX1 altered the expression of a large number of genes, including cell cycle regulators, with concomitant increased cellular proliferation. Surprisingly, CUX1 occupancy decreased genome-wide in the haploinsufficient state, and binding site affinity did not correlate with differential gene expression. Instead, differentially expressed genes had multiple, low-affinity CUX1 binding sites, features of analog gene regulation. A machine-learning algorithm determined that chromatin accessibility, enhancer activity, and distance to the transcription start site are features of dose-sensitive CUX1 transcriptional regulation. Moreover, CUX1 is enriched at sites of DNA looping, as determined by Hi-C analysis, and these loops connect CUX1 to the promoters of regulated genes. We propose an analog model for haploinsufficient transcriptional deregulation mediated by higher order genome architecture.
Collapse
Affiliation(s)
- Robert K. Arthur
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Ningfei An
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E. McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, and The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
453
|
ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 2017; 546:671-675. [PMID: 28614298 DOI: 10.1038/nature22820] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Half of all prostate cancers are caused by the TMPRSS2-ERG gene-fusion, which enables androgens to drive expression of the normally silent E26 transformation-specific (ETS) transcription factor ERG in prostate cells. Recent genomic landscape studies of such cancers have reported recurrent point mutations and focal deletions of another ETS member, the ETS2 repressor factor ERF. Here we show these ERF mutations cause decreased protein stability and mostly occur in tumours without ERG upregulation. ERF loss recapitulates the morphological and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor transcriptional repertoire, and ERF has tumour suppressor activity in the same genetic background of Pten loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicates that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocks ERG-dependent tumour growth, and ERF loss rescues TMPRSS2-ERG-positive prostate cancer cells from ERG dependency. Collectively, these data provide evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF and they raise the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumour suppressors.
Collapse
|
454
|
Vladimer GI, Snijder B, Krall N, Bigenzahn JW, Huber KV, Lardeau CH, Sanjiv K, Ringler A, Berglund UW, Sabler M, de la Fuente OL, Knöbl P, Kubicek S, Helleday T, Jäger U, Superti-Furga G. Global survey of the immunomodulatory potential of common drugs. Nat Chem Biol 2017; 13:681-690. [PMID: 28437395 PMCID: PMC5438060 DOI: 10.1038/nchembio.2360] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Small-molecule drugs may complement antibody-based therapies in an immune-oncology setting, yet systematic methods for the identification and characterization of the immunomodulatory properties of these entities are lacking. We surveyed the immumomodulatory potential of 1,402 small chemical molecules, as defined by their ability to alter the cell-cell interactions among peripheral mononuclear leukocytes ex vivo, using automated microscopy and population-wide single-cell image analysis. Unexpectedly, ∼10% of the agents tested affected these cell-cell interactions differentially. The results accurately recapitulated known immunomodulatory drug classes and revealed several clinically approved drugs that unexpectedly harbor the ability to modulate the immune system, which could potentially contribute to their physiological mechanism of action. For instance, the kinase inhibitor crizotinib promoted T cell interactions with monocytes, as well as with cancer cells, through inhibition of the receptor tyrosine kinase MSTR1 and subsequent upregulation of the expression of major histocompatibility complex molecules. The approach offers an attractive platform for the personalized identification and characterization of immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Gregory I. Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Nikolaus Krall
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johannes W. Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kilian V.M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Structural Genomics Consortium, University of Oxford, Oxford, UK and Target Discovery Institute, University of Oxford, Oxford, UK
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Anna Ringler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Monika Sabler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Oscar Lopez de la Fuente
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
455
|
Adams FF, Heckl D, Hoffmann T, Talbot SR, Kloos A, Thol F, Heuser M, Zuber J, Schambach A, Schwarzer A. An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries. Biomaterials 2017; 139:102-115. [PMID: 28599149 DOI: 10.1016/j.biomaterials.2017.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
RNA interference (RNAi) and CRISPR-Cas9-based screening systems have emerged as powerful and complementary tools to unravel genetic dependencies through systematic gain- and loss-of-function studies. In recent years, a series of technical advances helped to enhance the performance of virally delivered RNAi. For instance, the incorporation of short hairpin RNAs (shRNAs) into endogenous microRNA contexts (shRNAmiRs) allows the use of Tet-regulated promoters for synchronous onset of gene knockdown and precise interrogation of gene dosage effects. However, remaining challenges include lack of efficient cloning strategies, inconsistent knockdown potencies and leaky expression. Here, we present a simple, one-step cloning approach for rapid and efficient cloning of miR-30 shRNAmiR libraries. We combined a human miR-30 backbone retaining native flanking sequences with an optimized all-in-one lentiviral vector system for conditional RNAi to generate a versatile toolbox characterized by higher doxycycline sensitivity, reduced leakiness and enhanced titer. Furthermore, refinement of existing shRNA design rules resulted in substantially improved prediction of powerful shRNAs. Our approach was validated by accurate quantification of the knockdown potency of over 250 single shRNAmiRs. To facilitate access and use by the scientific community, an online tool was developed for the automated design of refined shRNA-coding oligonucleotides ready for cloning into our system.
Collapse
Affiliation(s)
- Felix F Adams
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Steven R Talbot
- Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Arnold Kloos
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
456
|
Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:6080-6085. [PMID: 28533404 DOI: 10.1073/pnas.1703556114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these "escaper" dogs revealed reduced expression of phosphatidylinositol transfer protein-α (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.
Collapse
|
457
|
Pallett MA, Crepin VF, Serafini N, Habibzay M, Kotik O, Sanchez-Garrido J, Di Santo JP, Shenoy AR, Berger CN, Frankel G. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunol 2017; 10:602-612. [PMID: 27624779 PMCID: PMC5159625 DOI: 10.1038/mi.2016.77] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host defense and inflammation in the gut via their ability to process cytokines such as interleukin (IL)-1β and IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with EPECΔnleF. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. rodentium nor C. rodentiumΔnleF triggered neutrophil infiltration or IL-18 secretion in Cas11 or Casp1/11-deficient mice. Thus, IECs have a key role in modulating early innate immune responses in the gut via a caspase-4/11-IL-18 axis, which is targeted by virulence factors encoded by enteric pathogens.
Collapse
Affiliation(s)
- Mitchell A. Pallett
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Valerie F. Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Maryam Habibzay
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Olga Kotik
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Julia Sanchez-Garrido
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Avinash R. Shenoy
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Cedric N. Berger
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK,Corresponding author, Gad Frankel, MRC CMBI, Flowers Building, Imperial College, London, SW7 2AZ,
| |
Collapse
|
458
|
Xu L, Chen Y, Dutra-Clarke M, Mayakonda A, Hazawa M, Savinoff SE, Doan N, Said JW, Yong WH, Watkins A, Yang H, Ding LW, Jiang YY, Tyner JW, Ching J, Kovalik JP, Madan V, Chan SL, Müschen M, Breunig JJ, Lin DC, Koeffler HP. BCL6 promotes glioma and serves as a therapeutic target. Proc Natl Acad Sci U S A 2017; 114:3981-3986. [PMID: 28356518 PMCID: PMC5393201 DOI: 10.1073/pnas.1609758114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Marina Dutra-Clarke
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Masaharu Hazawa
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Steve E Savinoff
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, and David Geffen School of Medicine, Los Angeles, CA 90095
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, and David Geffen School of Medicine, Los Angeles, CA 90095
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, and David Geffen School of Medicine, Los Angeles, CA 90095
| | - Ashley Watkins
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Jeffrey W Tyner
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Shing-Leng Chan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
- Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - De-Chen Lin
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore;
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA 90048
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA 90048
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
459
|
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T, Schnütgen F, Cremer A, Haetscher N, Göllner S, Rouhi A, Palmqvist L, Rieger MA, Schroeder T, Bönig H, Müller-Tidow C, Kuchenbauer F, Schütz E, Green AR, Urlaub H, Stegmaier K, Humphries RK, Serve H, Oellerich T. Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell 2017; 31:549-562.e11. [PMID: 28399410 PMCID: PMC5389883 DOI: 10.1016/j.ccell.2017.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
Collapse
Affiliation(s)
- Sebastian Mohr
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Federico Comoglio
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Julia Beck
- Chronix Biomedical, Goetheallee 8, 37073 Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Astrid Wachter
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nadine Haetscher
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefanie Göllner
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Su sahlgrenska, 41345 Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Sandhofstraße 1, 60590 Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Anthony R Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Georg August University, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.
| |
Collapse
|
460
|
Jung LA, Gebhardt A, Koelmel W, Ade CP, Walz S, Kuper J, von Eyss B, Letschert S, Redel C, d'Artista L, Biankin A, Zender L, Sauer M, Wolf E, Evan G, Kisker C, Eilers M. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 2017; 36:1911-1924. [PMID: 27748763 DOI: 10.1038/onc.2016.354] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
MYC genes have both essential roles during normal development and exert oncogenic functions during tumorigenesis. Expression of a dominant-negative allele of MYC, termed OmoMYC, can induce rapid tumor regression in mouse models with little toxicity for normal tissues. How OmoMYC discriminates between physiological and oncogenic functions of MYC is unclear. We have solved the crystal structure of OmoMYC and show that it forms a stable homodimer and as such recognizes DNA in the same manner as the MYC/MAX heterodimer. OmoMYC attenuates both MYC-dependent activation and repression by competing with MYC/MAX for binding to chromatin, effectively lowering MYC/MAX occupancy at its cognate binding sites. OmoMYC causes the largest decreases in promoter occupancy and changes in expression on genes that are invaded by oncogenic MYC levels. A signature of OmoMYC-regulated genes defines subgroups with high MYC levels in multiple tumor entities and identifies novel targets for the eradication of MYC-driven tumors.
Collapse
Affiliation(s)
- L A Jung
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - A Gebhardt
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - W Koelmel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - C P Ade
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - S Walz
- Comprehensive Cancer Center, Core Unit Bioinformatics, Biocenter, Würzburg, Germany
| | - J Kuper
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - B von Eyss
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - S Letschert
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - C Redel
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - L d'Artista
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - A Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia
| | - L Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - M Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - E Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - G Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - C Kisker
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - M Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
461
|
Inhibiting the system x C-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 2017; 8:14844. [PMID: 28348409 PMCID: PMC5379068 DOI: 10.1038/ncomms14844] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
TP53, a critical tumour suppressor gene, is mutated in over half of all cancers resulting in mutant-p53 protein accumulation and poor patient survival. Therapeutic strategies to target mutant-p53 cancers are urgently needed. We show that accumulated mutant-p53 protein suppresses the expression of SLC7A11, a component of the cystine/glutamate antiporter, system xC-, through binding to the master antioxidant transcription factor NRF2. This diminishes glutathione synthesis, rendering mutant-p53 tumours susceptible to oxidative damage. System xC- inhibitors specifically exploit this vulnerability to preferentially kill cancer cells with stabilized mutant-p53 protein. Moreover, we demonstrate that SLC7A11 expression is a novel and robust predictive biomarker for APR-246, a first-in-class mutant-p53 reactivator that also binds and depletes glutathione in tumours, triggering lipid peroxidative cell death. Importantly, system xC- antagonism strongly synergizes with APR-246 to induce apoptosis in mutant-p53 tumours. We propose a new paradigm for targeting cancers that accumulate mutant-p53 protein by inhibiting the SLC7A11-glutathione axis.
Collapse
|
462
|
Mondello P, Brea EJ, De Stanchina E, Toska E, Chang AY, Fennell M, Seshan V, Garippa R, Scheinberg DA, Baselga J, Wendel HG, Younes A. Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265P mutations. JCI Insight 2017; 2:e90196. [PMID: 28352655 DOI: 10.1172/jci.insight.90196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) frequently harbors genetic alterations that activate the B cell receptor (BCR) and TLR pathways, which converge to activate NF-κB. While selective inhibition of BTK with ibrutinib causes clinical responses in relapsed DLBCL patients, most responses are partial and of a short duration. Here, we demonstrated that MyD88 silencing enhanced ibrutinib efficacy in DLBCL cells harboring MyD88 L265P mutations. Chemical downregulation of MyD88 expression with HDAC inhibitors also synergized with ibrutinib. We demonstrate that HDAC inhibitor regulation of MyD88 expression is mediated by STAT3. In turn, STAT3 silencing caused a decrease in MyD88 mRNA and protein levels, and enhanced the ibrutinib antilymphoma effect in MyD88 mutant DLBCL cells. Induced mutations in the STAT3 binding site in the MyD88 promotor region was associated with a decrease in MyD88 transcriptional activity. We also demonstrate that treatment with the HDAC inhibitor panobinostat decreased phosphorylated STAT3 binding to the MyD88 promotor. Accordingly, combined treatment with panobinostat and ibrutinib resulted in enhanced inhibition of NF-κB activity and caused regression of DLBCL xenografts. Our data provide a mechanistic rationale for combining HDAC inhibitors and ibrutinib for the treatment of DLBCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hans-Guido Wendel
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
463
|
Polymers in the Delivery of siRNA for the Treatment of Virus Infections. Top Curr Chem (Cham) 2017; 375:38. [PMID: 28324594 PMCID: PMC7100576 DOI: 10.1007/s41061-017-0127-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Viral diseases remain a major cause of death worldwide. Despite advances in vaccine and antiviral drug technology, each year over three million people die from a range of viral infections. Predominant viruses include human immunodeficiency virus, hepatitis viruses, and gastrointestinal and respiratory viruses. Now more than ever, robust, easily mobilised and cost-effective antiviral strategies are needed to combat both known and emerging disease threats. RNA interference and small interfering (si)RNAs were initially hailed as a “magic bullet”, due to their ability to inhibit the synthesis of any protein via the degradation of its complementary messenger RNA sequence. Of particular interest was the potential for attenuating viral mRNAs contributing to the pathogenesis of disease that were not able to be targeted by vaccines or antiviral drugs. However, it was soon discovered that delivery of active siRNA molecules to the infection site in vivo was considerably more difficult than anticipated, due to a number of physiological barriers in the body. This spurred a new wave of investigation into nucleic acid delivery vehicles which could facilitate safe, targeted and effective administration of the siRNA as therapy. Amongst these, cationic polymer delivery vehicles have emerged as a promising candidate as they are low-cost and easy to produce at an industrial scale, and bind to the siRNA by non-specific electrostatic interactions. These nanoparticles (NPs) can be functionally designed to target the infection site, improve uptake in infected cells, release the siRNA inside the endosome and facilitate delivery into the cell cytoplasm. They may also have the added benefit of acting as adjuvants. This chapter provides a background around problems associated with the translation of siRNA as antiviral treatments, reviews the progress made in nucleic acid therapeutics and discusses current methods and progress in overcoming these challenges. It also addresses the importance of combining physicochemical characterisation of the NPs with in vitro and in vivo data.
Collapse
|
464
|
Pelossof R, Fairchild L, Huang CH, Widmer C, Sreedharan VT, Sinha N, Lai DY, Guan Y, Premsrirut PK, Tschaharganeh DF, Hoffmann T, Thapar V, Xiang Q, Garippa RJ, Rätsch G, Zuber J, Lowe SW, Leslie CS, Fellmann C. Prediction of potent shRNAs with a sequential classification algorithm. Nat Biotechnol 2017; 35:350-353. [PMID: 28263295 PMCID: PMC5416823 DOI: 10.1038/nbt.3807] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Abstract
We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel datasets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.
Collapse
Affiliation(s)
- Raphael Pelossof
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lauren Fairchild
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, USA
| | - Chun-Hao Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Christian Widmer
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Machine Learning Group, Department of Computer Science, Berlin Institute of Technology, Berlin, Germany
| | - Vipin T Sreedharan
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | - Darjus F Tschaharganeh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Vishal Thapar
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Qing Xiang
- RNAi Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph J Garippa
- RNAi Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gunnar Rätsch
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, New York, USA.,Howard Hughes Medical Institute and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christof Fellmann
- Mirimus Inc., Woodbury, New York, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
465
|
Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, Kato N, Yonekura H. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci 2017; 130:916-926. [PMID: 28096474 DOI: 10.1242/jcs.196303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Blood vessels and nerve fibers are often closely arranged in parallel throughout the body. Therefore, neurovascular interactions have been suggested to be important for the development of vascular networks. However, the molecular mechanisms and genes regulating this process remain unclear. In the present study, we investigated the genes that are activated in endothelial cells (ECs) following interactions with neurons during vascular development. Microarray analyses of human primary microvascular ECs co-cultured with mouse primary dorsal root ganglion cells showed that JunB is strongly upregulated in ECs by neurovascular interactions. Furthermore, the forced expression of JunB in ECs stimulated a tip-like cell formation and angiogenesis in vitro and induced vascular endothelial growth factor A (VEGFA) and the pro-angiogenic integrin subunit ITGB3 expression. Moreover, in vivo knockdown of JunB in ECs from developing mouse limb skin considerably decreased the parallel alignments of blood vessels and nerve fibers. Taken together, the present data demonstrates for the first time that JunB plays an important role in the formation of embryonic vascular networks. These results contribute to the molecular understanding of neurovascular interactions during embryonic vascular development.
Collapse
Affiliation(s)
- Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hidehito Saito
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yoshino Yoshitake
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
466
|
Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L, Keyes WM. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 2017; 31:172-183. [PMID: 28143833 PMCID: PMC5322731 DOI: 10.1101/gad.290635.116] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/04/2017] [Indexed: 12/04/2022]
Abstract
Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood. Here we uncover timely new functions of the SASP in promoting a proregenerative response through the induction of cell plasticity and stemness. We show that primary mouse keratinocytes transiently exposed to the SASP exhibit increased expression of stem cell markers and regenerative capacity in vivo. However, prolonged exposure to the SASP causes a subsequent cell-intrinsic senescence arrest to counter the continued regenerative stimuli. Finally, by inducing senescence in single cells in vivo in the liver, we demonstrate that this activates tissue-specific expression of stem cell markers. Together, this work uncovers a primary and beneficial role for the SASP in promoting cell plasticity and tissue regeneration and introduces the concept that transient therapeutic delivery of senescent cells could be harnessed to drive tissue regeneration.
Collapse
Affiliation(s)
- Birgit Ritschka
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Mekayla Storer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Alba Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Florian Heinzmann
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Mari Carmen Ortells
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - William M Keyes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR7104, Centre National de la Recherche Scientifique, U964, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
467
|
Manchado E, Huang CH, Tasdemir N, Tschaharganeh DF, Wilkinson JE, Lowe SW. A Pipeline for Drug Target Identification and Validation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:257-267. [PMID: 28057848 PMCID: PMC5469697 DOI: 10.1101/sqb.2016.81.031096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rapid and affordable tumor profiling has led to an explosion of genomic data that is facilitating the development of new cancer therapies. The potential of therapeutic strategies aimed at inactivating the oncogenic lesions that contribute to the aberrant survival and proliferation of tumor cells has yielded remarkable success in some malignancies such as BRAF-mutant melanoma and BCR-ABL expressing chronic myeloid leukemia. However, the direct inhibition of several well-established oncoproteins in some of these cancers is not possible or produces only transient benefits. Functional genomics represents a powerful approach for the identification of vulnerabilities linked to specific genetic alterations and has provided substantial insights into cancer signaling networks. Still, as inhibition of gene function can have diverse effects on both tumor and normal tissues, information on the potency of target inhibition on tumor growth as well as the toxic side effects of target inhibition are also needed. Here, we discuss our RNA interference (RNAi) pipeline for cancer target discovery based on our optimized short-hairpin RNA (shRNA) tools for negative selection screens and inducible RNAi platform that, in combination with embryonic stem cell (ESC)-based genetically engineered mouse models (GEMMs), enable deep in vivo target validation.
Collapse
Affiliation(s)
- Eusebio Manchado
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Chun-Hao Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065
| | - Nilgun Tasdemir
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Darjus F Tschaharganeh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - John E Wilkinson
- ULAM/Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
468
|
Abstract
RNAi approaches, including microRNA (miRNA) regulatory pathway, offer great tools for functional characterization of unknown genes. Moreover, the applications of artificial microRNA (amiRNA) in the field of plant transgenesis have also been advanced to engineer pathogen-resistant or trait-improved transgenic plants. Until now, despite the high potency of amiRNA approach, no commercial plant cultivar expressing amiRNAs with improved traits has been released yet. Beside the issues of biosafety policies, the specificity and efficacy of amiRNAs are of major concerns. Sufficient cares should be taken for the specificity and efficacy of amiRNAs due to their potential off-target effects and other issues relating to in vivo expression of pre-amiRNAs. For these reasons, the proper design of amiRNAs with the lowest off-target possibility is very important for successful applications of the approach in plant. Therefore, there are many studies with the aim to improve the amiRNA design and amiRNA expressing backbones for obtaining better specificity and efficacy. However, the requirement for an efficient reference for the design is still needed. In the present chapter, we attempt to summarize and discuss all the major concerns relating to amiRNA design with the hope to provide a significant guideline for this approach.
Collapse
|
469
|
Tian B, Li J, Oakley TR, Todd TC, Trick HN. Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes (Basel) 2016; 7:E122. [PMID: 27941644 PMCID: PMC5192498 DOI: 10.3390/genes7120122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022] Open
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alternative method for gene silencing, with the advantage that they can lead to more specific silencing of target genes than traditional RNAi vectors. To explore the application of amiRNAs for improving soybean resistance to SCN, three nematode genes (designated as J15, J20, and J23) were targeted using amiRNA vectors. The transgenic soybean hairy roots, transformed independently with these three amiRNA vectors, showed significant reductions in SCN population densities in bioassays. Expression of the targeted genes within SCN eggs were downregulated in populations feeding on transgenic hairy roots. Our results provide evidence that host-derived amiRNA methods have great potential to improve soybean resistance to SCN. This approach should also limit undesirable phenotypes associated with off-target effects, which is an important consideration for commercialization of transgenic crops.
Collapse
Affiliation(s)
- Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
- Bayer CropScience, 3500 Paramount Pkwy, Morrisville, NC 27560, USA.
| | - Thomas R Oakley
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Timothy C Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
470
|
VCAM1 acts in parallel with CD69 and is required for the initiation of oligodendrocyte myelination. Nat Commun 2016; 7:13478. [PMID: 27876794 PMCID: PMC5476804 DOI: 10.1038/ncomms13478] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Oligodendrocytes differentiate to wrap their plasma membranes around axons, forming the myelin sheath. A neuronal cue is one of the regulator elements controlling this process. Here, we demonstrate that VCAM1, which plays a key role throughout the immune system, is also expressed in oligodendrocytes, where it regulates the initiation of myelination. VCAM1 knockout mice exhibit reduced myelin thickness. Decreased myelin thickness is also observed in mutant mice of α4 integrin, which is a neuronal VCAM1 ligand. Furthermore, CD69 is identified as one of the transcripts downregulated when VCAM1 is knocked down in oligodendrocytes. Knockdown of CD69 in mice indicates its role in myelination. Therefore, VCAM1 contributes not only to the initiation of myelination but also to its regulation through controlling the abundance of CD69, demonstrating that an intercellular molecule whose primary role is in the immune system can also play an unexpected role in the CNS. The vascular cell adhesion molecule VCAM1 plays a role in the immune system but is also expressed in oligodendrocytes. Here, the authors find VCAM1 interacts with neuronal α4 integrin to regulate oligodendrocyte differentiation and thereby myelination, an effect mediated by downstream CD69 signalling.
Collapse
|
471
|
Wang T, Xie Y, Tan A, Li S, Xie Z. Construction and Characterization of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. ACS Synth Biol 2016; 5:1193-1200. [PMID: 26639786 DOI: 10.1021/acssynbio.5b00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA interference (RNAi) technology is widely used in basic and translational research. By mimicking a natural primary microRNA (pri-miRNA) cluster, multiple engineered hairpins can be transcribed as a single transcript from the same Pol II promoter, enabling the formation of multiplex RNAi in mammalian cells. However, constructing a synthetic miRNA cluster is still time-consuming, and the processing and function of a miRNA cluster are incompletely understood. Here, we identified a miRNA precursor architecture that allows precise miRNA maturation. We established a hierarchical cloning method for the efficient construction of a synthetic miRNA cluster harboring up to 18 miRNA precursors. We demonstrated that the maturation and function of individual miRNA precursors were independent of their positions in the cluster. We then analyzed the integration efficiency of miRNA clusters having a varied number of miRNA precursors by using CRISPR/Cas9-mediated integration, a piggyBac transposon system, and a lentiviral system. This synthetic miRNA cluster system provides an important tool for multiplex RNAi in mammalian cells.
Collapse
Affiliation(s)
- Tingting Wang
- MOE Key Laboratory
of Bioinformatics
and Bioinformatics Division, Center for Synthetic and Systems Biology,
TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yue Xie
- MOE Key Laboratory
of Bioinformatics
and Bioinformatics Division, Center for Synthetic and Systems Biology,
TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Aidi Tan
- MOE Key Laboratory
of Bioinformatics
and Bioinformatics Division, Center for Synthetic and Systems Biology,
TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- MOE Key Laboratory
of Bioinformatics
and Bioinformatics Division, Center for Synthetic and Systems Biology,
TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory
of Bioinformatics
and Bioinformatics Division, Center for Synthetic and Systems Biology,
TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
472
|
CCL2 is a KIT D816V-dependent modulator of the bone marrow microenvironment in systemic mastocytosis. Blood 2016; 129:371-382. [PMID: 27856463 DOI: 10.1182/blood-2016-09-739003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Systemic mastocytosis (SM) is characterized by abnormal accumulation of neoplastic mast cells harboring the activating KIT mutation D816V in the bone marrow and other internal organs. As found in other myeloproliferative neoplasms, increased production of profibrogenic and angiogenic cytokines and related alterations of the bone marrow microenvironment are commonly found in SM. However, little is known about mechanisms and effector molecules triggering fibrosis and angiogenesis in SM. Here we show that KIT D816V promotes expression of the proangiogenic cytokine CCL2 in neoplastic mast cells. Correspondingly, the KIT-targeting drug midostaurin and RNA interference-mediated knockdown of KIT reduced expression of CCL2. We also found that nuclear factor κB contributes to KIT-dependent upregulation of CCL2 in mast cells. In addition, CCL2 secreted by KIT D816V+ mast cells was found to promote the migration of human endothelial cells in vitro. Furthermore, knockdown of CCL2 in neoplastic mast cells resulted in reduced microvessel density and reduced tumor growth in vivo compared with CCL2-expressing cells. Finally, we measured CCL2 serum concentrations in patients with SM and found that CCL2 levels were significantly increased in mastocytosis patients compared with controls. CCL2 serum levels were higher in patients with advanced SM and were found to correlate with poor survival. In summary, we have identified CCL2 as a novel KIT D816V-dependent key regulator of vascular cell migration and angiogenesis in SM. CCL2 expression correlates with disease severity and prognosis. Whether CCL2 may serve as a therapeutic target in advanced SM remains to be determined in forthcoming studies.
Collapse
|
473
|
Lizardo MM, Morrow JJ, Miller TE, Hong ES, Ren L, Mendoza A, Halsey CH, Scacheri PC, Helman LJ, Khanna C. Upregulation of Glucose-Regulated Protein 78 in Metastatic Cancer Cells Is Necessary for Lung Metastasis Progression. Neoplasia 2016; 18:699-710. [PMID: 27973325 PMCID: PMC5094383 DOI: 10.1016/j.neo.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
Metastasis is the cause of more than 90% of all cancer deaths. Despite this fact, most anticancer therapeutics currently in clinical use have limited efficacy in treating established metastases. Here, we identify the endoplasmic reticulum chaperone protein, glucose-regulated protein 78 (GRP78), as a metastatic dependency in several highly metastatic cancer cell models. We find that GRP78 is consistently upregulated when highly metastatic cancer cells colonize the lung microenvironment and that mitigation of GRP78 upregulation via short hairpin RNA or treatment with the small molecule IT-139, which is currently under clinical investigation for the treatment of primary tumors, inhibits metastatic growth in the lung microenvironment. Inhibition of GRP78 upregulation and an associated reduction in metastatic potential have been shown in four highly metastatic cell line models: three human osteosarcomas and one murine mammary adenocarcinoma. Lastly, we show that downmodulation of GRP78 in highly metastatic cancer cells significantly increases median survival times in our in vivo animal model of experimental metastasis. Collectively, our data indicate that GRP78 is an attractive target for the development of antimetastatic therapies.
Collapse
Affiliation(s)
- Michael M Lizardo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James J Morrow
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tyler E Miller
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ellen S Hong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ling Ren
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles H Halsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lee J Helman
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chand Khanna
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Ethos Discovery in Washington DC and Ethos Veterinary Health, Wolburn MA, USA.
| |
Collapse
|
474
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
475
|
Smith DK, Yang J, Liu ML, Zhang CL. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming. Stem Cell Reports 2016; 7:955-969. [PMID: 28157484 PMCID: PMC5106529 DOI: 10.1016/j.stemcr.2016.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2), forskolin (F), and dorsomorphin (D) can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals. NEUROG2 acts as a pioneer factor to drive neuronal reprogramming ATAC-, ChIP-, and RNA-seq profiling reveals genome-wide mechanisms for reprogramming SOX4 is a critical mediator of chromatin remodeling during reprogramming SOX4 or FK228 can enhance adult human glioblastoma and skin fibroblast reprogramming
Collapse
Affiliation(s)
- Derek K Smith
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Jianjing Yang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
476
|
Watanabe C, Cuellar TL, Haley B. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi. RNA Biol 2016; 13:25-33. [PMID: 26786363 PMCID: PMC4829305 DOI: 10.1080/15476286.2015.1128062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme.
Collapse
Affiliation(s)
- Colin Watanabe
- a Departments of Bioinformatics and Computational Biology , South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| | - Trinna L Cuellar
- b Molecular Biology South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| | - Benjamin Haley
- b Molecular Biology South San Francisco , CA 94080.,c Genentech, Inc . South San Francisco , CA 94080 , USA
| |
Collapse
|
477
|
Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, González Meljem JM, Deswal S, Martínez-Barbera JP, García-Escudero R, Zuber J, Zender L, Gil J. SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev 2016; 30:2187-2198. [PMID: 27737960 PMCID: PMC5088567 DOI: 10.1101/gad.286112.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Here, Tordella et. al identified senescence regulators relevant to cancer by screening an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). They show that knockdown of the SWI/SNF component ARID1B prevents oncogene-induced senescence and cooperates with RAS to induce liver tumors, and their results provide new insights into the mechanisms by which epigenetic regulators can affect tumor progression. Oncogene-induced senescence (OIS) is a potent tumor suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumors. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress, and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators, including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage, and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that prosenescence therapies could be employed against SWI/SNF-mutated cancers.
Collapse
Affiliation(s)
- Luca Tordella
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Sadaf Khan
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Anja Hohmeyer
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ana Banito
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Sabrina Klotz
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Selina Raguz
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Nadine Martin
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Gopuraja Dhamarlingam
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Thomas Carroll
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - José Mario González Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Sumit Deswal
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Juan Pedro Martínez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Ramón García-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Jesús Gil
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
478
|
Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q, Chang AY, Garippa RJ, Merghoub T, Wolchok JD, Rosen N, Lowe SW, Scheinberg DA. Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunol Res 2016; 4:936-947. [PMID: 27680026 DOI: 10.1158/2326-6066.cir-16-0177] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8+ T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases. Cancer Immunol Res; 4(11); 936-47. ©2016 AACR.
Collapse
Affiliation(s)
- Elliott J Brea
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Claire Y Oh
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Eusebio Manchado
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Sadna Budhu
- Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Ron S Gejman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - George Mo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Patrizia Mondello
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - James E Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Casey A Jarvis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - David Ulmert
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Qing Xiang
- RNAi Core Facility, Memorial Sloan Kettering Cancer Center New York, New York
| | - Aaron Y Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan Kettering Cancer Center New York, New York
| | - Taha Merghoub
- Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Jedd D Wolchok
- Weill Cornell Medicine, New York, New York.,Immunology Program, Memorial Sloan Kettering Cancer Center New York, New York
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York.,Weill Cornell Medicine, New York, New York
| | - Scott W Lowe
- Weill Cornell Medicine, New York, New York.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center New York, New York.,Howard Hughes Medical Institute, New York, New York
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York, New York. .,Weill Cornell Medicine, New York, New York
| |
Collapse
|
479
|
Au-Yeung G, Lang F, Azar WJ, Mitchell C, Jarman KE, Lackovic K, Aziz D, Cullinane C, Pearson RB, Mileshkin L, Rischin D, Karst AM, Drapkin R, Etemadmoghadam D, Bowtell DDL. Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin-Dependent Kinase 2 and AKT Inhibition. Clin Cancer Res 2016; 23:1862-1874. [PMID: 27663592 DOI: 10.1158/1078-0432.ccr-16-0620] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
Purpose: Cyclin E1 (CCNE1) amplification is associated with primary treatment resistance and poor outcome in high-grade serous ovarian cancer (HGSC). Here, we explore approaches to target CCNE1-amplified cancers and potential strategies to overcome resistance to targeted agents.Experimental Design: To examine dependency on CDK2 in CCNE1-amplified HGSC, we utilized siRNA and conditional shRNA gene suppression, and chemical inhibition using dinaciclib, a small-molecule CDK2 inhibitor. High-throughput compound screening was used to identify selective synergistic drug combinations, as well as combinations that may overcome drug resistance. An observed relationship between CCNE1 and the AKT pathway was further explored in genomic data from primary tumors, and functional studies in fallopian tube secretory cells.Results: We validate CDK2 as a therapeutic target by demonstrating selective sensitivity to gene suppression. However, we found that dinaciclib did not trigger amplicon-dependent sensitivity in a panel of HGSC cell lines. A high-throughput compound screen identified synergistic combinations in CCNE1-amplified HGSC, including dinaciclib and AKT inhibitors. Analysis of genomic data from TCGA demonstrated coamplification of CCNE1 and AKT2 Overexpression of Cyclin E1 and AKT isoforms, in addition to mutant TP53, imparted malignant characteristics in untransformed fallopian tube secretory cells, the dominant site of origin of HGSC.Conclusions: These findings suggest a specific dependency of CCNE1-amplified tumors for AKT activity, and point to a novel combination of dinaciclib and AKT inhibitors that may selectively target patients with CCNE1-amplified HGSC. Clin Cancer Res; 23(7); 1862-74. ©2016 AACR.
Collapse
Affiliation(s)
- George Au-Yeung
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Franziska Lang
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Walid J Azar
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Chris Mitchell
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kate E Jarman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Kurt Lackovic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Diar Aziz
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Carleen Cullinane
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Translational Research Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Richard B Pearson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Linda Mileshkin
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Danny Rischin
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Alison M Karst
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Ronny Drapkin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dariush Etemadmoghadam
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - David D L Bowtell
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
480
|
Zhang ZQ, Cao Z, Liu C, Li R, Wang WD, Wang XY. MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer. PLoS One 2016; 11:e0163446. [PMID: 27656894 PMCID: PMC5033420 DOI: 10.1371/journal.pone.0163446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022] Open
Abstract
Legumain (LGMN) is highly expressed in breast cancer (BC) and other solid tumors and is a potential anticancer target. Here we investigate the anti-tumor effects of short hairpin RNAs (shRNAs) targeting LGMN embedded in a microRNA-155 (miR-155) architecture, which is driven by a radiation-inducible chimeric RNA polymerase II (Pol II) promoter. Lentiviral vectors were generated with the chimeric promoter which controlled the expression of downstream shRNA-miR-155 cassette. Fluorescence was observed by using confocal microscopy. Real-time quantitative PCR and Western blotting were used to determine the expression level of LGMN, MMP2, and MMP9. Furthermore, the proliferation and invasive ability of BC cells was analyzed via plate colony formation and invasion assays. Here we demonstrated that the chimeric promoter could be effectively induced by radiation treatment. Furthermore, the shRNA-miR-155 cassette targeting LGMN could be effectively activated by the chimeric promoter. Radiation plus knockdown of LGMN impairs colony formation and dampens cell migration and invasion in BC cells. Inhibition of LGMN downregulates MMP2 and MMP9 expression in BC cells. Pol II-driven shRNA-miR-155 could effectively suppress the growth and invasiveness of BC cells, and that the interference effects could be regulated by radiation doses. Moreover, knockdown of LGMN alleviates the aggressive phenotype of BC cells through modulating MMPs expression.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhi Cao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Cong Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
- * E-mail: (WW); (XW)
| | - Xing-Yong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- * E-mail: (WW); (XW)
| |
Collapse
|
481
|
Coordinated Regulation of Cap-Dependent Translation and MicroRNA Function by Convergent Signaling Pathways. Mol Cell Biol 2016; 36:2360-73. [PMID: 27354062 DOI: 10.1128/mcb.01011-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Cell growth and proliferation require the coordinated activation of many cellular processes, including cap-dependent mRNA translation. MicroRNAs oppose cap-dependent translation and set thresholds for expression of target proteins. Emerging data suggest that microRNA function is enhanced by cellular activation due in part to induction of the RNA-induced silencing complex (RISC) scaffold protein GW182. In the current study, we demonstrate that increased expression of GW182 in activated or transformed immune cells results from effects of phosphoinositol 3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) and Jak-Stat-Pim signaling on the translation of GW182 mRNA. Both signaling pathways enhanced polysome occupancy and eukaryotic initiation factor 4E (eIF4E) binding to the 5' 7mG cap of GW182 mRNA. The effect of Jak-Stat-Pim signaling on polysome occupancy and expression of GW182 protein was greater than that of PI3K-Akt-mTOR signaling, likely resulting from enhanced eIF4A-dependent unwinding of G-quadruplexes in the 5' untranslated region of GW182 mRNA. Consistent with this, GW182 expression and microRNA function were reduced by inhibition of mTOR or Pim kinases, translation initiation complex assembly, or eIF4A function. Taken together, these data provide a mechanistic link between microRNA function and cap-dependent translation that allows activated immune cells to maintain microRNA-mediated repression of targets despite enhanced rates of protein synthesis.
Collapse
|
482
|
Lok BH, Gardner EE, Schneeberger VE, Ni A, Desmeules P, Rekhtman N, de Stanchina E, Teicher BA, Riaz N, Powell SN, Poirier JT, Rudin CM. PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clin Cancer Res 2016; 23:523-535. [PMID: 27440269 DOI: 10.1158/1078-0432.ccr-16-1040] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) are a novel class of small molecule therapeutics for small cell lung cancer (SCLC). Identification of predictors of response would advance our understanding, and guide clinical application, of this therapeutic strategy. EXPERIMENTAL DESIGN Efficacy of PARP inhibitors olaparib, rucaparib, and veliparib, as well as etoposide and cisplatin in SCLC cell lines, and gene expression correlates, was analyzed using public datasets. HRD genomic scar scores were calculated from Affymetrix SNP 6.0 arrays. In vitro talazoparib efficacy was measured by cell viability assays. For functional studies, CRISPR/Cas9 and shRNA were used for genomic editing and transcript knockdown, respectively. Protein levels were assessed by immunoblotting and immunohistochemistry (IHC). Quantitative synergy of talazoparib and temozolomide was determined in vitro In vivo efficacy of talazoparib, temozolomide, and the combination was assessed in patient-derived xenograft (PDX) models. RESULTS We identified SLFN11, but not HRD genomic scars, as a consistent correlate of response to all three PARPi assessed, with loss of SLFN11 conferring resistance to PARPi. We confirmed these findings in vivo across multiple PDX and defined IHC staining for SLFN11 as a predictor of talazoparib response. As temozolomide has activity in SCLC, we investigated combination therapy with talazoparib and found marked synergy in vitro and efficacy in vivo, which did not solely depend on SLFN11 or MGMT status. CONCLUSIONS SLFN11 is a relevant predictive biomarker of sensitivity to PARP inhibitor monotherapy in SCLC and we identify combinatorial therapy with TMZ as a particularly promising therapeutic strategy that warrants further clinical investigation. Clin Cancer Res; 23(2); 523-35. ©2016 AACR.
Collapse
Affiliation(s)
- Benjamin H Lok
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric E Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Pharmacology Graduate Training Program, Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - Andy Ni
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrice Desmeules
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-Tumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - John T Poirier
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
483
|
Raguz J, Jeric I, Niault T, Nowacka JD, Kuzet SE, Rupp C, Fischer I, Biggi S, Borsello T, Baccarini M. Epidermal RAF prevents allergic skin disease. eLife 2016; 5. [PMID: 27431613 PMCID: PMC4951198 DOI: 10.7554/elife.14012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
The RAS pathway is central to epidermal homeostasis, and its activation in tumors or in Rasopathies correlates with hyperproliferation. Downstream of RAS, RAF kinases are actionable targets regulating keratinocyte turnover; however, chemical RAF inhibitors paradoxically activate the pathway, promoting epidermal proliferation. We generated mice with compound epidermis-restricted BRAF/RAF1 ablation. In these animals, transient barrier defects and production of chemokines and Th2-type cytokines by keratinocytes cause a disease akin to human atopic dermatitis, characterized by IgE responses and local and systemic inflammation. Mechanistically, BRAF and RAF1 operate independently to balance MAPK signaling: BRAF promotes ERK activation, while RAF1 dims stress kinase activation. In vivo, JNK inhibition prevents disease onset, while MEK/ERK inhibition in mice lacking epidermal RAF1 phenocopies it. These results support a primary role of keratinocytes in the pathogenesis of atopic dermatitis, and the animals lacking BRAF and RAF1 in the epidermis represent a useful model for this disease.
Collapse
Affiliation(s)
- Josipa Raguz
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ines Jeric
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Theodora Niault
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Joanna Daniela Nowacka
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sanya Eduarda Kuzet
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christian Rupp
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Silvia Biggi
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Tiziana Borsello
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
484
|
Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 2016; 12:672-9. [PMID: 27376689 PMCID: PMC4990482 DOI: 10.1038/nchembio.2115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.
Collapse
Affiliation(s)
- Anja F Hohmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Laetitia J Martin
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Jessica L Minder
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Steffen Steurer
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Darryl McConnell
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Teresa Gottschamel
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Diane Thompson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Japan
| | - Manfred Koegl
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
485
|
Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods 2016; 103:157-66. [PMID: 27083402 PMCID: PMC4921303 DOI: 10.1016/j.ymeth.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is an extremely useful tool for inhibiting gene expression. It can be triggered by transfected synthetic small interfering RNA (siRNA) or by expressed small hairpin RNA (shRNA). The cellular machinery processes the latter into siRNA in vivo. shRNA is preferred or required in genetic screens and specific RNAi approaches in gene therapy settings. Despite its many successes, the field of shRNAs faces many challenges. Insufficient knockdowns and off-target effects become obstacles for shRNA usage in many applications. Numerous failures are triggered by pitfalls in shRNA design that is often associated with impoverished biogenesis. Here, based on current understanding of the miRNA maturation pathway, we discuss the principles of different shRNA design (pre-miRNA-like, pri-miRNA-like and Ago-shRNA) with an emphasis on the RNA structure. We also provide detailed instructions for an optimal design of pre-miRNA-like shRNA.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Shuo Gu
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
486
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
487
|
Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors. Leukemia 2016; 31:479-490. [PMID: 27443262 PMCID: PMC5310924 DOI: 10.1038/leu.2016.182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Inhibition of bromodomain and extraterminal motif (BET) proteins such as BRD4 bears great promise for cancer treatment and its efficacy has been frequently attributed to Myc downregulation. Here, we use B-cell tumors as a model to address the mechanism of action of JQ1, a widely used BET inhibitor. Although JQ1 led to widespread eviction of BRD4 from chromatin, its effect on gene transcription was limited to a restricted set of genes. This was unlinked to Myc downregulation or its chromatin association. Yet, JQ1-sensitive genes were enriched for Myc and E2F targets, were expressed at high levels, and showed high promoter occupancy by RNAPol2, BRD4, Myc and E2F. Their marked decrease in transcriptional elongation upon JQ1 treatment, indicated that BRD4-dependent promoter clearance was rate limiting for transcription. At JQ1-insensitive genes the drop in transcriptional elongation still occurred, but was compensated by enhanced RNAPol2 recruitment. Similar results were obtained with other inhibitors of transcriptional elongation. Thus, the selective transcriptional effects following JQ1 treatment are linked to the inability of JQ1-sensitive genes to sustain compensatory RNAPol2 recruitment to promoters. These observations highlight the role of BET proteins in supporting transcriptional elongation and rationalize how a general suppression of elongation may selectively affects transcription.
Collapse
|
488
|
Tang KJ, Constanzo JD, Venkateswaran N, Melegari M, Ilcheva M, Morales JC, Skoulidis F, Heymach JV, Boothman DA, Scaglioni PP. Focal Adhesion Kinase Regulates the DNA Damage Response and Its Inhibition Radiosensitizes Mutant KRAS Lung Cancer. Clin Cancer Res 2016; 22:5851-5863. [PMID: 27220963 DOI: 10.1158/1078-0432.ccr-15-2603] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide due to the limited availability of effective therapeutic options. For instance, there are no effective strategies for NSCLCs that harbor mutant KRAS, the most commonly mutated oncogene in NSCLC. Thus, our purpose was to make progress toward the generation of a novel therapeutic strategy for NSCLC. EXPERIMENTAL DESIGN We characterized the effects of suppressing focal adhesion kinase (FAK) by RNA interference (RNAi), CRISPR/CAS9 gene editing or pharmacologic approaches in NSCLC cells and in tumor xenografts. In addition, we tested the effects of suppressing FAK in association with ionizing radiation (IR), a standard-of-care treatment modality. RESULTS FAK is a critical requirement of mutant KRAS NSCLC cells. With functional experiments, we also found that, in mutant KRAS NSCLC cells, FAK inhibition resulted in persistent DNA damage and susceptibility to exposure to IR. Accordingly, administration of IR to FAK-null tumor xenografts causes a profound antitumor effect in vivo CONCLUSIONS: FAK is a novel regulator of DNA damage repair in mutant KRAS NSCLC and its pharmacologic inhibition leads to radiosensitizing effects that could be beneficial in cancer therapy. Our results provide a framework for the rationale clinical testing of FAK inhibitors in NSCLC patients. Clin Cancer Res; 22(23); 5851-63. ©2016 AACR.
Collapse
Affiliation(s)
- Ke-Jing Tang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center and
| | - Jerfiz D Constanzo
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center and
| | - Niranjan Venkateswaran
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center and
| | | | - Mariya Ilcheva
- Simmons Comprehensive Cancer Center and.,Departments of Radiation Oncology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Julio C Morales
- Simmons Comprehensive Cancer Center and.,Departments of Radiation Oncology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Boothman
- Simmons Comprehensive Cancer Center and.,Departments of Radiation Oncology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. .,Simmons Comprehensive Cancer Center and
| |
Collapse
|
489
|
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci U S A 2016; 113:5688-93. [PMID: 27155012 DOI: 10.1073/pnas.1601053113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments.
Collapse
|
490
|
Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 2016; 34:646-51. [PMID: 27136077 PMCID: PMC4900928 DOI: 10.1038/nbt.3528] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
The CRISPR-associated protein Cas9 from Streptococcus
pyogenes is an RNA-guided DNA endonuclease with widespread utility
for genome modification. However, the structural constraints limiting the
engineering of Cas9 have not been determined. Here we experimentally profile
Cas9 using randomized insertional mutagenesis and delineate hotspots in the
structure capable of tolerating insertions of a PDZ domain without disrupting
the enzyme’s binding and cleavage functions. Orthogonal domains or
combinations of domains can be inserted into the identified sites with minimal
functional consequence. To illustrate the utility of the identified sites, we
construct an allosterically regulated Cas9 by insertion of the Estrogen Receptor
α Ligand Binding Domain. This protein displayed robust, ligand-dependent
activation in prokaryotic and eukaryotic cells, establishing a versatile
one-component system for inducible and reversible Cas9 activation. Thus, domain
insertion profiling facilitates the rapid generation of new Cas9 functionalities
and provides useful data for future engineering of Cas9.
Collapse
|
491
|
Galka-Marciniak P, Olejniczak M, Starega-Roslan J, Szczesniak MW, Makalowska I, Krzyzosiak WJ. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:639-49. [DOI: 10.1016/j.bbagrm.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
492
|
Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD, Gao J, Spitzer B, Bosbach B, Kastenhuber ER, Baslan T, Ackermann S, Cheng L, Wang Q, Niu T, Schultz N, Levine RL, Mills AA, Lowe SW. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 2016; 531:471-475. [PMID: 26982726 PMCID: PMC4836395 DOI: 10.1038/nature17157] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Mutations disabling the TP53 tumour suppressor gene represent the most frequent events in human cancer and typically occur through a two-hit mechanism involving a missense mutation in one allele and a 'loss of heterozygosity' deletion encompassing the other. While TP53 missense mutations can also contribute gain-of-function activities that impact tumour progression, it remains unclear whether the deletion event, which frequently includes many genes, impacts tumorigenesis beyond TP53 loss alone. Here we show that somatic heterozygous deletion of mouse chromosome 11B3, a 4-megabase region syntenic to human 17p13.1, produces a greater effect on lymphoma and leukaemia development than Trp53 deletion. Mechanistically, the effect of 11B3 loss on tumorigenesis involves co-deleted genes such as Eif5a and Alox15b (also known as Alox8), the suppression of which cooperates with Trp53 loss to produce more aggressive disease. Our results imply that the selective advantage produced by human chromosome 17p deletion reflects the combined impact of TP53 loss and the reduced dosage of linked tumour suppressor genes.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Mammalian/genetics
- Disease Models, Animal
- Disease Progression
- Female
- Genes, p53/genetics
- Heterozygote
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lymphoma/genetics
- Lymphoma/pathology
- Male
- Mice
- Neoplasms/genetics
- Neoplasms/pathology
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Deletion/genetics
- Synteny/genetics
- Tumor Suppressor Protein p53/deficiency
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chong Chen
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Zhengmin Xu
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Claudio Scuoppo
- institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Cory D Rillahan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jianjiong Gao
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Benedikt Bosbach
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timour Baslan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Ackermann
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lihua Cheng
- Department of Hematology & Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingguo Wang
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ting Niu
- Department of Hematology & Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, New York, New York 10065, USA
| |
Collapse
|
493
|
David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β Tumor Suppression through a Lethal EMT. Cell 2016; 164:1015-30. [PMID: 26898331 DOI: 10.1016/j.cell.2016.01.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/06/2015] [Accepted: 01/07/2016] [Indexed: 01/06/2023]
Abstract
TGF-β signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-β mediator Smad4. We show that TGF-β induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-β-sensitive PDA cells, EMT becomes lethal by converting TGF-β-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-β. TGF-β-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mo Chen
- The Rockefeller University, New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
494
|
Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, Sgodda M, Weiβmann R, Reichl U, Steinemann D, Diekmann U, Huber NMB, Oberbeck A, Cantz T, Kuss AW, Körner C, Schambach A, Rapp E, Buettner FFR. Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Mol Cell Proteomics 2016; 15:1435-52. [PMID: 26785728 PMCID: PMC4824866 DOI: 10.1074/mcp.m115.054122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors and in vitro differentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCs in vitro. Knock-down of PMM2 by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.
Collapse
Affiliation(s)
- Christina T Thiesler
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Samanta Cajic
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Dirk Hoffmann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Thiel
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Laura van Diepen
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - René Hennig
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Malte Sgodda
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Weiβmann
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Udo Reichl
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Doris Steinemann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖‖Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nicolas M B Huber
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Cantz
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas W Kuss
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Christian Körner
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Axel Schambach
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Erdmann Rapp
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
495
|
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2016; 528:218-24. [PMID: 26659182 PMCID: PMC4866648 DOI: 10.1038/nature15749] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
Abstract
Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.
Collapse
Affiliation(s)
- Sihem Cheloufi
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Barbara Hopfgartner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Jernej Murn
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Maria Hubmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Aimee I Badeaux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Daniel J Wesche
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nadezhda Abazova
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Max Hogue
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nilgun Tasdemir
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Justin Brumbaugh
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Andres Blanco
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Daniel Wenzel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Marietta Zinner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Simon E Vidal
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Scott W Lowe
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John Rinn
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Konrad Hochedlinger
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
496
|
Shono Y, Tuckett AZ, Liou HC, Doubrovina E, Derenzini E, Ouk S, Tsai JJ, Smith OM, Levy ER, Kreines FM, Ziegler CGK, Scallion MI, Doubrovin M, Heller G, Younes A, O'Reilly RJ, van den Brink MRM, Zakrzewski JL. Characterization of a c-Rel Inhibitor That Mediates Anticancer Properties in Hematologic Malignancies by Blocking NF-κB-Controlled Oxidative Stress Responses. Cancer Res 2016; 76:377-89. [PMID: 26744524 DOI: 10.1158/0008-5472.can-14-2814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
NF-κB plays a variety of roles in oncogenesis and immunity that may be beneficial for therapeutic targeting, but strategies to selectively inhibit NF-κB to exert antitumor activity have been elusive. Here, we describe IT-901, a bioactive naphthalenethiobarbiturate derivative that potently inhibits the NF-κB subunit c-Rel. IT-901 suppressed graft-versus-host disease while preserving graft-versus-lymphoma activity during allogeneic transplantation. Further preclinical assessment of IT-901 for the treatment of human B-cell lymphoma revealed antitumor properties in vitro and in vivo without restriction to NF-κB-dependent lymphoma. This nondiscriminatory, antilymphoma effect was attributed to modulation of the redox homeostasis in lymphoma cells resulting in oxidative stress. Moreover, NF-κB inhibition by IT-901 resulted in reduced stimulation of the oxidative stress response gene heme oxygenase-1, and we demonstrated that NF-κB inhibition exacerbated oxidative stress induction to inhibit growth of lymphoma cells. Notably, IT-901 did not elicit increased levels of reactive oxygen species in normal leukocytes, illustrating its cancer selective properties. Taken together, our results provide mechanistic insight and preclinical proof of concept for IT-901 as a novel therapeutic agent to treat human lymphoid tumors and ameliorate graft-versus-host disease.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Z Tuckett
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ekaterina Doubrovina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Enrico Derenzini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samedy Ouk
- ImmuneTarget Inc., San Diego, California
| | - Jennifer J Tsai
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Odette M Smith
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily R Levy
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fabiana M Kreines
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carly G K Ziegler
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary I Scallion
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikhail Doubrovin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcel R M van den Brink
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johannes L Zakrzewski
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
497
|
Fowler DK, Williams C, Gerritsen AT, Washbourne P. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi. Nucleic Acids Res 2015; 44:e48. [PMID: 26582923 PMCID: PMC4797272 DOI: 10.1093/nar/gkv1246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/31/2015] [Indexed: 01/24/2023] Open
Abstract
Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired.
Collapse
Affiliation(s)
- Daniel K Fowler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Carly Williams
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Alida T Gerritsen
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
498
|
miR-381 suppresses C/EBPα-dependent Cx43 expression in breast cancer cells. Biosci Rep 2015; 35:BSR20150167. [PMID: 26450928 PMCID: PMC4643328 DOI: 10.1042/bsr20150167] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
miR-381 suppressed CX43 expression by directly targeting the 3′-UTR of C/EBPα, a novel transcription factor of Cx43 in human breast cancer cells. The miR-381–Cx43 axis might be a useful diagnostic and therapeutic target of metastatic breast cancer. Cx43 (connexin43) is an enhancer of the metastasis of breast cancer cells. Our previous study identified miR-381 as an indirect suppressor of Cx43 gene expression, with the precise mechanism being not understood. In the present study, using a reporter gene assay, we found that miR-381 suppressed Cx43 gene expression via the promoter region −500/−250. With site-directed gene mutation, we demonstrated that miR-381 could directly bind with the sequences CACUUGUAU in the 3′-UTR so as to inhibit C/EBPα (CCAAT/enhancer-binding protein α) expression. C/EBPα was further identified as a novel transcription factor by binding to a canonic element (AATTGTC) locating at −459/−453 in the promoter region of the Cx43 gene. Functionally, we demonstrated that miR-381 suppressed C/EBPα- and Cx43-dependent migration and invasion of breast cancer cells. Finally, we revealed that decreased levels of miR-381 as well as increased expression of C/EBPα and Cx43 in the metastatic breast cancer cells and tissues. Therefore we are the first to identify that miR-381 suppresses C/EBPα-dependent Cx43 expression in breast cancer cells. The miR-381–C/EBPα–Cx43 axis might be a useful diagnostic and therapeutic target of metastatic breast cancer.
Collapse
|
499
|
Fang W, Bartel DP. The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell 2015; 60:131-45. [PMID: 26412306 DOI: 10.1016/j.molcel.2015.08.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs processed from stem-loop regions of primary transcripts (pri-miRNAs), with the choice of stem loops for initial processing largely determining what becomes a miRNA. To identify sequence and structural features influencing this choice, we determined cleavage efficiencies of >50,000 variants of three human pri-miRNAs, focusing on the regions intractable to previous high-throughput analyses. Our analyses revealed a mismatched motif in the basal stem region, a preference for maintaining or improving base pairing throughout the remainder of the stem, and a narrow stem-length preference of 35 ± 1 base pairs. Incorporating these features with previously identified features, including three primary-sequence motifs, yielded a unifying model defining mammalian pri-miRNAs in which motifs help orient processing and increase efficiency, with the presence of more motifs compensating for structural defects. This model enables generation of artificial pri-miRNAs, designed de novo, without reference to any natural sequence yet processed more efficiently than natural pri-miRNAs.
Collapse
Affiliation(s)
- Wenwen Fang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
500
|
Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, Hoffmann T, Boryń ŁM, Axelsson E, Schweifer N, Tontsch-Grunt U, Dow LE, Gianni D, Pearson M, Valent P, Stark A, Kraut N, Vakoc CR, Zuber J. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 525:543-547. [PMID: 26367798 DOI: 10.1038/nature14898] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.
Collapse
Affiliation(s)
- Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Mareike Roth
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Felix Muerdter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sumit Deswal
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Łukasz M Boryń
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Elin Axelsson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Norbert Schweifer
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | | | - Lukas E Dow
- Department of Medicine, Hematology & Medical Oncology, Weill Cornell Medical College, New York 10065, USA
| | - Davide Gianni
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | | | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|