451
|
Dousti F, Soleimanbeigi M, Mirian M, Varshosaz J, Hassanzadeh F, Kasesaz Y, Rostami M. Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharm Dev Technol 2021; 26:899-909. [PMID: 34266344 DOI: 10.1080/10837450.2021.1955927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nanotechnology has revolutionized drug delivery in cancer treatment. In this study, novel efficient pH-responsive boron phenylalanine (BPA) targeted nanoparticles (NPs) based on ionic liquid modified chitosan have been introduced for selective mitoxantrone (MTO) delivery to the U87MG glioma cells. Urocanic acid (UA) and imidazolium (Im) based ionic liquids were used for structural modification simultaneously. The NPs were prepared by ionic gelation and fully characterized; the pH-responding and swelling index of NPs were studied carefully. The drug release was studied at a pH of 5.5 in comparison to the neutral state. Also, the cytotoxicity of loaded NPs was evaluated on U87MG glial cells, and cellular uptake was studied. The NPs were smaller than 250 nm, with a spherical pattern and acceptable uniformity with a zeta potential around +20 mV. The loading efficacy was about 85%, and most of the loaded MTO released at a pH of 5.5 after 48 h with a swelling-controlled mechanism. The NPs showed a relatively lower IC50 than the free MTO, and the BPA-targeted NPs have lower IC50 and better cellular uptake than non-targeted NPs in U87MG cells. More studies on this promising formula are on the way, and the results will be published soon.
Collapse
Affiliation(s)
- Fatemeh Dousti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Kasesaz
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
452
|
Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers (Basel) 2021; 13:polym13152464. [PMID: 34372067 PMCID: PMC8348146 DOI: 10.3390/polym13152464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The synthesis of light-responsive nanocarriers (LRNs) with a variety of surface functional groups and/or ligands has been intensively explored for space-temporal controlled cargo release. LRNs have been designed on demand for photodynamic-, photothermal-, chemo-, and radiotherapy, protected delivery of bioactive molecules, such as smart drug delivery systems and for theranostic duties. LRNs trigger the release of cargo by a light stimulus. The idea of modifying LRNs with different moieties and ligands search for site-specific cargo delivery imparting stealth effects and/or eliciting specific cellular interactions to improve the nanosystems’ safety and efficacy. This work reviews photoresponsive polymeric nanocarriers and photo-stimulation mechanisms, surface chemistry to link ligands and characterization of the resultant nanosystems. It summarizes the interesting biomedical applications of functionalized photo-controlled nanocarriers, highlighting the current challenges and opportunities of such high-performance photo-triggered delivery systems.
Collapse
|
453
|
Tahir A, Shabir Ahmad R, Imran M, Ahmad MH, Kamran Khan M, Muhammad N, Nisa MU, Tahir Nadeem M, Yasmin A, Tahir HS, Zulifqar A, Javed M. Recent approaches for utilization of food components as nano-encapsulation: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Niaz Muhammad
- National Agriculture Education College, Kabul, Afghanistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Adeela Yasmin
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hafiza Saima Tahir
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Aliza Zulifqar
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Miral Javed
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
454
|
Güngör A, Demir D, Bölgen N, Özdemir T, Genç R. Dual stimuli-responsive chitosan grafted poly(NIPAM-co-AAc)/poly(vinyl alcohol) hydrogels for drug delivery applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmet Güngör
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Didem Demir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Tonguç Özdemir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Rükan Genç
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
455
|
Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm 2021; 606:120926. [PMID: 34303818 DOI: 10.1016/j.ijpharm.2021.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.
Collapse
Affiliation(s)
| | - Bayan H Al-Anati
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yazan Al Thaher
- School of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
456
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
457
|
Lori MS, Ohadi M, Estabragh MAR, Afsharipour S, Banat IM, Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept Lett 2021; 28:1230-1237. [PMID: 34303327 DOI: 10.2174/0929866528666210720142841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
There are many proteins and enzymes in the human body, and their dysfunction can lead to disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways to the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeation from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral use of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration and ultimately increase the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer-based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability, and maintaining the spatial structure of the protein leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer-based carriers for the oral delivery of proteins.
Collapse
Affiliation(s)
- Maryam Shamseddini Lori
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sepehr Afsharipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
458
|
Ramalho ÍMDM, Pereira DT, Galvão GBL, Freire DT, Amaral-Machado L, Alencar ÉDN, Egito ESTD. Current trends on cannabidiol delivery systems: where are we and where are we going? Expert Opin Drug Deliv 2021; 18:1577-1587. [PMID: 34253133 DOI: 10.1080/17425247.2021.1952978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, has several therapeutic properties. However, its high lipophilicity, metabolization, and instability impair its bioavailability and translational use in clinical settings. Several advanced drug delivery systems (ADDSs) have been evaluated as CBD carriers to overcome these drawbacks. These systems can improve the CBD dissolution profile, protect it against metabolization, and produce a site-specific release, increasing its bioavailability and making CBD administration clinically effective. AREAS COVERED This review summarizes scientific reports on cannabidiol advanced delivery systems (CBD-ADSs) that have been (i) developed, and (ii) applied therapeutically; reports published in the main scientific databases until January 2020 were included. Studies without experimental data and/or published in languages other than English were excluded. Moreover, pharmaceutical technology tools in CBD therapeutic use have been discussed, emphasizing the clinical translation of CBD carrier use. EXPERT OPINION Studies reporting CBD-ADS use for medicinal applications were reviewed and revealed multifaceted systems that can overcome the physicochemical drawbacks of CBD and improve its biological activities. Therefore, researchers concluded that the developed CBD-ADS can be used as an alternative to traditional formulations because they show comparable or superior effectiveness in treatment protocols. Although several criteria remain to be met, our findings emphasize the potential of CBD-ADSs for translational therapeutics, particularly for neurological-disorders.
Collapse
Affiliation(s)
| | - Daniel Torres Pereira
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | | | | | - Lucas Amaral-Machado
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | - Éverton do Nascimento Alencar
- Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Graduate Program in Pharmaceutical Nanotechnology (Ppgnanofarma), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | - Eryvaldo Socrates Tabosa do Egito
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Graduate Program in Pharmaceutical Nanotechnology (Ppgnanofarma), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| |
Collapse
|
459
|
Donini M, Gaglio SC, Laudanna C, Perduca M, Dusi S. Oxyresveratrol-Loaded PLGA Nanoparticles Inhibit Oxygen Free Radical Production by Human Monocytes: Role in Nanoparticle Biocompatibility. Molecules 2021; 26:molecules26144351. [PMID: 34299623 PMCID: PMC8305861 DOI: 10.3390/molecules26144351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2−) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2− production induced upon stimulation of monocytes with β-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2− release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2− production by resting monocytes and enhanced the formation of this radical in β-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2− production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and β-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.
Collapse
Affiliation(s)
- Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | | | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-802-7984
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (M.D.); (C.L.); (S.D.)
| |
Collapse
|
460
|
Locarno S, Galli A, Argentiere S, Galgano M, Giuntini I, Lenardi C, Perego C. Effects of cell line proliferation on the aggregation and stability of a hyaluronic acid solution (HA)/PLGA microparticles dispersed in the culture system. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1941953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Locarno
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Argentiere
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | | | | | - Cristina Lenardi
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
- C.I.Ma.I.Na. Centro Intersciplinare Materiali e Interfacce Nanostrutturati, Milan, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
461
|
Alfei S, Schito AM, Zuccari G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers (Basel) 2021; 13:2262. [PMID: 34301020 PMCID: PMC8309409 DOI: 10.3390/polym13142262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors. Unfortunately, low stability, poor water solubility, opsonization, and fast metabolism in vivo hinder the effective exploitation of the potential of BACs. To overcome these issues, researchers have engineered nanomaterials, obtaining food-grade delivery systems, and edible food- and plant-related nanoparticles (NPs) acting as color, flavor, and preservative additives and natural therapeutics. Here, we have reviewed the nanotechnological transformations of several BACs implemented to increase their bioavailability, to mask any unpleasant taste and flavors, to be included as active ingredients in food or food packaging, to improve food appearance, quality, and resistance to deterioration due to storage. The pending issue regarding the possible toxic effect of NPs, whose knowledge is still limited, has also been discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
462
|
Pierre MBR. Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors. Curr Drug Targets 2021; 22:1090-1107. [PMID: 33397257 DOI: 10.2174/1389450122999210101230743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.
Collapse
Affiliation(s)
- Maria B R Pierre
- Universidade Federal do Rio de Janeiro (UFRJ)- Faculdade de Farmacia- Av, Brigadeiro Trompowsky, s/n. CEP Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
463
|
Saleh N, Elshaer S, Girgis G. Biodegradable polymers-based nanoparticles to enhance the antifungal efficacy of fluconazole against Candida albicans. Curr Pharm Biotechnol 2021; 23:749-757. [PMID: 34238149 DOI: 10.2174/1389201022666210708105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fluconazole (FLZ), a potent antifungal medication, is characterized by poor water solubility that reduced its antifungal efficacy. OBJECTIVE This study aimed to prepare FLZ-loaded polymeric nanoparticles (NPs) by using different polymers and techniques as a mean of enhancing the antifungal activity of FLZ. METHODS NP1, NP2, and NP3 were prepared by the double emulsion/solvent evaporation method using PLGA, PCL, and PLA, respectively. The ionotropic pre-gelation technique was applied to prepare an alginate/chitosan-based formulation (NP4). Particle size, zeta potential, encapsulation efficiency, and loading capacity were characterized. FT-IR spectra of FLZ, the polymers, and the prepared NPs were estimated. NP4 was selected for further in-vitro release evaluation. The broth dilution method was used to assess the antifungal activity of NP4 using a resistant clinical isolate of Candida albicans. RESULTS The double emulsion method produced smaller-sized particles (<390 nm) but with much lower encapsulation efficiency (< 12%). Alternatively, the ionic gelation method resulted in nanosized particles with a markedly higher encapsulation efficiency of about 40%. The FT-IR spectroscopy confirmed the loading of the FLZ molecules in the polymeric network of the prepared NPs. The release profile of NP4 showed a burst initial release followed by a controlled pattern up to 24 hours with a higher percent released relative to the free FLZ suspension. NP4 was able to reduce the value of MIC of FLZ by 20 times. CONCLUSION The antifungal activity of FLZ against C. albicans was enhanced markedly via its loading in the alginate/chitosan-based polymeric matrix of NP4.
Collapse
Affiliation(s)
- Noha Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Soha Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Germeen Girgis
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
464
|
Alves ADCS, Bruinsmann FA, Guterres SS, Pohlmann AR. Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules 2021; 26:4127. [PMID: 34299401 PMCID: PMC8305806 DOI: 10.3390/molecules26144127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (F.A.B.); (S.S.G.)
| | | | | | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (F.A.B.); (S.S.G.)
| |
Collapse
|
465
|
Tulain UR, Mahmood A, Aslam S, Erum A, Shamshad Malik N, Rashid A, Kausar R, Alqahtani MS. Formulation and Evaluation of Linum usitatissimum Mucilage-Based Nanoparticles for Effective Delivery of Ezetimibe. Int J Nanomedicine 2021; 16:4579-4596. [PMID: 34267514 PMCID: PMC8275157 DOI: 10.2147/ijn.s308790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction The aim of current study was to prepare Linum usitatissimum mucilage (LUM) based nanoparticles, capable of encapsulating hydrophobic drug ezetimibe as nanocarriers. Methods Solvent evaporation and nanoprecipitation techniques were used to develop nanoparticles by encapsulating ezetimibe in the articulated matrix of polysaccharide fractions. Developed nanoparticles were characterized to determine the particle size, zeta potential, polydispersibility index (PDI), and entrapment efficiency (EE). Morphology and physicochemical characterization were carried out through SEM, FTIR, PXRD and thermal analysis. Saturation solubility and in vitro release studies were also performed. Safety assessment of ezetimibe loaded nanoparticles was evaluated via oral acute toxicity study. Results The mean particle size, zeta potential, PDI and EE for emulsion solvent evaporation were 683.6 nm, -28.3 mV, 0.39, 63.7% and for nanoprecipitation were 637.7 nm, 0.07, -27.1 mV and 80%, respectively. Thermal analysis confirmed enhanced thermal stability, whereas PXRD confirmed amorphous nature of drug. Saturation solubility (p-value <0.05) demonstrated improved solubility of drug when enclosed in linseed nanoparticles. Nanoprecipitation surpasses emulsion solvent evaporation in dissolution test by possessing smaller size. Acute oral toxicity study indicated no significant changes in behavioral, clinical or histopathological parameters of control and experimental groups. Conclusion The in vitro release of ezetimibe was augmented by enhancing aqueous solubility through devised nanoparticles. Thus, linseed mucilage could act as biopolymer in the fabrication of nanoparticle formulation. The acute oral toxicological investigations provided evidence that LUMNs were safe after oral administration.
Collapse
Affiliation(s)
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Sidra Aslam
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Ayesha Rashid
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Rizwana Kausar
- ILM College of Pharmaceutical Sciences, Sargodha, Pakistan
| | - Mohammed S Alqahtani
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
466
|
Abd-algaleel SA, Abdel-Bar HM, Metwally AA, Hathout RM. Evolution of the Computational Pharmaceutics Approaches in the Modeling and Prediction of Drug Payload in Lipid and Polymeric Nanocarriers. Pharmaceuticals (Basel) 2021; 14:645. [PMID: 34358071 PMCID: PMC8308715 DOI: 10.3390/ph14070645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
This review describes different trials to model and predict drug payload in lipid and polymeric nanocarriers. It traces the evolution of the field from the earliest attempts when numerous solubility and Flory-Huggins models were applied, to the emergence of molecular dynamic simulations and docking studies, until the exciting practically successful era of artificial intelligence and machine learning. Going through matching and poorly matching studies with the wet lab-dry lab results, many key aspects were reviewed and addressed in the form of sequential examples that highlighted both cases.
Collapse
Affiliation(s)
| | - Hend M. Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat 32897, Egypt;
| | - Abdelkader A. Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Health Sciences Center, Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait 13110, Kuwait
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
467
|
Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE, Mota C, Danti S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 2021; 10:706-720. [PMID: 32100267 DOI: 10.1007/s13346-020-00736-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presented work focuses on the development of biodegradable polymer nanoparticles loaded with antibiotics as drug delivery systems deposited on electrospun scaffolds for tissue engineering. The innovative ciprofloxacin-loaded poly(DL-lactide-co-glycolide) NPs ensure a continuous slow release and high local concentration at the site of action for an optimal therapy. The local delivery of antibiotics as an integrated part of electrospun scaffolds offers an effective, safe, and smart enhancement supporting tissue regeneration. Presented data provides solid scientific evidence for fulfilling the requirements of local nano antibiotic delivery systems with biodegradability and biocompatibility for a wide range of tissue engineering applications, including middle ear tissues (e.g., tympanic membranes) which are subject to bacterial infections. Further characterization of such systems, including in vivo studies, is required to ensure successful transfer from lab to clinical applications. Graphical abstract .
Collapse
Affiliation(s)
- Cemre Günday
- MJR PharmJet GmbH, Industriestr. 1B, 66802, Überherrn, Germany
| | - Shivesh Anand
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hikmet Burcu Gencer
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | - Sara Munafò
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Claudio Ricci
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | | | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| |
Collapse
|
468
|
Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 2021; 174:30-52. [PMID: 33845040 DOI: 10.1016/j.addr.2021.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Now-a-days healthcare systems face great challenges with antibiotic resistance and low efficacy of antibiotics when combating pathogenic bacteria and bacterial biofilms. Administration of an antibiotic in its free form is often ineffective due to lack of selectivity to the infectious site and breakdown of the antibiotic before it exerts its effect. Therefore, polymeric delivery systems, where the antibiotic is encapsulated into a formulation, have shown great promise, facilitating a high local drug concentration at the site of infection, a controlled drug release and less drug degradation. All this leads to improved therapeutic effects and fewer systemic side effects together with a lower risk of developing antibiotic resistance. Here, we review and provide a comprehensive overview of polymer-based nano- and microparticles as carriers for antimicrobial agents and their effect on eradicating bacterial biofilms. We have a main focus on polymeric particulates containing poly(lactic-co-glycolic acid), chitosan and polycaprolactone, but also strategies involving combinations of these polymers are included. Different production techniques are reviewed and important parameters for biofilm treatment are discussed such as drug loading capacity, control of drug release, influence of particle size and mobility in biofilms. Additionally, we reflect on other promising future strategies for combating biofilms such as lipid-polymer hybrid particles, enzymatic biofilm degradation, targeted/triggered antibiotic delivery and future alternatives to the conventional particles.
Collapse
|
469
|
Choudhary D, Goykar H, Karanwad T, Kannaujia S, Gadekar V, Misra M. An understanding of mitochondria and its role in targeting nanocarriers for diagnosis and treatment of cancer. Asian J Pharm Sci 2021; 16:397-418. [PMID: 34703491 PMCID: PMC8520044 DOI: 10.1016/j.ajps.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology has changed the entire paradigm of drug targeting and has shown tremendous potential in the area of cancer therapy due to its specificity. In cancer, several targets have been explored which could be utilized for the better treatment of disease. Mitochondria, the so-called powerhouse of cell, portrays significant role in the survival and death of cells, and has emerged as potential target for cancer therapy. Direct targeting and nanotechnology based approaches can be tailor-made to target mitochondria and thus improve the survival rate of patients suffering from cancer. With this backdrop, in present review, we have reemphasized the role of mitochondria in cancer progression and inhibition, highlighting the different targets that can be explored for targeting of disease. Moreover, we have also summarized different nanoparticulate systems that have been used for treatment of cancer via mitochondrial targeting.
Collapse
Affiliation(s)
- Devendra Choudhary
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Hanmant Goykar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Tukaram Karanwad
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Suraj Kannaujia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | - Vedant Gadekar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air force station headqtrs, Gandhinagar 382355, India
| | | |
Collapse
|
470
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
471
|
de Oliveira TD, Travassos LR, Arruda DC, Tada DB. Intracellular Targeting of Poly Lactic-Co-Glycolic Acid Nanoparticles by Surface Functionalization with Peptides. J Biomed Nanotechnol 2021; 17:1320-1329. [PMID: 34446135 DOI: 10.1166/jbn.2021.3108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanoparticles (NPs) are a promising strategy for delivering drugs to specific sites because of their tunable size and surface chemistry variety. Among the availablematerials, NPs prepared with biopolymers are of particular interest because of their biocompatibility and controlled release of encapsulated drugs. Poly lactic-co-glycolic acid (PLGA) is one of the most widely used biopolymers in biomedical applications. In addition to material choice modulation of the interaction between NPs and biological systems is essential for the safety and effective use of NPs. Therefore, this work focused on evaluating different surface functionalization strategies to promote cancer cell uptake and intracellular targeting of PLGA NPs. Herein, cell-penetrating peptides (CPPs) were shown to successfully drive PLGA NPs to the mitochondria and nuclei. Furthermore, the functionalization of PLGA NPs with peptide AC-1001 H3 (GQYGNLWFAY) was proven to be useful for targeting actin filaments. The PLGA NPs cell internalization mechanism by B16F10-Nex2 cells was identified as caveolae-mediated endocytosis, which could be inhibited by the presence of methyl-β-cyclodextrin. Notably, when peptide C (CVNHPAFAC) was used to functionalize PLGA NPs, none of the tested inhibitors could avoid cell internalization of PLGA NPs. Therefore, we suggest this peptide as a promising surface modification agent for enhancing drug delivery to cancer cells. Finally, PLGA NPs showed slow release kinetics and low cytotoxic profile, which, combined with the surface functionalization strategies addressed in this study, highlight the potential of PLGA NPs as a drug delivery platform for improving cancer therapy.
Collapse
Affiliation(s)
- Thaís Dolzany de Oliveira
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Luiz R Travassos
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Denise Costa Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, 12231-280, Brazil
| |
Collapse
|
472
|
Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021; 274:120826. [PMID: 33965797 PMCID: PMC8752123 DOI: 10.1016/j.biomaterials.2021.120826] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Collapse
Affiliation(s)
- Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
473
|
Antimicrobial Polymeric Composites with Embedded Nanotextured Magnesium Oxide. Polymers (Basel) 2021; 13:polym13132183. [PMID: 34209326 PMCID: PMC8271688 DOI: 10.3390/polym13132183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotextured magnesium oxide (MgO) can exhibit both antibacterial and tissue regeneration activity, which makes it very useful for implant protection. To successfully combine these two properties, MgO needs to be processed within an appropriate carrier system that can keep MgO surface available for interactions with cells, slow down the conversion of MgO to the less active hydroxide and control MgO solubility. Here we present new composites with nanotextured MgO microrods embedded in different biodegradable polymer matrixes: poly-lactide-co-glycolide (PLGA), poly-lactide (PLA) and polycaprolactone (PCL). Relative to their hydrophilicity, polarity and degradability, the matrices were able to affect and control the structural and functional properties of the resulting composites in different manners. We found PLGA matrix the most effective in performing this task. The application of the nanotextured 1D morphology and the appropriate balancing of MgO/PLGA interphase interactions with optimal polymer degradation kinetics resulted in superior bactericidal activity of the composites against either planktonic E. coli or sessile S. epidermidis, S. aureus (multidrug resistant-MRSA) and three clinical strains isolated from implant-associated infections (S. aureus, E. coli and P. aeruginosa), while ensuring controllable release of magnesium ions and showing no harmful effects on red blood cells.
Collapse
|
474
|
Xiong B, Chen Y, Liu Y, Hu X, Han H, Li Q. Artesunate-loaded porous PLGA microsphere as a pulmonary delivery system for the treatment of non-small cell lung cancer. Colloids Surf B Biointerfaces 2021; 206:111937. [PMID: 34198232 DOI: 10.1016/j.colsurfb.2021.111937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) has emerged to be a significant cause of cancer mortality worldwide. Artesunate (ART) extracted from Chinese herb Artemisia annua L, has been proven to possess desirable anti-cancer efficacy, especially for the metastatic NSCLC treatment. Moreover, the poly(lactic-co-glycolic acid) (PLGA) microsphere has been considered to be a potential pulmonary delivery system for the sustained drug release to enhance the therapeutic efficacy of lung cancer. Herein, the ART-loaded porous PLGA microsphere was prepared through the emulsion solvent evaporation approach. The microsphere was demonstrated to possess highly porous structure and ideal aerodynamic diameter for the pulmonary administration. Meanwhile, sustained ART release was obtained from the porous microsphere within 8 days. The release solution collected from the microsphere could be effectively uptake by the cells and further induce the cell apoptosis and the cell cycle arrest at G2/M phase to execute the anti-proliferative effect, using human lung adenocarcinoma cell line A549 as a model. Additionally, strong inhibitory effect on the cell migration and invasion could be obtained after the treatment with release solution. Taken together, our results demonstrated that the ART-loaded PLGA porous microsphere could achieve excellent anti-cancer efficacy, providing a potential approach for the NSCLC treatment via the pulmonary administration.
Collapse
Affiliation(s)
- Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanxu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaolin Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
475
|
Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021; 12:670931. [PMID: 34248952 PMCID: PMC8260670 DOI: 10.3389/fimmu.2021.670931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral circulation into the central nervous system (CNS) parenchyma. Despite this protective barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of immune deficiencies or complications following neurosurgical procedures. These infections are difficult to treat since many bacteria, such as Staphylococcus aureus, encode a repertoire of virulence factors, can acquire antibiotic resistance, and form biofilm. Additionally, pathogens can leverage virulence factor production to polarize host immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The difficulty of pathogen clearance is magnified by the fact that antibiotics and other treatments cannot easily penetrate the BBB, which requires extended regimens to achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a promising platform to treat a range of CNS disorders. Nanoparticles have several advantages, as they can be engineered to cross the BBB with specific functionality to increase cellular and molecular targeting, have controlled release of therapeutic agents, and superior bioavailability and circulation compared to traditional therapies. Within the CNS environment, therapeutic actions are not limited to directly targeting the pathogen, but can also be tailored to modulate immune cell activation to promote infection resolution. This perspective highlights the factors leading to infection persistence in the CNS and discusses how novel nanoparticle therapies can be engineered to provide enhanced treatment, specifically through modulation of immune cell polarization.
Collapse
Affiliation(s)
- Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
476
|
Shen J, Chen D, Liu Y, Gao G, Liu Z, Wang G, Wu C, Fang X. A biodegradable nano-photosensitizer with photoactivatable singlet oxygen generation for synergistic phototherapy. J Mater Chem B 2021; 9:4826-4831. [PMID: 34121099 DOI: 10.1039/d1tb00937k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we develop a near-infrared (NIR) light-activatable nanophotosensitizer, which shows negligible phototoxicity before photoactivation to improve the specificity of PDT. The nanophotosensitizer is prepared by indocyanine green carboxylic (ICG), Chlorin e6 (Ce6), and biodegradable poly (lactic acid) (PLA) and poly (lactic-co-glycolic acid) (PLGA), and all these materials have been approved by the Food and Drug Administration. Initially the phototoxicity of Ce6 is effectively inhibited by ICG through fluorescence resonance energy transfer (FRET). Upon 808 nm laser activation, ICG generate hyperthermia for photothermal therapy (PTT) and simultaneously is degraded due to the inherently poor photostability. The FRET is disrupted and followed by the recovery of phototoxicity of Ce6 for PDT. We investigated the photoactivation and the resulting phototherapy by cellular assays and mouse models, which indicate a superior synergistic treatment effect and selective PDT activated by near-infrared 808 nm light. This study presents a promising strategy for activatable and synergistic phototherapy with minimal damage to normal tissues.
Collapse
Affiliation(s)
- Jiaxin Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | | | | | | | | | | | | | | |
Collapse
|
477
|
Ahmed HM, Nabavi S, Behzad S. Herbal Drugs and Natural Products in the light of Nanotechnology and Nanomedicine for Developing Drug Formulations. Mini Rev Med Chem 2021; 21:302-313. [PMID: 32938347 DOI: 10.2174/1389557520666200916143240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Natural products and medicinal plants have played a vital role in providing healthcare and ensuring well-being for many civilizations since antiquity. It is estimated that around 50% of drugs in the market have a natural product origin especially medicinal plants and herbal drugs, animals, fungi, and marine organisms. Some of these biologically active constituents of extracts have low absorption and distribution which, as a result, lead to loss of bioavailability and efficacy and might hamper their applications in the clinic. To overcome these impediments for the formulation of herbal drugs, food supplements, and essential oils, several nanomedical approaches such as liposomes, microemulsions, polymeric nanoparticles, solid lipid nanoparticles (SLNs), liquid crystal systems (LC), and precursor systems for liquid crystals (PSLCs) have been proposed. Nanoparticles have been used to modify and ameliorate the pharmacokinetic and pharmacodynamic properties of different drugs, thus incorporating biotechnological systems may be useful to enhance the bioavailability and bioactivity of herbal drug formulations. Consequently, essential for any natural compounds is the extent of its absorption after being ingested and its ability to be distributed in various tissues or organs of the body. The present review article aims to give an overview of the recent advancements in developing herbal drug formulations based on nanoparticle technologies.
Collapse
Affiliation(s)
- Hiwa M Ahmed
- Sulaimani Polytechnic University, Slemani, Kurdistan Region, Iraq
| | - Seyed Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
478
|
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int J Pharm 2021; 605:120807. [PMID: 34144133 DOI: 10.1016/j.ijpharm.2021.120807] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Nanomedicines based on poly(lactic-co-glycolic acid) (PLGA) carriers offer tremendous opportunities for biomedical research. Although several PLGA-based systems have already been approved by both the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and are widely used in the clinics for the treatment or diagnosis of diseases, no PLGA nanomedicine formulation is currently available on the global market. One of the most impeding barriers is the development of a manufacturing technique that allows for the transfer of nanomedicine production from the laboratory to an industrial scale with proper characterization and quality control methods. This review provides a comprehensive overview of the technologies currently available for the manufacturing and analysis of polymeric nanomedicines based on PLGA nanoparticles, the scale-up challenges that hinder their industrial applicability, and the issues associated with their successful translation into clinical practice.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Silko Grimm
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Andrea Engel
- Evonik Corporation, Birmingham Laboratories, Birmingham, AL 35211, United States.
| | - Carl Gustav Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
479
|
Anticarcinogenic Effect of Chitosan Nanoparticles Containing Syzygium aromaticum Essential Oil or Eugenol Toward Breast and Skin Cancer Cell Lines. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00880-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
480
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
481
|
Chai Y, Wang Y, Li B, Qi W, Su R, He Z. Microfluidic Synthesis of Lignin/Chitosan Nanoparticles for the pH-Responsive Delivery of Anticancer Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7219-7226. [PMID: 34078082 DOI: 10.1021/acs.langmuir.1c00778] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, lignin/chitosan nanoparticles (Lig/Chi NPs) with controlled structures were synthesized in a simple and scalable microfluidic system. When the positively charged chitosan and the negatively charged lignin solution were blended in a microreactor, Lig/Chi NPs were rapidly formed via the electrostatic coassembly between the amino groups of chitosan and the carboxyl groups of lignin. The ζ potential changes from negative (-13 mV) to positive (+54.5 mV) for Lig NPs and Lig/Chi NPs, respectively. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results demonstrated that Lig/Chi NPs have an average particle size of about 180 nm, which can be used as nanocarriers for drug delivery. The anticancer drug nanoparticles with docetaxel (DTX) and curcumin (CCM) were prepared by coassembly with Lig/Chi NPs in a microreactor, which had good drug loading efficiency, biocompatibility, and can release drugs in response to pH in the weakly acidic environment of the tumor. The drug release amounts in acidic solutions that simulated the tumor microenvironment were 51% (DTX@Lig/Chi NPs) and 50% (CCM@Lig/Chi NPs), respectively, which were better than the release amounts at pH 7.4, and have an obvious killing effect on HeLa cells.
Collapse
Affiliation(s)
- Yingying Chai
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Bingqi Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
482
|
Sinelnikov S, Orel L, Kobrina L, Boiko V, Riabov S, Shtompel V, Povnitsa O, Zagorodnya S. Polymer matrices on the basis of polyacrylamide and β‐cyclodextrin‐containing pseudorotaxane for prolonged drug release: Synthesis and properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sergii Sinelnikov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Luydmila Orel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Larisa Kobrina
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Valentyna Boiko
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Sergii Riabov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Volodymir Shtompel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Olga Povnitsa
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| | - Svetlana Zagorodnya
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| |
Collapse
|
483
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
484
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
485
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
486
|
Zhong L, Tao H, Gong X. Superhydrophobic Poly(l-lactic acid) Membranes with Fish-Scale Hierarchical Microstructures and Their Potential Application in Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6765-6775. [PMID: 34029095 DOI: 10.1021/acs.langmuir.1c00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, superhydrophobic poly(l-lactic acid) (PLLA) hierarchical membranes exhibiting excellent oil-removal performance, which is of great importance in curbing the oil-pollution environment, were fabricated by a simple solvent-evaporation-induced precipitation method. PLLA membranes with hierarchical micro/nanostructures (fish scales, fibrous sheets, and petal-like morphology) can be conveniently prepared by adjusting the preparation parameters including PLLA concentration, precipitation temperature, type of solvent and nonsolvent, and the addition of nano-SiO2. The results show that the water contact angle of the fish-scale-structured PLLA membrane was 138.6°, revealing that water repellency was significantly improved compared to that of the solvent-casting PLLA membrane (∼72.8°). Moreover, the PLLA/SiO2 nanocomposite membrane with a dense hierarchical micro/nanostructure had a water contact angle greater than 167.1°, which has great potential in oil-water separation.
Collapse
Affiliation(s)
- Lingqi Zhong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
487
|
Bacanlı M, Eşi M Ö, Erdoğan H, Sarper M, Erdem O, Özkan Y. Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells. Food Chem Toxicol 2021; 154:112323. [PMID: 34111492 DOI: 10.1016/j.fct.2021.112323] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Paclitaxel (taxol), a diterpenoid pseudoalkaloid isolated from the shells of Taxus brevifolia, is the first taxane derivative used in the clinic for cancer treatment. Poly (lactic-co-glycolic acid) (PLGA) is one of the most successfully used biodegradable polymers for drug delivery which has a minimum systemic toxicity. This study aimed to evaluate the cytotoxicity and genotoxicity of paclitaxel nanoencapsulated with PLGA. Cytotoxic effects were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and genotoxic effects were determined by single cell gel electrophoresis (Comet) method in human neuroblastoma cells (SH-SY5Y). According to our results, the viability of cells treated with concentrations higher than 10 nM of free paclitaxel and paclitaxel loaded PLGA nanoparticles for 48 and 72 h was found lower than 50%. Additionally, DNA damage increased with the increase of nanoparticle dose when the cells exposed to paclitaxel loaded PLGA nanoparticles for 24, 48 and 72 h. It can be concluded that PLGA nanoparticles can be considered as a biocompatible carrier system for drug delivery and might be promising agent against neuroblastoma.
Collapse
Affiliation(s)
- Merve Bacanlı
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey.
| | - Özgür Eşi M
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology Ankara, Turkey
| | - Hakan Erdoğan
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey
| | - Meral Sarper
- University of Health Sciences Turkey, Gülhane Institute of Health Sciences, Stem Cell Research Center, Ankara, Turkey
| | - Onur Erdem
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Yalçın Özkan
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology Ankara, Turkey
| |
Collapse
|
488
|
Khan AU, Khan QU, Tahir K, Ullah S, Arooj A, Li B, Rehman KU, Nazir S, Khan MU, Ullah I. A Tagetes minuta based eco-benign synthesis of multifunctional Au/MgO nanocomposite with enhanced photocatalytic, antibacterial and DPPH scavenging activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112146. [PMID: 34082957 DOI: 10.1016/j.msec.2021.112146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In this research work, facile, economical and eco-benign experimental procedure were adopted to synthesize Au/MgO nanocomposite with the help of Tagetes minuta leaves extract. Phytochemicals present in the leaves of Tagetes minuta were acting as reducing and stabilizing agents to avoid aggregation of nanomaterials during the preparation of Au/MgO nanocomposite. The biologically synthesized nanocomposite were systematically characterized by UV-vis spectroscopy, Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA), dynamic light scattering (DLS) and elemental mapping. UV-visible spectrum confirmed the presence of MgO and Au due to the presence of two SPR peaks at 315 nm and 528 nm, respectively. Moreover, the Au/MgO nanocomposite exhibited superior photocatalytic, antibacterial, hemolytic, and antioxidant activities. Photocatalytic performance tests of Au/MgO nanocomposite were- appraised by the rapid degradation of the methylene blue (MB) under UV light illumination. More importantly, after four successive cycles of MB degradation, the photocatalytic efficacy remained unchanged, which ensures the stability of the Au/MgO nanocomposite. Furthermore, the antibacterial tests showed that the advanced nanocomposite inhibited the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with zones of inhibition 18 (±0.3), 21 (±0.5), and 19 (±0.4) mm, respectively. The cytotoxicity study revealed that Au/MgO nanocomposite is nontoxic to ordinary healthy RBCs. Interestingly, the Au/MgO nanocomposite also possesses an excellent antioxidant activity, whereby effectively scavenging 82% stable and harmful DPPH. Overall, the present study concludes that eco-benign Au/MgO nanocomposite has excellent potential for the remediation of bacterial pathogens and degradation of MB.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qudrat Ullah Khan
- Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Sami Ullah
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad campus, 22060, Pakistan
| | - Aaranda Arooj
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad campus, 22060, Pakistan
| | - Baoshan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Mati Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irfan Ullah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
489
|
Ebadollahi A, Jalali Sendi J, Ziaee M, Krutmuang P. Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116050. [PMID: 34199797 PMCID: PMC8200103 DOI: 10.3390/ijerph18116050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The overuse of synthetic pesticides in plant protection strategies has resulted in numerous side effects, including environmental contamination, food staff residues, and a threat to non-target organisms. Several studies have been performed to assess the pesticidal effects of plant-derived essential oils and their components, as partially safe and effective agents, on economically important pests. The essential oils isolated from Satureja species are being used in medicinal, cosmetic, and food industries. Their great potential in pest management is promising, which is related to high amounts of terpenes presented in this genus. This review is focused on the acute and chronic acaricidal, insecticidal, and nematicidal effects of Satureja essential oil and their main components. The effects of eighteen Satureja species are documented, considering lethality, repellency, developmental inhibitory, and adverse effects on the feeding, life cycle, oviposition, and egg hatching. Further, the biochemical impairment, including impairments in esterases, acetylcholinesterase, and cytochrome P450 monooxygenases functions, are also considered. Finally, encapsulation and emulsification methods, based on controlled-release techniques, are suggested to overcome the low persistence and water solubility restrictions of these biopesticides. The present review offers Satureja essential oils and their major components as valuable alternatives to synthetic pesticides in the future of pest management.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-36514, Iran
- Correspondence: (A.E.); (P.K.)
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran;
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (A.E.); (P.K.)
| |
Collapse
|
490
|
Nagapudi K, Zhu A, Chang DP, Lomeo J, Rajagopal K, Hannoush RN, Zhang S. Microstructure, Quality, and Release Performance Characterization of long-Acting Polymer Implant Formulations with X-Ray Microscopy and Quantitative AI Analytics. J Pharm Sci 2021; 110:3418-3430. [PMID: 34089709 DOI: 10.1016/j.xphs.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Long-acting implants are typically formulated using carrier(s) with specific physical and chemical properties, along with the active pharmaceutical ingredient (API), to achieve the desired daily exposure for the target duration of action. In characterizing such formulations, real-time in-vitro and in-vivo experiments that are typically used to characterize implants are lengthy, costly, and labor intensive as these implants are designed to be long acting. A novel characterization technique, combining high resolution three-dimensional X-Ray microscopy imaging, image-based quantification, and transport simulation, has been employed to provide a mechanistic understanding of formulation and process impact on the microstructures and performance of a polymer-based implant. Artificial intelligence-based image segmentation and image data analytics were used to convert morphological features visualized at high resolution into numerical microstructure models. These digital models were then used to calculate key physical parameters governing drug transport in a polymer matrix, including API uniformity, API domain size, and permeability. This powerful new tool has the potential to advance the mechanistic understanding of the interplay between drug-microstructure and performance and accelerate the therapeutic development long-acting implants.
Collapse
Affiliation(s)
- Karthik Nagapudi
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States
| | - Debby P Chang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Joshua Lomeo
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States
| | | | - Rami N Hannoush
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States.
| |
Collapse
|
491
|
Gyarmati B, Mammadova A, Barczikai D, Stankovits G, Misra A, Alavijeh MS, Varga Z, László K, Szilágyi A. Side group ratio as a novel means to tune the hydrolytic degradation of thiolated and disulfide cross-linked polyaspartamides. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
492
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
493
|
Cabaña-Brunod M, Herrera PA, Márquez-Miranda V, Llancalahuen FM, Duarte Y, González-Nilo D, Fuentes JA, Vilos C, Velásquez L, Otero C. Development of a PHBV nanoparticle as a peptide vehicle for NOD1 activation. Drug Deliv 2021; 28:1020-1030. [PMID: 34060399 PMCID: PMC8174487 DOI: 10.1080/10717544.2021.1923862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.
Collapse
Affiliation(s)
- Mauricio Cabaña-Brunod
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Pablo A Herrera
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Applied Nanotechnology, Faculty of Sciences, Universidad Mayor, Huechuraba, Santiago, Chile
| | - Felipe M Llancalahuen
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yorley Duarte
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Danilo González-Nilo
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristián Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Luis Velásquez
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
494
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2021; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
495
|
Enzyme-Responsive Nanoparticles and Coatings Made from Alginate/Peptide Ciprofloxacin Conjugates as Drug Release System. Antibiotics (Basel) 2021; 10:antibiotics10060653. [PMID: 34072352 PMCID: PMC8226786 DOI: 10.3390/antibiotics10060653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Infection-controlled release of antibacterial agents is of great importance, particularly for the control of peri-implant infections in the postoperative phase. Polymers containing antibiotics bound via enzymatically cleavable linkers could provide access to drug release systems that could accomplish this. Dispersions of nanogels were prepared by ionotropic gelation of alginate with poly-l-lysine, which was conjugated with ciprofloxacin as model drug via a copper-free 1,3-dipolar cycloaddition (click reaction). The nanogels are stable in dispersion and form films which are stable in aqueous environments. However, both the nanogels and the layers are degraded in the presence of an enzyme and the ciprofloxacin is released. The efficacy of the released drug against Staphylococcus aureus is negatively affected by the residues of the linker. Both the acyl modification of the amine nitrogen in ciprofloxacin and the sterically very demanding linker group with three annellated rings could be responsible for this. However the basic feasibility of the principle for enzyme-triggered release of drugs was successfully demonstrated.
Collapse
|
496
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
497
|
Mathew GM, Ulaeto SB, Reshmy R, Sukumaran RK, Binod P, Pandey A, Sindhu R. Chitosan Derivatives: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
498
|
Padilha AC, Vivas MG, Melo MDSF, Campos MGN. Fluorescent chitosan nanoparticles as a carrier system for trackable drug delivery. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2020.1867169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Marcelo Gonçalves Vivas
- Laboratório de Espectroscopia Óptica e Fotônica, Federal University of Alfenas, Poços de Caldas, Brazil
| | | | | |
Collapse
|
499
|
Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021; 13:770. [PMID: 34064155 PMCID: PMC8224277 DOI: 10.3390/pharmaceutics13060770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Richard A. Murray
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940 Leioa, Spain;
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Sergio E. Moya
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| |
Collapse
|
500
|
Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 604:120724. [PMID: 34023443 DOI: 10.1016/j.ijpharm.2021.120724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
With the increasingly widespread of central nervous system (CNS) disorders and the lack of sufficiently effective medication, meloxicam (MEL) has been reported as a possible medication for Alzheimer's disease (AD) management. Unfortunately, following the conventional application routes, the low brain bioavailability of MEL forms a significant limitation. The intranasal (IN) administration route is considered revolutionary for CNS medications delivery. The objective of the present study was to develop two types of nanocarriers, poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) and solid lipid nanoparticles (SLNs), for the IN delivery of MEL adapting the Quality by Design approach (QbD). Turning then to further enhance the optimized nanoformulation behavior by chitosan-coating. SLNs showed higher encapsulation efficacy (EE) and drug loading (DL) than PLGA NPs 87.26% (EE) and 2.67% (DL); 72.23% (EE) and 2.55% (DL), respectively. MEL encapsulated into the nanoformulations improved in vitro release, mucoadhesion, and permeation behavior compared to the native drug with greater superiority of chitosan-coated SLNs (C-SLNs). In vitro-in vivo correlation (IVIVC) results estimated a significant in vivo brain distribution of the nanoformulations compared to native MEL with estimated greater potential in the C-SLNs. Hence, MEL encapsulation into C-SLNs towards IN route can be promising in enhancing its brain bioavailability.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|