451
|
The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008; 28:6632-45. [PMID: 18779315 DOI: 10.1128/mcb.00697-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The NF-kappaB family mediates immune and inflammatory responses. In many cancers, NF-kappaB is constitutively activated and induces the expression of genes that facilitate tumorigenesis. ING4 is a tumor suppressor that is absent or mutated in several cancers. Herein, we demonstrate that in human gliomas, NF-kappaB is constitutively activated, ING4 expression is negligible, and NF-kappaB-regulated gene expression is elevated. We demonstrate that an ING4 and NF-kappaB interaction exists but does not prevent NF-kappaB activation, nuclear translocation, or DNA binding. Instead, ING4 and NF-kappaB bind simultaneously at NF-kappaB-regulated promoters, and this binding correlates with reductions in p65 phosphorylation, p300, and the levels of acetylated histones and H3-Me3K4, while enhancing the levels of HDAC-1 at these promoters. Using a knockdown approach, we correlate reductions in ING4 protein levels with increased basal and inducible NF-kappaB target gene expression. Collectively, these data suggest that ING4 may specifically regulate the activity of NF-kappaB molecules that are bound to target gene promoters.
Collapse
|
452
|
Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R. The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 2008; 123:1483-90. [PMID: 18636562 DOI: 10.1002/ijc.23790] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Inhibitor of Growth 1 (ING1) gene has been identified and characterized as a Type-II tumor suppressor gene (TSG). Subsequently, 4 additional members of the family were identified by homology search. ING proteins contain a nuclear localization sequence (NLS) and a plant homeo domain (PHD) finger motif in their C-terminus. These proteins are involved in numerous signaling pathways especially in 2 tumor suppressor pathways: apoptosis and senescence. In human tumors, several studies have shown that the expression of ING1 is frequently lost or downregulated. It occurs most frequently at the RNA level, and thus epigenetics mechanism could be involved. We summarize the current knowledge on ING proteins functions and their involvement in various signaling pathways. We also review the studies that have investigated the ING protein status in human tumors. The interest of ING proteins as biomarkers and their role in tumor initiation and progression is discussed.
Collapse
Affiliation(s)
- Damien Ythier
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | | | | | | | | |
Collapse
|
453
|
Champagne KS, Saksouk N, Peña PV, Johnson K, Ullah M, Yang XJ, Côté J, Kutateladze TG. The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 2008; 72:1371-6. [PMID: 18623064 PMCID: PMC2756976 DOI: 10.1002/prot.22140] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karen S. Champagne
- Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado, 80045
| | - Nehmé Saksouk
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Pedro V. Peña
- Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado, 80045
| | - Kyle Johnson
- Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado, 80045
| | - Mukta Ullah
- McGill Cancer Center & Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Xiang-Jiao Yang
- McGill Cancer Center & Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | | |
Collapse
|
454
|
Katsumoto T, Yoshida N, Kitabayashi I. Roles of the histone acetyltransferase monocytic leukemia zinc finger protein in normal and malignant hematopoiesis. Cancer Sci 2008; 99:1523-7. [PMID: 18754862 PMCID: PMC11158476 DOI: 10.1111/j.1349-7006.2008.00865.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Histone-modified enzymes are involved in various cell functions, including proliferation, differentiation, cell death and carcinogenesis. The protein MOZ (monocytic leukemia zinc finger protein) is a Myst (MOZ, Ybf2 (Sas3), Sas2, Tip60)-type histone acetyltranseferase (HAT) that generates fusion genes, such as MOZ-TIF2, MOZ-CBP and MOZ-p300, in acute myeloid leukemia (AML) by chromosomal translocation. MOZ associates with AML1 (RUNX1), PU.1, and p53, and cooperatively activates target gene transcription. Gene targeting in mice has revealed that MOZ is essential for the generation and maintenance of hematopoietic stem cells (HSC) and for the appropriate development of myeloid, erythroid and B-lineage cell progenitors. In AML, MOZ fusion genes lead to repressed differentiation, hyper-proliferation, and self-renewal of myeloid progenitors through deregulation of MOZ-regulated target gene expression. It is therefore necessary to analyze the roles of MOZ and MOZ fusion genes in normal and malignant hematopoiesis to elucidate the mechanisms underlying and develop therapies for MOZ-related AML.
Collapse
Affiliation(s)
- Takuo Katsumoto
- Molecular Oncology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
455
|
Russell MW, Soliman MA, Schriemer D, Riabowol K. ING1 protein targeting to the nucleus by karyopherins is necessary for activation of p21. Biochem Biophys Res Commun 2008; 374:490-5. [PMID: 18655775 DOI: 10.1016/j.bbrc.2008.07.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/11/2008] [Indexed: 12/21/2022]
Abstract
ING1 proteins affect apoptosis, growth, and DNA repair by binding histones and regulating chromatin structure and gene expression. ING1 is downregulated in cancers and cytoplasmic localization is associated with poor prognosis. Here, we report that ING1b interacts with karyopherins alpha2 and beta1 through several basic nuclear localization sequences (NLS) located adjacent to the ING1b PHD region. Deletion of NLS motifs resulted in failure of ING1b to completely localize to the nucleus and inhibited its ability to induce p21WAF1 expression. These observations support a general mechanism by which ING1b activity is regulated, in part, through dynamic subcellular partitioning between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 311 HMRB, 3330 Hospital Dr. NW, Calgary, Alta., Canada T2N 4N1
| | | | | | | |
Collapse
|
456
|
Peña PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RPC, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O, Kutateladze TG. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 2008; 380:303-12. [PMID: 18533182 PMCID: PMC2576750 DOI: 10.1016/j.jmb.2008.04.061] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 11/18/2022]
Abstract
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 A-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-pi contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignancies, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.
Collapse
Affiliation(s)
- P. V. Peña
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - R. A. Hom
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - T. Hung
- Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA
| | - H. Lin
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6 Canada
| | - A. J. Kuo
- Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA
| | - R. PC. Wong
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6 Canada
| | - O. M. Subach
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - K. S. Champagne
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - R. Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| | - V. V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - G. Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6 Canada
| | - O. Gozani
- Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA
| | - T. G. Kutateladze
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045 USA
| |
Collapse
|
457
|
Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24, a regulator of adipogenesis, is required for the regulation of DNA replication in cell proliferation. Biol Pharm Bull 2008; 31:1092-5. [PMID: 18520036 DOI: 10.1248/bpb.31.1092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel gene, factor for adipocyte differentiation 24 (fad24), promotes adipogenesis by controlling DNA replication early on during a stage referred to as mitotic clonal expansion (MCE). MCE is considered distinct from the proliferation of pre-confluent cells, so we investigated the role of fad24 in the process. First, the expression of fad24 was examined in pre-confluent and post-confluent 3T3-L1 preadipocytes, NIH-3T3 fibroblasts, and C2C12 myoblasts. fad24 was strongly expressed in the pre-confluent cells. The knockdown of fad24 by RNA interference impaired the ability of the pre-confluent cells to proliferate. Moreover, bromodeoxyuridine labeling and chromatin immunoprecipitation experiments indicated that the knockdown inhibited DNA synthesis by preventing the recruitment of histone acetyltransferase binding to ORC1 (HBO1), a component of the pre-replicative complex, to origins. fad24 plays positive roles in the proliferation of pre-confluent cells as well as adipogenesis.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
458
|
Laue K, Daujat S, Crump JG, Plaster N, Roehl HH, Tübingen 2000 Screen Consortium, Kimmel CB, Schneider R, Hammerschmidt M. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 2008; 135:1935-46. [PMID: 18469222 PMCID: PMC2919486 DOI: 10.1242/dev.017160] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Trithorax group (TrxG) is composed of diverse, evolutionary conserved proteins that form chromatin-associated complexes accounting for epigenetic transcriptional memory. However, the molecular mechanisms by which particular loci are marked for reactivation after mitosis are only partially understood. Here, based on genetic analyses in zebrafish, we identify the multidomain protein Brpf1 as a novel TrxG member with a central role during development. brpf1 mutants display anterior transformations of pharyngeal arches due to progressive loss of anterior Hox gene expression. Brpf1 functions in association with the histone acetyltransferase Moz (Myst3), an interaction mediated by the N-terminal domain of Brpf1, and promotes histone acetylation in vivo. Brpf1 recruits Moz to distinct sites of active chromatin and remains at chromosomes during mitosis, mediated by direct histone binding of its bromodomain, which has a preference for acetylated histones, and its PWWP domain, which binds histones independently of their acetylation status. This is the first demonstration of histone binding for PWWP domains. Mutant analyses further show that the PWWP domain is absolutely essential for Brpf1 function in vivo. We conclude that Brpf1, coordinated by its particular set of domains, acts by multiple mechanisms to mediate Moz-dependent histone acetylation and to mark Hox genes for maintained expression throughout vertebrate development.
Collapse
Affiliation(s)
- Kathrin Laue
- Georges-Koehler-Laboratory, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Sylvain Daujat
- Hans-Spemann-Laboratory, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Justin Gage Crump
- Center for Stem Cell and Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Nikki Plaster
- Georges-Koehler-Laboratory, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Henry H. Roehl
- Centre of Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Charles B. Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, USA
| | - Robert Schneider
- Hans-Spemann-Laboratory, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | - Matthias Hammerschmidt
- Georges-Koehler-Laboratory, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| |
Collapse
Collaborators
F van Bebber, E Busch-Nentwich, R Dahm, H G Frohnhöfer, H Geiger, D Gilmour, S Holley, J Hooge, D Jülich, H Knaut, F Maderspacher, H-M Maischein, C Neumann, T Nicolson, C Nüsslein-Volhard, H H Roehl, U Schönberger, C Seiler, C Söllner, M Sonawane, A Wehner, P Erker, H Habeck, U Hagner, C Hennen, E Kaps, A Kirchner, T Koblitzek, U Langheinrich, C Loeschke, C Metzger, R Nordin, J Odenthal, M Pezzuti, K Schlombs, J deSatana-Stamm, T Trowe, G Vacun, B Walderich, A Walker, C Weiler,
Collapse
|
459
|
Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, Feng X, Bonni A, Riabowol K, Bonni S. ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem 2008; 283:13269-79. [PMID: 18334480 PMCID: PMC2442333 DOI: 10.1074/jbc.m708834200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/04/2008] [Indexed: 11/06/2022] Open
Abstract
Members of the ING (inhibitor of growth) family of chromatin modifying proteins (ING1-ING5) have emerged as critical regulators of gene expression and cellular responses, suggesting that the ING proteins may impinge on specific signal transduction pathways and their mediated effects. Here, we demonstrate a role for the protein ING2 in mediating responses by the transforming growth factor (TGF)-beta-Smad signaling pathway. We show that ING2 promotes TGF-beta-induced transcription. Both gain-of-function and RNA interference-mediated knockdown of endogenous ING2 reveal that ING2 couples TGF-beta signals to the induction of transcription and cell cycle arrest. We also find that the Smad-interacting transcriptional modulator SnoN interacts with ING2 and promotes the assembly of a protein complex containing SnoN, ING2, and Smad2. Knockdown of endogenous SnoN blocks the ability of ING2 to promote TGF-beta-dependent transcription, and conversely expression of SnoN augments ING2 enhancement of the TGF-beta response. Collectively, our data suggest that ING2 collaborates with SnoN to mediate TGF-beta-induced Smad-dependent transcription and cellular responses.
Collapse
Affiliation(s)
- Krishna P Sarker
- Department of Biochemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 2008; 68:3193-203. [PMID: 18451145 PMCID: PMC2440635 DOI: 10.1158/0008-5472.can-07-2780] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nutlin-3, an MDM2 inhibitor, activates p53, resulting in several types of cancer cells undergoing apoptosis. Although p53 is mutated or deleted in approximately 50% of all cancers, p53 is still functionally active in the other 50%. Consequently, nutlin-3 and similar drugs could be candidates for neoadjuvant therapy in cancers with a functional p53. Cellular senescence is also a phenotype induced by p53 activation and plays a critical role in protecting against tumor development. In this report, we found that nutlin-3a can induce senescence in normal human fibroblasts. Nutlin-3a activated and repressed a large number of p53-dependent genes, including those encoding microRNAs. mir-34a, mir-34b, and mir-34c, which have recently been shown to be downstream effectors of p53-mediated senescence, were up-regulated, and inhibitor of growth 2 (ING2) expression was suppressed by nutlin-3a treatment. Two candidates for a p53-DNA binding consensus sequence were found in the ING2 promoter regulatory region; thus, we performed chromatin immunoprecipitation and electrophoretic mobility shift assays and confirmed p53 binding directly to those sites. In addition, the luciferase activity of a construct containing the ING2 regulatory region was repressed after p53 activation. Antisense knockdown of ING2 induces p53-independent senescence, whereas overexpression of ING2 induces p53-dependent senescence. Taken together, we conclude that nutlin-3a induces senescence through p53 activation in normal human fibroblasts, and p53-mediated mir34a, mir34b, and mir34c up-regulation and ING2 down-regulation may be involved in the senescence pathway.
Collapse
Affiliation(s)
- Kensuke Kumamoto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Elisa A. Spillare
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kaori Fujita
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Taro Yamashita
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Makoto Nagashima
- Department of Surgery, Toho University Sakura Hospital, Sakura, Japan
| | - Seiichi Takenoshita
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jun Yokota
- Biology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
461
|
Unger K, Malisch E, Thomas G, Braselmann H, Walch A, Jackl G, Lewis P, Lengfelder E, Bogdanova T, Wienberg J, Zitzelsberger H. Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC. Oncogene 2008; 27:4592-602. [DOI: 10.1038/onc.2008.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
462
|
van Beekum O, Brenkman AB, Grøntved L, Hamers N, van den Broek NJF, Berger R, Mandrup S, Kalkhoven E. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma. Endocrinology 2008; 149:1840-9. [PMID: 18096664 DOI: 10.1210/en.2007-0977] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip60 protein is recruited to PPARgamma target genes in mature 3T3-L1 adipocytes but not in preadipocytes, indicating that Tip60 requires PPARgamma for its recruitment to PPARgamma target genes. Importantly, we show that in common with disruption of PPARgamma function, small interfering RNA-mediated reduction of Tip60 protein impairs differentiation of 3T3-L1 preadipocytes. Taken together, these findings qualify the acetyltransferase Tip60 as a novel adipogenic factor.
Collapse
Affiliation(s)
- Olivier van Beekum
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Lundlaan 6, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
463
|
Palacios A, Muñoz IG, Pantoja-Uceda D, Marcaida MJ, Torres D, Martín-García JM, Luque I, Montoya G, Blanco FJ. Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem 2008; 283:15956-64. [PMID: 18381289 DOI: 10.1074/jbc.m710020200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The inhibitors of growth (ING) family of tumor suppressors consists of five homologous proteins involved in chromatin remodeling. They form part of different acetylation and deacetylation complexes and are thought to direct them to specific regions of the chromatin, through the recognition of H3K4me3 (trimethylated K4 in the histone 3 tail) by their conserved plant homeodomain (PHD). We have determined the crystal structure of ING4-PHD bound to H3K4me3, which reveals a tight complex stabilized by numerous interactions. NMR shows that there is a reduction in the backbone mobility on the regions of the PHD that participate in the peptide binding, and binding affinities differ depending on histone tail lengths Thermodynamic analysis reveals that the discrimination in favor of methylated lysine is entropy-driven, contrary to what has been described for chromodomains. The molecular basis of H3K4me3 recognition by ING4 differs from that of ING2, which is consistent with their different affinities for methylated histone tails. These differences suggest a distinct role in transcriptional regulation for these two ING family members because of the antagonistic effect of the complexes that they recruit onto chromatin. Our results illustrate the versatility of PHD fingers as readers of the histone code.
Collapse
Affiliation(s)
- Alicia Palacios
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Hurst DR, Xie Y, Vaidya KS, Mehta A, Moore BP, Accavitti-Loper MA, Samant RS, Saxena R, Silveira AC, Welch DR. Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem 2008; 283:7438-44. [PMID: 18211900 PMCID: PMC2293288 DOI: 10.1074/jbc.m709446200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The BRMS1 metastasis suppressor interacts with the protein AT-rich interactive domain 4A (ARID4A, RBBP1) as part of SIN3.histone deacetylase chromatin remodeling complexes. These transcriptional co-repressors regulate diverse cell phenotypes depending upon complex composition. To define BRMS1 complexes and their roles in metastasis suppression, we generated BRMS1 mutants (BRMS1(mut)) and mapped ARID4A interactions. BRMS1(L174D) disrupted direct interaction with ARID4A in yeast two-hybrid genetic screens but retained an indirect association with ARID4A in MDA-MB-231 and -435 human breast cancer cell lines by co-immunoprecipitation. Deletion of the first coiled-coil domain (BRMS1(DeltaCC1)) did not disrupt direct interaction in yeast two-hybrid screens but did prevent association by co-immunoprecipitation. These results suggest altered complex composition with BRMS1(mut). Although basal transcription repression was impaired and the pro-metastatic protein osteopontin was differentially down-regulated by BRMS1(L174D) and BRMS1(DeltaCC1), both down-regulated the epidermal growth factor receptor and suppressed metastasis in MDA-MB-231 and -435 breast cancer xenograft models. We conclude that BRMS1(mut), which modifies the composition of a SIN3.histone deacetylase chromatin remodeling complex, leads to altered gene expression profiles. Because metastasis requires the coordinate expression of multiple genes, down-regulation of at least one important gene, such as the epidermal growth factor receptor, had the ability to suppress metastasis. Understanding which interactions are necessary for particular biochemical/cellular functions may prove important for future strategies targeting metastasis.
Collapse
Affiliation(s)
- Douglas R. Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yi Xie
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kedar S. Vaidya
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alka Mehta
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Blake P. Moore
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Ann Accavitti-Loper
- Comprehensive Cancer Center, Epitope Recognition, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunoreagent Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ritu Saxena
- Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Danny R. Welch
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, Epitope Recognition, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
465
|
Multiple ING1 and ING2 genes in Xenopus laevis and evidence for differential association of thyroid hormone receptors and ING proteins to their promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:152-63. [DOI: 10.1016/j.bbagrm.2007.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 11/18/2022]
|
466
|
Johmura Y, Suzuki M, Osada S, Nishizuka M, Imagawa M. FAD24, a regulator of adipogenesis and DNA replication, inhibits H-RAS-mediated transformation by repressing NF-kappaB activity. Biochem Biophys Res Commun 2008; 369:464-70. [PMID: 18284919 DOI: 10.1016/j.bbrc.2008.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/09/2008] [Indexed: 11/29/2022]
Abstract
We have previously reported that a novel gene, factor for adipocyte differentiation (fad) 24, promotes adipogenesis. Moreover, our recent findings indicated that this regulation involves the control of DNA replication by fad24 during the early stage in adipogenesis. Considering that abnormal regulation of DNA replication is linked to transformation, we examined whether the over-expression of fad24 leads to the formation of colonies in soft agarose. The over-expression itself generated no colonies. Rather, it inhibited oncogenic H-ras-mediated formation of colonies. The over-expression of histone acetyltransferase binding to ORC1 (HBO1), a partner of FAD24, also inhibited the H-ras-mediated colony-forming process. Furthermore, we revealed that FAD24 interacts with p65, a subunit of NF-kappaB which is known to be activated by H-ras. The over-expression of fad24 repressed NF-kappaB-mediated promoter activity and gene expression. Taken together, these results reveal a novel role for fad24 in the repression of NF-kappaB activity and H-ras-mediated transformation.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | |
Collapse
|
467
|
Wu ZQ, Liu X. Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc Natl Acad Sci U S A 2008; 105:1919-24. [PMID: 18250300 PMCID: PMC2538859 DOI: 10.1073/pnas.0712063105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Indexed: 11/18/2022] Open
Abstract
In a search for Polo-like kinase 1 (Plk1)-interacting proteins using a yeast two-hybrid system, we have identified histone acetyltransferase binding to the origin recognition complex 1 (Hbo1) as a potential Plk1 target. Here, we show that the interaction between Plk1 and Hbo1 is mitosis-specific and that Plk1 phosphorylates Hbo1 on Ser-57 in vitro and in vivo. During mitosis, Cdk1 phosphorylates Hbo1 on Thr-85/88, creating a docking site for Plk1 to be recruited. Significantly, the overexpression of Hbo1 mutated at the Plk1 phosphorylation site (S57A) leads to cell-cycle arrest in the G1/S phase, inhibition of chromatin loading of the minichromosome maintenance (Mcm) complex, and a reduced DNA replication rate. Similarly, Hbo1 depletion results in decreased DNA replication and a failure of Mcm complex binding to chromatin, both of which can be partially rescued by the ectopic expression of WT Hbo1 but not Hbo1-S57A. These results suggest that Plk1 phosphorylation of Hbo1 may be required for prereplicative complex (pre-RC) formation and DNA replication licensing.
Collapse
Affiliation(s)
- Zhao-Qiu Wu
- Department of Biochemistry and Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Xiaoqi Liu
- Department of Biochemistry and Cancer Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
468
|
Abstract
Chromatin structure plays a key role in most processes involving DNA metabolism. Chromatin modifications implicated in transcriptional regulation are relatively well characterized and are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, ubiquitylation, sumoylation, acetylation and methylation, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. Recent evidences suggest that such mechanisms are also involved in DNA damage detection and DNA repair. One of the most well-characterized modifications is caused by the formation of DNA double strand breaks (DSBs), resulting in phosphorylation of histone H2AX (the so-called gamma-H2AX) on the chromatin surrounding the DNA lesion. It is generally believed that histone H2AX phosphorylation is required for the concentration and stabilization of DNA repair proteins to the damaged chromatin. The phosphorylation of this histone seems to play a role in both non-homologous end-joining (NHEJ) and homologous recombination (HR) repair pathways. However, the choice of the repair pathway might depend on or induce additional post-translational modifications affecting other histone proteins necessary to the completion of the entire DNA repair process. Interestingly, even in the absence of DSBs, histone modifications occur. Indeed, following UV-exposure, histone acetylation takes place and is believed to facilitate the nucleotide excision repair (NER) process by promoting chromatin accessibility to the repair factors. This review focuses on recent data characterizing the function of histone modification in various repair processes and discusses if the combination of such modifications can be the trademark of a specific DNA repair pathway.
Collapse
|
469
|
Binda O, Nassif C, Branton PE. SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene 2008; 27:3384-92. [PMID: 18193082 DOI: 10.1038/sj.onc.1211014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both RBP1 and the highly related protein BCAA play a role in the induction of growth arrest and cellular senescence via mechanisms involving transcriptional repression. While investigating the transcriptional repression activities of RBP1, we observed a genetic link between RBP1 and SIR2. Further work uncovered an interaction between RBP1 family proteins and the mammalian homologue of SIR2, SIRT1. Interestingly, the HDAC-dependent transcriptional repression domain of RBP1 proteins, termed R2, is necessary and sufficient for the interaction with SIRT1. In vitro and in vivo binding studies indicated that the p33(ING1b) and p33(ING2) subunits of the mSIN3A/HDAC1 complex are responsible for the recruitment of SIRT1 to the R2 domain. To investigate the biological relevance of this interaction, we used the sirtuin activator resveratrol and the sirtuin inhibitor sirtinol in transcriptional repression assays and demonstrated that SIRT1 activity negatively regulates R2-mediated transcriptional repression activity. We therefore propose a novel mechanism of class I HDAC regulation by a class III HDAC. Explicitly, SIRT1 is recruited by ING proteins and inhibits R2-associated mSIN3A/HDAC1 transcriptional repression activity.
Collapse
Affiliation(s)
- O Binda
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
470
|
Gunduz E, Gunduz M, Beder LB, Tamamura R, Nagatsuka H, Nagai N. Inhibitor of Growth (ING) Family: An Emerging Molecular Target for Cancer Therapy. J HARD TISSUE BIOL 2008. [DOI: 10.2485/jhtb.17.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
471
|
Tardat M, Murr R, Herceg Z, Sardet C, Julien E. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. ACTA ACUST UNITED AC 2007; 179:1413-26. [PMID: 18158331 PMCID: PMC2373513 DOI: 10.1083/jcb.200706179] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PR-Set7/SET8 is a histone H4–lysine 20 methyltransferase required for normal cell proliferation. However, the exact functions of this enzyme remain to be determined. In this study, we show that human PR-Set7 functions during S phase to regulate cellular proliferation. PR-Set7 associates with replication foci and maintains the bulk of H4-K20 mono- and trimethylation. Consistent with a function in chromosome dynamics during S phase, inhibition of PR-Set7 methyltransferase activity by small hairpin RNA causes a replicative stress characterized by alterations in replication fork velocity and origin firing. This stress is accompanied by massive induction of DNA strand breaks followed by a robust DNA damage response. The DNA damage response includes the activation of ataxia telangiectasia mutated and ataxia telangiectasia related kinase–mediated pathways, which, in turn, leads to p53-mediated growth arrest to avoid aberrant chromosome behavior after improper DNA replication. Collectively, these data indicate that PR-Set7–dependent lysine methylation during S phase is an essential posttranslational mechanism that ensures genome replication and stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- University of Montpellier II, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | | | | | | | | |
Collapse
|
472
|
Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J, Huang W, Li JJ, Chen MS, Xia JC. Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett 2007; 261:183-92. [PMID: 18160212 DOI: 10.1016/j.canlet.2007.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 11/10/2007] [Indexed: 12/13/2022]
Abstract
The inhibitor of growth (ING) family member 2 (ING2) is a newly discovered member of ING family that can regulate a wide range of cellular processes including cell growth arrest, apoptosis, and DNA repair. Researches have shown that ING2 can activate p53 and p53-mediated apoptotic pathway involved in the hepatocarcinogenesis. To investigate the role of ING2 in hepatocellular carcinoma (HCC) pathogenesis, we analyzed the correlations between the ING2 expression level and clinicopathologic factors and studied its prognostic role in primary HCC. Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, ING2 transcription and post-transcription level was found to be downregulated in the majority of tumors compared with matched non-tumors liver tissues (p=0.004 and p=0.014, respectively). The immunohistochemistry data indicated significant reduction of ING2 expression level in 44 of 84 (52.4%) HCC cases. In addition, the expression level of ING2 correlated with tumor size, histopathologic classification, serum AFP (p<0.05). Kaplan-Meier curves demonstrated that patients with reduced ING2 expression were at significantly increased risk for shortened survival time (p=0.009). Using multivariate analysis, ING2 expression was found to be an independent prognostic factor. Our data suggest that ING2 is involved in the progression of HCC, therefore it is considered to be a candidate tumor suppressor gene and its significantly decreased expression in HCC may lead to an unfavorable prognosis.
Collapse
Affiliation(s)
- Hua-kun Zhang
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, Guangdong Province 510060, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem 2007; 283:2265-74. [PMID: 18029353 DOI: 10.1074/jbc.m707880200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preadipocytes differentiate into adipocytes through approximately two rounds of mitosis, referred to as mitotic clonal expansion (MCE), but the events early in the differentiation process are not fully understood. Previously, we identified and characterized a novel gene, fad24 (factor for adipocyte differentiation 24), induced to express at the early stages of adipocyte differentiation. Although fad24 clearly has crucial roles in adipogenesis, its precise functions remain unknown. Here we show that the knockdown of fad24 by RNAi in 3T3-L1 preadipocytes repressed MCE. Moreover, FAD24 interacts with HBO1, a histone acetyltransferase and positive regulator of DNA replication initiation. The knockdown of hbo1 repressed MCE and adipogenesis, indicating that FAD24 acts in concert with HBO1 to promote adipogenesis by controlling DNA replication. Regarding the molecular mechanisms behind the regulation of DNA replication by fad24, we revealed that FAD24 co-localizes with HBO1 to chromatin during late mitosis, which is when the prereplication initiation complex is assembled. Furthermore, chromatin immunoprecipitation experiments indicated that FAD24 localizes to origins of DNA replication with HBO1. When fad24 expression was inhibited during adipocyte differentiation, the recruitment of HBO1 to origins of DNA replication was reduced. Thus, FAD24 controls DNA replication by recruiting HBO1 to origins of DNA replication and is required for MCE during adipocyte differentiation.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | | | | | | |
Collapse
|
474
|
McGraw S, Morin G, Vigneault C, Leclerc P, Sirard MA. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:123. [PMID: 17980037 PMCID: PMC2190771 DOI: 10.1186/1471-213x-7-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 11/02/2007] [Indexed: 01/15/2023]
Abstract
Background Various histone acetylases (HATs) play a critical role in the regulation of gene expression, but the precise functions of many of those HATs are still unknown. Here we provide evidence that MYST4, a known HAT, may be involved in early mammalian gametogenesis. Results Although MYST4 mRNA transcripts are ubiquitous, protein expression was restricted to select extracts (including ovary and testis). Immunohistochemistry experiments performed on ovary sections revealed that the MYST4 protein is confined to oocytes, granulosa and theca cells, as well as to cells composing the blood vessels. The transcripts for MYST4 and all-MYST4-isoforms were present in oocytes and in in vitro produced embryos. In oocytes and embryos the MYST4 protein was localized in both the cytoplasm and nucleus. Within testis sections, the MYST4 protein was specific to only one cell type, the elongating spermatids, where it was exclusively nuclear. Conclusion We established that MYST4 is localized into specialized cells of the ovary and testis. Because the majority of these cells are involved in male and female gametogenesis, MYST4 may contribute to important and specific acetylation events occurring during gametes and embryo development.
Collapse
Affiliation(s)
- Serge McGraw
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada.
| | | | | | | | | |
Collapse
|
475
|
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14:1025-1040. [PMID: 17984965 PMCID: PMC4691843 DOI: 10.1038/nsmb1338] [Citation(s) in RCA: 1112] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
Collapse
Affiliation(s)
- Sean D Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexander J Ruthenburg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
476
|
Abstract
Hbo1 is a histone acetyltransferase (HAT) that is required for global histone H4 acetylation, steroid-dependent transcription, and chromatin loading of MCM2-7 during DNA replication licensing. It is the catalytic subunit of protein complexes that include ING and JADE proteins, growth regulatory factors and candidate tumor suppressors. These complexes are thought to act via tumor suppressor p53, but the molecular mechanisms and links between stress signaling and chromatin, are currently unknown. Here, we show that p53 physically interacts with Hbo1 and negatively regulates its HAT activity in vitro and in cells. Two physiological stresses that stabilize p53, hyperosmotic shock and DNA replication fork arrest, also inhibit Hbo1 HAT activity in a p53-dependent manner. Hyperosmotic stress during G(1) phase specifically inhibits the loading of the MCM2-7 complex, providing an example of the chromatin output of this pathway. These results reveal a direct regulatory connection between p53-responsive stress signaling and Hbo1-dependent chromatin pathways.
Collapse
|
477
|
Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 2007; 32:509-19. [PMID: 17949986 DOI: 10.1016/j.tibs.2007.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/03/2023]
Abstract
The INhibitor of Growth (ING) family of type II tumour suppressors are encoded by five genes in mammals (ING1-ING5), most of which encode multiple isoforms via splicing, and all of which contain a highly conserved plant homeodomain (PHD) finger motif. Since their discovery approximately ten years ago, significant progress has been made in understanding their subcellular targeting, their relationship to p53, their activation by bioactive phospholipids, and their key role in reading the histone code via PHD fingers, with subsequent effects on histone acetylation and transcriptional regulation. In the past year, we have begun to understand how ING proteins integrate stress signals with interpretation and modification of the histone epigenetic code to function as tumour suppressors.
Collapse
Affiliation(s)
- Mohamed A Soliman
- Department of Biochemistry University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
478
|
Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci U S A 2007; 104:16834-9. [PMID: 17940011 DOI: 10.1073/pnas.0708189104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recently discovered phosphatidylinositol monophosphate, phosphatidylinositol 5-phosphate (PtdIns-5-P), plays an important role in nuclear signaling by influencing p53-dependent apoptosis. It interacts with a plant homeodomain finger of inhibitor of growth protein-2, causing an increase in the acetylation and stability of p53. Here we show that type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase (type I 4-phosphatase), an enzyme that dephosphorylates phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P(2)), forming PtdIns-5-P in vitro, can increase the cellular levels of PtdIns-5-P. When HeLa cells were treated with the DNA-damaging agents etoposide or doxorubicin, type I 4-phosphatase translocated to the nucleus and nuclear levels of PtdIns-5-P increased. This action resulted in increased p53 acetylation, which stabilized p53, leading to increased apoptosis. Overexpression of type I 4-phosphatase increased apoptosis, whereas RNAi of the enzyme diminished it. The half-life of p53 was shortened from 7 h to 1.8 h upon RNAi of type I 4-phosphatase. This enzyme therefore controls nuclear levels of PtdIns-5-P and thereby p53-dependent apoptosis.
Collapse
|
479
|
Fegers I, Kob R, Eckey M, Schmidt O, Goeman F, Papaioannou M, Escher N, von Eggeling F, Melle C, Baniahmad A. The Tumor Suppressors p33ING1 and p33ING2 Interact with Alien in Vivo and Enhance Alien-Mediated Gene Silencing. J Proteome Res 2007; 6:4182-8. [DOI: 10.1021/pr070219d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Inga Fegers
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Robert Kob
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Maren Eckey
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Oliver Schmidt
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Frauke Goeman
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Maria Papaioannou
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Niko Escher
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Ferdinand von Eggeling
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Christian Melle
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Aria Baniahmad
- Molecular Genetics, Institute of Human Genetics and Anthropology, University Jena, 07740 Jena, Germany, Department of Biochemistry, University Kuopio, Finland, and Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| |
Collapse
|
480
|
Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 2007; 27:561-71. [PMID: 17936034 DOI: 10.1016/j.immuni.2007.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 12/24/2022]
Abstract
V(D)J recombination is initiated by the recombination activating gene (RAG) proteins RAG-1 and RAG-2. The ability of antigen-receptor-gene segments to undergo V(D)J recombination is correlated with spatially- and temporally-restricted chromatin modifications. We have found that RAG-2 bound specifically to histone H3 and that this binding was absolutely dependent on dimethylation or trimethylation at lysine 4 (H3K4me2 or H3K4me3). The interaction required a noncanonical plant homeodomain (PHD) that had previously been described within the noncore region of RAG-2. Binding of the RAG-2 PHD finger to chromatin across the IgH D-J(H)-C locus showed a strong correlation with the distribution of trimethylated histone H3 K4. Mutation of a conserved tryptophan residue in the RAG-2 PHD finger abolished binding to H3K4me3 and greatly impaired recombination of extrachromosomal and endogenous immunoglobulin gene segments. Together, these findings are consistent with the interpretation that recognition of hypermethylated histone H3 K4 promotes efficient V(D)J recombination in vivo.
Collapse
Affiliation(s)
- Yun Liu
- Department of Molecular Biology and Genetics, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
481
|
Avvakumov N, Côté J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 2007; 26:5395-407. [PMID: 17694081 DOI: 10.1038/sj.onc.1210608] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferases (HATs) of the MYST family are highly conserved in eukaryotes and carry out a significant proportion of all nuclear acetylation. These enzymes function exclusively in multisubunit protein complexes whose composition is also evolutionarily conserved. MYST HATs are involved in a number of key nuclear processes and play critical roles in gene-specific transcription regulation, DNA damage response and repair, as well as DNA replication. This suggests that anomalous activity of these HATs or their associated complexes can easily lead to severe cellular malfunction, resulting in cell death or uncontrolled growth and malignancy. Indeed, the MYST family HATs have been implicated in several forms of human cancer. This review summarizes the current understanding of these enzymes and their normal function, as well as their established and putative links to oncogenesis.
Collapse
Affiliation(s)
- N Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec, Canada
| | | |
Collapse
|
482
|
Suzuki H, Ouchida M, Yamamoto H, Yano M, Toyooka S, Aoe M, Shimizu N, Date H, Shimizu K. Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer. Lung Cancer 2007; 59:24-31. [PMID: 17854949 DOI: 10.1016/j.lungcan.2007.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/28/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
To identify the tumor suppressor genes (TSG) associated with non-small cell lung cancers (NSCLC), we performed the loss of heterozygosity (LOH) analysis in NSCLC samples from 66 patients. We focused on the novel hot spot region on 15q14-24 with eight polymorphic microsatellite markers. Frequent allelic loss was detected in 33 of 48 informative cases (69%) at D15S984 on 15q23. We defined the fine map on the region and identified the SIN3A gene as a candidate TSG. The SIN3A gene product is a component of the histone deacetylase (HDAC) complex and plays essential roles in early embryonic development and the proliferation and survival of a variety of cells through the repression of diverse signaling pathways. Our expression analysis revealed more frequent down-regulation of the SIN3A mRNA in 19 of 31 cases (61%) of NSCLCs in comparison to those of other flanking genes (16-42%), albeit the correlation of the decreased expression with the LOH did not attain statistic significance. These results suggest that the attenuated function of SIN3A due to a decreased level of expression may result in epigenetic de-regulation of growth-related genes through histone acetylation, which leads to the tumorigenesis of lung cancer cells. To our knowledge, this is the first evidence of the down-regulation of the SIN3A gene in human cancer.
Collapse
Affiliation(s)
- Hiromitsu Suzuki
- Department of Surgical Oncology and Thoracic Surgery, Okayama University, Shikata-cho 2-5-1, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Tallen UG, Truss M, Kunitz F, Wellmann S, Unryn B, Sinn B, Lass U, Krabbe S, Holtkamp N, Hagemeier C, Wurm R, Henze G, Riabowol KT, von Deimling A. Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death. J Neurooncol 2007; 86:23-30. [PMID: 17763999 DOI: 10.1007/s11060-007-9436-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/11/2007] [Indexed: 12/21/2022]
Abstract
Impaired tumor suppressor functions, such as deficient p53, are characteristic for glioblastoma multiforme (GBM) and can cause resistance to DNA-damaging agents like cisplatin. We have recently shown that the INhibitor of Growth 1 (ING1) tumor suppressor is down-regulated in malignant gliomas and that the decrease of ING1 expression correlates with histological grade of malignancy, suggesting a role for ING1 in the pathogenesis and progression of malignant gliomas. Based on this background, the purpose of our current study was to examine the potential impact of ING1 protein levels on DNA-damage response in GBM. Using LN229 GBM cells, which express ING1 proteins and harbor mutant TP53, we are the first to show that DNA damage by cisplatin or ionizing radiation differentially induced the two major ING1 splicing isoforms. The p47 ING1a isoform, that promotes deacetylation of histones, thus formation of heterochromatic regions of DNA, which are less susceptible to DNA damage, was preferentially induced by >50-fold. This might represent a response to protect DNA from damage. Also, ING1 knockdown by siRNA accelerated transit of cells through G1 phase, consistent with ING1 serving a tumor suppressor function, and caused cells to enter apoptosis more rapidly in response to cisplatin. Our results indicate that malignant gliomas may down-regulate ING1 to allow more efficient tumor growth and progression. Also, ING1 down-regulation may sensitize GBM cells with deficient p53 to treatment with cisplatin.
Collapse
Affiliation(s)
- Ute Gesche Tallen
- Department of Pediatric Oncology and Hematology, Children's Hospital, Charité, Universitätsmedizin-Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Abstract
Genes of the human monocytic leukemia zinc-finger protein MOZ (HUGO symbol, MYST3) and its paralog MORF (MYST4) are rearranged in chromosome translocations associated with acute myeloid leukemia and/or benign uterine leiomyomata. Both proteins have intrinsic histone acetyltransferase activity and are components of quartet complexes with noncatalytic subunits containing the bromodomain, plant homeodomain-linked (PHD) finger and proline-tryptophan-tryptophan-proline (PWWP)-containing domain, three types of structural modules characteristic of chromatin regulators. Although leukemia-derived fusion proteins such as MOZ-TIF2 promote self-renewal of leukemic stem cells, recent studies indicate that murine MOZ and MORF are important for proper development of hematopoietic and neurogenic progenitors, respectively, thereby highlighting the importance of epigenetic integrity in safeguarding stem cell identity.
Collapse
Affiliation(s)
- X-J Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Québec, Canada.
| | | |
Collapse
|
485
|
Murr R, Vaissière T, Sawan C, Shukla V, Herceg Z. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 2007; 26:5358-72. [PMID: 17694078 DOI: 10.1038/sj.onc.1210605] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin modifications at core histones including acetylation, methylation, phosphorylation and ubiquitination play an important role in diverse biological processes. Acetylation of specific lysine residues within the N terminus tails of core histones is arguably the most studied histone modification; however, its precise roles in different cellular processes and how it is disrupted in human diseases remain poorly understood. In the last decade, a number of histone acetyltransferases (HATs) enzymes responsible for histone acetylation, has been identified and functional studies have begun to unravel their biological functions. The activity of many HATs is dependent on HAT complexes, the multiprotein assemblies that contain one HAT catalytic subunit, adapter proteins, several other molecules of unknown function and a large protein called TRansformation/tRanscription domain-Associated Protein (TRRAP). As a common component of many HAT complexes, TRRAP appears to be responsible for the recruitment of these complexes to chromatin during transcription, replication and DNA repair. Recent studies have shed new light on the role of TRRAP in HAT complexes as well as mechanisms by which it mediates diverse cellular processes. Thus, TRRAP appears to be responsible for a concerted and context-dependent recruitment of HATs and coordination of distinct chromatin-based processes, suggesting that its deregulation may contribute to diseases. In this review, we summarize recent developments in our understanding of the function of TRRAP and TRRAP-containing HAT complexes in normal cellular processes and speculate on the mechanism underlying abnormal events that may lead to human diseases such as cancer.
Collapse
Affiliation(s)
- R Murr
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | |
Collapse
|
486
|
Lafon A, Chang CS, Scott EM, Jacobson SJ, Pillus L. MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 2007; 26:5373-84. [PMID: 17694079 DOI: 10.1038/sj.onc.1210606] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MYST family of histone acetyltransferases (HATs) was initially defined by human genes with disease connections and by yeast genes identified for their role in epigenetic transcriptional silencing. Since then, many new MYST genes have been discovered through genetic and genomic approaches. Characterization of the complexes through which MYST proteins act, regions of the genome to which they are targeted and biological consequences when they are disrupted, all deepen the connections of MYST proteins to development, growth control and human cancers. Many of the insights into MYST family function have come from studies in model organisms. Herein, we review functions of two of the founding MYST genes, yeast SAS2 and SAS3, and the essential yeast MYST ESA1. Analysis of these genes in yeast has defined roles for MYST proteins in transcriptional activation and silencing, and chromatin-mediated boundary formation. They have further roles in DNA damage repair and nuclear integrity. The observation that MYST protein complexes share subunits with other HATs, histone deacetylases and other key nuclear proteins, many with connections to human cancers, strengthens the idea that coordinating distinct chromatin modifications is critical for regulation.
Collapse
Affiliation(s)
- A Lafon
- Section of Molecular Biology, Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
487
|
Abstract
Histone modifications such as acetylation, methylation and phosphorylation have been implicated in fundamental cellular processes such as epigenetic regulation of gene expression, organization of chromatin structure, chromosome segregation, DNA replication and DNA repair. Males absent on the first (MOF) is responsible for acetylating histone H4 at lysine 16 (H4K16) and is a key component of the MSL complex required for dosage compensation in Drosophila. The human ortholog of MOF (hMOF) has the same substrate specificity and recent purification of the human and Drosophila MOF complexes showed that these complexes were also highly conserved through evolution. Several studies have shown that loss of hMOF in mammalian cells leads to a number of different phenotypes; a G2/M cell cycle arrest, nuclear morphological defects, spontaneous chromosomal aberrations, reduced transcription of certain genes and an impaired DNA repair response upon ionizing irradiation. Moreover, hMOF is involved in ATM activation in response to DNA damage and acetylation of p53 by hMOF influences the cell's decision to undergo apoptosis instead of a cell cycle arrest. These data, highlighting hMOF as an important component of many cellular processes, as well as links between hMOF and cancer will be discussed.
Collapse
Affiliation(s)
- S Rea
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
488
|
Abad M, Menéndez C, Füchtbauer A, Serrano M, Füchtbauer EM, Palmero I. Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. J Biol Chem 2007; 282:31060-7. [PMID: 17693408 DOI: 10.1074/jbc.m701639200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ING proteins are putative tumor suppressor proteins linked to the p53 pathway and to the chromatin modification machinery. Here we have analyzed the role of the products of the murine Ing1 locus in cellular tumor-protective responses, using mouse primary fibroblasts where the Ing1 locus has been inactivated by the integration of a betageo cassette. We show that Ing1-deficient mouse embryonic fibroblasts display a defective senescence-like antiproliferative response against oncogenic Ras, affecting several senescence-specific markers. This phenotype is accompanied by a reduced accumulation of p53, which can be explained by the reduced basal p53 protein stability in the Ing1-deficient background. Ing1 deficiency also results in defects in the appearance of heterochromatic marks upon expression of oncogenic Ras, suggestive of impaired heterochromatin formation during oncogene-induced senescence. Our results support an important role for the Ing1 locus in protection against oncogenic stress in vivo, both as a mediator of p53 activation and as a regulator of chromatin remodeling processes.
Collapse
Affiliation(s)
- María Abad
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
489
|
Walzak AA, Veldhoen N, Feng X, Riabowol K, Helbing CC. Expression profiles of mRNA transcript variants encoding the human inhibitor of growth tumor suppressor gene family in normal and neoplastic tissues. Exp Cell Res 2007; 314:273-85. [PMID: 17720155 DOI: 10.1016/j.yexcr.2007.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 01/15/2023]
Abstract
The INhibitor of Growth (ING) tumor suppressor gene family is important in regulating cell fate and reads the epigenetic code by interacting specifically with methylated histone H3. Several transcript variants are expressed from the five ING genes but nomenclature for these variants are not consistent in the literature, and very little is known regarding transcript variant expression in normal human tissues and during development. Here we propose a standardized nomenclature for human ING gene family transcript variants and present an expression analysis using real-time quantitative PCR. We establish the steady-state levels of eleven human ING mRNA transcript variants across several fetal, adult, and tumor tissues as well as in cancer-derived cell lines. Consistent with their roles as type II tumor suppressors, we find up to 10,000-fold reduction in many transcript variants in a subset of neoplastic cells. We also find considerable variation in expression levels in different tissues, with up to 1 million-fold higher expression of some ING transcripts in adult, compared to fetal counterparts, particularly in the brain cerebral cortex. These results show differential expression of specific subsets of ING1-5 transcript variants in tissues that may influence the degree to which these variants contribute to epigenetic regulation in cancer and development.
Collapse
Affiliation(s)
- Alison A Walzak
- Department of Biochemistry and Microbiology, PO Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | | | | | | |
Collapse
|
490
|
Wang Y, Dai DL, Martinka M, Li G. Prognostic Significance of Nuclear ING3 Expression in Human Cutaneous Melanoma. Clin Cancer Res 2007; 13:4111-6. [PMID: 17634537 DOI: 10.1158/1078-0432.ccr-07-0408] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The novel tumor-suppressor ING3 has been shown to modulate transcription, cell cycle control, and apoptosis. Our previous study showed that ING3 promotes UV-induced apoptosis via the Fas/caspase-8-dependent pathway in melanoma cells. To investigate the putative role of ING3 in the development of melanoma, we examined the expression of ING3 in melanocytic lesions at different stages and analyzed the correlation between ING3 expression and clinicopathologic variables and patient survival. EXPERIMENTAL DESIGN Using tissue microarray and immunohistochemistry, we evaluated nuclear and cytoplasmic ING3 staining in 58 dysplastic nevi, 114 primary melanomas, and 50 metastatic melanomas. RESULTS Nuclear ING3 expression was remarkably reduced in malignant melanomas compared with dysplastic nevi (P<0.001), which was significantly correlated with the increased ING3 level in cytoplasm (P<0.05). Furthermore, the reduced nuclear ING3 expression was significantly correlated with a poorer disease-specific 5-year survival of patients with primary melanoma, especially for the high-risk melanomas (thickness >or=2.0 mm) with the survival rate reducing from 93% for patients with strong nuclear ING3 staining in their tumor biopsies to 44% for those with negative-to-moderate nuclear ING3 staining (P=0.004). Strikingly, our multivariate Cox regression analysis revealed that reduced nuclear ING3 expression is an independent prognostic factor to predict patient outcome in primary melanomas (P=0.038). CONCLUSIONS Our data indicate that ING3 may be an important marker for human melanoma progression and prognosis as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
491
|
Stavropoulos P, Hoelz A. Lysine-specific demethylase 1 as a potential therapeutic target. Expert Opin Ther Targets 2007; 11:809-20. [PMID: 17504018 DOI: 10.1517/14728222.11.6.809] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chromatin is a highly dynamic structure that undergoes a variety of chemical modifications. These modifications mediate alterations of the chromatin architecture, generate binding platforms that are recognized by other proteins, and are important elements of epigenetic gene regulation. An array of antagonizing histone modifying enzymes that catalyze the attachment and removal of a number of chemical groups has been described and their biologic role has been an intense area of research. With the recent discovery of the first histone demethylase, lysine-specific demethylase-1, a dynamic view of histone methylation was born. As a deeper understanding of their involvement in transcriptional regulation is gained, histone demethylases are becoming increasingly interesting targets for drug development.
Collapse
Affiliation(s)
- Pete Stavropoulos
- The Rockefeller University, Laboratory of Cell Biology, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
492
|
Kuo WHW, Wang Y, Wong RPC, Campos EI, Li G. The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 2007; 313:1628-38. [PMID: 17379210 DOI: 10.1016/j.yexcr.2007.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
ING1b is the most studied ING family protein and perhaps the most ubiquitously and abundantly expressed. This protein is involved in the regulation of various biological functions ranging from senescence, cell cycle arrest, apoptosis, to DNA repair. ING1b is upregulated by UV irradiation and enhances the removal of bulky nucleic acid photoproducts. In this study, we provide evidence that ING1b mediates nucleotide excision repair by facilitating the access to damaged nucleosomal DNA. We demonstrate that ING1b is not recruited to UV-induced DNA lesions but enhances nucleotide excision repair only in XPC-proficient cells, implying an essential role in early steps of the 'access, repair, restore' model. We also find that ING1b alters histone acetylation dynamics upon exposure to UV radiation and induces chromatin relaxation in microccocal nuclease digestion assay, revealing that ING1b may allow better access to nucleotide excision repair machinery. More importantly, ING1b associates with chromatin in a UV-inducible manner and facilitates DNA access to nucleotide excision repair factor XPA. Furthermore, depletion of the endogenous ING1b results to the sensitization of cells at S-phase to UV irradiation. Taken together, these observations establish a role of ING1b acting as a chromatin accessibility factor for DNA damage recognition proteins upon genotoxic injury.
Collapse
Affiliation(s)
- Wei-Hung W Kuo
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, Canada BC V6H 3Z6
| | | | | | | | | |
Collapse
|
493
|
Nicolas E, Yamada T, Cam HP, Fitzgerald PC, Kobayashi R, Grewal SIS. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 2007; 14:372-80. [PMID: 17450151 DOI: 10.1038/nsmb1239] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/23/2007] [Indexed: 12/21/2022]
Abstract
Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes. Complex I contains an essential Sin3 homolog, Pst1, and other factors, and predominantly targets gene promoters. Complex II contains a nonessential Sin3 homolog, Pst2, and several conserved proteins. It preferentially targets transcribed chromosomal regions and centromere cores. Defects in complex II abrogate global protective functions of chromatin, causing increased accessibility of DNA to genotoxic agents and widespread antisense transcripts that are processed by the exosome. Notably, the two Clr6 complexes differentially repress forward and reverse centromeric repeat transcripts, suggesting that these complexes regulate transcription in heterochromatin and euchromatin in similar manners, including suppression of spurious transcripts from cryptic start sites.
Collapse
Affiliation(s)
- Estelle Nicolas
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
494
|
Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K, Pedeux R, Harris CC. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res 2007; 67:2552-8. [PMID: 17363573 PMCID: PMC2569966 DOI: 10.1158/0008-5472.can-06-3870] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Inhibitor of growth 4 (ING4) is a candidate tumor suppressor that plays a major role in gene regulation, cell cycle control, apoptosis, and angiogenesis. ING4 expression is down-regulated in glioblastoma cells and head and neck squamous cell carcinoma. Here, we identified liprin alpha1/PPFIA1, a cytoplasmic protein necessary for focal adhesion formation and axon guidance, as a novel interacting protein with ING4. ING4 and liprin alpha1 colocalized at lamellipodia in the vicinity of vinculin. Overexpressed ING4 suppressed cell spreading and cell migration. In contrast, overexpressed liprin alpha1 enhanced cell spreading and cell migration. Knockdown of endogenous ING4 with RNA interference induced cell motility, whereas knockdown of endogenous liprin alpha1 suppressed cell motility. ING4 also suppressed cell motility that was enhanced by liprin alpha1. However, ING4 did not further suppress cell motility when liprin alpha1 was suppressed with RNA interference, suggesting a functional and mechanistic interdependence between these proteins. In addition to its nuclear functions, cytoplasmic ING4 interacts with liprin alpha1 to regulate cell migration and, with its known antiangiogenic function, may prevent invasion and metastasis.
Collapse
Affiliation(s)
- Jiang-Cheng Shen
- Laboratory of Human Carcinogenesis
NIHCenter for Cancer Research, National Cancer Institute
Bethesda, Maryland, 20892-4258, USA,US
| | - Motoko Unoki
- Laboratory of Human Carcinogenesis
NIHCenter for Cancer Research, National Cancer Institute
Bethesda, Maryland, 20892-4258, USA,US
| | - Damien Ythier
- Groupe de Recherche Sur Le Cancer du Poumon : Bases Moléculaires de la Progression Tumorale, Dépistage et Thérapie Génique
INSERM : U578Institut Albert BonniotRond Point de La Chantourne 38706 LA TRONCHE CEDEX,FR
| | - Alain Duperray
- Groupe de Recherche Sur Le Cancer du Poumon : Bases Moléculaires de la Progression Tumorale, Dépistage et Thérapie Génique
INSERM : U578Institut Albert BonniotRond Point de La Chantourne 38706 LA TRONCHE CEDEX,FR
| | - Lyuba Varticovski
- Laboratory of Human Carcinogenesis
NIHCenter for Cancer Research, National Cancer Institute
Bethesda, Maryland, 20892-4258, USA,US
| | - Kensuke Kumamoto
- Laboratory of Human Carcinogenesis
NIHCenter for Cancer Research, National Cancer Institute
Bethesda, Maryland, 20892-4258, USA,US
| | - Remy Pedeux
- Groupe de Recherche Sur Le Cancer du Poumon : Bases Moléculaires de la Progression Tumorale, Dépistage et Thérapie Génique
INSERM : U578Institut Albert BonniotRond Point de La Chantourne 38706 LA TRONCHE CEDEX,FR
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis
NIHCenter for Cancer Research, National Cancer Institute
Bethesda, Maryland, 20892-4258, USA,US
- * Correspondence should be adressed to: Curtis Harris
| |
Collapse
|
495
|
Abstract
The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited.
Collapse
Affiliation(s)
- Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB21QN, UK.
| |
Collapse
|
496
|
Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa JI, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 2007; 402:559-66. [PMID: 17083329 PMCID: PMC1863558 DOI: 10.1042/bj20061194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HATs (histone acetyltransferases) contribute to the regulation of gene expression, and loss or dysregulation of these activities may link to tumorigenesis. Here, we demonstrate that expression levels of HATs, p300 and CBP [CREB (cAMP-response-element-binding protein)-binding protein] were decreased during chemical hepatocarcinogenesis, whereas expression of MOZ (monocytic leukaemia zinc-finger protein; MYST3)--a member of the MYST [MOZ, Ybf2/Sas3, Sas2 and TIP60 (Tat-interacting protein, 60 kDa)] acetyltransferase family--was induced. Although the MOZ gene frequently is rearranged in leukaemia, we were unable to detect MOZ rearrangement in livers with hyperplastic nodules. We examined the effect of MOZ on hepatocarcinogenic-specific gene expression. GSTP (glutathione S-transferase placental form) is a Phase II detoxification enzyme and a well-known tumour marker that is specifically elevated during hepatocarcinogenesis. GSTP gene activation is regulated mainly by the GPE1 (GSTP enhancer 1) enhancer element, which is recognized by the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2)-MafK heterodimer. We found that MOZ enhances GSTP promoter activity through GPE1 and acts as a co-activator of the Nrf2-MafK heterodimer. Further, exogenous MOZ induced GSTP expression in rat hepatoma H4IIE cells. These results suggest that during early hepatocarcinogenesis, aberrantly expressed MOZ may induce GSTP expression through the Nrf2-mediated pathway.
Collapse
Affiliation(s)
- Kumiko Ohta
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Megumi Ohigashi
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ayako Naganawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Hiromi Ikeda
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Masaharu Sakai
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-ichi Nishikawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Masayoshi Imagawa
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Shigehiro Osada
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- To whom correspondence should be addressed (email )
| | - Tsutomu Nishihara
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
497
|
Coles AH, Liang H, Zhu Z, Marfella CG, Kang J, Imbalzano AN, Jones SN. Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Res 2007; 67:2054-61. [PMID: 17332334 PMCID: PMC2872148 DOI: 10.1158/0008-5472.can-06-3558] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ING proteins have been proposed to alter chromatin structure and gene transcription to regulate numerous aspects of cell physiology, including cell growth, senescence, stress response, apoptosis, and transformation. ING1, the founding member of the inhibitor of growth family, encodes p37(Ing1), a plant homeodomain (PHD) protein that interacts with the p53 tumor suppressor protein and seems to be a critical cofactor in p53-mediated regulation of cell growth and apoptosis. In this study, we have generated and analyzed p37(Ing1)-deficient mice and primary cells to further explore the role of Ing1 in the regulation of cell growth and p53 activity. The results show that endogenous levels of p37(Ing1) inhibit the proliferation of p53-wild-type and p53-deficient fibroblasts, and that p53 functions are unperturbed in p37(Ing1)-deficient cells. In addition, loss of p37(Ing1) induces Bax expression and increases DNA damage-induced apoptosis in primary cells and mice irrespective of p53 status. Finally, p37(Ing1) suppresses the formation of spontaneous follicular B-cell lymphomas in mice. These results indicate that p53 does not require p37(Ing1) to negatively regulate cell growth and offers genetic proof that Ing1 suppresses cell growth and tumorigenesis. Furthermore, these data reveal that p37(Ing1) can negatively regulate cell growth and apoptosis in a p53-independent manner.
Collapse
Affiliation(s)
- Andrew H. Coles
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Huiling Liang
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiqing Zhu
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Concetta G.A. Marfella
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
498
|
Raho G, Miranda C, Tamborini E, Pierotti MA, Greco A. Detection of novel mRNA splice variants of human ING4 tumor suppressor gene. Oncogene 2007; 26:5247-57. [PMID: 17325660 DOI: 10.1038/sj.onc.1210335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhibitor of growth (ING)4, member of a gene family encoding potential tumor suppressors, is implicated as a repressor of angiogenesis and tumor growth and suppresses loss of contact inhibition in vitro. Here, we report that ING4 undergoes alternative splicing. Expression analysis identified novel ING4 spliced variant mRNAs encoding proteins devoid of different portions. The ING4 variants were detected in both normal and tumor tissues. The existence of ING4 variants was confirmed by several approaches, including reverse transcriptase-polymerase chain reaction, real-time PCR and in silico experiments. To investigate the functional consequences of alternative splicing the ING4 variant cDNAs were expressed in mammalian cells. Our studies indicated that (i) the ING4 variants do not differ from wild-type in their nuclear localization, interaction with p53 and association to HBO1 complex; and (ii) the ING4-DeltaEx6A variant, devoid of the C-terminal portion, loses the capability to inhibit NF-kappaB. On the whole our data suggest that alternative splicing could modulate the activity of ING4 tumor suppressor protein.
Collapse
Affiliation(s)
- G Raho
- Department of Experimental Oncology, Operative Unit Molecular Mechanisms of Cancer Growth and Progression, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
499
|
Taverna SD, Ueberheide BM, Liu Y, Tackett AJ, Diaz RL, Shabanowitz J, Chait BT, Hunt DF, Allis CD. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A 2007; 104:2086-91. [PMID: 17284592 PMCID: PMC1892956 DOI: 10.1073/pnas.0610993104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 11/18/2022] Open
Abstract
Individual posttranslational modifications (PTMs) on histones have well established roles in certain biological processes, notably transcriptional programming. Recent genomewide studies describe patterns of covalent modifications, such as H3 methylation and acetylation at promoters of specific target genes, or "bivalent domains," in stem cells, suggestive of a possible combinatorial interplay between PTMs on the same histone. However, detection of long-range PTM associations is often problematic in antibody-based or traditional mass spectrometric-based analyses. Here, histone H3 from a ciliate model was analyzed as an enriched source of transcriptionally active chromatin. Using a recently developed mass spectrometric approach, combinatorial modification states on single, long N-terminal H3 fragments (residues 1-50) were determined. The entire modification status of intact N termini was obtained and indicated correlations between K4 methylation and H3 acetylation. In addition, K4 and K27 methylation were identified concurrently on one H3 species. This methodology is applicable to other histones and larger polypeptides and will likely be a valuable tool in understanding the roles of combinatorial patterns of PTMs.
Collapse
Affiliation(s)
| | | | - Yifan Liu
- Laboratories of *Chromatin Biology and
| | - Alan J. Tackett
- Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10021
| | | | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904; and
| | - Brian T. Chait
- Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10021
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904; and
- Department of Pathology, Health Sciences Center, University of Virginia, Charlottesville, VA 22908
| | | |
Collapse
|
500
|
Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007; 25:15-30. [PMID: 17218268 DOI: 10.1016/j.molcel.2006.12.014] [Citation(s) in RCA: 882] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cells employ elaborate mechanisms to introduce structural and chemical variation into chromatin. Here, we focus on one such element of variation: methylation of lysine 4 in histone H3 (H3K4). We assess a growing body of literature, including treatment of how the mark is established, the patterns of methylation, and the functional consequences of this epigenetic signature. We discuss structural aspects of the H3K4 methyl recognition by the downstream effectors and propose a distinction between sequence-specific recruitment mechanisms and stabilization on chromatin through methyl-lysine recognition. Finally, we hypothesize how the unique properties of the polyvalent chromatin fiber and associated effectors may amplify small differences in methyl-lysine recognition, simultaneously allowing for a dynamic chromatin architecture.
Collapse
|