451
|
Park MS, Lee S, Oh SY, Cho GY, Lim YW. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol 2016; 54:646-54. [PMID: 27687226 DOI: 10.1007/s12275-016-6324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/26/2022]
Abstract
A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.
Collapse
Affiliation(s)
- Myung Soo Park
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seobihn Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Yoon Oh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga Youn Cho
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
452
|
Abarenkov K, Adams RI, Laszlo I, Agan A, Ambrosio E, Antonelli A, Bahram M, Bengtsson-Palme J, Bok G, Cangren P, Coimbra V, Coleine C, Gustafsson C, He J, Hofmann T, Kristiansson E, Larsson E, Larsson T, Liu Y, Martinsson S, Meyer W, Panova M, Pombubpa N, Ritter C, Ryberg M, Svantesson S, Scharn R, Svensson O, Töpel M, Unterseher M, Visagie C, Wurzbacher C, Taylor AF, Kõljalg U, Schriml L, Nilsson RH. Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys 2016. [DOI: 10.3897/mycokeys.16.10000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
453
|
Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. BIORESOURCE TECHNOLOGY 2016; 216:958-67. [PMID: 27341464 DOI: 10.1016/j.biortech.2016.06.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 05/23/2023]
Abstract
Penicillium sp. (Dal 5) isolated from rhizosphere of conifers from Dalhousie (Himachal Pradesh, India) was found to be an efficient cellulolytic strain. The culture under shake flask on CWR (cellulose, wheat bran and rice straw) medium produced appreciably higher levels of endoglucanase (35.69U/ml), β-glucosidase (4.20U/ml), cellobiohydrolase (2.86U/ml), FPase (1.2U/ml) and xylanase (115U/ml) compared to other Penicillium strains reported in literature. The mass spectroscopy analysis of Penicillium sp. Dal 5 secretome identified 108 proteins constituting an array of CAZymes including glycosyl hydrolases (GH) belonging to 24 different families, polysaccharide lyases (PL), carbohydrate esterases (CE), lytic polysaccharide mono-oxygenases (LPMO) in addition to swollenin and a variety of carbohydrate binding modules (CBM) indicating an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. Further, the culture extract was evaluated for hydrolysis of alkali treated rice straw, wheat straw, bagasse and corn cob at 10% substrate loading rate.
Collapse
Affiliation(s)
- Rohit Rai
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Surender Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Macros Di Falco
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
454
|
Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong SB, Frisvad J, Samson R. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 2016; 85:199-213. [PMID: 28082760 PMCID: PMC5220211 DOI: 10.1016/j.simyco.2016.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.). Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name "Aspergillus" to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM), using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes) and Ultrafast Maximum Likelihood (IQ-Tree) and Rapid Maximum Likelihood (RaxML) analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2), RPB1, RPB2, CaM, BenA, Tsr1, Cct8) of 204 different species. Both Bayesian (MrBayes) and Maximum Likelihood (RAxML) trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species belonging to Aspergillus i.e. the clade comprising the subgenera Aspergillus, Circumdati, Fumigati, Nidulantes, section Cremei and certain species which were formerly part of the genera Phialosimplex and Polypaecilum. Section Cremei and the clade containing Polypaecilum and Phialosimplex are proposed as new subgenera of Aspergillus. The phylogenetic analysis also clearly shows that Aspergillus clavatoflavus and A. zonatus do not belong to the genus Aspergillus. Aspergillus clavatoflavus is therefore transferred to a new genus Aspergillago as Aspergillago clavatoflavus and A. zonatus was transferred to Penicilliopsis as P. zonata. The subgenera of Aspergillus share similar extrolite profiles indicating that the genus is one large genus from a chemotaxonomical point of view. Morphological and ecophysiological characteristics of the species also strongly indicate that Aspergillus is a polythetic class in phenotypic characters.
Collapse
Affiliation(s)
- S. Kocsubé
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - D. Magistà
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - J. Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - J. Varga
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - G. Szigeti
- Dept. of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - R.A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| |
Collapse
|
455
|
Laich F, Andrade J. Penicillium pedernalense sp. nov., isolated from whiteleg shrimp heads waste compost. Int J Syst Evol Microbiol 2016; 66:4382-4388. [PMID: 27488253 DOI: 10.1099/ijsem.0.001360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel Penicillium-like strains were isolated during the characterization of the mycobiota community dynamics associated with shrimp waste composting. Phylogenetic analysis of the partial β-tubulin (BenA) gene and the ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequences revealed that the novel strains were members of section Lanata-Divaricata and were closely related to Penicillium infrabuccalum DAOMC 250537T. On the basis of morphological and physiological characterization, and phylogenetic analysis, a novel Penicillium species, Penicillium pedernalense sp. nov., is proposed. The type strain is F01-11T (=CBS 140770T=CECT 20949T), which was isolated from whiteleg shrimp (Litopenaeus vannamei) heads waste compost in the Pedernales region (Manabí province, Ecuador).
Collapse
Affiliation(s)
- Federico Laich
- Instituto Canario de Investigaciones Agrarias, Ctra. Boquerón s/n, Valle de Guerra, Santa Cruz de Tenerife, Spain.,Departamento Central de Investigación, Universidad Laica 'Eloy Alfaro' de Manabí, Av. Circunvalación y Calle 12 vía a San Mateo, Manta, Ecuador
| | - Jacinto Andrade
- Facultad de Ciencias Agropecuarias, Universidad Laica 'Eloy Alfaro' de Manabí, Vía E382 Pedernales-El Carmen Km. 1.5, Pedernales, Ecuador
| |
Collapse
|
456
|
Ogórek R, Dyląg M, Kozak B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016; 20:641-52. [PMID: 27315167 PMCID: PMC4996882 DOI: 10.1007/s00792-016-0853-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Mycobiota are important in underground ecology. In 2014, we discovered dark stains on clayey sediments on the walls of Driny Cave, Slovakia. Our description is based on the morphology of the fungus and the phylogenetic relationships of the internal transcribed spacer (ITS) region. In addition, data on its capacity for the production of extracellular enzymes, growth, and survival in vitro at different temperatures are reported. Our analyses revealed that this dark stains on the wall was produced by Penicillium glandicola. The fungus was able to synthesize amylases, proteases and cellulases, but not pectinases and keratinases. The vegetative structures of mycelium of this fungus are viable in vitro after storage at cool temperatures (from −72 to 5 °C), and show active growth at temperatures from 5 to 25 °C, but without spore germination, and without active growth at 30 and 37 °C. Penicillium glandicola is a psychrotolerant species and belong to var. glandicola.
Collapse
Affiliation(s)
- Rafał Ogórek
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego Street 63/77, 51-148 Wroclaw, Poland
| | - Mariusz Dyląg
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego Street 63/77, 51-148 Wroclaw, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wroclaw, Poland
| |
Collapse
|
457
|
Duarte APM, Ferro M, Rodrigues A, Bacci M, Nagamoto NS, Forti LC, Pagnocca FC. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie van Leeuwenhoek 2016; 109:1235-43. [PMID: 27307255 DOI: 10.1007/s10482-016-0724-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.
Collapse
Affiliation(s)
- A P M Duarte
- Center for the Study of Social Insects, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.
| | - M Ferro
- Center for the Study of Social Insects, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil
| | - A Rodrigues
- Center for the Study of Social Insects, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.,Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - M Bacci
- Center for the Study of Social Insects, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.,Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| | - N S Nagamoto
- Department of Plant Protection, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - L C Forti
- Department of Plant Protection, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - F C Pagnocca
- Center for the Study of Social Insects, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.,Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil
| |
Collapse
|
458
|
Identification and Antifungal Susceptibility of Penicillium-Like Fungi from Clinical Samples in the United States. J Clin Microbiol 2016; 54:2155-61. [PMID: 27280422 DOI: 10.1128/jcm.00960-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022] Open
Abstract
Penicillium species are some of the most common fungi observed worldwide and have an important economic impact as well as being occasional agents of human and animal mycoses. A total of 118 isolates thought to belong to the genus Penicillium based on morphological features were obtained from the Fungus Testing Laboratory at the University of Texas Health Science Center in San Antonio (United States). The isolates were studied phenotypically using standard growth conditions. Molecular identification was made using two genetic markers, the internal transcribed spacer (ITS) and a fragment of the β-tubulin gene. In order to assess phylogenetic relationships, maximum likelihood and Bayesian inference assessments were used. Antifungal susceptibility testing was performed according to CLSI document M38-A2 for nine antifungal drugs. The isolates were identified within three genera, i.e., Penicillium, Talaromyces, and Rasamsonia The most frequent species in our study were Penicillium rubens, P. citrinum, and Talaromyces amestolkiae The potent in vitro activity of amphotericin B (AMB) and terbinafine (TRB) and of the echinocandins against Penicillium and Talaromyces species might offer a good therapeutic alternative for the treatment of infections caused by these fungi.
Collapse
|
459
|
New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 36:299-314. [PMID: 27616794 PMCID: PMC4988373 DOI: 10.3767/003158516x692040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022]
Abstract
Subgenera and sections have traditionally been used in Penicillium classifications. In the past, this sectional classification was based on macro- and microscopic characters, and occasionally supplemented with physiological and/or extrolite data. Currently, 25 sections are accepted, largely based on phylogenetic data. Certain sections of subgenus Penicillium were never studied in detail using a multigene sequence approach combined with phenotypic, ecological and extrolite data. Based on a combined partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) multigene sequence dataset, we introduce two new sections (Osmophila and Robsamsonia) in subgenus Penicillium and synonymize section Digitata with section Penicillium. The phylogeny correlates well with phenotypic, physiological and ecological data, and some extrolites were diagnostic for certain Penicillium sections. Furthermore, four new species belonging to the newly introduced sections are described using a polyphasic approach, including BenA, CaM and RPB2 sequences, macro- and micromorphological data and extrolite profiles. The new section Robsamsonia and the new species Penicillium robsamsonii and Penicillium samsonianum were introduced to celebrate Dr. Robert A. Samson's 70th birthday.
Collapse
|
460
|
Visagie CM, Seifert KA, Houbraken J, Samson RA, Jacobs K. A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. IMA Fungus 2016; 7:75-117. [PMID: 27433442 PMCID: PMC4941689 DOI: 10.5598/imafungus.2016.07.01.06] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/15/2016] [Indexed: 11/19/2022] Open
Abstract
A survey of the fynbos biome in South Africa resulted in the isolation of 61 Penicillium species from Protea repens infructescences, air, and soil samples. Fourteen of these belong to Penicillium sect. Exilicaulis and therefore we considered it an opportunity to re-evaluate the taxonomy of the section. Phylogenetic comparisons of the ITS, β-tubulin, calmodulin and RPB2 gene regions of the 76 section Exilicaulis species, revealed 52 distinct species, including nine new species from fynbos. Morphological comparisons confirmed the novelty for most of these, however, new species closely related to P. rubefaciens did not show significant or consistent morphological differences and we thus placed a bias on phylogenetic data applying the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept. In this paper we describe the nine new species and update the accepted species list and resolve synonyms in the section. Importantly, we reveal that P. citreosulfuratum is the correct name for the clade previously considered to represent P. toxicarium fide Serra et al. (2008). The nine new species are: Penicillium atrolazulinum, P. consobrinum, P. cravenianum, P. hemitrachum, P. pagulum, P. repensicola, P. momoii, P. subturcoseum, and P. xanthomelinii spp. nov.
Collapse
Affiliation(s)
- Cobus M. Visagie
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Robert A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| |
Collapse
|
461
|
Wingfield BD, Ambler JM, Coetzee MP, de Beer ZW, Duong TA, Joubert F, Hammerbacher A, McTaggart AR, Naidoo K, Nguyen HD, Ponomareva E, Santana QS, Seifert KA, Steenkamp ET, Trollip C, van der Nest MA, Visagie CM, Wilken PM, Wingfield MJ, Yilmaz N. IMA Genome-F 6: Draft genome sequences of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica and Penicillium freii DAOMC 242723. IMA Fungus 2016; 7:217-27. [PMID: 27433447 PMCID: PMC4941685 DOI: 10.5598/imafungus.2016.07.01.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 10/25/2022] Open
Abstract
The genomes of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica, and Penicillium freii DAOMC 242723 are presented in this genome announcement. These six genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 21 Mb in the case of Ceratocystiopsis minuta to 58 Mb for the basidiomycete Armillaria fuscipes. These genomes include the first reports of genomes for the genus Endoconidiophora. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these pathogens cause disease.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Jon M. Ambler
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Martin P.A. Coetzee
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry and Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alistair R. McTaggart
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Hai D.T. Nguyen
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, K1N6N5, Canada
| | - Ekaterina Ponomareva
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Quentin S. Santana
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Conrad Trollip
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Cobus M. Visagie
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Neriman Yilmaz
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
462
|
Réblová M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, Huang SK, Hyde KD, Jayawardena R, Jaklitsch W, Jones EBG, Ju YM, Judith C, Maharachchikumbura SSN, Pang KL, Petrini LE, Raja HA, Romero AI, Shearer C, Senanayake IC, Voglmayr H, Weir BS, Wijayawarden NN. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 2016; 7:131-53. [PMID: 27433444 PMCID: PMC4941682 DOI: 10.5598/imafungus.2016.07.01.08] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Prùhonice 252 43, Czech Republic
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Amy Y. Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Keith A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
| | - Pedro W. Crous
- CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Paul F. Cannon
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Dinushani A. Daranagama
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Z. Wilhelm De Beer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Shi-Ke Huang
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvvishika Jayawardena
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Walter Jaklitsch
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29, Taiwan
| | - Caroline Judith
- Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sajeewa S. N. Maharachchikumbura
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 8, 123 Al Khoud, Oman
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan (ROC)
| | | | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, NC 27402-6170, USA
| | - Andrea I Romero
- Instituto de Micología y Botánica, UBA-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4°, Lab 6, Av. Int. Güiraldes 2620. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Carol Shearer
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Indunil C. Senanayake
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Bevan S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand
| | - Nalin N. Wijayawarden
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
463
|
Fifteen new species of Penicillium. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 36:247-80. [PMID: 27616792 PMCID: PMC4988371 DOI: 10.3767/003158516x691627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others.
Collapse
|
464
|
Nguyen HDT, McMullin DR, Ponomareva E, Riley R, Pomraning KR, Baker SE, Seifert KA. Ochratoxin A production by Penicillium thymicola. Fungal Biol 2016; 120:1041-1049. [PMID: 27521635 DOI: 10.1016/j.funbio.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species that grow on economically important agricultural crops and food products. OTA is classified as Group 2B carcinogen and is potently nephrotoxic, which is the basis for its regulation in some jurisdictions. Using high resolution mass spectroscopy, OTA and ochratoxin B (OTB) were detected in liquid culture extracts of Penicillium thymicola DAOMC 180753 isolated from Canadian cheddar cheese. The genome of this strain was sequenced, assembled and annotated to probe for putative genes involved in OTA biosynthesis. Known OTA biosynthetic genes from Penicillium verrucosum or Penicillium nordicum, two related Penicillium species that produce OTA, were not found in P. thymicola. However, a gene cluster containing a polyketide synthase (PKS) and PKS-nonribosomal peptide synthase (NRPS) hybrid encoding genes were located in the P. thymicola genome that showed a high degree of similarity to OTA biosynthetic enzymes of Aspergillus carbonarius and Aspergillus ochraceus. This is the first report of ochratoxin from P. thymicola and a new record of the species in Canada.
Collapse
Affiliation(s)
- Hai D T Nguyen
- University of Ottawa, Department of Biology, 30 Marie-Curie Private, Ottawa, ON, K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - David R McMullin
- Carleton University, Department of Chemistry, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Ekaterina Ponomareva
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, 3335 Innovation Boulevard, Richland, WA, 99354, USA
| | - Scott E Baker
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, 3335 Innovation Boulevard, Richland, WA, 99354, USA
| | - Keith A Seifert
- University of Ottawa, Department of Biology, 30 Marie-Curie Private, Ottawa, ON, K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
465
|
Luo Y, Lu X, Bi W, Liu F, Gao W. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China. Mycologia 2016; 108:773-9. [PMID: 27055570 DOI: 10.3852/15-233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaohong Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wu Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fan Liu
- Institute for Environmental Health and Related Product Safety, Center for Disease Control and Prevention, Beijing 100071, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
466
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
467
|
A taxonomic review of Penicillium species producing conidiophores with solitary phialides, classified in section Torulomyces. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 36:134-55. [PMID: 27616790 PMCID: PMC4988369 DOI: 10.3767/003158516x690952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022]
Abstract
The genus Torulomyces was characterised by species that typically have conidiophores consisting of solitary phialides that produce long chains of conidia connected by disjunctors. Based on the phylogenetic position of P. lagena (generic ex-neotype), the genus and its seven species were transferred to Penicillium and classified in sect. Torulomyces along with P. cryptum and P. lassenii. The aim of this study was to review the species currently classified in sect. Torulomyces using morphology and phylogenies of the ITS, BenA, CaM and RPB2 regions. Based on our results, we accept 16 species in sect. Torulomyces, including 12 new species described as P. aeris, P. austricola, P. cantabricum, P. catalonicum, P. oregonense, P. marthae-christenseniae, P. riverlandense, P. tubakianum, P. variratense, P. williamettense, P. wisconsinense and P. wollemiicola. In addition, we reclassify P. laeve and P. ovatum in sect. Exilicaulis and correct the typification of P. lagena. We provide descriptions and notes on the identification of the species.
Collapse
|
468
|
Abastabar M, Mirhendi H, Hedayati MT, Shokohi T, Rezaei-Matehkolaei A, Mohammadi R, Badali H, Moazeni M, Haghani I, Ghojoghi A, Akhtari J. Genetic and Morphological Diversity of the Genus Penicillium From Mazandaran and Tehran Provinces, Iran. Jundishapur J Microbiol 2016; 9:e28280. [PMID: 27099684 PMCID: PMC4833887 DOI: 10.5812/jjm.28280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background: The genus Penicillium contains a large number of ubiquitous environmental taxa, of which some species are clinically important. Identification of Penicillium down to the species level is currently based on polyphasic criteria, including phenotypic features and genetic markers. Biodiversity of the genus Penicillium from Mazandaran and Tehran provinces has not been described. Objectives: The current paper focused on the environmental biodiversity of Penicillium isolates within some areas of Mazandaran and Tehran provinces, based on morphological traits and the molecular data from partial sequence of the β-tubulin (BT2) gene. Materials and Methods: A total of 400 strains were isolated from the environment and investigated using morphological tests and sequencing of BT2, in order to characterize the spectrum of the Penicillium species. Results: Sequence analysis of BT2 and morphological criteria of 20 strains representative of 10 species showed that Penicillium chrysogenum was the most prevalent species (n = 6), followed by P. polonicum (n = 3), P. glabrum (n = 2), P. palitans (n = 2), P. melanoconidium (n = 2), and other species, including P. expansum, P. canescense, P. griseofulvum, P. italicum, and P. raistrickii with one case each. Conclusions: It was shown that partial β-tubulin sequence, as a reliable genetic target, supported specific morphological criteria for identification of the Penicillium species. Like other assessments throughout the world, P. chrysogenum remains the most frequent environmental Penicillium species in Mazandaran and Tehran Provinces.
Collapse
Affiliation(s)
- Mahdi Abastabar
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
- Corresponding author: Mahdi Abastabar, Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran. Tel: +98-9112111347, Fax: +98-1133543248, E-mail:
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hamid Badali
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Iman Haghani
- Invasive Fungi Research Center (IFRC), Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Aynaz Ghojoghi
- Iran University of Medical Sciences and Health Services, Tehran, Iran
| | - Javad Akhtari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
- Department of Nanobiomedicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| |
Collapse
|
469
|
Banani H, Marcet-Houben M, Ballester AR, Abbruscato P, González-Candelas L, Gabaldón T, Spadaro D. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics 2016; 17:19. [PMID: 26729047 PMCID: PMC4700700 DOI: 10.1186/s12864-015-2347-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Penicillium griseofulvum is associated in stored apples with blue mould, the most important postharvest disease of pome fruit. This pathogen can simultaneously produce both detrimental and beneficial secondary metabolites (SM). In order to gain insight into SM synthesis in P. griseofulvum in vitro and during disease development on apple, we sequenced the genome of P. griseofulvum strain PG3 and analysed important SM clusters. RESULTS PG3 genome sequence (29.3 Mb) shows that P. griseofulvum branched off after the divergence of P. oxalicum but before the divergence of P. chrysogenum. Genome-wide analysis of P. griseofulvum revealed putative gene clusters for patulin, griseofulvin and roquefortine C biosynthesis. Furthermore, we quantified the SM production in vitro and on apples during the course of infection. The expression kinetics of key genes of SM produced in infected apple were examined. We found additional SM clusters, including those potentially responsible for the synthesis of penicillin, yanuthone D, cyclopiazonic acid and we predicted a cluster putatively responsible for the synthesis of chanoclavine I. CONCLUSIONS These findings provide relevant information to understand the molecular basis of SM biosynthesis in P. griseofulvum, to allow further research directed to the overexpression or blocking the synthesis of specific SM.
Collapse
Affiliation(s)
- Houda Banani
- DiSAFA - Dept. Agricultural, Forestry and Food Sciences and AGROINNOVA - Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Torino, Italy.
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| | - Pamela Abbruscato
- Bioeconomy Unit, Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy.
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| | - Davide Spadaro
- DiSAFA - Dept. Agricultural, Forestry and Food Sciences and AGROINNOVA - Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Torino, Italy.
| |
Collapse
|
470
|
Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
471
|
Sixteen New Records of Ascomycetes from Crop Field Soil in Korea. THE KOREAN JOURNAL OF MYCOLOGY 2016. [DOI: 10.4489/kjm.2016.44.4.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
472
|
Lacey HJ, Vuong D, Pitt JI, Lacey E, Piggott AM. Kumbicins A–D: Bis-Indolyl Benzenoids and Benzoquinones from an Australian Soil Fungus, Aspergillus kumbius. Aust J Chem 2016. [DOI: 10.1071/ch15488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A soil survey conducted in southern Queensland, Australia, identified a novel isolate belonging to the genus Aspergillus subgenus Circumdati section Circumdati, Aspergillus kumbius FRR6049. Cultivation and fractionation of secondary metabolites from A. kumbius revealed a unique chemotype comprising three new bis-indolyl benzenoids, kumbicins A–C, and a new bis-indolyl benzoquinone, kumbicin D, along with the previously reported compounds asterriquinol D dimethyl ether, petromurins C and D, aspochracin, its N-demethyl analogue JBIR-15, and neohydroxyaspergillic acid. The structures of kumbicins A–D were assigned by detailed spectroscopic analysis. Kumbicin C was found to inhibit the growth of mouse myeloma cells (IC50 0.74 μg mL–1) and the Gram-positive bacterium Bacillus subtilis (MIC 1.6 μg mL–1).
Collapse
|
473
|
Villarino M, De Cal A, Melgarejo P, Larena I, Espeso EA. The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent. Microb Biotechnol 2016; 9:89-99. [PMID: 26467970 PMCID: PMC4720407 DOI: 10.1111/1751-7915.12325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022] Open
Abstract
Penicillium oxalicum strain 212 (PO212) is an effective biocontrol agent (BCA) against a large number of economically important fungal plant pathogens. For successful registration as a BCA in Europe, PO212 must be accurately identified. In this report, we describe the use of classical genetic and molecular markers to characterize and identify PO212 in order to understand its ecological role in the environment or host. We successfully generated pyrimidine (pyr-) auxotrophic mutants. In addition we also designed specific oligonucleotides for the pyrF gene at their untranslated regions for rapid and reliable identification and classification of strains of P. oxalicum and P. rubens, formerly P. chrysogenum. Using these DNA-based technologies, we found that PO212 is a strain of P. rubens, and is not a strain of P. oxalicum. This work presents PO212 as the unique P. rubens strain to be described as a BCA and the information contained here serves for its registration and commercialization in Europe.
Collapse
Affiliation(s)
- Maria Villarino
- SGIT-INIA, Departamento de Protección Vegetal, Madrid, Spain
- CIB-CSIC, Departamento de Biología Celular y Molecular, Madrid, Spain
| | | | | | | | - Eduardo A Espeso
- CIB-CSIC, Departamento de Biología Celular y Molecular, Madrid, Spain
| |
Collapse
|
474
|
Taniwaki MH, Pitt JI, Iamanaka BT, Massi FP, Fungaro MHP, Frisvad JC. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'. PLoS One 2015; 10:e0143189. [PMID: 26717519 PMCID: PMC4696661 DOI: 10.1371/journal.pone.0143189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype.
Collapse
Affiliation(s)
- Marta Hiromi Taniwaki
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo, Brazil
- * E-mail:
| | - John I. Pitt
- CSIRO Food and Nutrition, North Ryde, New South Wales, Australia
| | - Beatriz T. Iamanaka
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo, Brazil
| | - Fernanda P. Massi
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Jens C. Frisvad
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
475
|
Wingfield BD, Barnes I, Wilhelm de Beer Z, De Vos L, Duong TA, Kanzi AM, Naidoo K, Nguyen HD, Santana QC, Sayari M, Seifert KA, Steenkamp ET, Trollip C, van der Merwe NA, van der Nest MA, Markus Wilken P, Wingfield MJ. IMA Genome-F 5: Draft genome sequences of Ceratocystis eucalypticola, Chrysoporthe cubensis, C. deuterocubensis, Davidsoniella virescens, Fusarium temperatum,Graphilbum fragrans, Penicillium nordicum, and Thielaviopsis musarum. IMA Fungus 2015; 6:493-506. [PMID: 26734552 PMCID: PMC4681265 DOI: 10.5598/imafungus.2015.06.02.13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 12/05/2022] Open
Abstract
The genomes of Ceratocystis eucalypticola, Chrysoporthe cubensis, Chrysoporthe deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium nordicum and Thielaviopsis musarum are presented in this genome announcement. These seven genomes are from plant pathogens and otherwise economically important fungal species. The genome sizes range from 28 Mb in the case of T. musarum to 45 Mb for Fusarium temperatum. These genomes include the first reports of genomes for the genera Davidsoniella, Graphilbum and Thielaviopsis. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these pathogens cause disease.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Irene Barnes
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Lieschen De Vos
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Aquillah M. Kanzi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Hai D.T. Nguyen
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Quentin C. Santana
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Mohammad Sayari
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Conrad Trollip
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
476
|
Assessing the contribution of fallen autumn leaves to airborne fungi in an urban environment. Urban Ecosyst 2015. [DOI: 10.1007/s11252-015-0514-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
477
|
Yilmaz N, Hagen F, Meis JF, Houbraken J, Samson RA. Discovery of a sexual cycle in Talaromyces amestolkiae. Mycologia 2015; 108:70-9. [PMID: 26577610 DOI: 10.3852/15-014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/18/2015] [Indexed: 11/10/2022]
Abstract
Talaromyces amestolkiae is a common cosmopolitan species that has been cultured from indoor house dust, sputum and lungs from cystic fibrosis patients, indoor air, wheat, soil, pineapple, sculptures and manure. It was described as an asexual Talaromyces species and was reported to produce black sclerotia. In this study we report on the induction of sexual reproductive structures in T. amestolkiae. The mating type of 18 T. amestolkiae strains was determined with MAT-specific primers. Subsequently opposite mating types were inoculated on oatmeal agar and malt-extract agar and incubated 6-20 wk at 25 and 30 C in darkness. After incubation single ascospore isolations were made and evidence of recombination in the offspring was examined by amplified fragment length polymorphism and pairwise homoplasy index test, which is implemented in Splitstree4. The offspring displayed clear evidence of recombination on a genetic level as shown in the variations observed between banding patterns in the amplified fragment length polymorphism. Also a net-like and reticulated NeighborNet was observed and the pairwise homoplasy index test for recombination supported the presence of recombination (P = 0.003372). The distribution of MAT1-1 and MAT1-2 genes in the progeny showed a close to 1:1 ratio. Talaromyces amestolkiae is only the second heterothallic Talaromyces species to produce ascomata and ascospores under laboratory conditions.
Collapse
Affiliation(s)
- Neriman Yilmaz
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, the Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen 6500 HB, the Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus MC,'s-Gravendijkwal 230 3015 CE Rotterdam, the Netherlands
| | - Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Robert A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
478
|
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2015; 44:D733-45. [PMID: 26553804 PMCID: PMC4702849 DOI: 10.1093/nar/gkv1189] [Citation(s) in RCA: 3980] [Impact Index Per Article: 398.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/24/2015] [Indexed: 12/12/2022] Open
Abstract
The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.
Collapse
Affiliation(s)
- Nuala A O'Leary
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Mathew W Wright
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Rich McVeigh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Brian Smith-White
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Danso Ako-Adjei
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Azat Badretdin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yiming Bao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Olga Blinkova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Vyacheslav Chetvernin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jinna Choi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eric Cox
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Olga Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Tripti Gupta
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Daniel Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eneida Hatcher
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Wratko Hlavina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Vinita S Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Wenjun Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Donna Maglott
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kelly M McGarvey
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Michael R Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kathleen O'Neill
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Sanjida H Rangwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Daniel Rausch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Lillian D Riddick
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Conrad Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Andrei Shkeda
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Susan S Storz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Hanzhen Sun
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Raymond E Tully
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Anjana R Vatsan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Craig Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Wendy Wu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Melissa J Landrum
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Avi Kimchi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Tatiana Tatusova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Michael DiCuccio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Paul Kitts
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
479
|
Four new Penicillium species isolated from the fynbos biome in South Africa, including a multigene phylogeny of section Lanata-Divaricata. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
480
|
Five new Talaromyces species with ampulliform-like phialides and globose rough walled conidia resembling T. verruculosus. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2015.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
481
|
Ogunmolu FE, Kaur I, Gupta M, Bashir Z, Pasari N, Yazdani SS. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum. J Proteome Res 2015; 14:4342-58. [PMID: 26288988 DOI: 10.1021/acs.jproteome.5b00542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.
Collapse
Affiliation(s)
- Funso Emmanuel Ogunmolu
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Inderjeet Kaur
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Mayank Gupta
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Zeenat Bashir
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Nandita Pasari
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Syed Shams Yazdani
- Synthetic Biology and Biofuels Group, ‡Malaria Group, and §DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, 110 067 New Delhi, India
| |
Collapse
|
482
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
483
|
Gillot G, Jany JL, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T, Coton E. Insights into Penicillium roqueforti Morphological and Genetic Diversity. PLoS One 2015; 10:e0129849. [PMID: 26091176 PMCID: PMC4475020 DOI: 10.1371/journal.pone.0129849] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection.
Collapse
Affiliation(s)
- Guillaume Gillot
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Gaétan Le Floch
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Stella Debaets
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Jeanne Ropars
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d’Histoire Naturelle, CP39, Paris Cedex 05, France
- Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay cedex, France
- CNRS, Orsay cedex, France
| | - Manuela López-Villavicencio
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d’Histoire Naturelle, CP39, Paris Cedex 05, France
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d’Histoire Naturelle, CP39, Paris Cedex 05, France
| | - Antoine Branca
- Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay cedex, France
- CNRS, Orsay cedex, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay cedex, France
- CNRS, Orsay cedex, France
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d’Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
- * E-mail:
| |
Collapse
|
484
|
Taxonomic re-evaluation of species in Talaromyces section Islandici, using a polyphasic approach. Persoonia - Molecular Phylogeny and Evolution of Fungi 2015; 36:37-56. [PMID: 27616787 PMCID: PMC4988375 DOI: 10.3767/003158516x688270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
The taxonomy of Talaromyces rugulosus, T. wortmannii and closely related species, classified in Talaromyces sect. Islandici, is reviewed in this paper. The species of Talaromyces sect. Islandici have restricted growth on MEA and CYA, generally have yellow mycelia and produce rugulosin and/or skyrin. They are important in biotechnology (e.g. T. rugulosus, T. wortmannii) and in medicine (e.g. T. piceus, T. radicus). The taxonomy of sect. Islandici was resolved using a combination of morphological, extrolite and phylogenetic data, using the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept, with special focus on the T. rugulosus and T. wortmannii species complexes. In this paper, we synonymise T. variabilis, Penicillium concavorugulosum and T. sublevisporus with T. wortmannii, and introduce four new species as T. acaricola, T. crassus, T. infraolivaceus and T. subaurantiacus. Finally, we provide a synoptic table for the identification of the 19 species classified in the section.
Collapse
|
485
|
Núñez-Zapata J, Cubas P, Hawksworth DL, Crespo A. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota). PLoS One 2015; 10:e0126981. [PMID: 25961726 PMCID: PMC4427293 DOI: 10.1371/journal.pone.0126981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species.
Collapse
Affiliation(s)
- Jano Núñez-Zapata
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
486
|
Park MS, Eom JE, Fong JJ, Lim YW. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol 2015; 53:219-25. [PMID: 25845537 DOI: 10.1007/s12275-015-4700-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Several strains of Penicillium section Citrina were isolated during a survey of fungi from marine environments along the southern coast of Korea. Based on multigene phylogenetic analyses (β-tubulin and calmodulin) and morphological characteristics, the 11 strains were identified as P. citrinum, P. hetheringtonii, P. paxilli, P. sumatrense, P. terrigenum, and P. westlingii. To understand the ecological role of these species, we tested all strains for extracellular enzyme activity; six strains representing four species showed β-glucosidase activity. Four of the identified species - P. hetheringtonii, P. paxilli, P. terrigenum, and P. westlingii - are new records for Korea. For these new species records, we describe morphological characteristics of the strains and compare results to published data of type strains.
Collapse
Affiliation(s)
- Myung Soo Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Republic of Korea
| | | | | | | |
Collapse
|
487
|
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. PLoS One 2015; 10:e0121987. [PMID: 25853891 PMCID: PMC4390383 DOI: 10.1371/journal.pone.0121987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research.
Collapse
|
488
|
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
489
|
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem. Angew Chem Int Ed Engl 2015; 54:5748-52. [DOI: 10.1002/anie.201501072] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/18/2022]
|
490
|
Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 2015; 5:773. [PMID: 25628613 PMCID: PMC4290622 DOI: 10.3389/fmicb.2014.00773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022] Open
Abstract
Aspergillus, Penicillium, and Talaromyces are among the most chemically inventive of all fungi, producing a wide array of secondary metabolites (exometabolites). The three genera are holophyletic in a cladistic sense and polythetic classes in an anagenetic or functional sense, and contain 344, 354, and 88 species, respectively. New developments in classification, cladification, and nomenclature have meant that the species, series, and sections suggested are natural groups that share many extrolites, including exometabolites, exoproteins, exocarbohydrates, and exolipids in addition to morphological features. The number of exometabolites reported from these species is very large, and genome sequencing projects have shown that a large number of additional exometabolites may be expressed, given the right conditions (“cryptic” gene clusters for exometabolites). The exometabolites are biosynthesized via shikimic acid, tricarboxylic acid cycle members, nucleotides, carbohydrates or as polyketides, non-ribosomal peptides, terpenes, or mixtures of those. The gene clusters coding for these compounds contain genes for the biosynthetic building blocks, the linking of these building blocks, tailoring enzymes, resistance for own products, and exporters. Species within a series or section in Aspergillus, Penicillium, and Talaromyces have many exometabolites in common, seemingly acquired by cladogenesis, but some the gene clusters for autapomorphic exometabolites may have been acquired by horizontal gene transfer. Despite genome sequencing efforts, and the many breakthroughs these will give, it is obvious that epigenetic factors play a large role in evolution and function of chemodiversity, and better methods for characterizing the epigenome are needed. Most of the individual species of the three genera produce a consistent and characteristic profile of exometabolites, but growth medium variations, stimulation by exometabolites from other species, and variations in abiotic intrinsic and extrinsic environmental factors such as pH, temperature, redox potential, and water activity will add significantly to the number of biosynthetic families expressed in anyone species. An example of the shared exometabolites in a natural group such as Aspergillus section Circumdati series Circumdati is that most, but not all species produce penicillic acids, aspyrones, neoaspergillic acids, xanthomegnins, melleins, aspergamides, circumdatins, and ochratoxins, in different combinations.
Collapse
Affiliation(s)
- Jens C Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| |
Collapse
|
491
|
Cakmakci S, Gurses M, Hayaloglu AA, Cetin B, Sekerci P, Dagdemir E. Mycotoxin production capability ofPenicillium roquefortiin strains isolated from mould-ripened traditional Turkish civil cheese. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:245-9. [DOI: 10.1080/19440049.2014.997808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
492
|
Darsih C, Prachyawarakorn V, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv 2015. [DOI: 10.1039/c5ra13735g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A novel tetracyclic polyketide uniquely spiro-attached with a γ-lactone ring and a potent cytotoxic agent possessing a thiol-reactive pharmacophore were isolated from the mangrove endophytic fungus Penicillium chermesinum.
Collapse
Affiliation(s)
- Cici Darsih
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
| | | | - Suthep Wiyakrutta
- Department of Microbiology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| |
Collapse
|
493
|
Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 2014; 78:63-139. [PMID: 25492981 PMCID: PMC4255536 DOI: 10.1016/j.simyco.2014.07.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 β-tubulin and 507 calmodulin sequences, which serve as alternative identification markers.
Collapse
Affiliation(s)
- C M Visagie
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Y Hirooka
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - J B Tanney
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - E Whitfield
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - K Mwange
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - M Meijer
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - A S Amend
- Department of Botany, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, USA
| | - K A Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| |
Collapse
|
494
|
Houbraken J, Visagie CM, Meijer M, Frisvad JC, Busby PE, Pitt JI, Seifert KA, Louis-Seize G, Demirel R, Yilmaz N, Jacobs K, Christensen M, Samson RA. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol 2014; 78:373-451. [PMID: 25492984 PMCID: PMC4255628 DOI: 10.1016/j.simyco.2014.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Species belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness.
Collapse
Affiliation(s)
- J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - C M Visagie
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - M Meijer
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - P E Busby
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - J I Pitt
- CSIRO Animal, Food and Health Sciences, North Ryde, NSW 2113, Australia
| | - K A Seifert
- Biodiversity (Mycology), Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - G Louis-Seize
- Biodiversity (Mycology), Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - R Demirel
- Department of Biology, Faculty of Science, Anadolu University, Turkey
| | - N Yilmaz
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - K Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| | - M Christensen
- Botany Department, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| |
Collapse
|
495
|
Samson R, Visagie C, Houbraken J, Hong SB, Hubka V, Klaassen C, Perrone G, Seifert K, Susca A, Tanney J, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad J. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 2014; 78:141-73. [PMID: 25492982 PMCID: PMC4260807 DOI: 10.1016/j.simyco.2014.07.004] [Citation(s) in RCA: 682] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, β-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker.
Collapse
Affiliation(s)
- R.A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - C.M. Visagie
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - J. Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - C.H.W. Klaassen
- Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands
| | - G. Perrone
- Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy
| | - K.A. Seifert
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - A. Susca
- Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy
| | - J.B. Tanney
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - J. Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - G. Szigeti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - J.C. Frisvad
- Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|