451
|
Luo X, Lewandowski AT, Yi H, Payne GF, Ghodssi R, Bentley WE, Rubloff GW. Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device. LAB ON A CHIP 2008; 8:420-30. [PMID: 18305860 DOI: 10.1039/b713756g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report a biofunctionalization strategy for the assembly of catalytically active enzymes within a completely packaged bioMEMS device, through the programmed generation of electrical signals at spatially and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase (Pfs), is genetically fused with a pentatyrosine "pro-tag" at its C-terminus. Signal responsive assembly is based on covalent conjugation of Pfs to the aminopolysaccharide, chitosan, upon biochemical activation of the pro-tag, followed by electrodeposition of the enzyme-chitosan conjugate onto readily addressable sites in microfluidic channels. Compared to traditional physical entrapment and surface immobilization approaches in microfluidic environments, our signal-guided electrochemical assembly is unique in that the enzymes are assembled under mild aqueous conditions with spatial and temporal programmability and orientational control. Significantly, the chitosan-mediated enzyme assembly can be reversed, making the bioMEMS reusable for repeated assembly and catalytic activity. Additionally, the assembled enzymes retain catalytic activity over multiple days, demonstrating enhanced enzyme stability. We envision that this assembly strategy can be applied to rebuild metabolic pathways in microfluidic environments for antimicrobial drug discovery.
Collapse
Affiliation(s)
- Xiaolong Luo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
452
|
Fidalgo L, Whyte G, Bratton D, Kaminski C, Abell C, Huck W. From Microdroplets to Microfluidics: Selective Emulsion Separation in Microfluidic Devices. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
453
|
Fidalgo L, Whyte G, Bratton D, Kaminski C, Abell C, Huck W. From Microdroplets to Microfluidics: Selective Emulsion Separation in Microfluidic Devices. Angew Chem Int Ed Engl 2008; 47:2042-5. [DOI: 10.1002/anie.200704903] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
454
|
Abstract
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.
Collapse
Affiliation(s)
- Shia-Yen Teh
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
455
|
Wang W, Zhou F, Zhao L, Zhang JR, Zhu JJ. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device. Electrophoresis 2008; 29:561-6. [DOI: 10.1002/elps.200700207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
456
|
Scanning conductance microscopy investigations on fixed human chromosomes. Biotechniques 2008; 44:225-8. [DOI: 10.2144/000112676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value for the dielectric constant of different human chromosomes.
Collapse
|
457
|
Wang YN, Kang Y, Xu D, Chon CH, Barnett L, Kalams SA, Li D, Li D. On-chip counting the number and the percentage of CD4+ T lymphocytes. LAB ON A CHIP 2008; 8:309-15. [PMID: 18231671 DOI: 10.1039/b713932b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel technique is reported for counting the number and the percentage of CD4+ T lymphocytes in a polydimethylsiloxane (PDMS) microchannel. This system integrates optical fluorescence detection with resistive pulse sensing enhanced by a metal oxide semiconductor field effect transistor (MOSFET). The MOSFET signal indicates the total number of the cells passing through the detection channel, while the concurrent fluorescence signal records only the number of cells tagged with a specific fluorescent dye. The absolute count of the CD4+ T cells and its percentage to the total lymphocytes can be analyzed by combining the two counting results, which shows comparable accuracy to those from the commercial flow cytometer. The fastest observed counting rate for a single-channel microchip is 8.5 cells per second. This technique is highly promising as it could greatly reduce the cost for HIV diagnosis and treatment and make it accessible to resource-poor developing countries.
Collapse
Affiliation(s)
- Yao-Nan Wang
- Department of Mechanical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
458
|
On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations. Biosens Bioelectron 2008; 23:945-51. [DOI: 10.1016/j.bios.2007.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/07/2007] [Accepted: 09/17/2007] [Indexed: 11/17/2022]
|
459
|
Fan H, Chen Z, Zhang L, Yang P, Chen G. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores. J Chromatogr A 2008; 1179:224-8. [DOI: 10.1016/j.chroma.2007.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 11/28/2022]
|
460
|
Miller EM, Wheeler AR. A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 2008; 80:1614-9. [PMID: 18220413 DOI: 10.1021/ac702269d] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A digital microfluidic device was applied to a variety of enzymatic analyses. The digital approach to microfluidics manipulates samples and reagents in the form of discrete droplets, as opposed to the streams of fluid used in channel microfluidics. This approach is more easily reconfigured than a channel device, and the flexibility of these devices makes them suitable for a wide variety of applications. Alkaline phosphatase was chosen as a model enzyme and used to convert fluorescein diphosphate into fluorescein. Droplets of alkaline phosphatase and fluorescein diphosphate were merged and mixed on the device, resulting in a 140-nL, stopped-flow reaction chamber in which the fluorescent product was detected by a fluorescence plate reader. Substrate quantitation was achieved with a linear range of 2 orders of magnitude and a detection limit of approximately 7.0 x 10-20 mol. Addition of a small amount of a nonionic surfactant to the reaction buffer was shown to reduce the adsorption of enzyme to the device surface and extend the lifetime of the device without affecting the enzyme activity. Analyses of the enzyme kinetics and the effects of inhibition with inorganic phosphate were performed, and Km and kcat values of 1.35 microM and 120 s-1, respectively, agreed with those obtained in a conventional 384-well plate under the same conditions (1.85 microM and 155 s-1). A phototype device was also developed to perform multiplexed enzyme analyses. It was concluded that the digital microfluidic format is able to perform detailed and reproducible assays of substrate concentrations and enzyme activity in much smaller reaction volumes and with higher sensitivity than conventional methods.
Collapse
Affiliation(s)
- Elizabeth M Miller
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | |
Collapse
|
461
|
Kovarik ML, Jacobson SC. Integrated Nanopore/Microchannel Devices for ac Electrokinetic Trapping of Particles. Anal Chem 2008; 80:657-64. [DOI: 10.1021/ac701759f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| |
Collapse
|
462
|
Affiliation(s)
- Arata Aota
- Micro Chemistry Group, Kanagawa Academy of Science and Technology (KAST)
| | - Takehiko Kitamori
- Micro Chemistry Group, Kanagawa Academy of Science and Technology (KAST)
- Department of Applied Chemistry, School of Engineering, The University of Tokyo
| |
Collapse
|
463
|
Sathuluri RR, Yamamura S, Tamiya E. Microsystems technology and biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:285-350. [PMID: 17999038 DOI: 10.1007/10_2007_078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review addresses the recent developments in miniaturized microsystems or lab-on-a-chip devices for biosensing of different biomolecules: DNA, proteins, small molecules, and cells, especially at the single-molecule and single-cell level. In order to sense these biomolecules with sensitivity we have fabricated chip devices with respect to the biomolecule to be analyzed. The details of the fabrication are also dealt with in this review. We mainly developed microarray and microfluidic chip devices for DNA, protein, and cell analyses. In addition, we have introduced the porous anodic alumina layer chip with nanometer scale and gold nanoparticles for label-free sensing of DNA and protein interactions. We also describe the use of microarray and microfluidic chip devices for cell-based assays and single-cell analysis in drug discovery research.
Collapse
Affiliation(s)
- Ramachandra Rao Sathuluri
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | | | | |
Collapse
|
464
|
Lee HJ, Yoon TH, Park JH, Perumal J, Kim DP. Characterization and fabrication of polyvinylsilazane glass microfluidic channels via soft lithographic technique. J IND ENG CHEM 2008. [DOI: 10.1016/j.jiec.2007.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
465
|
Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Manabe I, Nagai R, Kitamori T. Demonstration of a bio-microactuator powered by vascular smooth muscle cells coupled to polymer micropillars. LAB ON A CHIP 2008; 8:58-61. [PMID: 18094761 DOI: 10.1039/b714252h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have demonstrated the working principle of a bio-microactuator using smooth muscle cells (SMCs) by driving micropillars coupled to cultured SMCs and controlled pillar displacements by chemical stimuli; the generated driving force was estimated to be over 1.1 microN.
Collapse
Affiliation(s)
- Yo Tanaka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
466
|
Abstract
The article brings a comprehensive survey of recent developments and applications of high-performance capillary electromigration methods, zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. New approaches to the theoretical description and experimental verification of electromigration behavior of peptides and to methodology of their separations, such as sample preparation, adsorption suppression, and detection, are presented. Novel developments in individual CE and CEC modes are shown and several types of their applications to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of CE and CEC techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
467
|
Borland LM, Kottegoda S, Phillips KS, Allbritton NL. Chemical analysis of single cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:191-227. [PMID: 20636079 DOI: 10.1146/annurev.anchem.1.031207.113100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.
Collapse
Affiliation(s)
- Laura M Borland
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
468
|
HENARES TG, MIZUTANI F, SEKIZAWA R, HISAMOTO H. "Drop-and-Sip" Fluid Handling Technique for the Reagent-Release Capillary (RRC)-based Capillary-Assembled Microchip (CAs-CHIP): Sample Delivery Optimization and Reagent Release Behavior in RRC. ANAL SCI 2008; 24:127-32. [DOI: 10.2116/analsci.24.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Fumio MIZUTANI
- Graduate School of Material Science, University of Hyogo
| | | | - Hideaki HISAMOTO
- Graduate School of Engineering, Department of Applied Chemistry, Osaka Prefecture University
| |
Collapse
|
469
|
YAMAMOTO T, HINO M, KAKUHATA R, NOJIMA T, SHINOHARA Y, BABA Y, FUJII T. Evaluation of Cell-free Protein Synthesis Using PDMS-based Microreactor Arrays. ANAL SCI 2008; 24:243-6. [DOI: 10.2116/analsci.24.243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takatoki YAMAMOTO
- Center for International Research on MicroMechatronics (CIRMM), Institute of Industrial Science, The University of Tokyo
| | - Mami HINO
- Institute for Genome Research, University of Tokushima
| | - Rei KAKUHATA
- Institute for Genome Research, University of Tokushima
| | - Takahiko NOJIMA
- Center for International Research on MicroMechatronics (CIRMM), Institute of Industrial Science, The University of Tokyo
| | | | - Yoshinobu BABA
- Department of Applied Chemistry, Graduate School of Engineering, MEXT Innovative Research Center for Preventive Medical Engineering, Nagoya University
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Teruo FUJII
- Center for International Research on MicroMechatronics (CIRMM), Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
470
|
Chen L, Manz A, Day PJ. Whole genome amplification on poly(dimethylsiloxane) microchip array. Anal Biochem 2008; 372:128-30. [DOI: 10.1016/j.ab.2007.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 10/22/2022]
|
471
|
Blas M, Delaunay N, Rocca JL. Electrokinetic-based injection modes for separative microsystems. Electrophoresis 2008; 29:20-32. [DOI: 10.1002/elps.200700389] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
472
|
Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum. Anal Chim Acta 2008; 606:98-107. [DOI: 10.1016/j.aca.2007.10.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 11/19/2022]
|
473
|
Idegami K, Chikae M, Kerman K, Nagatani N, Yuhi T, Endo T, Tamiya E. Gold Nanoparticle-Based Redox Signal Enhancement for Sensitive Detection of Human Chorionic Gonadotropin Hormone. ELECTROANAL 2008. [DOI: 10.1002/elan.200704011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
474
|
HASEGAWA T, ITOH Y, KASUYA A. Experimental Optimization of p-Polarized MAIR Spectrometry Performed on a Fourier Transform Infrared Spectrometer. ANAL SCI 2008; 24:105-9. [DOI: 10.2116/analsci.24.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takeshi HASEGAWA
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology
- PRESTO, Japan Science and Technology Agency
| | - Yuki ITOH
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Akiyoshi KASUYA
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
475
|
Peng Y, Pallandre A, Tran NT, Taverna M. Recent innovations in protein separation on microchips by electrophoretic methods. Electrophoresis 2008; 29:157-78. [DOI: 10.1002/elps.200700347] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
476
|
Demianova Z, Pöysä E, Ihalainen S, Saura S, Shimmo M, Franssila S, Baumann M. Development and application of a miniaturized gel electrophoresis device for protein analysis. MOLECULAR BIOSYSTEMS 2008; 4:260-5. [DOI: 10.1039/b716850k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
477
|
Abstract
Molecular dispersion is caused by both molecular diffusion and non-uniform bulk fluid motion. While the Taylor–Aris dispersion regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient and quickly gives way to Taylor–Aris dispersion. In electrophoretic focusing methods such as temperature gradient focusing (TGF), however, the characteristic time scales for dispersion are fixed, and focused peaks may never reach the Taylor limit. In this situation, generalized Taylor dispersion analysis is not applicable. A heuristic model is developed here which accounts for both molecular diffusion and advective dispersion across all dispersion regimes, from pure diffusion to Taylor dispersion to pure advection. This model is compared to results from TGF experiments and accurately captures both the initial decrease and subsequent increase in peak widths as electric field strength increases. The results of this combined analytical and experimental study provide a useful tool for estimation of dispersion and optimization of TGF systems.
Collapse
Affiliation(s)
- David E Huber
- Department of Mechanical Engineering, Stanford UniversityStanford, CA 94305-3030, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford UniversityStanford, CA 94305-3030, USA
| |
Collapse
|
478
|
Nevill JT, Cooper R, Dueck M, Breslauer DN, Lee LP. Integrated microfluidic cell culture and lysis on a chip. LAB ON A CHIP 2007; 7:1689-95. [PMID: 18030388 DOI: 10.1039/b711874k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present an integrated microfluidic cell culture and lysis platform for automated cell analysis that improves on systems which require multiple reagents and manual procedures. Through the combination of previous technologies developed in our lab (namely, on-chip cell culture and electrochemical cell lysis) we have designed, fabricated, and characterized an integrated microfluidic platform capable of culturing HeLa, MCF-7, Jurkat, and CHO-K1 cells for up to five days and subsequently lysing the cells without the need to add lysing reagents. On-demand lysis was accomplished by local hydroxide ion generation within microfluidic chambers, releasing both proteinacious (GFP) and genetic (Hoescht-stained DNA) material. Sample proteins exposed to the electrochemical lysis conditions were immunodetectable (p53) and their enzymatic activity (HRP) was investigated.
Collapse
Affiliation(s)
- J Tanner Nevill
- Biomolecular Nanotechnology Center, Berkeley Sensor & Actuator Center, Department of Bioengineering, University of California, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
479
|
Schulze P, Schüttpelz M, Sauer M, Belder D. Two-photon excited fluorescence detection at 420 nm for label-free detection of small aromatics and proteins in microchip electrophoresis. LAB ON A CHIP 2007; 7:1841-1844. [PMID: 18030410 DOI: 10.1039/b710762e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two photon excited (TPE) fluorescence detection was applied to native fluorescence detection of aromatics in microchip electrophoresis (MCE). This technique was evaluated as an alternative to common one photon excitation in the deep UV spectral range. TPE enables fluorescence detection of unlabeled aromatic compounds, even in non-deep UV-transparent microfluidic chips. In this study, we demonstrate the proof of concept of native TPE fluorescence detection of small aromatics in commercial microfluidic glass chips. Label-free TPE fluorescence detection of native proteins and small aromatics in MCE was achieved within the micromolar concentration range, utilising 420 nm excitation light.
Collapse
Affiliation(s)
- Philipp Schulze
- Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
480
|
Tay ETT, Law WS, Sim SPC, Feng H, Zhao JH, Li SFY. Floating resistivity detector for microchip electrophoresis. Electrophoresis 2007; 28:4620-8. [DOI: 10.1002/elps.200700185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
481
|
Zazpe R, Hibert C, O'Brien J, Lanyon YH, Arrigan DWM. Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces. LAB ON A CHIP 2007; 7:1732-1737. [PMID: 18030394 DOI: 10.1039/b712601h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microporous silicon membranes, fabricated by lithographic patterning and wet and dry silicon etching processes, were used to create arrays of micro-scale interfaces between two immiscible electrolyte solutions (muITIES) for ion-transfer voltammetry. These membranes served the dual functions of interface stabilization and enhancement of the rate of mass-transport to the interface. The pore radii were 6.5 microm, 12.8 microm and 26.6 microm; the pore-pore separations were ca. 20- to 40-times the pore radii and the membrane thickness was 100 microm. Deep reactive ion etching (DRIE) was used for pore drilling through the silicon, which had been previously selectively thinned by potassium hydroxide etching. DRIE produces hydrophobic fluorocarbon-coated internal pore walls. The small pore sizes and large pore-pore separations used resulted in steady-state voltammograms for the transfer of tetramethylammonium cation (TMA(+)) from the aqueous to the organic phase, whereas the reverse voltammetric sweeps were peak-shaped. These asymmetric voltammograms are consistent with the location of the ITIES at the aqueous side of the silicon membrane such that the organic phase fills the micropores. Comparison of the experimental currents to calculated currents for an inlaid disc micro-interface revealed that the interfaces were slightly recessed, up to 10 microm (or 10% of the pore length) in one case. Facilitated ion transfer, with an organic-phase ionophore, confirmed the location of the organic phase within the pores. These microporous silicon membranes offer opportunities for various analytical operations, including enhancing the rate of mass transport to ITIES-based sensing devices and stabilization of the ITIES for hydrodynamic applications.
Collapse
Affiliation(s)
- Raul Zazpe
- Tyndall National Institute, Lee Maltings, University College, Cork, Ireland
| | | | | | | | | |
Collapse
|
482
|
Fuentes HV, Woolley AT. Phase-changing sacrificial layer fabrication of multilayer polymer microfluidic devices. Anal Chem 2007; 80:333-9. [PMID: 18031061 DOI: 10.1021/ac7017475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new approach for fabricating multilayer microfluidic devices in poly(methyl methacrylate). Paraffin wax was used as a phase-changing sacrificial layer to protect microstructures during solvent bonding. Microchannels in the top and bottom pieces were aligned with through-holes in the middle layer, resulting in microchannels that cross one another. No discernible delamination of the layers or leakage between channels was observed at pressures as high as 300 psi. The current versus voltage linearity in the crossover channel indicates that no Joule heating occurs at voltages of at least 2.0 kV. Moreover, a potential in the crossover channel did not affect the current in the separation channel. Rapid and efficient separation of fluorescently labeled amino acids was performed in these devices. Pressurized buffer flow or voltage applied in the crossover channel caused no leakage into or electrical interference with the separation channel. Our results demonstrate that sacrificial layers with solvent bonding can be implemented readily in the fabrication of robust and fluidically complex multilayer polymer microchips. These capabilities should facilitate the development of a new generation of sophisticated microfluidic systems.
Collapse
Affiliation(s)
- Hernan V Fuentes
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | |
Collapse
|
483
|
Amarie D, Glazier JA, Jacobson SC. Compact microfluidic structures for generating spatial and temporal gradients. Anal Chem 2007; 79:9471-7. [PMID: 17999467 DOI: 10.1021/ac0714967] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We present an improved microfluidic design for generating spatial and temporal gradients. The basic functional elements are bifurcated and trifurcated channels used to split flow between two and three channels, respectively. We use bifurcated channels on the exterior of the channel manifold and trifurcated channels in the interior with mixing tees to recombine flows. For N gradient-forming levels, the number of discrete steps in the gradient is 2(N) + 1, allowing a compact gradient-forming structure that is only 1.6 mm long and 0.5 mm wide. Control of the relative sample concentration at the inlets enables generation of gradients with varying slopes and offsets. The small total channel length allows faster switching (only 2.6 s) between gradients of different compositions than did previous designs, allowing complex temporal sequences and reducing total displacement volume and reagent use. The design permits opposing-gradient experiments and generation of complex nonlinear gradients. We fabricated and tested three channel designs with either three or four gradient-forming levels, 20- or 40-microm channel widths, 60- or 120-microm center-to-center channel spacings, and 9 or 17 output steps. These devices produced essentially identical high-quality linear gradients using both pressure-driven and electrokinetic flow.
Collapse
Affiliation(s)
- Dragos Amarie
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | |
Collapse
|
484
|
Khirevich S, Höltzel A, Hlushkou D, Tallarek U. Impact of Conduit Geometry and Bed Porosity on Flow and Dispersion in Noncylindrical Sphere Packings. Anal Chem 2007; 79:9340-9. [DOI: 10.1021/ac071428k] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siarhei Khirevich
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Dzmitry Hlushkou
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
485
|
Revermann T, Götz S, Künnemeyer J, Karst U. Quantitative analysis by microchip capillary electrophoresis: current limitations and problem-solving strategies. Analyst 2007; 133:167-74. [PMID: 18227937 DOI: 10.1039/b711165g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are pointed out, with particular focus on electrolysis, bubble formation, clogging, surface interactions, injection and aspects related to the power supply. Current drawbacks are specified and improvements for successful quantitative microchip capillary electrophoresis are suggested.
Collapse
Affiliation(s)
- Tobias Revermann
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
486
|
Koster S, Verpoorte E. A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. LAB ON A CHIP 2007; 7:1394-1412. [PMID: 17960264 DOI: 10.1039/b709706a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review presents a thorough overview covering the period 1997-2006 of microfluidic chips coupled to mass spectrometry through an electrospray interface. The different types of fabrication processes and materials used to fabricate these chips throughout this period are discussed. Three 'eras' of interfaces are clearly distinguished. The earliest approach involves spraying from the edge of a chip, while later devices either incorporate a standard fused-silica emitter inserted into the device or fully integrated emitters formed during chip fabrication. A summary of microfluidic-electrospray devices for performing separations and sample pretreatment steps before sample introduction into the mass spectrometer is also presented.
Collapse
Affiliation(s)
- Sander Koster
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | | |
Collapse
|
487
|
Ren K, Liang Q, Yao B, Luo G, Wang L, Gao Y, Wang Y, Qiu Y. Whole column fluorescence imaging on a microchip by using a programmed organic light emitting diode array as a spatial-scanning light source and a single photomultiplier tube as detector. LAB ON A CHIP 2007; 7:1574-1580. [PMID: 17960288 DOI: 10.1039/b707118c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel miniaturized, integrated whole-column imaging detection (WCID) system on a microchip is presented. In this system, a program controlled organic light emitting diode (OLED) array was used as a spatial-scanning light source, to achieve imaging by the time sequence of the excited fluorescence. By this mechanism, a photomultiplier tube (PMT) instead of a charge coupled detector (CCD) can be applied to the imaging. Unlike conventional systems, no lenses, fibers or any mechanical components are required either. The novel flat light source provides uniform excitation light without size limitations and outputs a stronger power by pulse driving. The scanning mode greatly reduced the power consumption of the light source, which is valuable for a portable system. Meanwhile, this novel simplified system has a broader linear range, higher sensitivity and higher efficiency in data collection. Isoelectric focusing of R-phycoerythrin (PE) and monitoring of the overall process with WCID were performed on this system. The limit of detection (LOD) was 38 ng mL(-1) or 3.2 pg at 85 nL per column injection of PE. The system provides a technique for WCID capillary isoelectric focusing (cIEF) on chip and can be used for throughput analysis.
Collapse
Affiliation(s)
- Kangning Ren
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
488
|
Fuentes HV, Woolley AT. Electrically actuated, pressure-driven liquid chromatography separations in microfabricated devices. LAB ON A CHIP 2007; 7:1524-31. [PMID: 17960281 PMCID: PMC3269122 DOI: 10.1039/b708865e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5 cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems.
Collapse
Affiliation(s)
| | - Adam T. Woolley
- Corresponding author. Phone: (801) 422-1701, Fax: (801) 422-0153,
| |
Collapse
|
489
|
Ávila M, González MC, Zougagh M, Escarpa A, Ríos Á. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection. Electrophoresis 2007; 28:4233-9. [DOI: 10.1002/elps.200700277] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
490
|
Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM. Microfluidic High-Resolution Free-Flow Isoelectric Focusing. Anal Chem 2007; 79:8190-8. [PMID: 17902700 DOI: 10.1021/ac071419b] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfluidic free-flow isoelectric focusing glass chip for separation of proteins is described. Free-flow isoelectric focusing is demonstrated with a set of fluorescent standards covering a wide range of isoelectric points from pH 3 to 10 as well as the protein HSA. With respect to an earlier developed device, an improved microfluidic FFE chip was developed. The improvements included the usage of multiple sheath flows and the introduction of preseparated ampholytes. Preseparated ampholytes are commonly used in large-scale conventional free-flow isoelectric focusing instruments but have not been used in micromachined devices yet. Furthermore, the channel depth was further decreased. These adaptations led to a higher separation resolution and peak capacity, which were not achieved with previously published free-flow isoelectric focusing chips. An almost linear pH gradient ranging from pH 2.5 to 11.5 between 1.2 and 2 mm wide was generated. Seven isoelectric focusing markers were successfully and clearly separated within a residence time of 2.5 s and an electrical field of 20 V mm-1. Experiments with pI markers proved that the device is fully capable of separating analytes with a minimum difference in isoelectric point of Delta(pI) = 0.4. Furthermore, the results indicate that even a better resolution can be achieved. The theoretical minimum difference in isoelectric point is Delta(pI) = 0.23 resulting in a peak capacity of 29 peaks within 1.8 mm. This is an 8-fold increase in peak capacity to previously published results. The focusing of pI markers led to an increase in concentration by factor 20 and higher. Further improvement in terms of resolution seems possible, for which we envisage that the influence of electroosmotic flow has to be further reduced. The performance of the microfluidic free-flow isoelectric focusing device will enable new applications, as this device might be used in clinical analysis where often low sample volumes are available and fast separation times are essential.
Collapse
Affiliation(s)
- Dietrich Kohlheyer
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
491
|
Chen L, Manz A, Day PJR. Total nucleic acid analysis integrated on microfluidic devices. LAB ON A CHIP 2007; 7:1413-23. [PMID: 17960265 DOI: 10.1039/b708362a] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design and integration of microfluidic devices for on-chip amplification of nucleic acids from various biological samples has undergone extensive development. The actual benefit to the biological community is far from clear, with a growing, but limited, number of application successes in terms of a full on-chip integrated analysis. Several advances have been made, particularly with the integration of amplification and detection, where amplification is most often the polymerase chain reaction. Full integration including sample preparation remains a major obstacle for achieving a quantitative analysis. We review the recently described devices incorporating in vitro gene amplification and compare devices relative to each other and in terms of fully achieving a miniaturised total analysis system (micro-TAS).
Collapse
Affiliation(s)
- Lin Chen
- Institute for Analytical Sciences, Bunsen-Kirchhoff Str. 11, D-44139 Dortmund, Germany
| | | | | |
Collapse
|
492
|
Blas M, Delaunay N, Rocca JL. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase. J Sep Sci 2007; 30:3043-9. [DOI: 10.1002/jssc.200700132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
493
|
Reinhardt H, Dittrich PS, Manz A, Franzke J. micro-Hotplate enhanced optical heating by infrared light for single cell treatment. LAB ON A CHIP 2007; 7:1509-1514. [PMID: 17960279 DOI: 10.1039/b707185j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study we present a simple approach for fast and localised heating that relies on the strong absorbance of infrared light by microsized patterned surfaces ("micro-hotplates"). Two different materials, micro-arrays of carbon and gold, were tested with respect to their absorbance of the 830 nm diode laser light and their applicability. Both materials were found to be suitable for inducing controlled heating to a temperature increase of more than 10 degrees C within less than a second. The effect of optical heating on living cells (colon cancer cell line SW 480) was investigated with a modified fluorescence microscope. The temperature was controlled by varying the intensity and the exposure time of the laser light. Depending on temperature, induced death of cells in direct contact with the absorbent material was observed, or otherwise cells were kept alive. Cells survive the direct exposure of IR light without the use of the micro-hotplates. In contrast to common heating systems, the optical heating does not need direct contact to a temperature control device. Therefore, it is a very flexible method that can easily be implemented within any microchip. We believe that it will be a versatile tool for initiation and modulation of biochemical or cellular reactions, reversible cell membrane opening, and for control of cell growth.
Collapse
Affiliation(s)
- Helke Reinhardt
- ISAS-Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany
| | | | | | | |
Collapse
|
494
|
Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. Biological cells on microchips: New technologies and applications. Biosens Bioelectron 2007; 23:449-58. [PMID: 17881213 DOI: 10.1016/j.bios.2007.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 08/03/2007] [Indexed: 02/06/2023]
Abstract
Integration of various chemical devices and complex operations onto a microchip, which is often referred to as a micro total analysis system (mu-TAS) or lab-on-a-chip, creates extremely efficient devices that exploit the advantages of a microspace. Furthermore, as the scale of the fluidic microvolume is roughly proportional to living cell sizes and processing capabilities, cells and micro chemical systems can be combined to develop practical prototypical microdevices. This approach has led to development of tools for investigating cellular functions, biochemical reactors and bioassay systems, as well as hybrid bio/artificial tissue engineered organs. Recently, bio-microactuators exploiting mechanical properties of cells powered without external energy sources have also been reported. This review focuses on new technologies involving cell-based devices on microchips, with a special emphasis on bio-microactuators. Firstly, we review systems to place and handle cells on a microchip. Secondly, we review bio-microactuators developed using single or a few driving cells. Finally, we review bio-microactuators developed using numerous cells or tissue to generate stronger forces. Understanding fundamental concepts behind the distinct features and performance characteristics of these cell-based micro-systems will lead to development of new devices that will be exploited in various fields in the future.
Collapse
Affiliation(s)
- Yo Tanaka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
495
|
Shen Z, Liu X, Zhou X, Liang A, Wu D, Yu L, Dai Z, Qin J, Lin B. Quantitative evaluation of the interaction between netropsin and double stranded oligodeoxynucleotides by microfabricated capillary array electrophoresis. J Sep Sci 2007; 30:1544-8. [PMID: 17623435 DOI: 10.1002/jssc.200600530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microfabricated capillary array electrophoresis (micro-CAE) was applied to study the interaction between minor groove binder netropsin and a non-selfcomplementary 12 mer double stranded oligodeoxynucleotide: d(CCCCTATACCGC).d(GCGGTATAGGGG). ESI-MS was used to provide an independent verification of the microchip electrophoresis derived data. Simultaneous parallel quantitative assay of multiple samples was performed in a single run (<50 s) on the self-developed micro-CAE device. The binding constant and stoichiometry calculated from Scatchard plot were (2.88 +/- 0.23)x10(5) M(-1) and 1:1, respectively. The values showed a good quantitative agreement with the results determined by ESI-MS and those using other methods reported in the literature.
Collapse
Affiliation(s)
- Zheng Shen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Höltzel A, Tallarek U. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J Sep Sci 2007; 30:1398-419. [PMID: 17623420 DOI: 10.1002/jssc.200600427] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this tutorial review we illustrate the origin and dependence on various system parameters of the ionic conductance that exists in discrete nanochannels as well as in nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in microscale liquid phase analysis systems. A particular complexity arises as external electrical fields are superimposed on internal chemical and electrical potential gradients for tailoring molecular transport. It is demonstrated that the variety of geometries in which the microfluidic/nanofluidic interfaces are realized share common, fundamental features of coupled mass and charge transport, but that phenomena behind the key steps in a particular application can be significantly tuned, depending on the morphology of a material. Thus, the understanding of morphology-related transport in internal and external electrical potential gradients is critical to the performance of a device. This addresses a variety of geometries (slits, channels, filters, membranes, random or regular networks of pores, etc.) and applications, e. g., the gating, sensing, preconcentration, and separation in multifunctional miniaturized devices. Inherently coupled mass and charge transport through ion-permselective (charge-selective) microfluidic/nanofluidic interfaces is analyzed with a stepwise-added complexity and discussed with respect to the morphology of the charge-selective spatial domains. Within this scenario, the electrostatics and electrokinetics in microfluidic and nanofluidic channels, as well as the electrohydrodynamics evolving at microfluidic/nanofluidic interfaces, where microfluidics meets nanofluidics, define the platform of central phenomena.
Collapse
Affiliation(s)
- Alexandra Höltzel
- Institut für Verfahrenstechnik, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | |
Collapse
|
497
|
Amatore C, Da Mota N, Sella C, Thouin L. Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 1. Steady-State Regimes at a Single Electrode. Anal Chem 2007; 79:8502-10. [DOI: 10.1021/ac070971y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 “ Pasteur ”, 24 rue Lhomond, F-75231 Paris Cedex 05, France
| | - Nicolas Da Mota
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 “ Pasteur ”, 24 rue Lhomond, F-75231 Paris Cedex 05, France
| | - Catherine Sella
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 “ Pasteur ”, 24 rue Lhomond, F-75231 Paris Cedex 05, France
| | - Laurent Thouin
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 “ Pasteur ”, 24 rue Lhomond, F-75231 Paris Cedex 05, France
| |
Collapse
|
498
|
|
499
|
Piccin E, Coltro WKT, Fracassi da Silva JA, Neto SC, Mazo LH, Carrilho E. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping. J Chromatogr A 2007; 1173:151-8. [PMID: 17964580 DOI: 10.1016/j.chroma.2007.09.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/15/2022]
Abstract
This paper presents the use of elastomeric polyurethane (PU), derived from castor oil (CO) biosource, as a new material for fabrication of microfluidic devices by rapid prototyping. Including the irreversible sealing step, PU microchips were fabricated in less than 1h by casting PU resin directly on the positive high-relief molds fabricated by standard photolithography and nickel electrodeposition. Physical characterization of microchannels was performed by scanning electron microscopy (SEM) and profilometry. Polymer surface was characterized using contact angle measurements and the results showed that the hydrophilicity of the PU surface increases after oxygen plasma treatment. The polymer surface demonstrated the capability of generating an electroosmotic flow (EOF) of 2.6 x 10(-4)cm(2)V(-1)s(-1) at pH 7 in the cathode direction, which was characterized by current monitoring method at different pH values. The compatibility of PU with a wide range of solvents and electrolytes was tested by determining its degree of swelling over a 24h period of contact. The performance of microfluidic systems fabricated using this new material was evaluated by fabricating miniaturized capillary electrophoresis systems. Epinephrine and l-DOPA, as model analytes, were separated in aqueous solutions and detected with end-channel amperometric detection.
Collapse
Affiliation(s)
- Evandro Piccin
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
500
|
Kuswandi B, Nuriman, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: A review. Anal Chim Acta 2007; 601:141-55. [PMID: 17920386 DOI: 10.1016/j.aca.2007.08.046] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
|