451
|
van der Ploeg EK, Golebski K, van Nimwegen M, Fergusson JR, Heesters BA, Martinez-Gonzalez I, Kradolfer CMA, van Tol S, Scicluna BP, de Bruijn MJW, de Boer GM, Tramper-Stranders GA, Braunstahl GJ, van IJcken WFJ, Nagtegaal AP, van Drunen CM, Fokkens WJ, Huylebroeck D, Spits H, Hendriks RW, Stadhouders R, Bal SM. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol 2021; 6:6/55/eabd3489. [PMID: 33514640 DOI: 10.1126/sciimmunol.abd3489] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Joannah R Fergusson
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Itziar Martinez-Gonzalez
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Geertje M de Boer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Department of Pediatric Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands.,Department of Neonatology, Sophia Children's Hospital, Erasmus MC, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Center for Biomics, Erasmus MC, Rotterdam, Netherlands
| | - A Paul Nagtegaal
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Hergen Spits
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands. .,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Suzanne M Bal
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
452
|
Soyfoo MS, Nicaise C. Pathophysiologic role of Interleukin-33/ST2 in Sjögren's syndrome. Autoimmun Rev 2021; 20:102756. [PMID: 33476812 DOI: 10.1016/j.autrev.2021.102756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family and has dual functions as a nuclear factor as well as a cytokine. The pivotal role of IL-33 as an active player contributing to aberrant local and systemic damage has been highlighted in several inflammatory and autoimmune diseases. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by dry eyes and mouth syndrome due to local dysfunctions of exocrine glands, but also accompanied with systemic manifestations. The pathophysiology of pSS has been advocated as a conjecture of activated B and T cells as well as the production of inflammatory cytokines and autoantibodies, driving epithelial tissue damage and disease progression. In pSS, IL-33 is released in the extracellular space from damaged salivary cells upon pro-inflammatory stimuli and/or dysfunction of epithelial barrier. Counter-regulatory mechanisms are initiated to limit the pro-inflammatory actions of IL-33 as portrayed by an increase in the decoy receptor for IL-33, the soluble form of ST2 (sST2). In pSS and associated diseases, the levels of IL-33 are significantly elevated in the serum or tears of patients. Mechanistically, IL-33 acts in synergy with IL-12 and IL-23 on NK and NKT cells to boost the production of IFN-γ contributing to inflammation. TNF-α, IL-1β and IFN-γ in turn further increase the activation of IL-33/ST2 pathway, thereby constituting a vicious inflammatory loop leading to disease exacerbation. IL-33/ST2 axis is involved in Sjögren's syndrome and opens new perspectives as therapeutic target of one of the culprits in the inflammatory perpetuation.
Collapse
Affiliation(s)
- Muhammad S Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, Belgium.
| | | |
Collapse
|
453
|
Montaudié H, Beranger GE, Reinier F, Nottet N, Martin H, Picard-Gauci A, Troin L, Ballotti R, Passeron T. Germline variants in exonic regions have limited impact on immune checkpoint blockade clinical outcomes in advanced melanoma. Pigment Cell Melanoma Res 2021; 34:978-983. [PMID: 33449414 DOI: 10.1111/pcmr.12958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/11/2020] [Accepted: 01/10/2021] [Indexed: 11/27/2022]
Abstract
Immune checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, up to 60% of treated patients do not respond to ICI and/or develop immune-related adverse events (irAEs). Currently, robust and reliable biomarker to predict response and/or occurrence of irAEs to ICI are missing. Herein, we wanted to explore whether germline variants (SNPs) could predict the clinical outcomes of melanoma patients treated with ICIs. We performed a whole exome sequencing using gDNA isolated from blood, from a discovery cohort of 57 patients with metastatic melanoma. The top associations were then tested in a validation cohort of 57 patients. Our work suggests that individual germline genetic variants have no or weak impact on the response to ICIs. Only, variants in IL1RL1 have a significant impact in treatment response. The role of IL1RL1 in the immune response against melanoma and as a theranostic marker warrants further investigations.
Collapse
Affiliation(s)
- Henri Montaudié
- Centre Méditerranéen de Médecine Moléculaire (C3M), Université Nice Côte d'Azur, INSERM, Nice, France.,Department of Dermatology, Université Nice Côte d'Azur, CHU Nice, Nice, France
| | | | - Frédéric Reinier
- Biology and Pathologies of Melanocytes, Université Nice Côte d'Azur, Team 1, Inserm U1065 Equipe labellisée ARC 2015, C3M, Nice, France
| | - Nicolas Nottet
- Biology and Pathologies of Melanocytes, Université Nice Côte d'Azur, Team 1, Inserm U1065 Equipe labellisée ARC 2015, C3M, Nice, France
| | - Hélène Martin
- Department of Dermatology, Université Nice Côte d'Azur, CHU Nice, Nice, France
| | | | - Laura Troin
- Department of Dermatology, Université Nice Côte d'Azur, CHU Nice, Nice, France
| | - Robert Ballotti
- Biology and Pathologies of Melanocytes, Université Nice Côte d'Azur, Team 1, Inserm U1065 Equipe labellisée ARC 2015, C3M, Nice, France
| | - Thierry Passeron
- Centre Méditerranéen de Médecine Moléculaire (C3M), Université Nice Côte d'Azur, INSERM, Nice, France.,Department of Dermatology, Université Nice Côte d'Azur, CHU Nice, Nice, France
| |
Collapse
|
454
|
Abstract
Many studies highlight direct interactions between immune cells and enteric neurons, but whether immune signals can indirectly modulate enteric function through neurotransmitter regulation is poorly understood. In this issue of Immunity, Chen et al. reveal how IL-33 induces intestinal serotonin to promote gut motility.
Collapse
Affiliation(s)
- Lewis W Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
455
|
Cristinziano L, Poto R, Criscuolo G, Ferrara AL, Galdiero MR, Modestino L, Loffredo S, de Paulis A, Marone G, Spadaro G, Varricchi G. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and Lymphangiogenic Factors. Cells 2021; 10:cells10010145. [PMID: 33445787 PMCID: PMC7828291 DOI: 10.3390/cells10010145] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are strategically located in different compartments of human lung, where they play a role in several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts pleiotropic functions in the lung. The present study investigated whether immunoglobulin superantigens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast, IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic and lymphangiogenic activities of lung mast cells in pulmonary disorders.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (G.C.); (A.L.F.); (M.R.G.); (L.M.); (S.L.); (A.d.P.); (G.M.); (G.S.)
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
456
|
Machairiotis N, Vasilakaki S, Thomakos N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines 2021; 9:54. [PMID: 33435569 PMCID: PMC7826862 DOI: 10.3390/biomedicines9010054] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND pain is one of the main symptoms of endometriosis and it has a deleterious effect on a patients' personal and social life. To date, the clinical management of pain includes prolonged medication use and, in some cases, surgery, both of which are disruptive events for patients. Hence, there is an urgency for the development of a sufficient non-invasive medical treatment. Inflammation is one of the causative factors of pain in endometriosis. It is well established that inflammatory mediators promote angiogenesis and interact with the sensory neurons inducing the pain signal; the threshold of pain varies and it depends on the state and location of the disease. The inhibition of inflammatory mediators' synthesis might offer a novel and effective treatment of the pain that is caused by inflammation in endometriosis. OBJECTIVES patients with endometriosis experience chronic pelvic pain, which is moderate to severe in terms of intensity. The objective of this systematic review is to highlight the inflammatory mediators that contribute to the induction of pain in endometriosis and present their biological mechanism of action. In addition, the authors aim to identify new targets for the development of novel treatments for chronic pelvic pain in patients with endometriosis. DATA SOURCES three databases (PubMed, Scopus, and Europe PMC) were searched in order to retrieve articles with the keywords 'inflammation, pain, and endometriosis' between the review period of 1 January 2016 to 31 December 2020. This review has been registered with PROSPERO (registry number: CRD42020171018). Eligibility Criteria: only original articles that presented the regulation of inflammatory mediators and related biological molecules in endometriosis and their contribution in the stimulation of pain signal were included. DATA EXTRACTION two authors independently extracted data from articles, using predefined criteria. RESULTS the database search yielded 1871 articles, which were narrowed down to 56 relevant articles of interest according to the eligibility criteria. CONCLUSIONS inflammatory factors that promote angiogenesis and neuroangiogenesis are promising targets for the treatment of inflammatory pain in endometriosis. Specifically, CXC chemokine family, chemokine fractalkine, and PGE2 have an active role in the induction of pain. Additionally, IL-1β appears to be the primary interleukin (IL), which stimulates the majority of the inflammatory factors that contribute to neuroangiogenesis along with IL-6. Finally, the role of Ninj1 and BDNF proteins needs further investigation.
Collapse
Affiliation(s)
- Nikolaos Machairiotis
- Department of Obstetrics and Gynaecology, Accredited Endometriosis Centre, Northwick Park Hospital, London North West University Healthcare, London HA1 3UJ, UK
| | - Sofia Vasilakaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece;
| | - Nikolaos Thomakos
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, Gynecologic Oncology Unit, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| |
Collapse
|
457
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
458
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
459
|
Requirement of brain interleukin33 for aquaporin4 expression in astrocytes and glymphatic drainage of abnormal tau. Mol Psychiatry 2021; 26:5912-5924. [PMID: 33432186 PMCID: PMC8273186 DOI: 10.1038/s41380-020-00992-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Defective aquaporin4 (AQP4)-mediated glymphatic drainage has been linked to tauopathy and amyloid plaque in Alzheimer's disease. We now show that brain interleukin33 (IL33) is required for regulation of AQP4 expression in astrocytes, especially those at neuron-facing membrane domain (n-AQP4). First, IL33-deficient (Il33-/-) mice showed a loss of n-AQP4 after middle age, which coincided with a rapid accumulation of abnormal tau in neurons and a reduction in drainage of abnormal tau to peripheral tissues. Second, injection of recombinant IL33 induced robust expression of AQP4 at perivascular endfoot (p-AQP4) of astrocytes, but not n-AQP4, in Il33-/- brains. Although the increased p-AQP4 greatly accelerated drainage of intracerebroventricularly injected peptides, it did not substantially accelerate drainage of abnormal tau. These results suggest that p-AQP4 drives overall convective flow toward perivenous space, i.e., glymphatics, whereas n-AQP4 may generate an aqueous flow away from neurons to remove neuronal wastes, e.g., abnormal tau. We have previously shown the role of brain IL33 in DNA repair and autophagy in neurons with oxidative stress. Now, we show that IL33 deficiency also impairs glymphatic drainage. Defects in those mechanisms together may lead to chronic neurodegeneration and tauopathy at old age in IL33-deficient mice.
Collapse
|
460
|
Klegeris A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen Res 2021; 16:423-429. [PMID: 32985460 PMCID: PMC7996015 DOI: 10.4103/1673-5374.293134] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sterile inflammatory processes are essential for the maintenance of central nervous system homeostasis, but they also contribute to various neurological disorders, including neurotrauma, stroke, and demyelinating or neurodegenerative diseases. Immune mechanisms in the central nervous system and periphery are regulated by a diverse group of endogenous proteins, which can be broadly divided into the pro-inflammatory damage-associated molecular patterns (DAMPs) and anti-inflammatory resolution-associated molecular patterns (RAMPs), even though there is notable overlap between the DAMP- and RAMP-like activities for some of these molecules. Both groups of molecular patterns were initially described in peripheral immune processes and pathologies; however, it is now evident that at least some, if not all, of these immunomodulators also regulate neuroimmune processes and contribute to neuroinflammation in diverse central nervous system disorders. The review of recent literature demonstrates that studies on DAMPs and RAMPs of the central nervous system still lag behind the much broader research effort focused on their peripheral counterparts. Nevertheless, this review also reveals that over the last five years, significant advances have been made in our understanding of the neuroimmune functions of several well-established DAMPs, including high-mobility group box 1 protein and interleukin 33. Novel neuroimmune functions have been demonstrated for other DAMPs that previously were considered almost exclusively as peripheral immune regulators; they include mitochondrial transcription factor A and cytochrome C. RAMPs of the central nervous system are an emerging area of neuroimmunology with very high translational potential since some of these molecules have already been used in preclinical and clinical studies as candidate therapeutic agents for inflammatory conditions, such as multiple sclerosis and rheumatoid arthritis. The therapeutic potential of DAMP antagonists and neutralizing antibodies in central nervous system neuroinflammatory diseases is also supported by several of the identified studies. It can be concluded that further studies of DAMPs and RAMPs of the central nervous system will continue to be an important and productive field of neuroimmunology.
Collapse
Affiliation(s)
- Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
461
|
Cephus J, Gandhi VD, Shah R, Brooke Davis J, Fuseini H, Yung JA, Zhang J, Kita H, Polosukhin VV, Zhou W, Newcomb DC. Estrogen receptor-α signaling increases allergen-induced IL-33 release and airway inflammation. Allergy 2021; 76:255-268. [PMID: 32648964 DOI: 10.1111/all.14491] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2) are stimulated by IL-33 to increase IL-5 and IL-13 production and airway inflammation. While sex hormones regulate airway inflammation, it remained unclear whether estrogen signaling through estrogen receptor-α (ER-α, Esr1) or ER-β (Esr2) increased ILC2-mediated airway inflammation. We hypothesize that estrogen signaling increases allergen-induced IL-33 release, ILC2 cytokine production, and airway inflammation. METHODS Female Esr1-/- , Esr2-/- , wild-type (WT), and IL33fl/fl eGFP mice were challenged with Alternaria extract (Alt Ext) or vehicle for 4 days. In select experiments, mice were administered tamoxifen or vehicle pellets for 21 days prior to challenge. Lung ILC2, IL-5 and IL-13 production, and BAL inflammatory cells were measured on day 5 of Alt Ext challenge model. Bone marrow from WT and Esr1-/- female mice was transferred (1:1 ratio) into WT female recipients for 6 weeks followed by Alt Ext challenge. hBE33 cells and normal human bronchial epithelial cells (NHBE) were pretreated with 17β-estradiol (E2), propyl-pyrazole-triol (PPT, ER-α agonist), or diarylpropionitrile (DPN, ER-β agonist) before allergen challenge to determine IL-33 gene expression and release, extracellular ATP release, DUOX-1 production, and necrosis. RESULTS Alt Ext challenged Esr1-/- , but not Esr2-/- , mice had decreased IL-5 and IL-13 production, BAL eosinophils, and IL-33 release compared to WT mice. Tamoxifen decreased IL-5 and IL-13 production and BAL eosinophils. IL-33eGFP + epithelial cells were decreased in Alt Ext challenged Esr1-/- mice compared to WT mice. 17β-E2 or PPT, but not DPN, increased IL-33 gene expression, release, and DUOX-1 production in hBE33 or NHBE cells. CONCLUSION Estrogen receptor -α signaling increased IL-33 release and ILC2-mediated airway inflammation.
Collapse
Affiliation(s)
- Jacqueline‐Yvonne Cephus
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Vivek D. Gandhi
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Ruchi Shah
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Jordan Brooke Davis
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology, and Immunology Vanderbilt University Nashville Tennessee USA
| | - Jeffrey A. Yung
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Jian Zhang
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Hirohito Kita
- Allergic Diseases Research Laboratory Mayo Clinic Phoenix Arizona USA
| | - Vasiliy V. Polosukhin
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Weisong Zhou
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
| | - Dawn C. Newcomb
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville Tennessee USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
462
|
Interleukin-31, a Potent Pruritus-Inducing Cytokine and Its Role in Inflammatory Disease and in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:111-127. [PMID: 33559859 DOI: 10.1007/978-3-030-55617-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Substantial new information has emerged supporting the fundamental role of the cytokine interleukin-31 (IL-31) in the genesis of chronic pruritus in a broad array of clinical conditions. These include inflammatory conditions, such as atopic dermatitis and chronic urticaria, to autoimmune conditions such as dermatomyositis and bullous pemphigoid, to the lymphoproliferative disorders of Hodgkin's disease and cutaneous T-cell lymphoma. IL-31 is produced in greatest quantity by T-helper type 2 (Th2) cells and upon release, interacts with a cascade of other cytokines and chemokines to lead to pruritus and to a proinflammatory environment, particularly within the skin. Antibodies which neutralize IL-31 or which block the IL-31 receptor may reduce or eliminate pruritus and may diminish the manifestations of chronic cutaneous conditions associated with elevated IL-31. The role of IL-31 in these various conditions will be reviewed.
Collapse
|
463
|
IL-33 AS A BIOMARKER OF INFLAMMATORY ACTIVITY IN PSORIASIS PATIENTS WITH CONCOMITANT OBESITY. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-37-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
464
|
Khan HA, Munir T, Khan JA, Shafia Tehseen Gul AH, Ahmad MZ, Aslam MA, Umar MN, Arshad MI. IL-33 ameliorates liver injury and inflammation in Poly I:C and Concanavalin-A induced acute hepatitis. Microb Pathog 2020; 150:104716. [PMID: 33383149 DOI: 10.1016/j.micpath.2020.104716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023]
Abstract
The IL-33/ST2 axis is known to be involved in liver pathologies and IL-33 is over-expressed in mouse hepatitis models. We aimed to investigate the proposed protective effect of IL-33 in murine fulminant hepatitis induced by a Toll like receptor 3 (TLR3) viral mimetic, Poly I:C or by Concanavalin-A (ConA). The Balb/C mice were administered intravenously with ConA (15 mg/kg) or Poly I:C (30 μg/mouse) to induce acute hepatitis along with vehicle control. The recombinant mouse IL-33 (rIL-33) was injected (0.2 μg/mouse) to mice 2 h prior to ConA or Poly I:C injection to check its hepato-protective effects. The gross lesions, level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), histopathology (H&E staining) and levels of IFNγ and TNFα were measured by ELISA. The gross pathological liver injury induced by Poly I:C or ConA was reduced by rIL-33 administration in mice. The levels of AST and ALT were significantly (P ≤ 0.05) higher in mice challenged with Poly I:C or ConA in comparison to control mice. The rIL-33 pre-treated mice in both Poly I:C and ConA challenge groups showed significantly (P ≤ 0.05) lower levels of AST and ALT, and decreased liver injury (parenchymal and per-vascular necrotic areas) in histological liver sections. The soluble levels of TNFα and IFNγ were significantly (P ≤ 0.05) raised in Poly I:C or ConA challenged mice than control mice. The levels of TNFα and IFNγ were significantly reduced (P ≤ 0.05) in rIL-33 pre-treated mice. In conclusion, the exogenous IL-33 administration mitigated liver injury and inflammation (decreased levels of IFNγ and TNFα) in Poly I:C and ConA-induced acute hepatitis in mice.
Collapse
Affiliation(s)
- Hilal Ahmad Khan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tariq Munir
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Zishan Ahmad
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Science, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | | |
Collapse
|
465
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
466
|
Mechanical Ventilation with Moderate Tidal Volume Exacerbates Extrapulmonary Sepsis-Induced Lung Injury via IL33-WISP1 Signaling Pathway. Shock 2020; 56:461-472. [PMID: 33394970 DOI: 10.1097/shk.0000000000001714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. Macrophages (Raw 264.7 and alveolar macrophages from wild-type or ST2-/- mice) were used to identify specific signaling components.CLP + MTV resulted in ALI that was partially sensitive to genetic ablation of IL-33 or ST2 or antibody neutralization of WISP1. Genetic ablation of IL-33 or ST2 significantly prevented ALI after CLP + MTV and reduced levels of WISP1 in the circulation and bronchoalveolar lung fluid. rIL-33 increased WISP1 in alveolar macrophages in an ST2, PI3K/AKT, and ERK dependent manner. This WISP1 upregulation and WNT β-catenin activation were sensitive to inhibition of the β-catenin/TCF/CBP/P300 nuclear pathway.We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.
Collapse
|
467
|
IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog 2020; 16:e1009121. [PMID: 33351862 PMCID: PMC7787685 DOI: 10.1371/journal.ppat.1009121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.
Collapse
|
468
|
Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A 2020; 118:2020810118. [PMID: 33443211 PMCID: PMC7817131 DOI: 10.1073/pnas.2020810118] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Synaptic plasticity in the hippocampus is important for learning and memory formation. In particular, homeostatic synaptic plasticity enables neurons to restore their activity levels in response to chronic neuronal activity changes. While astrocytes modulate synaptic functions via the secretion of factors, the underlying molecular mechanisms remain unclear. Here, we show that suppression of hippocampal neuronal activity increases cytokine IL-33 release from astrocytes in the CA1 region. Activation of IL-33 and its neuronal ST2 receptor complex promotes functional excitatory synapse formation. Moreover, IL-33/ST2 signaling is important for the neuronal activity blockade-induced increase of CA1 excitatory synapses in vivo and spatial memory formation. This study suggests that astrocyte-secreted IL-33 acts as a negative feedback control signal to regulate hippocampal homeostatic synaptic plasticity. Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Collapse
|
469
|
Kamata K, Mizutani K, Takahashi K, Marchetti R, Silipo A, Addy C, Park SY, Fujii Y, Fujita H, Konuma T, Ikegami T, Ozeki Y, Tame JRH. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci Rep 2020; 10:22102. [PMID: 33328520 PMCID: PMC7744527 DOI: 10.1038/s41598-020-78926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α(2-3)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc) and its precursor, asialo-GM1 (Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.
Collapse
Affiliation(s)
- Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Christine Addy
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Fujii
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Hideaki Fujita
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
470
|
Erivwo P, Turashvili G. Pathology of IgG4-related sclerosing mastitis. J Clin Pathol 2020; 74:475-482. [PMID: 33328182 DOI: 10.1136/jclinpath-2020-207029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 01/11/2023]
Abstract
Immunoglobulin G4-related sclerosing mastitis (IgG4-RM) is a recently recognised member of the IgG4-related disease (IgG4-RD) family, a multisystem fibroinflammatory condition that can affect any organ system. IgG4-RM is rare and predominantly occurs in middle-aged women. It may present with painless palpable mass and/or lymphadenopathy thereby mimicking breast cancer. Although there is an abundance of literature describing the clinicopathological characteristics of IgG4-RD in a variety of organs, data on IgG4-RM are limited due to its rarity. This review describes the manifestation of the disease in the breast based on reported cases, emphasising the clinicopathological features, pathophysiology, differential diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Polycarp Erivwo
- Department of Pathology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
471
|
Mechanisms Underlying the Skin-Gut Cross Talk in the Development of IgE-Mediated Food Allergy. Nutrients 2020; 12:nu12123830. [PMID: 33333859 PMCID: PMC7765270 DOI: 10.3390/nu12123830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune-globulin E (IgE)-mediated food allergy is characterized by a variety of clinical entities within the gastrointestinal tract, skin and lungs, and systemically as anaphylaxis. The default response to food antigens, which is antigen specific immune tolerance, requires exposure to the antigen and is already initiated during pregnancy. After birth, tolerance is mostly acquired in the gut after oral ingestion of dietary proteins, whilst exposure to these same proteins via the skin, especially when it is inflamed and has a disrupted barrier, can lead to allergic sensitization. The crosstalk between the skin and the gut, which is involved in the induction of food allergy, is still incompletely understood. In this review, we will focus on mechanisms underlying allergic sensitization (to food antigens) via the skin, leading to gastrointestinal inflammation, and the development of IgE-mediated food allergy. Better understanding of these processes will eventually help to develop new preventive and therapeutic strategies in children.
Collapse
|
472
|
Nilsson J, Hörnberg M, Schmidt-Christensen A, Linde K, Nilsson M, Carlus M, Erttmann SF, Mayans S, Holmberg D. NKT cells promote both type 1 and type 2 inflammatory responses in a mouse model of liver fibrosis. Sci Rep 2020; 10:21778. [PMID: 33311540 PMCID: PMC7732838 DOI: 10.1038/s41598-020-78688-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Sterile liver inflammation and fibrosis are associated with many liver disorders of different etiologies. Both type 1 and type 2 inflammatory responses have been reported to contribute to liver pathology. However, the mechanisms controlling the balance between these responses are largely unknown. Natural killer T (NKT) cells can be activated to rapidly secrete cytokines and chemokines associated with both type 1 and type 2 inflammatory responses. As these proteins have been reported to accumulate in different types of sterile liver inflammation, we hypothesized that these cells may play a role in this pathological process. We have found that a transgenic NKT (tgNKT) cell population produced in the immunodeficient 2,4αβNOD.Rag2−/− mice, but not in 2,4αβNOD.Rag2+/− control mice, promoted a type 1 inflammatory response with engagement of the NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome. The induction of the type 1 inflammatory response was followed by an altered cytokine profile of the tgNKT cell population with a biased production of anti-inflammatory/profibrotic cytokines and development of liver fibrosis. These findings illustrate how the plasticity of NKT cells modulates the inflammatory response, suggesting a key role for the NKT cell population in the control of sterile liver inflammation.
Collapse
Affiliation(s)
- Julia Nilsson
- Department of Experimental Medical Sciences, Lund University Diabetes Center, Clinical Research Center, Lund University, Jan Waldenströms gata 35, 214 28, Malmö, Sweden.,InfiCure Bio AB, Tvistevägen 48 C, 907 36, Umeå, Sweden
| | | | - Anja Schmidt-Christensen
- Department of Experimental Medical Sciences, Lund University Diabetes Center, Clinical Research Center, Lund University, Jan Waldenströms gata 35, 214 28, Malmö, Sweden
| | - Kajsa Linde
- InfiCure Bio AB, Tvistevägen 48 C, 907 36, Umeå, Sweden
| | - Maria Nilsson
- Department of Experimental Medical Sciences, Lund University Diabetes Center, Clinical Research Center, Lund University, Jan Waldenströms gata 35, 214 28, Malmö, Sweden
| | - Marine Carlus
- Carlus Pathology Consulting, 2 rue de la Libération, 76630, Bellengreville, France
| | - Saskia F Erttmann
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Sofia Mayans
- InfiCure Bio AB, Tvistevägen 48 C, 907 36, Umeå, Sweden
| | - Dan Holmberg
- Department of Experimental Medical Sciences, Lund University Diabetes Center, Clinical Research Center, Lund University, Jan Waldenströms gata 35, 214 28, Malmö, Sweden. .,InfiCure Bio AB, Tvistevägen 48 C, 907 36, Umeå, Sweden.
| |
Collapse
|
473
|
Dong J. Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation. Front Immunol 2020; 11:552613. [PMID: 33391253 PMCID: PMC7775612 DOI: 10.3389/fimmu.2020.552613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a tissue response to a variety of harmful stimuli, such as pathogens, irritants, and injuries, and can eliminate insults and limit tissue damage. However, dysregulated inflammation is recognized as a cause of many human diseases, exemplified by organ fibrosis and cancer. In this regard, inflammation-promoted fibrosis is commonly observed in human lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis. Carbon nanotubes (CNTs) are a type of nanomaterials with unique properties and various industrial and commercial applications. On the other hand, certain forms of CNTs are potent inducers of inflammation and fibrosis in animal lungs. Notably, acute inflammation is a remarkable phenotype elicited by CNTs in the lung during the early acute phase post-exposure; whereas a type 2 immune response is evidently activated and dominates during the late acute and chronic phases, leading to type 2 inflammation and lung fibrosis. Numerous studies demonstrate that these immune responses involve distinct immune cells, various pathologic factors, and specific functions and play crucial roles in the initiation and progression of inflammation and fibrosis in the lung exposed to CNTs. Thus, the mechanistic understanding of the immune responses activated by CNTs has drawn great attention in recent years. This article reviews the major findings on the cell signaling pathways that are activated in immune cells and exert functions in promoting immune responses in CNT-exposed lungs, which would provide new insights into the understanding of CNT-induced lung inflammation and inflammation-driven fibrosis, the application of CNT-induced lung inflammation and fibrosis as a new disease model, and the potential of targeting immune cells as a therapeutic strategy for relevant human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
474
|
Williams TL, Rada B, Tandon E, Gestal MC. "NETs and EETs, a Whole Web of Mess". Microorganisms 2020; 8:E1925. [PMID: 33291570 PMCID: PMC7761834 DOI: 10.3390/microorganisms8121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils and eosinophils are granulocytes that have very distinct functions. Neutrophils are first responders to external threats, and they use different mechanisms to control pathogens. Phagocytosis, reactive oxygen species, and neutrophil extracellular traps (NETs) are some of the mechanisms that neutrophils utilize to fight pathogens. Although there is some controversy as to whether NETs are in fact beneficial or detrimental to the host, it mainly depends on the biological context. NETs can contribute to disease pathogenesis in certain types of diseases, while they are also undeniably critical components of the innate immune response. On the contrary, the role of eosinophils during host immune responses remains to be better elucidated. Eosinophils play an important role during helminthic infections and allergic responses. Eosinophils can function as effector cells in viral respiratory infections, gut bacterial infections, and as modulators of immune responses by driving the balance between Th1 and Th2 responses. In particular, eosinophils have biological activities that appear to be quite similar to those of neutrophils. Both possess bactericidal activity, can activate proinflammatory responses, can modulate adaptive immune responses, can form extracellular traps, and can be beneficial or detrimental to the host according to the underlying pathology. In this review we compare these two cell types with a focus on highlighting their numerous similarities related to extracellular traps.
Collapse
Affiliation(s)
- Tyler L. Williams
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens, GA 30302, USA;
| | - Eshaan Tandon
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| |
Collapse
|
475
|
Nnane I, Frederick B, Yao Z, Raible D, Shu C, Badorrek P, van den Boer M, Branigan P, Duffy K, Baribaud F, Fink D, Yang T, Xu Z. The first-in-human study of CNTO 7160, an anti-interleukin-33 receptor monoclonal antibody, in healthy subjects and patients with asthma or atopic dermatitis. Br J Clin Pharmacol 2020; 86:2507-2518. [PMID: 32415720 PMCID: PMC7688540 DOI: 10.1111/bcp.14361] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
AIMS To assess safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and immunogenicity of CNTO 7160, an anti-interleukin-33 receptor (IL-33R) monoclonal antibody, in healthy subjects and patients with asthma or atopic dermatitis (AD). METHODS In Part 1 of this Phase I, randomized, double-blind, placebo-controlled study, healthy subjects (n = 68) received single ascending intravenous (IV) CNTO 7160 dose (0.001 to 10 mg/kg) or placebo. In Part 2, patients with mild asthma (n = 24) or mild AD (n = 15) received 3 biweekly IV CNTO 7160 doses (3 or 10 mg/kg) or placebo. RESULTS CNTO 7160 was generally well tolerated, with 1 serious adverse event of severe cellulitis reported (AD, CNTO 7160, 3 mg/kg). CNTO 7160 exhibited nonlinear PK (0.01-10 mg/kg). Mean clearance decreased with increasing dose (2.43 to 18.03 mL/d/kg). CNTO 7160 PK was similar between healthy subjects and patients with asthma or AD (3 or 10 mg/kg). Free sIL-33R suppression was rapid and dose dependent. Ex vivo inhibition of p38 phosphorylation of basophils was dose-dependent (1-10 mg/kg) and sustained inhibition (≥75%) was observed at higher doses (3 or 10 mg/kg). PK/PD modelling and simulation suggests that 1 mg/kg IV every 2 weeks provides adequate systemic drug exposure for sustained inhibition of p38 phosphorylation of basophils. Despite confirmation of target engagement, no apparent CNTO 7160 clinical activity was observed in patients (asthma or AD). CONCLUSION This first-in-human study provides PK, PD and safety data, supporting further clinical investigation of CNTO 7160 in patients with asthma and AD.
Collapse
Affiliation(s)
- Ivo Nnane
- Janssen Research & Development, LLCSpring HousePAUSA
| | | | - Zhenling Yao
- Janssen Research & Development, LLCSpring HousePAUSA
| | - Donald Raible
- Janssen Research & Development, LLCSpring HousePAUSA
| | - Cathye Shu
- Janssen Research & Development, LLCSpring HousePAUSA
| | - Philipp Badorrek
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)Clinical Airway ResearchNikolai‐Fuchs‐Strasse 1Hannover30625Germany
| | | | | | - Karen Duffy
- Janssen Research & Development, LLCSpring HousePAUSA
| | | | - Damien Fink
- Janssen Research & Development, LLCSpring HousePAUSA
| | | | - Zhenhua Xu
- Janssen Research & Development, LLCSpring HousePAUSA
| |
Collapse
|
476
|
Andreone S, Gambardella AR, Mancini J, Loffredo S, Marcella S, La Sorsa V, Varricchi G, Schiavoni G, Mattei F. Anti-Tumorigenic Activities of IL-33: A Mechanistic Insight. Front Immunol 2020; 11:571593. [PMID: 33329534 PMCID: PMC7734277 DOI: 10.3389/fimmu.2020.571593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-33 (IL-33) is an epithelial-derived cytokine that can be released upon tissue damage, stress, or infection, acting as an alarmin for the immune system. IL-33 has long been studied in the context of Th2-related immunopathologies, such as allergic diseases and parasitic infections. However, its capacity to stimulate also Th1-type of immune responses is now well established. IL-33 binds to its specific receptor ST2 expressed by most immune cell populations, modulating a variety of responses. In cancer immunity, IL-33 can display both pro-tumoral and anti-tumoral functions, depending on the specific microenvironment. Recent findings indicate that IL-33 can effectively stimulate immune effector cells (NK and CD8+ T cells), eosinophils, basophils and type 2 innate lymphoid cells (ILC2) promoting direct and indirect anti-tumoral activities. In this review, we summarize the most recent advances on anti-tumor immune mechanisms operated by IL-33, including the modulation of immune checkpoint molecules, with the aim to understand its potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, CoRI, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
477
|
Hung LY, Pastore CF, Douglas B, Herbert DR. Myeloid-Derived IL-33 Limits the Severity of Dextran Sulfate Sodium-Induced Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:266-273. [PMID: 33245913 DOI: 10.1016/j.ajpath.2020.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
IL-33 is an IL-1 family cytokine that signals through its cognate receptor, ST2, to regulate inflammation. Whether IL-33 serves a pathogenic or protective role during inflammatory bowel disease is controversial. Herein, two different strains of cell-specific conditionally deficient mice were used to compare the role of myeloid- versus intestinal epithelial cell-derived IL-33 during dextran sodium sulfate-induced colitis. Data show that loss of CD11c-restricted IL-33 exacerbated tissue pathology, coinciding with increased tissue Il6 levels and loss of intestinal forkhead box p3+ regulatory T cells. Surprisingly, the lack of intestinal epithelial cell-derived IL-33 had no impact on disease severity or tissue recovery. Thus, we show that myeloid-derived IL-33 functionally restrains colitic disease, whereas intestinal epithelial cell-derived IL-33 is dispensable.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Christopher F Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
478
|
Chen Z, Luo J, Li J, Kim G, Stewart A, Urban JF, Huang Y, Chen S, Wu LG, Chesler A, Trinchieri G, Li W, Wu C. Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity 2020; 54:151-163.e6. [PMID: 33220232 DOI: 10.1016/j.immuni.2020.10.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.
Collapse
Affiliation(s)
- Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andy Stewart
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Shan Chen
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alexander Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
479
|
Hung LY, Tanaka Y, Herbine K, Pastore C, Singh B, Ferguson A, Vora N, Douglas B, Zullo K, Behrens EM, Li Hui Tan T, Kohanski MA, Bryce P, Lin C, Kambayashi T, Reed DR, Brown BL, Cohen NA, Herbert DR. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 2020; 5:5/53/eabc6259. [PMID: 33188058 DOI: 10.1126/sciimmunol.abc6259] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yukinori Tanaka
- Department of Dental Anesthesiology and Pain Management, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Karl Herbine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenal Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annabel Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nisha Vora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Zullo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiffany Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bryce
- Immunology and Inflammation Therapeutic Area, Sanofi US, Cambridge, MA 02319, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Breann L Brown
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA.,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Michael J. Crescenz Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
480
|
Ookawara T, Aihara R, Morimoto A, Iwashita N, Kurata K, Takagi Y, Miyasaka A, Kushiro M, Miyake S, Fukuyama T. Acute and subacute oral toxicity of deoxynivalenol exposure in a Dermatophagoides farinae induced murine asthma model. Toxicol Sci 2020; 179:229-240. [PMID: 33170220 DOI: 10.1093/toxsci/kfaa168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previously, researchers have demonstrated that mycotoxin deoxynivalenol significantly enhances immunocyte activation. However, the interaction between deoxynivalenol exposure and immune disorders remains unclear. In this study, we aimed to investigate whether acute and subacute oral exposure to deoxynivalenol exacerbates the development of respiratory allergy using a mite allergen (Dermatophagoides farina, Derf)-induced mouse model of asthma. The direct relationship between deoxynivalenol exposure and asthma development was examined following acute oral deoxynivalenol administration (0, 0.1, or 0.3 mg/kg body weight), immediately before the final mite allergen challenge. Simultaneously, the influence of subacute oral exposure via low dose deoxynivalenol contaminated wheat (0.33 ppm) was evaluated using the same settings. To detect the pro-inflammatory effects of deoxynivalenol exposure, we examined the total and Derf-specific serum IgE levels, histology, number of immunocytes, and cytokine and chemokine secretion. Acute oral deoxynivalenol significantly enhanced the inflammatory responses, including cellular infiltration into bronchoalveolar lavage fluid, infiltration of immunocytes and cytokine production in local lymph nodes, and cytokine levels in lung tissues. Corresponding pro-inflammatory responses were observed in a mouse group exposed to subacute oral deoxynivalenol. In vivo results were validated by in vitro experiments using the human bronchial epithelial (BEAS-2B) and human eosinophilic leukemia (EOL-1) cell lines. Following exposure to deoxynivalenol, the secretion of interleukin (IL)-1β, IL-6, IL-8, and/or tumor necrosis factor (TNF)-α in BEAS-2B cells, as well as EoL-1 cells, increased significantly. Our findings indicate that deoxynivalenol exposure is significantly involved in the pro-inflammatory response observed in respiratory allergy.
Collapse
Affiliation(s)
- Toa Ookawara
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Ryota Aihara
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Ai Morimoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Naoki Iwashita
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan.,Bioalchemis, 3-28-61 Honshuku-cho, Fuchu-shi, Tokyo, Japan
| | - Keigo Kurata
- Institute of Tokyo Environmental Allergy, ITEA Inc, 1-2-5, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yoshiichi Takagi
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan.,Japan SLC, Inc, 85 Ohara-cho, Kita-ku, Hamamatsu-shi, Shizuoka, Japan
| | - Atsushi Miyasaka
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Suya 2421, Koshi, Kumamoto, Japan
| | - Masayo Kushiro
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki, Japan
| | - Shiro Miyake
- Laboratory of Food and Hygiene, School of Food and Life Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Tomoki Fukuyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
481
|
Mohd Jaya FN, Liu Z, Chan GCF. Early Treatment of Interleukin-33 can Attenuate Lupus Development in Young NZB/W F1 Mice. Cells 2020; 9:cells9112448. [PMID: 33182616 PMCID: PMC7696801 DOI: 10.3390/cells9112448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 01/12/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, has been recently associated with the development of autoimmune diseases, including systemic lupus erythematosus (SLE). IL-33 is an alarmin and a pleiotropic cytokine that affects various types of immune cells via binding to its receptor, ST2. In this study, we determine the impact of intraperitoneal IL-33 treatments in young lupus, NZB/W F1 mice. Mice were treated from the age of 6 to 11 weeks. We then assessed the proteinuria level, renal damage, survival rate, and anti-dsDNA antibodies. The induction of regulatory B (Breg) cells, changes in the level of autoantibodies, and gene expression were also examined. In comparison to the control group, young NZB/W F1 mice administered with IL-33 had a better survival rate as well as reduced proteinuria level and lupus nephritis. IL-33 treatments significantly increased the level of IgM anti-dsDNA antibodies, IL-10 expressing Breg cells, and alternatively-induced M2 macrophage gene signatures. These results imply that IL-33 exhibits a regulatory role during lupus onset via the expansion of protective IgM anti-dsDNA as well as regulatory cells such as Breg cells and M2 macrophages.
Collapse
|
482
|
Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets 2020; 21:843-853. [PMID: 33148159 DOI: 10.2174/1871530320666201104115016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Apart from their main function as oxygen carriers in vertebrates, erythrocytes are also involved in immune regulation. By circulating throughout the body, the erythrocytes are exposed and interact with tissues that are damaged as a result of a disease. In this study, we summarize the literature regarding the contribution of erythrocytes to immune regulation and metabolism. Under the circumstances of a disease state, the erythrocytes may lose their antioxidant capacity and release Damage Associated Molecular Patterns, resulting in the regulation of innate and adaptive immunity. In addition, the erythrocytes scavenge and affect the levels of chemokines, circulating cell-free mtDNA, and C3b attached immune complexes. Furthermore, through surface molecules, erythrocytes control the function of T lymphocytes, macrophages, and dendritic cells. Through an array of enzymes, red blood cells contribute to the pool of blood's bioactive lipids. Finally, the erythrocytes contribute to reverse cholesterol transport through various mechanisms. Our study is highlighting overlooked molecular interactions between erythrocytes and immunity and metabolism, which could lead to the discovery of potent therapeutic targets for immunometabolic diseases.
Collapse
Affiliation(s)
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Tentes
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
483
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
484
|
Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner. Cell Immunol 2020; 357:104203. [DOI: 10.1016/j.cellimm.2020.104203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
485
|
|
486
|
Wong GS, Redes JL, Balenga N, McCullough M, Fuentes N, Gokhale A, Koziol-White C, Jude JA, Madigan LA, Chan EC, Jester WH, Biardel S, Flamand N, Panettieri RA, Druey KM. RGS4 promotes allergen- and aspirin-associated airway hyperresponsiveness by inhibiting PGE2 biosynthesis. J Allergy Clin Immunol 2020; 146:1152-1164.e13. [PMID: 32199913 PMCID: PMC7501178 DOI: 10.1016/j.jaci.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergens elicit host production of mediators acting on G-protein-coupled receptors to regulate airway tone. Among these is prostaglandin E2 (PGE2), which, in addition to its role as a bronchodilator, has anti-inflammatory actions. Some patients with asthma develop bronchospasm after the ingestion of aspirin and other nonsteroidal anti-inflammatory drugs, a disorder termed aspirin-exacerbated respiratory disease. This condition may result in part from abnormal dependence on the bronchoprotective actions of PGE2. OBJECTIVE We sought to understand the functions of regulator of G protein signaling 4 (RGS4), a cytoplasmic protein expressed in airway smooth muscle and bronchial epithelium that regulates the activity of G-protein-coupled receptors, in asthma. METHODS We examined RGS4 expression in human lung biopsies by immunohistochemistry. We assessed airways hyperresponsiveness (AHR) and lung inflammation in germline and airway smooth muscle-specific Rgs4-/- mice and in mice treated with an RGS4 antagonist after challenge with Aspergillus fumigatus. We examined the role of RGS4 in nonsteroidal anti-inflammatory drug-associated bronchoconstriction by challenging aspirin-exacerbated respiratory disease-like (ptges1-/-) mice with aspirin. RESULTS RGS4 expression in respiratory epithelium is increased in subjects with severe asthma. Allergen-induced AHR was unexpectedly diminished in Rgs4-/- mice, a finding associated with increased airway PGE2 levels. RGS4 modulated allergen-induced PGE2 secretion in human bronchial epithelial cells and prostanoid-dependent bronchodilation. The RGS4 antagonist CCG203769 attenuated AHR induced by allergen or aspirin challenge of wild-type or ptges1-/- mice, respectively, in association with increased airway PGE2 levels. CONCLUSIONS RGS4 may contribute to the development of AHR by reducing airway PGE2 biosynthesis in allergen- and aspirin-induced asthma.
Collapse
Affiliation(s)
- Gordon S Wong
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Jamie L Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nariman Balenga
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Ameya Gokhale
- Food Allergy Research Unit, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, Md
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Joseph A Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Laura A Madigan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - William H Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Sabrina Biardel
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md.
| |
Collapse
|
487
|
Son J, Cho JW, Park HJ, Moon J, Park S, Lee H, Lee J, Kim G, Park SM, Lira SA, Mckenzie AN, Kim HY, Choi CY, Lim YT, Park SY, Kim HR, Park SH, Shin EC, Lee I, Ha SJ. Tumor-Infiltrating Regulatory T-cell Accumulation in the Tumor Microenvironment Is Mediated by IL33/ST2 Signaling. Cancer Immunol Res 2020; 8:1393-1406. [PMID: 32878747 DOI: 10.1158/2326-6066.cir-19-0828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are enriched in the tumor microenvironment (TME) and suppress antitumor immunity; however, the molecular mechanism underlying the accumulation of Tregs in the TME is poorly understood. In various tumor models, tumor-infiltrating Tregs were highly enriched in the TME and had significantly higher expression of immune checkpoint molecules. To characterize tumor-infiltrating Tregs, we performed bulk RNA sequencing (RNA-seq) and found that proliferation-related genes, immune suppression-related genes, and cytokine/chemokine receptor genes were upregulated in tumor-infiltrating Tregs compared with tumor-infiltrating CD4+Foxp3- conventional T cells or splenic Tregs from the same tumor-bearing mice. Single-cell RNA-seq and T-cell receptor sequencing also revealed active proliferation of tumor infiltrating Tregs by clonal expansion. One of these genes, ST2, an IL33 receptor, was identified as a potential factor driving Treg accumulation in the TME. Indeed, IL33-directed ST2 signaling induced the preferential proliferation of tumor-infiltrating Tregs and enhanced tumor progression, whereas genetic deletion of ST2 in Tregs limited their TME accumulation and delayed tumor growth. These data demonstrated the IL33/ST2 axis in Tregs as one of the critical pathways for the preferential accumulation of Tregs in the TME and suggests that the IL33/ST2 axis may be a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jae-Won Cho
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Jeewon Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Myeong Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew N Mckenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Insuk Lee
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea.
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
488
|
Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine 2020; 138:155349. [PMID: 33132030 DOI: 10.1016/j.cyto.2020.155349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bronchial asthma (BA) is a chronic disease of the airways. The great majority of BA exacerbations are associated with respiratory viral infections. Recent findings point out a possible role of proinflammatory cytokine interleukin-33 (IL-33) in the development of atopic diseases. Although, little is known about the role of IL-33 in virus-induced BA exacerbations. METHODS We used mouse models of RSV (respiratory syncytial virus)-induced inflammation exacerbation in OVA-sensitized mice and RSV infection alone in adult animals to characterize expression of il33 in the mouse lungs. Moreover, we studied the influence of il33 knockdown with intranasally administrated siRNA on the development of RSV-induced inflammation exacerbation. In addition, we evaluated the expression of IL33 in the ex vivo stimulated PBMCs from allergic asthma patients and healthy subjects with and without confirmed acute respiratory viral infection. RESULTS Using mouse models, we found that infection with RSV drives enhanced il33 mRNA expression in the mouse lung. Treatment with anti-il33 siRNA diminishes airway inflammation in the lungs (we found a decrease in the number of inflammatory cells in the lungs and in the severity of histopathological alterations) of mice with RSV-induced inflammation exacerbation, but do not influence viral load. Elevated level of the IL33 mRNA was detected in ex vivo stimulated blood lymphocytes of allergic asthmatics infected with respiratory viruses. RSV and rhinovirus were the most detected viruses in volunteers with symptoms of respiratory infection. CONCLUSION The present study provides additional evidence of the crucial role of the IL-33 in pathogenesis of RSV infection and virus-induced allergic bronchial asthma exacerbations.
Collapse
|
489
|
Yin C, Liu B, Li Y, Li X, Wang J, Chen R, Tai Y, Shou Q, Wang P, Shao X, Liang Y, Zhou H, Mi W, Fang J, Liu B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics 2020; 10:12189-12203. [PMID: 33204337 PMCID: PMC7667675 DOI: 10.7150/thno.48028] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Gout, induced by monosodium urate (MSU) crystal deposition in joint tissues, provokes severe pain and impacts life quality of patients. However, the mechanisms underlying gout pain are still incompletely understood. Methods: We established a mouse gout model by intra-articularly injection of MSU crystals into the ankle joint of wild type and genetic knockout mice. RNA-Sequencing, in vivo molecular imaging, Ca2+ imaging, reactive oxygen species (ROS) generation, neutrophil influx and nocifensive behavioral assays, etc. were used. Results: We found interleukin-33 (IL-33) was among the top up-regulated cytokines in the inflamed ankle. Neutralizing or genetic deletion of IL-33 or its receptor ST2 (suppression of tumorigenicity) significantly ameliorated pain hypersensitivities and inflammation. Mechanistically, IL-33 was largely released from infiltrated macrophages in inflamed ankle upon MSU stimulation. IL-33 promoted neutrophil influx and triggered neutrophil-dependent ROS production via ST2 during gout, which in turn, activated transient receptor potential ankyrin 1 (TRPA1) channel in dorsal root ganglion (DRG) neurons and produced nociception. Further, TRPA1 channel activity was significantly enhanced in DRG neurons that innervate the inflamed ankle via ST2 dependent mechanism, which results in exaggerated nociceptive response to endogenous ROS products during gout. Conclusions: We demonstrated a previous unidentified role of IL-33/ST2 in mediating pain hypersensitivity and inflammation in a mouse gout model through promoting neutrophil-dependent ROS production and TRPA1 channel activation. Targeting IL-33/ST2 may represent a novel therapeutic approach to ameliorate gout pain and inflammation.
Collapse
|
490
|
He Z, Song Y, Yi Y, Qiu F, Wang J, Li J, Jin Q, Sacitharan PK. Blockade of IL-33 signalling attenuates osteoarthritis. Clin Transl Immunology 2020; 9:e1185. [PMID: 33133598 PMCID: PMC7587452 DOI: 10.1002/cti2.1187] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Osteoarthritis (OA) is the most common form of arthritis characterised by cartilage degradation, synovitis and pain. Disease modifying treatments for OA are not available. The critical unmet need is to find therapeutic targets to reduce both disease progression and pain. The cytokine IL‐33 and its receptor ST2 have been shown to play a role in immune and inflammatory diseases, but their role in osteoarthritis is unknown. Methods Non‐OA and OA human chondrocytes samples were examined for IL‐33 and ST2 expression. Novel inducible cartilage specific knockout mice (IL‐33Acan CreERT2) and inducible fibroblast‐like synoviocyte knockout mice (IL‐33Col1a2 CreERT2) were generated and subjected to an experimental OA model. In addition, wild‐type mice were intra‐articularly administered with either IL‐33‐ or ST2‐neutralising antibodies during experimental OA studies. Results IL‐33 and its receptor ST2 have increased expression in OA patients and a murine disease model. Administering recombinant IL‐33 increased OA and pain in vivo. Synovial fibroblast‐specific deletion of IL‐33 decreased synovitis but did not impact disease outcomes, whilst cartilage‐specific deletion of IL‐33 improved disease outcomes in vivo. Blocking IL‐33 signalling also reduced the release of cartilage‐degrading enzymes in human and mouse chondrocytes. Most importantly, we show the use of monoclonal antibodies against IL‐33 and ST2 attenuates both OA and pain in vivo. Conclusion Overall, our data reveal blockade of IL‐33 signalling as a viable therapeutic target for OA.
Collapse
Affiliation(s)
- Zengliang He
- Department of Orthopedics The Second Hospital of Nanjing The Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Yan Song
- Department of Orthopedics The Second Hospital of Nanjing The Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Yongxiang Yi
- Department of General Surgery The Second Hospital of Nanjing The Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Fengzhuo Qiu
- Department of Neurology The Sir Run Run Hospital Nanjing Medical University Nanjing China
| | - Junhua Wang
- College of Veterinary Medicine Qingdao Agricultural University Qingdao China
| | - Junwei Li
- College of Veterinary Medicine Qingdao Agricultural University Qingdao China
| | - Qingwen Jin
- Department of Neurology The Sir Run Run Hospital Nanjing Medical University Nanjing China
| | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK.,Department of Biological Sciences Xi'an Jiaotong-Liverpool University Suzhou Industrial Park Suzhou China
| |
Collapse
|
491
|
Ruiz-Castilla M, Dos Santos B, Vizcaíno C, Baena J, Guilabert P, Marin-Corral J, Masclans JR, Roca O, Barret JP. Soluble suppression of tumorigenicity-2 predicts pneumonia in patients with inhalation injury: Results of a pilot study. Burns 2020; 47:906-913. [PMID: 33143991 DOI: 10.1016/j.burns.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Several mechanisms play a role in the development of pneumonia after inhalation injury. Our aim was to analyze whether higher concentrations of inflammatory markers or of biomarkers of epithelial injury are associated with a higher incidence of pneumonia in patients with inhalation injury. MATERIAL AND METHODS Secondary analysis of a single-center prospective observational cohort pilot study, performed over a two-year period (2015-2017) at the Burns Unit of the Plastic and Reconstructive Surgery Department of Vall d'Hebron University Hospital. All patients aged 18 with suspected inhalation injury undergoing admission to the Burns Unit were included. Plasma biomarkers of the lung epithelium (RAGE and SP-D), inflammation markers (IL6, IL8), and IL33, as well as soluble suppression of tumorigenicity-2 (sST2) levels, were measured within the first 24 h of admission. RESULTS Twenty-four patients with inhalation injury were included. Eight (33.3%) developed pneumonia after a median of 7 (4-8) days of hospital stay. Patients with pneumonia presented higher plasma concentrations of sST2 (2853 [2356-3351] ng/mL vs 1352 [865-1839] ng/mL; p < 0.001), IL33 (1.95 [1.31-2.59] pg/mL vs 1.26 [1.07-1.45] pg/mL; p = 0.002) and IL8 (325.7 [221.6-430.0] pg/mL vs 174.1 [95.2-253.0] pg/mL; p = 0.017) on day 1 of inclusion. Plasma sST2 concentration in the first 24 h demonstrated excellent diagnostic accuracy for predicting the occurrence of pneumonia in patients with smoke inhalation (AUROC 0.929 [95%CI 0.818-1.000]). A cutoff point of ≥2825 ng/mL for sST2 had a sensitivity of 75% and a specificity of 100%. The risk ratio of pneumonia in patients with sST2 ≥ 2825 ng/mL was 7.14 ([95% CI 1.56-32.61]; p = 0.016). CONCLUSIONS Plasma sST2 in the first 24 h of admission predicts the occurrence of pneumonia in patients with inhalation injury.
Collapse
Affiliation(s)
- Mireia Ruiz-Castilla
- Plastic and Reconstructive Surgery Department, Hospital Quirónsalud Barcelona, Barcelona, Spain; Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain.
| | - Bruce Dos Santos
- Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Claudia Vizcaíno
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Jacinto Baena
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Patricia Guilabert
- Anesthesiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Judith Marin-Corral
- Critical Care Department, Parc de Salut Mar (Hospital del Mar) de Barcelona, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan R Masclans
- Critical Care Department, Parc de Salut Mar (Hospital del Mar) de Barcelona, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Roca
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain; Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan P Barret
- Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
492
|
Sae-Khow K, Charoensappakit A, Visitchanakun P, Saisorn W, Svasti S, Fucharoen S, Leelahavanichkul A. Pathogen-Associated Molecules from Gut Translocation Enhance Severity of Cecal Ligation and Puncture Sepsis in Iron-Overload β-Thalassemia Mice. J Inflamm Res 2020; 13:719-735. [PMID: 33116751 PMCID: PMC7569041 DOI: 10.2147/jir.s273329] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Systemic inflammation induced by gut translocation of lipopolysaccharide (LPS), a major component of Gram-negative bacteria, in thalassemia with iron-overload worsens sepsis. However, the impact of (1→3)-β-D-glucan (BG), a major fungal molecule, in iron-overload thalassemia is still unclear. Hence, the influence of BG was explored in 1) iron-overload mice with sepsis induced by cecal ligation and puncture (CLP) surgery; and 2) in bone marrow-derived macrophages (BMMs). Methods The heterozygous β-globin-deficient mice, Hbbth3/+ mice, were used as representative thalassemia (TH) mice. Iron overload was generated by 6 months of oral iron administration before CLP surgery- induced sepsis in TH mice and wild-type (WT) mice. Additionally, BMMs from both mouse strains were used to explore the impact of BG. Results Without sepsis, iron-overload TH mice demonstrated more severe intestinal mucosal injury (gut leakage) with higher LPS and BG in serum, from gut translocation, when compared with WT mice. With CLP in iron-overload mice, sepsis severity in TH mice was more severe than WT as determined by survival analysis, organ injury (kidney and liver), bacteremia, endotoxemia, gut leakage (FITC-dextran) and serum BG. Activation by LPS plus BG (LPS+BG) in BMMs and in peripheral blood-derived neutrophils (both WT and TH cells) demonstrated more prominent cytokine production when compared with LPS activation alone. In parallel, LPS+BG also prominently induced genes expression of M1 macrophage polarization (iNOS, TNF-α and IL-1β) in both WT and TH cells in comparison with LPS activation alone. In addition, LPS+BG activated macrophage cytokine production was enhanced by a high dose of ferric ion (800 mM), more predominantly in TH macrophages compared with WT cells. Moreover, LPS+BG induced higher glycolysis activity with similar respiratory capacity in RAW264.7 (a macrophage cell line) compared with LPS activation alone. These data support an additive pro-inflammatory effect of BG upon LPS. Conclusion The enhanced-severity of sepsis in iron-overload TH mice was due to 1) increased LPS and BG in serum from iron-induced gut-mucosal injury; and 2) the pro-inflammatory amplification by ferric ion on LPS+BG activation.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Charoensappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
493
|
Shani O, Vorobyov T, Monteran L, Lavie D, Cohen N, Raz Y, Tsarfaty G, Avivi C, Barshack I, Erez N. Fibroblast-Derived IL33 Facilitates Breast Cancer Metastasis by Modifying the Immune Microenvironment and Driving Type 2 Immunity. Cancer Res 2020; 80:5317-5329. [PMID: 33023944 DOI: 10.1158/0008-5472.can-20-2116] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Lungs are one of the main sites of breast cancer metastasis. The metastatic microenvironment is essential to facilitate growth of disseminated tumor cells. Cancer-associated fibroblasts (CAF) are prominent players in the microenvironment of breast cancer. However, their role in the formation of a permissive metastatic niche is unresolved. Here we show that IL33 is upregulated in metastases-associated fibroblasts in mouse models of spontaneous breast cancer metastasis and in patients with breast cancer with lung metastasis. Upregulation of IL33 instigated type 2 inflammation in the metastatic microenvironment and mediated recruitment of eosinophils, neutrophils, and inflammatory monocytes to lung metastases. Importantly, targeting of IL33 in vivo resulted in inhibition of lung metastasis and significant attenuation of immune cell recruitment and type 2 immunity. These findings demonstrate a key function of IL33 in facilitating lung metastatic relapse by modulating the immune microenvironment. Our study shows a novel interaction axis between CAF and immune cells and reveals the central role of CAF in establishing a hospitable inflammatory niche in lung metastasis. SIGNIFICANCE: This study elucidates a novel role for fibroblast-derived IL33 in facilitating breast cancer lung metastasis by modifying the immune microenvironment at the metastatic niche toward type 2 inflammation.
Collapse
Affiliation(s)
- Ophir Shani
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tatiana Vorobyov
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Lavie
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Raz
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
494
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
495
|
Still KM, Batista SJ, O’Brien CA, Oyesola OO, Früh SP, Webb LM, Smirnov I, Kovacs MA, Cowan MN, Hayes NW, Thompson JA, Tait Wojno ED, Harris TH. Astrocytes promote a protective immune response to brain Toxoplasma gondii infection via IL-33-ST2 signaling. PLoS Pathog 2020; 16:e1009027. [PMID: 33108405 PMCID: PMC7647122 DOI: 10.1371/journal.ppat.1009027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.
Collapse
Affiliation(s)
- Katherine M. Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Oyebola O. Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Igor Smirnov
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nikolas W. Hayes
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elia D. Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
496
|
Li T, Zhang Z, Bartolacci JG, Dwyer GK, Liu Q, Mathews LR, Velayutham M, Roessing AS, Lee YC, Dai H, Shiva S, Oberbarnscheidt MH, Dziki JL, Mullet SJ, Wendell SG, Wilkinson JD, Webber SA, Wood-Trageser M, Watkins SC, Demetris AJ, Hussey GS, Badylak SF, Turnquist HR. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. J Clin Invest 2020; 130:5397-5412. [PMID: 32644975 PMCID: PMC7524467 DOI: 10.1172/jci133008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.
Collapse
Affiliation(s)
- Tengfang Li
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Zhongqiang Zhang
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Joe G. Bartolacci
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Gaelen K. Dwyer
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quan Liu
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Southern University of Science and Technology, Shenzhen, China
| | - Lisa R. Mathews
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Murugesan Velayutham
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anna S. Roessing
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoojin C. Lee
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helong Dai
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin H. Oberbarnscheidt
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jenna L. Dziki
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Steven J. Mullet
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D. Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Steven A. Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Michelle Wood-Trageser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology and
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Pathology and
| | - George S. Hussey
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Stephen F. Badylak
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
497
|
Grisaru-Tal S, Itan M, Klion AD, Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer 2020; 20:594-607. [PMID: 32678342 DOI: 10.1038/s41568-020-0283-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Eosinophils are evolutionarily conserved, pleotropic cells that display key effector functions in allergic diseases, such as asthma. Nonetheless, eosinophils infiltrate multiple tumours and are equipped to regulate tumour progression either directly by interacting with tumour cells or indirectly by shaping the tumour microenvironment (TME). Eosinophils can readily respond to diverse stimuli and are capable of synthesizing and secreting a large range of molecules, including unique granule proteins that can potentially kill tumour cells. Alternatively, they can secrete pro-angiogenic and matrix-remodelling soluble mediators that could promote tumour growth. Herein, we aim to comprehensively outline basic eosinophil biology that is directly related to their activity in the TME. We discuss the mechanisms of eosinophil homing to the TME and examine their diverse pro-tumorigenic and antitumorigenic functions. Finally, we present emerging data regarding eosinophils as predictive biomarkers and effector cells in immunotherapy, especially in response to immune checkpoint blockade therapy, and highlight outstanding questions for future basic and clinical cancer research.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
498
|
Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, Cho JL, Medoff BD, Moon JJ, Vignali DAA, Luster AD. Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. Nat Immunol 2020; 21:1371-1383. [PMID: 32989331 PMCID: PMC7578082 DOI: 10.1038/s41590-020-0785-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Foxp3+ regulatory T (Treg) cells expressing the interleukin (IL)-33 receptor ST2 mediate tissue repair in response to IL-33. Whether Treg cells also respond to the alarmin IL-33 to regulate specific aspects of the immune response is not known. Here we describe an unexpected function of ST2+ Treg cells in suppressing the innate immune response in the lung to environmental allergens without altering the adaptive immune response. Following allergen exposure, ST2+ Treg cells were activated by IL-33 to suppress IL-17-producing γδ T cells. ST2 signaling in Treg cells induced Ebi3, a component of the heterodimeric cytokine IL-35 that was required for Treg cell-mediated suppression of γδ T cells. This response resulted in fewer eosinophil-attracting chemokines and reduced eosinophil recruitment into the lung, which was beneficial to the host in reducing allergen-induced inflammation. Thus, we define a fundamental role for ST2+ Treg cells in the lung as a negative regulator of the early innate γδ T cell response to mucosal injury.
Collapse
Affiliation(s)
- Lucas D Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keshav Nepal
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel L Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Josalyn L Cho
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine and Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
499
|
Yangngam S, Thongchot S, Pongpaibul A, Vaeteewoottacharn K, Pinlaor S, Thuwajit P, Okada S, Hermoso MA, Thuwajit C. High level of interleukin-33 in cancer cells and cancer-associated fibroblasts correlates with good prognosis and suppressed migration in cholangiocarcinoma. J Cancer 2020; 11:6571-6581. [PMID: 33046978 PMCID: PMC7545672 DOI: 10.7150/jca.48327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) promotes cholangiocarcinoma (CCA) genesis in a mouse model, however, its function in human CCA has not been clearly understood. This study was aimed to investigate IL-33 level in CCA tissues and its clinicopathological correlations. The results revealed that IL-33 was found in both cancer cells and stromal cancer-associated fibroblast (CAFs) staining patterns which were divided into high (CH) and low level (CL) in cancer cells; and presence (FP) and absence (FA) in CAFs. Kaplan-Meier analysis showed that patients in the CL group were significantly correlated with a short 2-year survival time (P = 0.027). The CL/FP group had a shorter survival time compared to the other groups with statistical significance for 2-year (P = 0.030) and 5-year (P = 0.023) survivals. In contrast, CH/FP patients had significantly greater 2-year (P = 0.003) and 5-year (P = 0.003) survivals. Univariate and multivariate analysis confirmed that CL/FP was a significantly independent risk factor whereas CH/FP was a significant protective factor in CCA patients. High IL-33 expressing CCA cells had low migration, but they showed increased migration when IL-33 expression was knocked down. The low level of recombinant human IL-33 (rhIL-33) (0.002 - 2 ng/ml) could promote CCA cell migration, in contrast to the suppressive effect at a high dose (20 - 200 ng/ml). In conclusion, the combination of high IL-33 level in cancer cells and CAFs is a potentially good prognosis marker in CCA patients. The in vitro migration suppressive effect of IL-33 may be the potential mechanism supporting its role as a good prognostic marker in CCA patients. The obtained results strengthen IL-33 as a promising predictor and therapeutic target for CCA.
Collapse
Affiliation(s)
- Supaporn Yangngam
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Marcela A. Hermoso
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL 8380453 Chile
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
500
|
IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun 2020; 11:4786. [PMID: 32963227 PMCID: PMC7508874 DOI: 10.1038/s41467-020-18466-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Evidence points to an indispensable function of macrophages in tissue regeneration, yet the underlying molecular mechanisms remain elusive. Here we demonstrate a protective function for the IL-33-ST2 axis in bronchial epithelial repair, and implicate ST2 in myeloid cell differentiation. ST2 deficiency in mice leads to reduced lung myeloid cell infiltration, abnormal alternatively activated macrophage (AAM) function, and impaired epithelial repair post naphthalene-induced injury. Reconstitution of wild type (WT) AAMs to ST2-deficient mice completely restores bronchial re-epithelialization. Central to this mechanism is the direct effect of IL-33-ST2 signaling on monocyte/macrophage differentiation, self-renewal and repairing ability, as evidenced by the downregulation of key pathways regulating myeloid cell cycle, maturation and regenerative function of the epithelial niche in ST2−/− mice. Thus, the IL-33-ST2 axis controls epithelial niche regeneration by activating a large multi-cellular circuit, including monocyte differentiation into competent repairing AAMs, as well as group-2 innate lymphoid cell (ILC2)-mediated AAM activation. Signaling of IL-33 via its receptor, ST2, has been implicated in macrophage function in tissue repair. Here the authors show, using genetic mouse models and single-cell transcriptomic data, that the IL-33/ST2 axis regulates both ILC2-derived IL-13 and macrophage differentiation/reparative function required for club cell regeneration.
Collapse
|