451
|
Chiang WW, Chuang CK, Chao M, Chen WJ. Cell type-dependent RNA recombination frequency in the Japanese encephalitis virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:471323. [PMID: 25165704 PMCID: PMC4140105 DOI: 10.1155/2014/471323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022]
Abstract
Japanese encephalitis virus (JEV) is one of approximately 70 flaviviruses, frequently causing symptoms involving the central nervous system. Mutations of its genomic RNA frequently occur during viral replication, which is believed to be a force contributing to viral evolution. Nevertheless, accumulating evidences show that some JEV strains may have actually arisen from RNA recombination between genetically different populations of the virus. We have demonstrated that RNA recombination in JEV occurs unequally in different cell types. In the present study, viral RNA fragments transfected into as well as viral RNAs synthesized in mosquito cells were shown not to be stable, especially in the early phase of infection possibly via cleavage by exoribonuclease. Such cleaved small RNA fragments may be further degraded through an RNA interference pathway triggered by viral double-stranded RNA during replication in mosquito cells, resulting in a lower frequency of RNA recombination in mosquito cells compared to that which occurs in mammalian cells. In fact, adjustment of viral RNA to an appropriately lower level in mosquito cells prevents overgrowth of the virus and is beneficial for cells to survive the infection. Our findings may also account for the slower evolution of arboviruses as reported previously.
Collapse
Affiliation(s)
- Wei-Wei Chiang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Ching-Kai Chuang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Mei Chao
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Wei-June Chen
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| |
Collapse
|
452
|
Guo TC, Johansson DX, Haugland Ø, Liljeström P, Evensen Ø. A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 2014; 9:e100184. [PMID: 25009976 PMCID: PMC4091863 DOI: 10.1371/journal.pone.0100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/23/2014] [Indexed: 01/13/2023] Open
Abstract
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.
Collapse
Affiliation(s)
- Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Daniel X. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| |
Collapse
|
453
|
Wei K, Chen Y, Lin Y, Pan Y. Genetic dynamic analysis of the influenza A H5N1 NS1 gene in China. PLoS One 2014; 9:e101384. [PMID: 25003973 PMCID: PMC4086889 DOI: 10.1371/journal.pone.0101384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/06/2014] [Indexed: 12/03/2022] Open
Abstract
The direct precursors of the A/Goose/Guangdong/1/1996 (GS/GD) virus lineage and its reassortants have been established geographically and ecologically. To investigate the variation and evolutionary dynamics of H5N1 viruses, whole-genome viral sequences (n = 164) were retrieved from the NCBI Influenza Virus Resource. Here, we present phylogenetic evidence for intrasubtype reassortments among H5N1 viruses isolated from China during 1996–2012. On the basis of phylogenetic analysis, we identified four major groups and further classified the reassortant viruses into three subgroups. Putative mosaic structures were mostly found in the viral ribonucleoprotein (vRNP) complexes and 91.0% (10/11) mosaics were obtained from terrestrial birds. Sequence variability and selection pressure analyses revealed that both surface glycoproteins (HA and NA) and nonstructural protein 1 (NS1) have higher dN/dS ratio and variability than other internal proteins. Furthermore, we detected 47 positively selected sites in genomic segments with the exception of PB2 and M1 genes. Hemagglutinin (HA) and neuraminidase (NA) are considered highly variable due to host immune pressure, however, it is not known what drives NS1 variability. Therefore, we performed a thorough analysis of the genetic variation and selective pressure of NS1 protein (462 available NS1 sequences). We found that most of positively selected sites and variable amino acids were located in the C-terminal effector domain (ED) of NS1. In addition, we focused on the NS1–RNA and NS1–protein interactions that were involved in viral replication mechanisms and host immune response. Transcriptomic analysis of H5N1-infected monkey lungs showed that certain PI3K-related genes were up-regulated.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
- * E-mail: (KW); (YP)
| | - Yanhui Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yina Lin
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
- * E-mail: (KW); (YP)
| |
Collapse
|
454
|
Moradigaravand D, Kouyos R, Hinkley T, Haddad M, Petropoulos CJ, Engelstädter J, Bonhoeffer S. Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1. PLoS Genet 2014; 10:e1004439. [PMID: 24967626 PMCID: PMC4072600 DOI: 10.1371/journal.pgen.1004439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/30/2014] [Indexed: 01/18/2023] Open
Abstract
Recombination has the potential to facilitate adaptation. In spite of the substantial body of theory on the impact of recombination on the evolutionary dynamics of adapting populations, empirical evidence to test these theories is still scarce. We examined the effect of recombination on adaptation on a large-scale empirical fitness landscape in HIV-1 based on in vitro fitness measurements. Our results indicate that recombination substantially increases the rate of adaptation under a wide range of parameter values for population size, mutation rate and recombination rate. The accelerating effect of recombination is stronger for intermediate mutation rates but increases in a monotonic way with the recombination rates and population sizes that we examined. We also found that both fitness effects of individual mutations and epistatic fitness interactions cause recombination to accelerate adaptation. The estimated epistasis in the adapting populations is significantly negative. Our results highlight the importance of recombination in the evolution of HIV-I. One of the most challenging issues in evolutionary biology concerns the question of why most organisms exchange genetic material with each other, e.g. during sexual reproduction. Gene shuffling can create genetic diversity that facilitates adaptation to new environments, but theory shows that this effect is highly dependent on how different genes interact in determining the fitness of an organism. Using a large data set of fitness values based on HIV-1, we provide evidence that shuffling of genetic material indeed raises the level of genetic diversity, and as a result accelerates adaptation. Our results also propose genetic shuffling as a mechanism utilized by HIV to accelerate the evolution of multi-drug-resistant strains.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- * E-mail: (DM); (SB)
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Trevor Hinkley
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mojgan Haddad
- Monogram Biosciences, South San Francisco, California, United States of America
| | | | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (DM); (SB)
| |
Collapse
|
455
|
Golden M, Muhire BM, Semegni Y, Martin DP. Patterns of recombination in HIV-1M are influenced by selection disfavouring the survival of recombinants with disrupted genomic RNA and protein structures. PLoS One 2014; 9:e100400. [PMID: 24936864 PMCID: PMC4061080 DOI: 10.1371/journal.pone.0100400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination is a major contributor to the ongoing diversification of HIV. It is clearly apparent that across the HIV-genome there are defined recombination hot and cold spots which tend to co-localise both with genomic secondary structures and with either inter-gene boundaries or intra-gene domain boundaries. There is also good evidence that most recombination breakpoints that are detectable within the genes of natural HIV recombinants are likely to be minimally disruptive of intra-protein amino acid contacts and that these breakpoints should therefore have little impact on protein folding. Here we further investigate the impact on patterns of genetic recombination in HIV of selection favouring the maintenance of functional RNA and protein structures. We confirm that chimaeric Gag p24, reverse transcriptase, integrase, gp120 and Nef proteins that are expressed by natural HIV-1 recombinants have significantly lower degrees of predicted folding disruption than randomly generated recombinants. Similarly, we use a novel single-stranded RNA folding disruption test to show that there is significant, albeit weak, evidence that natural HIV recombinants tend to have genomic secondary structures that more closely resemble parental structures than do randomly generated recombinants. These results are consistent with the hypothesis that natural selection has acted both in the short term to purge recombinants with disrupted RNA and protein folds, and in the longer term to modify the genome architecture of HIV to ensure that recombination prone sites correspond with those where recombination will be minimally deleterious.
Collapse
Affiliation(s)
- Michael Golden
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Brejnev M. Muhire
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| | - Yves Semegni
- Department of Mathematics and Physics, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
456
|
Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates. PLoS Pathog 2014; 10:e1004191. [PMID: 24945141 PMCID: PMC4055744 DOI: 10.1371/journal.ppat.1004191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/02/2014] [Indexed: 01/29/2023] Open
Abstract
Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. The rapid evolution of most positive-sense RNA viruses enables them to escape immune surveillance and adapt to new hosts. Genetic variation arises due to their error-prone RNA polymerases and by recombination of viral genomes in co-infected cells. We have developed a novel approach to analyse the poorly understood mechanism of recombination using a poliovirus model system. We characterised the initial viable recombinants and demonstrate the majority are longer than genome length due to an imprecise crossover event that duplicates part of the genome. These viruses are unfit, but rapidly lose the duplicated material and regain full fitness upon serial passage, a process we term resolution. We show this is a replicative recombination process by modifying the fidelity of the viral polymerase, or replication complex coalescence, using methods that have no influence on a previously reported, less efficient, non-replicative recombination mechanism. We conclude that recombination is a biphasic process involving separate generation and resolution events. These new insights into an important evolutionary mechanism have implications for our understanding of virus evolution through partial genome duplication, they suggest ways in which recombination might be modified and provides an approach that may be exploited to analyse recombination in other RNA viruses.
Collapse
Affiliation(s)
- Kym Lowry
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andrew Woodman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
457
|
Zanardo LG, Silva FN, Lima ATM, Milanesi DF, Castilho-Urquiza GP, Almeida AMR, Zerbini FM, Carvalho CM. Molecular variability of cowpea mild mottle virus infecting soybean in Brazil. Arch Virol 2014; 159:727-37. [PMID: 24142270 DOI: 10.1007/s00705-013-1879-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
Abstract
Molecular variability was assessed for 18 isolates of cowpea mild mottle virus (CPMMV, genus Carlavirus, family Betaflexiviridae) found infecting soybean in various Brazilian states (Bahia, Goiás, Maranhão, Mato Grosso, Minas Gerais, Pará) in 2001 and 2010. A variety of symptoms was expressed in soybean cv. CD206, ranging from mild (crinkle/blistering leaves, mosaic and vein clearing) to severe (bud blight, dwarfing, leaf and stem necrosis). Recombination analysis revealed only one CPMMV isolate to be recombinant. Pairwise comparisons and phylogenetic analysis were performed for partial genomes (ORF 2 to the 3' terminus) and for each ORF individually (ORFs 2 to 6), showing the isolates to be distinct. The topology of the phylogenetic tree could be related to symptoms, but not to the year of collection or geographical origin. Additionally, the phylogenetic analysis supported the existence of two distinct strains of the virus, designated CPMMV-BR1 and CPMMV-BR2, with molecular variations between them.
Collapse
Affiliation(s)
- L G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Ladner JT, Savji N, Lofts L, Travassos da Rosa A, Wiley MR, Gestole MC, Rosen GE, Guzman H, Vasconcelos PFC, Nunes MRT, J Kochel T, Lipkin WI, Tesh RB, Palacios G. Genomic and phylogenetic characterization of viruses included in the Manzanilla and Oropouche species complexes of the genus Orthobunyavirus, family Bunyaviridae. J Gen Virol 2014; 95:1055-1066. [PMID: 24558222 DOI: 10.1099/vir.0.061309-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A thorough characterization of the genetic diversity of viruses present in vector and vertebrate host populations is essential for the early detection of and response to emerging pathogenic viruses, yet genetic characterization of many important viral groups remains incomplete. The Simbu serogroup of the genus Orthobunyavirus, family Bunyaviridae, is an example. The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Here, we report complete genome sequences for 11 viruses within this group, with a focus on the large and poorly characterized Manzanilla and Oropouche species complexes. Phylogenetic and pairwise divergence analyses indicated the presence of high levels of genetic diversity within these two species complexes, on a par with that seen among the five other species complexes in the Simbu serogroup. Based on previously reported divergence thresholds between species, the data suggested that these two complexes should actually be divided into at least five species. Together these five species formed a distinct phylogenetic clade apart from the rest of the Simbu serogroup. Pairwise sequence divergences among viruses of this clade and viruses in other Simbu serogroup species complexes were similar to levels of divergence among the other orthobunyavirus serogroups. The genetic data also suggested relatively high levels of natural reassortment, with three potential reassortment events present, including two well-supported events involving viruses known to infect humans.
Collapse
Affiliation(s)
- Jason T Ladner
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Nazir Savji
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Loreen Lofts
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Amelia Travassos da Rosa
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael R Wiley
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Marie C Gestole
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| | - Gail E Rosen
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hilda Guzman
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marcio R T Nunes
- Virology Department, Naval Medical Research Unit Six, Lima, Peru
| | - Tadeusz J Kochel
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert B Tesh
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gustavo Palacios
- Center for Genomic Sciences, United States Army Medical Institute for Infectious Disease, Frederick, MD, USA
| |
Collapse
|
459
|
Recombination analysis based on the HAstV-2 and HAstV-4 complete genomes. INFECTION GENETICS AND EVOLUTION 2014; 22:94-102. [PMID: 24462746 DOI: 10.1016/j.meegid.2014.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 11/21/2022]
Abstract
Complete genome sequences of previously unstudied human astrovirus subgenotypes - HAstV-2a and HAstV-2c - and two isolates of a rare genotype HAstV-4 have been determined. These isolates were recovered from fecal samples of young children hospitalized with acute intestinal infections in Novosibirsk (Russia). Three of the four sequenced isolates (HAstV-2a, HAstV-2c, and HAstV-4) are recombinants. It has been shown that all known HAstV-2 genomes have emerged via recombination; the HAstV-1 and HAstV-4 genotypes contain both recombinant and non-recombinant isolates; and all HAstV-3, HAstV-5, and HAstV-6 whole-genome sequences display no reliable signs of recombination. The average mutation accumulation rate has been determined based on an extended ORF2 fragment and amounts to 1.0×10(-3) substitutions per site per year. The evolutionary chronology of current HAstV genotypes has been reconstructed.
Collapse
|
460
|
Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis 2014; 8:e2636. [PMID: 24421913 PMCID: PMC3888466 DOI: 10.1371/journal.pntd.0002636] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 11/27/2013] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus first isolated in Uganda in 1947. Although entomological and virologic surveillance have reported ZIKV enzootic activity in diverse countries of Africa and Asia, few human cases were reported until 2007, when a Zika fever epidemic took place in Micronesia. In the context of West Africa, the WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever at Institut Pasteur of Dakar (http://www.pasteur.fr/recherche/banques/CRORA/) reports the periodic circulation of ZIKV since 1968. Despite several reports on ZIKV, the genetic relationships among viral strains from West Africa remain poorly understood. To evaluate the viral spread and its molecular epidemiology, we investigated 37 ZIKV isolates collected from 1968 to 2002 in six localities in Senegal and Côte d'Ivoire. In addition, we included strains from six other countries. Our results suggested that these two countries in West Africa experienced at least two independent introductions of ZIKV during the 20(th) century, and that apparently these viral lineages were not restricted by mosquito vector species. Moreover, we present evidence that ZIKV has possibly undergone recombination in nature and that a loss of the N154 glycosylation site in the envelope protein was a possible adaptive response to the Aedes dalzieli vector.
Collapse
|
461
|
Analysis of ORF5 and full-length genome sequences of porcine reproductive and respiratory syndrome virus isolates of genotypes 1 and 2 retrieved worldwide provides evidence that recombination is a common phenomenon and may produce mosaic isolates. J Virol 2013; 88:3170-81. [PMID: 24371078 DOI: 10.1128/jvi.02858-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Recombination is currently recognized as a factor for high genetic diversity, but the frequency of such recombination events and the genome segments involved are not well known. In the present study, we initially focused on the detection of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) isolates by examining previously published data sets of ORF5 sequences (genotypes 1 and 2) obtained worldwide. We then examined full-length genome sequences in order to determine potential recombination breakpoints along the viral genome. For ORF5, 11 sets of genotype 1 sequences from different geographical areas, including 2 Asian, 1 American, and 7 European regions, and three sets of genotype 2, including sets from China, Mexico, and the United States, were analyzed separately. Potential recombination breakpoints were detected in 10/11 genotype 1 sets, including 9 cases in which the clustering of at least one isolate was different before and after the breakpoints. In genotype 2, potential breakpoints and different tree clustering of at least one strain before and after the breakpoint were observed in 2 out of 3 sets. The results indicated that most of the ORF5 data sets contained at least one recombinant sequence. When the full-length genome sequences were examined, both genotype 1 and 2 sets presented breakpoints (10 and 9, respectively), resulting in significantly different topologies before and after the breakpoints. Mosaic genomes were detected in genotype 1 sequences. These results may have significant implications for the understanding of the molecular epidemiology of PRRSV. IMPORTANCE PRRSV is one of the most important viruses affecting swine production worldwide, causing big economic losses and sanitary problems. One of the key questions on PRRSV arises from its genetic diversity, which is thought to have a direct impact on immunobiology, epidemiology, diagnosis, and vaccine efficacy. One of the causes of this genetic diversity is recombination among strains. This study provides evidence that recombinant PRRSV isolates are common in most of the countries with significant swine production, especially PRRSV genotype 1. This observation has implications in the proper characterization of PRRSV strains, in the future development of phylogenetic studies, and in the development of new PRRSV control strategies. Moreover, the present paper emphasizes the need for a deeper understanding of the mechanisms and circumstances involved in the generation of genetic diversity of PRRSV.
Collapse
|
462
|
Tromas N, Zwart MP, Poulain M, Elena SF. Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 2013; 95:724-732. [PMID: 24362963 DOI: 10.1099/vir.0.060822-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (rg) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of rg = 7.762 × 10(-8) recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of rg = 3.427 × 10(-5) recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Maïté Poulain
- Genoscreen, 1 Rue du Professeur Calmette, 59000 Lille, France
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| |
Collapse
|
463
|
Forsdyke DR. Implications of HIV RNA structure for recombination, speciation, and the neutralism-selectionism controversy. Microbes Infect 2013; 16:96-103. [PMID: 24211872 DOI: 10.1016/j.micinf.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
The conflict between the needs to encode both a protein (impaired by non-synonymous mutation), and nucleic acid structure (impaired by synonymous or non-synonymous mutation), can sometimes be resolved in favour of the nucleic acid because its structure is critical for a selectively advantageous genome-wide activity--recombination. However, above a sequence difference threshold, recombination is impaired. It may then be advantageous for new species to arise. Building on the work of Grantham and others critical of the neutralist viewpoint, heuristic support for this hypothesis emerged from studies of the base composition and structure of retroviral genomes. The extreme enrichment in the purine A of the RNA of human immunodeficiency virus (HIV-1), parallels the mild purine-loading of the RNAs of most organisms, for which there is an adaptive explanation--immune evasion. However, human T cell leukaemia virus (HTLV-1), with the potential to invade the same host cell, shows extreme enrichment in the pyrimidine C. Assuming the low GC% HIV and the high GC% HTLV-1 to share a common ancestor, it was postulated that differences in GC% had arisen to prevent homologous recombination between these emerging lentiviral species. Sympatrically isolated by this intracellular reproductive barrier, prototypic HIV-1 seized the AU-rich (low GC%) high ground (thus committing to purine A rather than purine G). Prototypic HTLV-1 forwent this advantage and evolved an independent evolutionary strategy--similar to that of the GC%-rich Epstein-Barr virus--profound latency maintained by transcription of one purine-rich mRNA. The evidence supporting these interpretations is reviewed.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L3N6, Canada.
| |
Collapse
|
464
|
Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, Lai J, Blankson JN, Siliciano JD, Siliciano RF. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013; 155:540-51. [PMID: 24243014 DOI: 10.1016/j.cell.2013.09.020] [Citation(s) in RCA: 1140] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated.
Collapse
Affiliation(s)
- Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Routh A, Johnson JE. Discovery of functional genomic motifs in viruses with ViReMa-a Virus Recombination Mapper-for analysis of next-generation sequencing data. Nucleic Acids Res 2013; 42:e11. [PMID: 24137010 PMCID: PMC3902915 DOI: 10.1093/nar/gkt916] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We developed an algorithm named ViReMa (Viral-Recombination-Mapper) to provide a versatile platform for rapid, sensitive and nucleotide-resolution detection of recombination junctions in viral genomes using next-generation sequencing data. Rather than mapping read segments of pre-defined lengths and positions, ViReMa dynamically generates moving read segments. ViReMa initially attempts to align the 5' end of a read to the reference genome(s) with the Bowtie seed-based alignment. A new read segment is then made by either extracting any unaligned nucleotides at the 3' end of the read or by trimming the first nucleotide from the read. This continues iteratively until all portions of the read are either mapped or trimmed. With multiple reference genomes, it is possible to detect virus-to-host or inter-virus recombination. ViReMa is also capable of detecting insertion and substitution events and multiple recombination junctions within a single read. By mapping the distribution of recombination events in the genome of flock house virus, we demonstrate that this information can be used to discover de novo functional motifs located in conserved regions of the viral genome.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
466
|
Peacey M, Hall RJ, Wang J, Todd AK, Yen S, Chan-Hyams J, Rand CJ, Stanton JA, Huang QS. Enterovirus 74 infection in children. PLoS One 2013; 8:e76492. [PMID: 24098514 PMCID: PMC3788726 DOI: 10.1371/journal.pone.0076492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Enterovirus 74 (EV74) is a rarely detected viral infection of children. In 2010, EV74 was identified in New Zealand in a 2 year old child with acute flaccid paralysis (AFP) through routine polio AFP surveillance. A further three cases of EV74 were identified in children within six months. These cases are the first report of EV74 in New Zealand. In this study we describe the near complete genome sequence of four EV74 isolates from New Zealand, which shows only limited sequence identity in the non-structural proteins when compared to the other two known EV74 sequences. As is typical of enteroviruses multiple recombination events were evident, particularly in the P2 region and P3 regions. This is the first complete EV74 genome sequenced from a patient with acute flaccid paralysis.
Collapse
Affiliation(s)
- Matthew Peacey
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
- * E-mail:
| | - Richard J. Hall
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Jing Wang
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Angela K. Todd
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Seiha Yen
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Jasmine Chan-Hyams
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Christy J. Rand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jo-Ann Stanton
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Q. Sue Huang
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| |
Collapse
|
467
|
Rethwilm A, Bodem J. Evolution of foamy viruses: the most ancient of all retroviruses. Viruses 2013; 5:2349-74. [PMID: 24072062 PMCID: PMC3814592 DOI: 10.3390/v5102349] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str.7, Würzburg 97078, Germany.
| | | |
Collapse
|
468
|
Díaz-Muñoz SL, Tenaillon O, Goldhill D, Brao K, Turner PE, Chao L. Electrophoretic mobility confirms reassortment bias among geographic isolates of segmented RNA phages. BMC Evol Biol 2013; 13:206. [PMID: 24059872 PMCID: PMC3848951 DOI: 10.1186/1471-2148-13-206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/13/2013] [Indexed: 11/21/2022] Open
Abstract
Background Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated – by experimental evolution – electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. Results We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. Conclusions The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates –despite similar genome structure and replication mechanisms– and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but wide geographic sampling, across varying environmental conditions may be necessary to characterize the full repertoire. Variation in reassortment rates can assist in the delineation of viral populations and is likely to provide insight into important viral evolutionary dynamics including the rate of coinfection, virulence, and host range shifts. Electrophoretic mobility may be an indicator of important determinants of fitness and the techniques herein can be applied to the study of other viruses.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Drive, Muir Building 3155, La Jolla, CA 92093-0116, USA.
| | | | | | | | | | | |
Collapse
|
469
|
Ren L, Xiao Y, Li J, Chen L, Zhang J, Vernet G, Wang J. Multiple genomic recombination events in the evolution of saffold cardiovirus. PLoS One 2013; 8:e74947. [PMID: 24086404 PMCID: PMC3781130 DOI: 10.1371/journal.pone.0074947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023] Open
Abstract
Background Saffold cardiovirus (SAFV) is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. Methodology/Principal Findings We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on animo acid sequence identity comparison between SAFV genotypes. Conclusions/Significance Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains.
Collapse
Affiliation(s)
- Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Jianguo Li
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Lan Chen
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | - Jing Zhang
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
| | | | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Dr. Christophe Mérieux Laboratory, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
470
|
Yip CCY, Lau SKP, Woo PCY, Yuen KY. Human enterovirus 71 epidemics: what's next? EMERGING HEALTH THREATS JOURNAL 2013; 6:19780. [PMID: 24119538 PMCID: PMC3772321 DOI: 10.3402/ehtj.v6i0.19780] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 07/01/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (EV71) epidemics have affected various countries in the past 40 years. EV71 commonly causes hand, foot and mouth disease (HFMD) in children, but can result in neurological and cardiorespiratory complications in severe cases. Genotypic changes of EV71 have been observed in different places over time, with the emergence of novel genotypes or subgenotypes giving rise to serious outbreaks. Since the late 1990s, intra- and inter-typic recombination events in EV71 have been increasingly reported in the Asia-Pacific region. In particular, 'double-recombinant' EV71 strains belonging to a novel genotype D have been predominant in mainland China and Hong Kong over the last decade, though co-circulating with a minority of other EV71 subgenotypes and coxsackie A viruses. Continuous surveillance and genome studies are important to detect potential novel mutants or recombinants in the near future. Rapid and sensitive molecular detection of EV71 is of paramount importance in anticipating and combating EV71 outbreaks.
Collapse
Affiliation(s)
- Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
471
|
Chu PY, Ke GM, Chen PC, Liu LT, Tsai YC, Tsai JJ. Spatiotemporal dynamics and epistatic interaction sites in dengue virus type 1: a comprehensive sequence-based analysis. PLoS One 2013; 8:e74165. [PMID: 24040199 PMCID: PMC3767619 DOI: 10.1371/journal.pone.0074165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022] Open
Abstract
The continuing threat of dengue fever necessitates a comprehensive characterisation of its epidemiological trends. Phylogenetic and recombination events were reconstructed based on 100 worldwide dengue virus (DENV) type 1 genome sequences with an outgroup (prototypes of DENV2-4). The phylodynamic characteristics and site-specific variation were then analysed using data without the outgroup. Five genotypes (GI-GV) and a ladder-like structure with short terminal branch topology were observed in this study. Apparently, the transmission of DENV1 was geographically random before gradual localising with human activity as GI-GIII in South Asia, GIV in the South Pacific, and GV in the Americas. Genotypes IV and V have recently shown higher population densities compared to older genotypes. All codon regions and all tree branches were skewed toward a negative selection, which indicated that their variation was restricted by protein function. Notably, multi-epistatic interaction sites were found in both PrM 221 and NS3 1730. Recombination events accumulated in regions E, NS3-NS4A, and particularly in region NS5. The estimated coevolution pattern also highlights the need for further study of the biological role of protein PrM 221 and NS3 1730. The recent transmission of emergent GV sublineages into Central America and Europe mandates closely monitoring of genotype interaction and succession.
Collapse
Affiliation(s)
- Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Po-Chih Chen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Chun Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
472
|
Nikolic V, Stajkovic N, Stamenkovic G, Cekanac R, Marusic P, Siljic M, Gligic A, Stanojevic M. Evidence of recombination in Tula virus strains from Serbia. INFECTION GENETICS AND EVOLUTION 2013; 21:472-8. [PMID: 24008094 DOI: 10.1016/j.meegid.2013.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022]
Abstract
Tula hantavirus (TULV) belongs to Bunyaviridae family, with negative sense RNA genome. Segmented nature of hantaviral genome allows for genetic reassortment, but the evidence of homologous recombination also exists. In this study we analyzed TULV sequences isolated in Serbia on different occasions and from different rodent hosts: 1987 strain from Microtus subterraneus and 2007 strain from Microtus arvalis. Phylogenetic analysis of both L and S segment sequences is suggestive of geographically related clustering, as previously shown for majority of hantaviruses. Reconstruction of phylogenetic tree for TULV S segment showed that both sequences from Serbia clustered together with sequences from East Slovakia, which had previously been shown to be recombinants (Kosice strain). Exploratory recombination analysis, supported by phylogenetic and amino acid pattern analysis, revealed the presence of recombination in the S segment sequences from Serbia, resulting in mosaic-like structure of TULV S segment similar to the one of Kosice strain. Although recombination is considered a rare event in molecular evolution of negative strand RNA viruses, obtained molecular data in this study support evidence of recombination in TULV, in geographically distant regions of Europe.
Collapse
Affiliation(s)
| | | | - Gorana Stamenkovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | | | | | - Marina Siljic
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Ana Gligic
- Institute of Virology, Vaccines and Sera Torlak, Belgrade, Serbia
| | - Maja Stanojevic
- University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
473
|
Sun BJ, Sun LY, Tugume AK, Adams MJ, Yang J, Xie LH, Chen JP. Selection pressure and founder effects constrain genetic variation in differentiated populations of soilborne bymovirus Wheat yellow mosaic virus (Potyviridae) in China. PHYTOPATHOLOGY 2013; 103:949-59. [PMID: 23550972 DOI: 10.1094/phyto-01-13-0013-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To study the population genetic structure and forces driving the evolution of Wheat yellow mosaic virus (WYMV), the nucleotide sequences encoding the coat protein (CP) (297 sequences) or the genome-linked virion protein (VPg) (87 sequences) were determined from wheat plants growing at 11 different locations distributed in five provinces in China. There were close phylogenetic relationships between all sequences but clustering on the phylogenetic trees was congruent with their provenance, suggesting an origin-dependent population genetic structure. There were low levels of genetic diversity, ranging from 0.00035 ± 0.00019 to 0.01536 ± 0.00043 (CP), and 0.00086 ± 0.00039 to 0.00573 ± 0.00111 (VPg), indicating genetic stability or recent emergence of WYMV in China. The results may suggest that founder effects play a role in shaping the genetic structure of WYMV. Between-population diversity was consistently higher than within-population diversity, suggesting limited gene flow between subpopulations (average FST 0.6241 for the CP and 0.7981 for the VPg). Consistent amino acid substitutions correlated with the provenance of the sequences were observed at nine positions in the CP (but none in the VPg), indicating an advanced stage in population structuring. Strong negative (purifying) selection was implicated on both the CP and VPg but positive selection on a few codons in the CP, indicating an ongoing molecular adaptation.
Collapse
Affiliation(s)
- B-J Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MoA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
474
|
Abstract
The adaptation of large asexual populations is hampered by the competition between independently arising beneficial mutations in different individuals, which is known as clonal interference. In classic work, Fisher and Muller proposed that recombination provides an evolutionary advantage in large populations by alleviating this competition. Based on recent progress in quantifying the speed of adaptation in asexual populations undergoing clonal interference, we present a detailed analysis of the Fisher-Muller mechanism for a model genome consisting of two loci with an infinite number of beneficial alleles each and multiplicative (nonepistatic) fitness effects. We solve the deterministic, infinite population dynamics exactly and show that, for a particular, natural mutation scheme, the speed of adaptation in sexuals is twice as large as in asexuals. This result is argued to hold for any nonzero value of the rate of recombination. Guided by the infinite population result and by previous work on asexual adaptation, we postulate an expression for the speed of adaptation in finite sexual populations that agrees with numerical simulations over a wide range of population sizes and recombination rates. The ratio of the sexual to asexual adaptation speed is a function of population size that increases in the clonal interference regime and approaches 2 for extremely large populations. The simulations also show that the imbalance between the numbers of accumulated mutations at the two loci is strongly suppressed even by a small amount of recombination. The generalization of the model to an arbitrary number L of loci is briefly discussed. If each offspring samples the alleles at each locus from the gene pool of the whole population rather than from two parents, the ratio of the sexual to asexual adaptation speed is approximately equal to L in large populations. A possible realization of this scenario is the reassortment of genetic material in RNA viruses with L genomic segments.
Collapse
|
475
|
Paydary K, Khaghani P, Emamzadeh-Fard S, Alinaghi SAS, Baesi K. The emergence of drug resistant HIV variants and novel anti-retroviral therapy. Asian Pac J Trop Biomed 2013; 3:515-522. [PMID: 23835806 PMCID: PMC3695575 DOI: 10.1016/s2221-1691(13)60106-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/21/2013] [Indexed: 02/08/2023] Open
Abstract
After its identification in 1980s, HIV has infected more than 30 million people worldwide. In the era of highly active anti-retroviral therapy, anti-retroviral drug resistance results from insufficient anti-retroviral pressure, which may lead to treatment failure. Preliminary studies support the idea that anti-retroviral drug resistance has evolved largely as a result of low-adherence of patients to therapy and extensive use of anti-retroviral drugs in the developed world; however, a highly heterogeneous horde of viral quasi-species are currently circulating in developing nations. Thus, the prioritizing of strategies adopted in such two worlds should be quite different considering the varying anti-retroviral drug resistance prevalence. In this article, we explore differences in anti-retroviral drug resistance patterns between developed and developing countries, as they represent two distinct ecological niches of HIV from an evolutionary standpoint.
Collapse
Affiliation(s)
- Koosha Paydary
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Khaghani
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahra Emamzadeh-Fard
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Baesi
- Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
476
|
Yin X, Zheng FQ, Tang W, Zhu QQ, Li XD, Zhang GM, Liu HT, Liu BS. Genetic structure of rice black-streaked dwarf virus populations in China. Arch Virol 2013; 158:2505-15. [DOI: 10.1007/s00705-013-1766-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/06/2013] [Indexed: 01/21/2023]
|
477
|
Villabona-Arenas CJ, de Brito AF, de Andrade Zanotto PM. Genomic mosaicism in two strains of Dengue virus type 3. INFECTION GENETICS AND EVOLUTION 2013; 18:202-12. [PMID: 23727343 DOI: 10.1016/j.meegid.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Recombination is a significant factor driving genomic evolution, but it is not well understood in Dengue virus. We used phylogenetic methods to search for recombination in 636 Dengue virus type 3 (DENV-3) genomes and unveiled complex recombination patterns in two strains, which appear to be the outcome of recombination between genotype II and genotype I parental DENV-3 lineages. Our findings of genomic mosaic structures suggest that strand switching during RNA synthesis may be involved in the generation of genetic diversity in dengue viruses.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1734, CEP: 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
478
|
Petterson E, Stormoen M, Evensen Ø, Mikalsen AB, Haugland Ø. Natural infection of Atlantic salmon (Salmo salar L.) with salmonid alphavirus 3 generates numerous viral deletion mutants. J Gen Virol 2013; 94:1945-1954. [PMID: 23704276 DOI: 10.1099/vir.0.052563-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Salmon pancreas disease virus (SPDV) also referred to as salmonid alphavirus (SAV) is a virus causing pancreas disease in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Although the virus causes an economically important disease, relatively few full-length genome sequences of SAV strains are currently available. Here, we report full-length genome sequences of nine SAV3 strains from sites farming Atlantic salmon geographically spread along the Norwegian coastline. The virus genomes were sequenced directly from infected heart tissue, to avoid culture selection bias. Sequence analysis confirmed a high level of sequence identity within SAV3 strains, with a mean nucleotide diversity of 0.11 %. Sequence divergence was highest in 6K and E2, while lowest in the capsid protein and the non-structural proteins (nsP4 and nsP2). This study reports for the first time that numerous defective viruses containing genome deletions are generated during natural infection with SAV. Deletions occurred in all virus strains and were not distributed randomly throughout the genome but instead tended to aggregate in certain areas. We suggest imprecise homologous recombination as an explanation for generation of defective viruses with genome deletions. The presence of such viruses, provides a possible explanation for the difficulties in isolating SAV in cell culture. Primary virus isolation was successfully achieved for only two of eight strains, despite extensive attempts using three different cell lines. Both SAV isolates were easily propagated further and concomitant viral deletion mutants present in clinically infected heart tissue were maintained following serial passage in CHH-1 cells.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Marit Stormoen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Aase B Mikalsen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Øyvind Haugland
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| |
Collapse
|
479
|
Lian S, Lee JS, Cho WK, Yu J, Kim MK, Choi HS, Kim KH. Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One 2013; 8:e63380. [PMID: 23696821 PMCID: PMC3656965 DOI: 10.1371/journal.pone.0063380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.
Collapse
Affiliation(s)
- Sen Lian
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong-Seung Lee
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jisuk Yu
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Hong-Soo Choi
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
480
|
Systematic phylogenetic analysis of influenza A virus reveals many novel mosaic genome segments. INFECTION GENETICS AND EVOLUTION 2013; 18:367-78. [PMID: 23548803 DOI: 10.1016/j.meegid.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/04/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
Recombination plays an important role in shaping the genetic diversity of a number of DNA and RNA viruses. Although some recent studies have reported bioinformatic evidence of mosaic sequences in a variety of influenza A viruses, it remains controversial as to whether these represent bona fide natural recombination events or laboratory artifacts. Importantly, mosaic genome structures can create significant topological incongruence during phylogenetic analyses, which can mislead additional phylogeny-based molecular evolutionary analyses such as molecular clock dating, the detection of selection pressures and phylogeographic inference. As a result, there is a strong need for systematic screenings for mosaic structures within the influenza virus genome database. We used a combination of sequence-based and phylogeny-based methods to identify 388 mosaic influenza genomic segments, of which 332 are previously unreported and are significantly supported by phylogenetic methods. It is impossible, however, to ascertain whether these represent natural recombinants. To facilitate the future identification of recombinants, reference sets of non-recombinant sequences were selected for use in an automatic screening protocol for detecting mosaic sequences. Tests using real and simulated mosaic sequences indicate that our screening protocol is both sensitive (average >90%) and accurate (average >77%) enough to identify a range of different mosaic patterns. The relatively high prevalence of mosaic influenza virus sequences implies that efficient systematic screens, such as that proposed here, should be performed routinely to detect natural recombinant strains, potential laboratory artifacts, and sequencing contaminants either prior to sequences being deposited in GenBank or before they are used for phylogenetic analyses.
Collapse
|
481
|
Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog 2013; 9:e1003228. [PMID: 23555245 PMCID: PMC3610614 DOI: 10.1371/journal.ppat.1003228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023] Open
Abstract
Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients. Genetic recombination is the alternative joining of nucleic acids leading to novel combinations of genetic information. While DNA recombination in cells is of importance for evolution and adaptive immunity, RNA recombination often has only transient effects. However, RNA viruses are rapidly evolving and recombination can be an important evolutionary step in addition to mutations introduced by the viral polymerase. Recombination can allow escape from the host immune system and from antiviral treatment, and recombination of live attenuated viral vaccines has led to re-emergence of disease. Hepatitis C virus (HCV) is an important human pathogen that chronically infects more than 130 million worldwide and leads to serious liver disease. For HCV, naturally occurring recombinants are rare but clinically important. HCV recombination constitutes a challenge to antiviral treatment and can potentially provide an escape mechanism for the virus. In this study, we established an assay for HCV RNA recombination and characterized the emerging homologous and non-homologous recombinant viruses. Interestingly, recombination did not depend on viral replication, occurred most efficiently between isolates of the same genotype and did not occur with strong site-specificity. Better diagnosis of clinically important recombinants and an increased knowledge on viral recombination could strengthen antiviral and vaccine development.
Collapse
|
482
|
Abstract
RNA viruses face dynamic environments and are masters at adaptation. During their short 'lifespans', they must surmount multiple physical, anatomical and immunological challenges. Central to their adaptative capacity is the enormous genetic diversity that characterizes RNA virus populations. Although genetic diversity increases the rate of adaptive evolution, low replication fidelity can present a risk because excess mutations can lead to population extinction. In this Review, we discuss the strategies used by RNA viruses to deal with the increased mutational load and consider how this mutational robustness might influence viral evolution and pathogenesis.
Collapse
|
483
|
Simon-Loriere E, Holmes EC. Gene duplication is infrequent in the recent evolutionary history of RNA viruses. Mol Biol Evol 2013; 30:1263-9. [PMID: 23486612 DOI: 10.1093/molbev/mst044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene duplication generates genetic novelty and redundancy and is a major mechanism of evolutionary change in bacteria and eukaryotes. To date, however, gene duplication has been reported only rarely in RNA viruses. Using a conservative BLAST approach we systematically screened for the presence of duplicated (i.e., paralogous) proteins in all RNA viruses for which full genome sequences are publicly available. Strikingly, we found only nine significantly supported cases of gene duplication, two of which are newly described here--in the 25 and 26 kDa proteins of Beet necrotic yellow vein virus (genus Benyvirus) and in the U1 and U2 proteins of Wongabel virus (family Rhabdoviridae). Hence, gene duplication has occurred at a far lower frequency in the recent evolutionary history of RNA viruses than in other organisms. Although the rapidity of RNA virus evolution means that older gene duplication events will be difficult to detect through sequence-based analyses alone, it is likely that specific features of RNA virus biology, and particularly intrinsic constraints on genome size, reduce the likelihood of the fixation and maintenance of duplicated genes.
Collapse
Affiliation(s)
- Etienne Simon-Loriere
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | | |
Collapse
|
484
|
Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses. PLoS Pathog 2013; 9:e1003193. [PMID: 23468631 PMCID: PMC3585136 DOI: 10.1371/journal.ppat.1003193] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022] Open
Abstract
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modeling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001–2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence. Defective viruses are viral particles with genetic mutations or deletions that eliminate essential functions, so that they cannot complete their life cycles independently. They can reproduce only by co-infecting host cells with functional viruses and ‘borrowing’ their functional elements. Defective viruses have been observed for many human pathogens, but they have not been thought to impact epidemiological outcomes. Recently it was reported that a lineage of defective dengue virus spread through humans and mosquitoes in Myanmar for at least 18 months in 2001–2002. In this study, we investigate the emergence and epidemiological impact of this defective lineage by combining genetic sequence analyses with mathematical models. We show that the defective lineage emerged from circulating dengue viruses between June 1998 and February 2001, and that it spreads because—surprisingly—its presence causes functional dengue viruses to transmit more efficiently. Our model shows that this would cause a substantial rise in total dengue infections, consistent with historically high levels of dengue cases reported in Myanmar during 2001 and 2002. Our study yields new insights into the biology of dengue virus, and demonstrates a previously unappreciated potential for defective viruses to impact the epidemiology of infectious diseases.
Collapse
|
485
|
Delayed RSV diagnosis in a stem cell transplant population due to mutations that result in negative polymerase chain reaction. Diagn Microbiol Infect Dis 2013; 75:426-30. [PMID: 23415542 DOI: 10.1016/j.diagmicrobio.2012.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) is a serious cause of morbidity and mortality in the adult hematopoietic stem cell transplant (HSCT) population. The timely diagnosis of RSV infection in this population is important for initiating therapy and instituting appropriate infection prevention measures. Molecular multiplex assays now offer increased sensitivity for a more accurate diagnosis. This study presents 5 cases of RSV infection in HSCT patients in which diagnosis was delayed due to false-negative results from a multiplex polymerase chain reaction (PCR) assay. The false-negative result was due to a single base-pair mutation in the RSV strain. These false results delayed the appropriate treatment of patients. This study shows that a combination of a multiplex PCR assay, viral antigen, and/or culture should be used to detect variants of RSV in patients and that multiplex respiratory viral assays should develop a more robust design that includes multiple genetic target per virus to prevent missing viruses that continue to have genetic variances.
Collapse
|
486
|
Affiliation(s)
- David P. Mindell
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
487
|
Bujarski JJ. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:68. [PMID: 23533000 PMCID: PMC3607795 DOI: 10.3389/fpls.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 05/09/2023]
Abstract
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.
Collapse
Affiliation(s)
- Jozef J. Bujarski
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois UniversityDeKalb, IL, USA
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Jozef J. Bujarski, Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, Montgomery Hall, DeKalb, IL 60115, USA. e-mail:
| |
Collapse
|
488
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
489
|
Holmes EC. What can we predict about viral evolution and emergence? Curr Opin Virol 2012; 3:180-4. [PMID: 23273851 PMCID: PMC3626763 DOI: 10.1016/j.coviro.2012.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 01/14/2023]
Abstract
Predicting the emergence of infectious diseases has been touted as one of the most important goals of biomedical science, with an array of funding schemes and research projects. However, evolutionary biology generally has a dim view of prediction, and there is a danger that erroneous predictions will mean a misuse of resources and undermine public confidence. Herein, I outline what can be realistically predicted about viral evolution and emergence, argue that any success in predicting what may emerge is likely to be limited, but that forecasting how viruses might evolve and spread following emergence is more tractable. I also emphasize that a properly grounded research program in disease prediction must involve a synthesis of ecological and genetic perspectives.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Emerging Infections and Biosecurity Institute, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
490
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
491
|
Routh A, Ordoukhanian P, Johnson JE. Nucleotide-resolution profiling of RNA recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation sequencing. J Mol Biol 2012; 424:257-69. [PMID: 23069247 PMCID: PMC3502730 DOI: 10.1016/j.jmb.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022]
Abstract
Next-generation sequencing has been used in numerous investigations to characterize and quantify the genetic diversity of a virus sample through the mapping of polymorphisms and measurement of mutation frequencies. Next-generation sequencing has also been employed to identify recombination events occurring within the genomes of higher organisms, for example, detecting alternative RNA splicing events and oncogenic chromosomal rearrangements. Here, we combine these two approaches to profile RNA recombination within the encapsidated genome of a eukaryotic RNA virus, flock house virus. We detect hundreds of thousands of recombination events, with single-nucleotide resolution, which result in diversity in the encapsidated genome rivaling that due to mismatch mutation. We detect previously identified defective RNAs as well as many other abundant and novel defective RNAs. Our approach is exceptionally sensitive and unbiased and requires no prior knowledge beyond the virus genome sequence. RNA recombination is a powerful driving force behind the evolution and adaptation of RNA viruses. The strategy implemented here is widely applicable and provides a highly detailed description of the complex mutational landscape of the transmissible viral genome.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
492
|
Li J, Hu H, Yu Q, Diel DG, Li DS, Miller PJ. Generation and characterization of a recombinant Newcastle disease virus expressing the red fluorescent protein for use in co-infection studies. Virol J 2012; 9:227. [PMID: 23034005 PMCID: PMC3502164 DOI: 10.1186/1743-422x-9-227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/26/2012] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Many viruses have evolved multiple strategies to prevent super infection of host cells by more than one virion. This phenomenon, known as super infection exclusion, may play an important role on virus evolution because it can affect the frequency of reassortment and/or recombination. Newcastle disease virus (NDV), a negative sense single-stranded RNA virus, is characterized by its continuous evolutionary dynamics and by a low frequency of recombination events. However, the mechanisms that contribute to the low recombination rates on NDV are still not completely understood. METHODS In this study we assessed the ability of two NDV strains (LaSota and B1) to super infect host cells in vitro. We generated a recombinant NDV strain LaSota expressing the red fluorescent protein (RFP) and used it in co-infection assays with a related NDV strain B1 expressing the green fluorescent protein (GFP). DF-1 cells were inoculated with both viruses at the same time or at different intervals between primary infection and super infection. RESULTS When both viruses were inoculated at the same time point, a 27% co-infection rate was observed, whereas when they were inoculated at different time points the super infection rates decreased to levels as low as 1.4%. CONCLUSIONS These results indicate that although different NDV strains can co-infect host cells in vitro, the super infection rates are low, specially as the time between the primary infection and super infection increases. These results confirm the occurrence of super infection exclusion between different strains of NDV.
Collapse
Affiliation(s)
- Jinnan Li
- USDA-ARS, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
- Heilongjiang Fisheries Research Institute, Harbin, 150070, China
| | - Haixia Hu
- USDA-ARS, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
- College of Animal Science and Technology, Southwest University, 2 Tiansheng Road, Chongqing, BeiBei District, 400715, China
| | - Qingzhong Yu
- USDA-ARS, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| | - Diego G Diel
- USDA-ARS, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| | - De-shan Li
- College of Life Sciences, Northeast Agriculture University, Harbin, 150030, China
| | - Patti J Miller
- USDA-ARS, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
493
|
Mattle MJ, Kohn T. Inactivation and tailing during UV254 disinfection of viruses: contributions of viral aggregation, light shielding within viral aggregates, and recombination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10022-10030. [PMID: 22913402 DOI: 10.1021/es302058v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UV disinfection of viruses frequently leads to tailing after an initial exponential decay. Aggregation, light shielding, recombination, or resistant virus subpopulations have been proposed as explanations; however, none of these options has been conclusively demonstrated. This study investigates how aggregation affects virus inactivation by UV(254) in general, and the tailing phenomenon in particular. Bacteriophage MS2 was aggregated by lowering the solution pH before UV(254) disinfection. Aggregates were redispersed prior to enumeration to obtain the remaining fraction of individual infectious viruses. Results showed that initial inactivation kinetics were similar for viruses incorporated in aggregates (up to 1000 nm in radius) and dispersed viruses; however, aggregated viruses started to tail more readily than dispersed ones. Neither light shielding, nor the presence of resistant subpopulations could account for the tailing. Instead, tailing was consistent with recombination arising from the simultaneous infection of the host by several impaired viruses. We argue that UV(254) treatment of aggregates permanently fused a fraction of viruses, which increased the likelihood of multiple infection of a host cell and ultimately enabled the production of infective viruses via recombination.
Collapse
Affiliation(s)
- Michael J Mattle
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
494
|
Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. ACTA ACUST UNITED AC 2012; 19:478-87. [PMID: 22520754 DOI: 10.1016/j.chembiol.2012.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/03/2023]
Abstract
Increasingly complex reactions are being constructed by bottom-up approaches with the aim of developing an artificial cell. We have been engaged in the construction of a translation-coupled replication system of genetic information from RNA and a reconstituted translation system. Here a mathematical model was established to gain a quantitative understanding of the complex reaction network. The sensitivity analysis predicted that the limiting factor for the present replication reaction was the appearance of parasitic replicators. We then confirmed experimentally that repression of such parasitic replicators by compartmentalization of the reaction in water-in-oil emulsions improved the duration of self-replication. We also found that the main source of the parasite was genomic RNA, probably by nonhomologous recombination. This result provided experimental evidence for the importance of parasite repression for the development of long-lasting genome replication systems.
Collapse
|
495
|
Clerissi C, Grimsley N, Desdevises Y. GENETIC EXCHANGES OF INTEINS BETWEENPRASINOVIRUSES(PHYCODNAVIRIDAE). Evolution 2012; 67:18-33. [DOI: 10.1111/j.1558-5646.2012.01738.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
496
|
Elena SF. RNA virus genetic robustness: possible causes and some consequences. Curr Opin Virol 2012; 2:525-30. [PMID: 22818515 DOI: 10.1016/j.coviro.2012.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022]
Abstract
In general terms, robustness is the capacity of biological systems to function in spite of genetic or environmental perturbations. The small and compacted genomes and high mutation rates of RNA viruses, as well as the ever-changing environments wherein they replicate, create the conditions for robustness to be advantageous. In this review, I will enumerate possible mechanisms by which viral populations may acquire robustness, distinguishing between mechanisms that are inherent to virus replication and population dynamics and those that result from the interaction with host factors. Then, I will move to review some evidences that RNA virus populations are robust indeed. Finally, I will comment on the implications of robustness for virus evolvability, the emergence of new viruses and the efficiency of lethal mutagenesis as an antiviral strategy.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.
| |
Collapse
|
497
|
Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Front Microbiol 2012; 3:186. [PMID: 22675320 PMCID: PMC3365852 DOI: 10.3389/fmicb.2012.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 11/13/2022] Open
Abstract
The family Reoviridae is one of the largest virus families with genomes composed of 9-12 double-stranded RNA segments. It includes members infecting organisms from protists to humans. It is well known that reovirus genomes are prone to various types of genome alterations including intragenic rearrangement and reassortment under laboratory and natural conditions. Recently distinct genetic alterations were reported for members of the genus Mycoreovirus, Mycoreovirus 1 (MyRV1), and MyRV3 with 11 (S1-S11) and 12 genome segments (S1-S12), respectively. While MyRV3 S8 is lost during subculturing of infected host fungal strains, MyRV1 rearrangements undergo alterations spontaneously and inducibly. The inducible MyRV1 rearrangements are different from any other previous examples of reovirus rearrangements in their dependence on an unrelated virus factor, a multifunctional protein, p29, encoded by a distinct virus Cryphonectria parasitica hypovirus 1 (CHV1). A total of 5 MyRV1 variants with genome rearranged segments (S1-S3, S6 and S10) are generated in the background of a single viral strain in the presence of CHV1 p29 supplied either transgenically or by coinfection. MyRV1 S4 and S10 are rearranged, albeit very infrequently, in a CHV1 p29 independent fashion. A variant of MyRV1 with substantial deletions in both S4 and S10, generated through a combined reassortment and rearrangement approach, shows comparable replication levels to the wild-type MyRV1. In vivo and in vitro interactions of CHV1 p29 and MyRV1 VP9 are implicated in the induction of MyRV1 rearrangements. However, the mechanism underlying p29-mediated rearrangements remains largely unknown. MyRV1 S4 rearrangements spontaneously occurred independently of CHV1 p29. In the absence of reverse genetics systems for mycoreoviruses, molecular and biological characterization of these MyRV1 and MyRV3 variants contribute to functional analyses of the protein products encoded by those rearranged segments.
Collapse
Affiliation(s)
- Toru Tanaka
- Agrivirology Laboratory, Institute of Plant Science and Bioresources, Okayama University Kurashiki, Okayama, Japan
| | | | | | | |
Collapse
|
498
|
Building Synthetic Systems to Learn Nature’s Design Principles. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:411-29. [DOI: 10.1007/978-1-4614-3567-9_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|