451
|
Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. THE PLANT CELL 1998; 10:1571-80. [PMID: 9724702 PMCID: PMC144073 DOI: 10.1105/tpc.10.9.1571] [Citation(s) in RCA: 589] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1, the ethylene response mutant etr1, and the SAR regulatory mutant npr1, we demonstrate that signal transduction leading to P. fluorescens WCS417r-mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid-nonaccumulating NahG plants. Moreover, methyl jasmonate-induced protection was blocked in jar1, etr1, and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate-induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.
Collapse
Affiliation(s)
- C M Pieterse
- Section of Plant Pathology, Department of Plant Ecology and Evolutionary Biology, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
452
|
Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. THE PLANT CELL 1998; 10:1571-1580. [PMID: 9724702 DOI: 10.2307/3870620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1, the ethylene response mutant etr1, and the SAR regulatory mutant npr1, we demonstrate that signal transduction leading to P. fluorescens WCS417r-mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid-nonaccumulating NahG plants. Moreover, methyl jasmonate-induced protection was blocked in jar1, etr1, and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate-induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.
Collapse
Affiliation(s)
- C M Pieterse
- Section of Plant Pathology, Department of Plant Ecology and Evolutionary Biology, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
453
|
Oldroyd GE, Staskawicz BJ. Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci U S A 1998; 95:10300-5. [PMID: 9707642 PMCID: PMC21503 DOI: 10.1073/pnas.95.17.10300] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/1998] [Indexed: 12/24/2022] Open
Abstract
Resistance in tomato to the bacterial pathogen Pseudomonas syringae pathovar tomato requires Pto and Prf. Mutations that eliminate Prf show a loss of both Pto resistance and sensitivity to the organophosphate insecticide fenthion, suggesting that Prf controls both phenotypes. Herein, we report that the overexpression of Prf leads to enhanced resistance to a number of normally virulent bacterial and viral pathogens and leads to increased sensitivity to fenthion. These plants express levels of salicylic acid comparable to plants induced for systemic acquired resistance (SAR) and constitutively express pathogenesis related genes. These results suggest that the overexpression of Prf activates the Pto and Fen pathways in a pathogen-independent manner and leads to the activation of SAR. Transgene-induced SAR has implications for the generation of broad spectrum disease resistance in agricultural crop plants.
Collapse
Affiliation(s)
- G E Oldroyd
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
454
|
Abstract
Exciting advances have been made during the past year: isolating mutants affecting plant disease resistance, cloning genes involved in the regulation of various defense responses, and characterizing novel defense signaling pathways. Recent studies have demonstrated that jasmonic acid and ethylene are important for the induction of nonspecific disease resistance through signaling pathways that are distinct from the classical systemic acquired resistance response pathway regulated by salicylic acid.
Collapse
Affiliation(s)
- X Dong
- Developmental, Cell, and Molecular Biology Group, Department of Botany,LSRC Building, P. O. Box 91000, Duke University, Durham, NC 27708-1000, USA.
| |
Collapse
|
455
|
Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S. Induced resistance responses in maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:643-58. [PMID: 9650297 DOI: 10.1094/mpmi.1998.11.7.643] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Systemic acquired resistance (SAR) is a widely distributed plant defense system that confers broad-spectrum disease resistance and is accompanied by coordinate expression of the so-called SAR genes. This type of resistance and SAR gene expression can be mimicked with chemical inducers of resistance. Here, we report that chemical inducers of resistance are active in maize. Chemical induction increases resistance to downy mildew and activates expression of the maize PR-1 and PR-5 genes. These genes are also coordinately activated by pathogen infection and function as indicators of the defense reaction. Specifically, after pathogen infection, the PR-1 and PR-5 genes are induced more rapidly and more strongly in an incompatible than in a compatible interaction. In addition, we show that monocot lesion mimic plants also express these defense-related genes and that they have increased levels of salicylic acid after lesions develop, similar to pathogeninfected maize plants. The existence of chemically inducible disease resistance and PR-1 and PR-5 gene expression in maize indicates that maize is similar to dicots in many aspects of induced resistance. This reinforces the notion of an ancient plant-inducible defense pathway against pathogen attack that is shared between monocots and dicots.
Collapse
Affiliation(s)
- S W Morris
- Seeds Biotechnology Research Unit, Novartis Inc., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Frye CA, Innes RW. An Arabidopsis mutant with enhanced resistance to powdery mildew. THE PLANT CELL 1998; 10:947-956. [PMID: 9634583 DOI: 10.2307/3870681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was <16% of that observed on wild-type Arabidopsis. Reduction in sporulation correlated with a more rapid induction of defense responses. Autofluorescent compounds and callose accumulated in edr1 leaves 3 days after inoculation with E. cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.
Collapse
Affiliation(s)
- C A Frye
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
457
|
Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. THE PLANT CELL 1998. [PMID: 9634589 DOI: 10.2307/3870687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Arabidopsis PAD4 gene was previously shown to be required for synthesis of camalexin in response to infection by the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 but not in response to challenge by the non-host fungal pathogen Cochliobolus carbonum. In this study, we show that pad4 mutants exhibit defects in defense responses, including camalexin synthesis and pathogenesis-related PR-1 gene expression, when infected by P. s. maculicola ES4 326. No such defects were observed in response to infection by an isogenic avirulent strain carrying the avirulence gene avrRpt2. In P. s. maculicola ES4 326-infected pad4 plants, synthesis of salicylic acid (SA) was found to be reduced and delayed when compared with SA synthesis in wild-type plants. Moreover, treatment of pad4 plants with SA partially reversed the camalexin deficiency and PR-1 gene expression phenotypes of P. s. maculicola ES4 326-infected pad4 plants. These findings support the hypothesis that PAD4 acts upstream from SA accumulation in regulating defense response expression in plants infected with P. s. maculicola ES4 326. A working model of the role of PAD4 in governing expression of defense responses is presented.
Collapse
Affiliation(s)
- N Zhou
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
458
|
Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. THE PLANT CELL 1998; 10:1021-30. [PMID: 9634589 PMCID: PMC144042 DOI: 10.1105/tpc.10.6.1021] [Citation(s) in RCA: 302] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis PAD4 gene was previously shown to be required for synthesis of camalexin in response to infection by the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 but not in response to challenge by the non-host fungal pathogen Cochliobolus carbonum. In this study, we show that pad4 mutants exhibit defects in defense responses, including camalexin synthesis and pathogenesis-related PR-1 gene expression, when infected by P. s. maculicola ES4 326. No such defects were observed in response to infection by an isogenic avirulent strain carrying the avirulence gene avrRpt2. In P. s. maculicola ES4 326-infected pad4 plants, synthesis of salicylic acid (SA) was found to be reduced and delayed when compared with SA synthesis in wild-type plants. Moreover, treatment of pad4 plants with SA partially reversed the camalexin deficiency and PR-1 gene expression phenotypes of P. s. maculicola ES4 326-infected pad4 plants. These findings support the hypothesis that PAD4 acts upstream from SA accumulation in regulating defense response expression in plants infected with P. s. maculicola ES4 326. A working model of the role of PAD4 in governing expression of defense responses is presented.
Collapse
Affiliation(s)
- N Zhou
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
459
|
Epple P, Vignutelli A, Apel K, Bohlmann H. Differential induction of the Arabidopsis thaliana Thi2.1 gene by Fusarium oxysporum f. sp. matthiolae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:523-529. [PMID: 9612950 DOI: 10.1094/mpmi.1998.11.6.523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana Thi2.1 gene is inducible by necrotrophic fungi through a signal transduction pathway different from that for pathogenesis-related (PR) proteins. We have identified three ecotypes that are susceptible (Col-2, Ler, and Ws) and two ecotypes that are resistant (Mt-0 and Uk-4) to spray inoculation with Fusarium oxysporum f. sp. matthiolae. The Thi2.1 transcript level after infection correlates with resistance, being 5 to 10 times higher in the resistant than in the susceptible ecotypes. The beta-glucuronidase (GUS) expression of a Thi2.1-promoter-uidA fusion (with a promoter derived from Col-2) is on the average almost 10 times higher in the Uk-4 background than in the Col-2 background. This confirms the results obtained by Northern (RNA) blots and indicates that Uk-4, and probably other resistant ecotypes too, might have a more sensitive recognition system for F. oxysporum f. sp. matthiolae or might have a signal transduction system that gives a higher amplification of the original recognition signal. Our results suggest a role of the Thi2.1 gene in resistance against F. oxysporum f. sp. matthiolae and perhaps other necrotrophic fungi.
Collapse
Affiliation(s)
- P Epple
- Swiss Federal Institute of Technology (ETH), ETH-Zentrum, Zurich, Switzerland
| | | | | | | |
Collapse
|
460
|
Genoud T, Millar AJ, Nishizawa N, Kay SA, Schäfer E, Nagatani A, Chua NH. An Arabidopsis mutant hypersensitive to red and far-red light signals. THE PLANT CELL 1998; 10:889-904. [PMID: 9634578 PMCID: PMC144040 DOI: 10.1105/tpc.10.6.889] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans.
Collapse
Affiliation(s)
- T Genoud
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | | | | | | | | | | | |
Collapse
|
461
|
Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. PLANT PHYSIOLOGY 1998; 117:465-72. [PMID: 9625699 PMCID: PMC34966 DOI: 10.1104/pp.117.2.465] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 02/23/1998] [Indexed: 05/20/2023]
Abstract
During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary. These proteins have been identified by N-terminal amino acid-sequence analysis and/or function to be a thaumatin-like protein (grape osmotin), a lipid-transfer protein, and a basic and an acidic chitinase. The basic chitinase and grape osmotin exhibited activities against the principal grape fungal pathogens Guignardia bidwellii and Botrytis cinerea based on in vitro growth assays. The growth-inhibiting activity of the antifungal proteins was substantial at levels comparable to those that accumulate in the ripening fruit, and these activities were enhanced by as much as 70% in the presence of 1 m glucose, a physiological hexose concentration in berries. The simultaneous accumulation of the antifungal proteins and sugars during berry ripening was correlated with the characteristic development of pathogen resistance that occurs in fruits during ripening. Taken together, accumulation of these proteins, in combination with sugars, appears to constitute a novel, developmentally regulated defense mechanism against phytopathogens in the maturing fruit.
Collapse
Affiliation(s)
- R A Salzman
- Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, Indiana 47907-1165, USA
| | | | | | | | | |
Collapse
|
462
|
Frye CA, Innes RW. An Arabidopsis mutant with enhanced resistance to powdery mildew. THE PLANT CELL 1998; 10:947-56. [PMID: 9634583 PMCID: PMC144036 DOI: 10.1105/tpc.10.6.947] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We have identified an Arabidopsis mutant that displays enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. The edr1 mutant does not constitutively express the pathogenesis-related genes PR-1, BGL2, or PR-5 and thus differs from previously described disease-resistant mutants of Arabidopsis. E. cichoracearum conidia (asexual spores) germinated normally and formed extensive hyphae on edr1 plants, indicating that the initial stages of infection were not inhibited. Production of conidiophores on edr1 plants, however, was <16% of that observed on wild-type Arabidopsis. Reduction in sporulation correlated with a more rapid induction of defense responses. Autofluorescent compounds and callose accumulated in edr1 leaves 3 days after inoculation with E. cichoracearum, and dead mesophyll cells accumulated in edr1 leaves starting 5 days after inoculation. Macroscopic patches of dead cells appeared 6 days after inoculation. This resistance phenotype is similar to that conferred by "late-acting" powdery mildew resistance genes of wheat and barley. The edr1 mutation is recessive and maps to chromosome 1 between molecular markers ATEAT1 and NCC1. We speculate that the edr1 mutation derepresses multiple defense responses, making them more easily induced by virulent pathogens.
Collapse
Affiliation(s)
- C A Frye
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
463
|
Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 1998; 95:6531-6. [PMID: 9601001 PMCID: PMC34547 DOI: 10.1073/pnas.95.11.6531] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1998] [Accepted: 03/23/1998] [Indexed: 02/07/2023] Open
Abstract
The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental effect on the plants. Thus, for the first time, a single gene is shown to be a workable target for genetic engineering of nonspecific resistance in plants.
Collapse
Affiliation(s)
- H Cao
- Developmental, Cell, and Molecular Biology Group, Department of Botany, Box 91000, Duke University, Durham, NC 27708-1000, USA
| | | | | |
Collapse
|
464
|
Inschlag C, Hoffmann-Sommergruber K, O'Riordain G, Ahorn H, Ebner C, Scheiner O, Breiteneder H. Biochemical characterization of Pru a 2, a 23-kD thaumatin-like protein representing a potential major allergen in cherry (Prunus avium). Int Arch Allergy Immunol 1998; 116:22-8. [PMID: 9623505 DOI: 10.1159/000023920] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prevalence of allergy to fruits and vegetables increased with pollinosis over the last 10 years. So far, clusters of hypersensitivity have been established and corroborated by the molecular characterization of individual cross-reacting allergens. Several case studies demonstrated the existence of allergic reactions to fruits of the subfamily Prunoideae (apricots, cherries, plums and peaches). Here, we present the characterization of a major allergen in cherry. METHODS Characterization was performed using IgE immunoblotting and immunoblot inhibition, N-terminal sequencing, mass spectroscopy analysis and PCR-based cDNA cloning. RESULTS A 23-kD protein was identified as IgE-binding component. As all cherry-extract-reactive sera displayed IgE-binding to this band, it was designated a major allergen from Prunus avium (Pru a 2). Sequencing the corresponding cDNA identified Pru a 2 as a thaumatin-like protein belonging to the group 5 of pathogenesis-related proteins. CONCLUSIONS A thaumatin-like protein in cherry has been identified as a major allergen (Pru a 2). Homologous proteins from the thaumatin family share sequence similarities and should therefore be checked for the capability to elicit an IgE-mediated allergic reaction.
Collapse
Affiliation(s)
- C Inschlag
- Department of General and Experimental Pathology, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
465
|
Mahajan SK, Chisholm ST, Whitham SA, Carrington JC. Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:177-86. [PMID: 9628015 DOI: 10.1046/j.1365-313x.1998.00105.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Screens of Arabidopsis thaliana for susceptibility to tobacco etch virus (TEV) revealed that each of 10 ecotypes were able to support genome replication and cell-to-cell movement in inoculated leaves. However, only four ecotypes, including C24 and La-er, supported complete infections in which TEV was able to replicate and move from cell to cell and long distances through the vasculature. The rates of cell-to-cell movement of a reporter-tagged TEV strain (TEV-GUS) in inoculated leaves of C24 and Columbia (Col-3) were similar, and infection foci continued to expand in both ecotypes through 10 days post-inoculation. No visible or microscopic hypersensitive or cell death responses were evident in inoculated leaves of Col-3 plants. Infection of neither C24 nor Col-3 plants with TEV-GUS resulted in induction of PR-1a gene expression, which is normally associated with active defence responses and systemic acquired resistance. The genetic basis for the restriction of long-distance movement of TEV-GUS in Columbia was investigated using C24 x Col-3 crosses and backcrosses and using La-er x Col-0 recombinant inbred lines. A dominant locus conditioning the restricted TEV infection phenotype was identified on chromosome 1 between markers ATEAT1 and NCC1 at approximately 14 cM in both genetic analyses. This locus was designated RTM1 (restricted TEV movement 1). It is proposed that RTM1 mediates a restriction of long-distance movement through a mechanism that differs substantially from those conditioned by the dominant resistance genes normally associated with gene-for-gene interactions.
Collapse
Affiliation(s)
- S K Mahajan
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA
| | | | | | | |
Collapse
|
466
|
McNellis TW, Mudgett MB, Li K, Aoyama T, Horvath D, Chua NH, Staskawicz BJ. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:247-257. [PMID: 9628020 DOI: 10.1046/j.1365-313x.1998.00106.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic strains of Pseudomonas syringae pv. tomato carrying the avrRpt2 avirulence gene specifically induce a hypersensitive cell death response in Arabidopsis plants that contain the complementary RPS2 disease resistance gene. Transient expression of avrRpt2 in Arabidopsis plants having the RPS2 gene has been shown to induce hypersensitive cell death. In order to analyze the effects of conditional expression of avrRpt2 in Arabidopsis plants, transgenic lines were constructed that contained the avrRpt2 gene under the control of a tightly regulated, glucocorticoid-inducible promoter. Dexamethasone-induced expression of avrRpt2 in transgenic lines having the RPS2 gene resulted in a specific hypersensitive cell death response that resembled a Pseudomonas syringae-induced hypersensitive response and also induced the expression of a pathogenesis-related gene (PR1). Interestingly, high level expression of avrRpt2 in a mutant rps2-101C background resulted in plant stress and ultimately cell death, suggesting a possible role for avrRpt2 in Pseudomonas syringae virulence. Transgenic RPS2 and rps2 plants that contain the glucocorticoid-inducible avrRpt2 gene will provide a powerful new tool for the genetic, physiological, biochemical, and molecular dissection of an avirulence gene-specified cell death response in both resistant and susceptible plants.
Collapse
Affiliation(s)
- T W McNellis
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
467
|
Clarke JD, Liu Y, Klessig DF, Dong X. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. THE PLANT CELL 1998; 10:557-69. [PMID: 9548982 PMCID: PMC144011 DOI: 10.1105/tpc.10.4.557] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.
Collapse
Affiliation(s)
- J D Clarke
- Developmental, Cell, and Molecular Biology Group, Department of Botany, Box 91000, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | |
Collapse
|
468
|
Yang CH, Ho GD. Resistance and Susceptibility of Arabidopsis thaliana to Bacterial Wilt Caused by Ralstonia solanacearum. PHYTOPATHOLOGY 1998; 88:330-334. [PMID: 18944956 DOI: 10.1094/phyto.1998.88.4.330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Tomato bacterial wilt caused by Ralstonia solanacearum is a model system for studying plant-bacterial interactions, because it is genetically one of the best characterized plant diseases. We demonstrate here that four different strains of R. solanacearum, two from radishes (Rd4 and Rd15) and two from tomato (Ps21 and Ps95), can infect 27 different ecotypes of Arabidopsis thaliana, causing different responses. All ecotypes tested were highly susceptible to strain Rd15, which caused symptoms similar to those observed in tomato plants. For example, leaf drooping and discoloration developed just 3 days after inoculation, and plants completely wilted within 1 week. Strains Rd4 and Ps95 were less infectious than Rd15. With these two strains, a variety of disease responses were observed among different ecotypes at 2 weeks after inoculation; both susceptible and resistant ecotypes of A. thaliana were identified. Ps21 was the least infectious of the four strains and caused almost no symptoms in any of the ecotypes of Arabidopsis tested. Direct bacterial isolation and plant skeleton hybridization analysis from infected plants indicated that bacterial colonization was correlated with the severity of symptoms. Growth of bacteria was limited to the infection site in resistant plants, whereas the bacteria spread throughout susceptible plants by 1 week after inoculation.
Collapse
|
469
|
Benhamou N, Bélanger RR. Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:13-21. [PMID: 15494051 DOI: 10.1046/j.1365-313x.1998.00088.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH, CGA 245704), a non-toxic, synthetic chemical, was applied as a foliar spray to cucumber plants and evaluated for its potential to induce defense mechanisms in root tissues infected by the soilborne pathogen, Pythium ultimum Trow. In non-treated cucumber plants, fungal colonization was intense and paralleled marked host tissue damage, whereas in BTH-treated plants, pathogen ingress towards the vascular stele was apparently halted by the massive deposition of a phenolic-enriched material which occluded a large number of cortical and vascular parenchyma cells. This considerable increase in the accumulation of phenolics was accompanied by cytological disorders of the invading pathogen at a time when the wall-bound cellulose component was preserved. In addition to phenolic compounds, the occluding material contained large amounts of beta-glucoside residues. These residues gradually decreased in the areas neighboring fungal cells whereas phenolic deposition appeared to be more uniformly distributed throughout the occluded host cells. Pathogen penetration in non-occluded cucumber root cells coincided with other changes, mainly characterized by both the deposition onto the inner surface of the cell walls of some heterogeneous wall appositions and the coating of some intercellular spaces with an electron-opaque material. Evidence is provided in this study that BTH has the ability to induce SAR in cucumber. Exogenous, foliar applications of the chemical sensitize susceptible cucumber plants to react more rapidly and more efficiently to P. ultimum attack, mainly through the massive accumulation of phenolic compounds at sites of attempted pathogen penetration.
Collapse
Affiliation(s)
- N Benhamou
- Recherche en Sciences de la vie et de la santé, Pavillon Charles-Eugène Marchand, Université Laval, Sainte-Foy, Québec, Canada
| | | |
Collapse
|
470
|
Zhao J, Williams CC, Last RL. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. THE PLANT CELL 1998. [PMID: 9501110 DOI: 10.2307/3870594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated.
Collapse
Affiliation(s)
- J Zhao
- Boyce Thompson Institute for Plant Research and Section of Genetics and Development, Cornell University, Tower Road, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
471
|
Zhao J, Williams CC, Last RL. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. THE PLANT CELL 1998; 10:359-70. [PMID: 9501110 PMCID: PMC143997 DOI: 10.1105/tpc.10.3.359] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated.
Collapse
Affiliation(s)
- J Zhao
- Boyce Thompson Institute for Plant Research and Section of Genetics and Development, Cornell University, Tower Road, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
472
|
Glazebrook J, Rogers EE, Ausubel FM. Use of Arabidopsis for genetic dissection of plant defense responses. Annu Rev Genet 1998; 31:547-69. [PMID: 9442907 DOI: 10.1146/annurev.genet.31.1.547] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is proving to be an ideal model system for studies of host defense responses to pathogen attack. The Arabidopsis genetic system is significantly more tractable than those of other plant species, and Arabidopsis exhibits all of the major kinds of defense responses described in other plants. A large number of virulent and avirulent bacterial, fungal, and viral pathogens of Arabidopsis have been collected. In the last few years, a large number of mutations have been identified in Arabidopsis that cause a wide variety of specific defense-related phenotypes. Analysis of these mutant phenotypes is beginning to give glimpses into the complex signal transduction pathways leading to the induction of the defense responses involved in protecting plants from pathogen infection.
Collapse
Affiliation(s)
- J Glazebrook
- Center for Agricultural Biotechnology, University of Maryland, College Park 20742, USA.
| | | | | |
Collapse
|
473
|
van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:453-83. [PMID: 15012509 DOI: 10.1146/annurev.phyto.36.1.453] [Citation(s) in RCA: 728] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to induce resistance in different plant species, and plants show variation in the expression of ISR upon induction by specific bacterial strains. Bacterial determinants of ISR include lipopolysaccharides, siderophores, and salicylic acid (SA). Whereas some of the rhizobacteria induce resistance through the SA-dependent SAR pathway, others do not and require jasmonic acid and ethylene perception by the plant for ISR to develop. No consistent host plant alterations are associated with the induced state, but upon challenge inoculation, resistance responses are accelerated and enhanced. ISR is effective under field conditions and offers a natural mechanism for biological control of plant disease.
Collapse
Affiliation(s)
- L C van Loon
- Department of Plant Ecology and Evolutionary Biology, Utrecht University, TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
474
|
Smith-Becker J, Marois E, Huguet EJ, Midland SL, Sims JJ, Keen NT. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. PLANT PHYSIOLOGY 1998; 116:231-8. [PMID: 9449843 PMCID: PMC35162 DOI: 10.1104/pp.116.1.231] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1997] [Accepted: 09/28/1997] [Indexed: 05/21/2023]
Abstract
Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.
Collapse
Affiliation(s)
- J Smith-Becker
- Department of Plant Pathology, University of California, Riverside 92521, USA
| | | | | | | | | | | |
Collapse
|
475
|
Busam G, Kassemeyer HH, Matern U. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. PLANT PHYSIOLOGY 1997; 115:1029-38. [PMID: 9390436 PMCID: PMC158566 DOI: 10.1104/pp.115.3.1029] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The concept of systemic acquired resistance (SAR) enables a novel approach to crop protection, and particular pathogenesis-related proteins, i.e. an acidic chitinase, have been classified as markers of the SAR response. Basic class I (VCHIT1b) and a class III (VCH3) chitinase cDNAs were cloned from cultured Vitis vinifera L. cv Pinot Noir cells and used to probe the induction response of grapevine cells to salicylic acid or yeast elicitor. Furthermore, the cells were treated with the commercial SAR activators 2,6-dichloroiso-nicotinic acid or benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester. Elicitor or salicylic acid induced both VCHIT1b and VCH3 transcript abundances, whereas 2,6-dichloroiso-nicotinic acid or benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester enhanced exclusively the expression of VCH3. To assess the systemic sensation of chitinase expression, single leaves of Vitis vinifera L. cv Pinot Noir or Vitis rupestris plants were inoculated with Plasmopara viticola spore suspensions, and the VCH3 and VCHIT1b mRNA amounts in the infected versus the adjacent, healthy leaf were monitored. Two VCH3 mRNA maxima were observed 2 and 6 d postinoculation in the infected, susceptible V. vinifera tissue, whereas in the healthy leaf the transcript increased from low levels d 2 postinoculation to prominent levels d 6 to 8 postinoculation. The level of VCH3 mRNA increased also over 4 d in the inoculated, resistant V. rupestris tissue. However, necrotic spots rapidly limited the infection, and the VCH3 transcript was undetectable in the upper-stage, healthy leaf. The expression of VCHIT1b remained negligible under either experimental condition. Overall, the results suggest that the selective expression of VCH3 might be a reliable indicator of the SAR response in V. vinifera L.
Collapse
Affiliation(s)
- G Busam
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Germany
| | | | | |
Collapse
|
476
|
Busam G, Junghanns KT, Kneusel RE, Kassemeyer HH, Matern U. Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of Vitis vinifera L. PLANT PHYSIOLOGY 1997; 115:1039-48. [PMID: 9390437 PMCID: PMC158567 DOI: 10.1104/pp.115.3.1039] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell-suspension cultures of Vitis vinifera L. cv Pinot Noir accumulated resveratrol upon fungal elicitation, and the activity of S-adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyl-transferase (CCoAOMT), yielding feruloyl-CoA, increased to a transient maximum at 12 to 15 h. CCoAOMT cDNA was cloned from the elicited cells and was shown to encode a polypeptide highly homologous to CCoAOMTs from cells of Petroselinum species or Zinnia species. The expression of the cDNA in Escherichia coli revealed that grapevine CCoAOMT methylates both caffeoyl- and 5-hydroxyferuloyl-coenzyme A and is probably involved in phenolic esterification and lignification. Commercial plant activators induce the disease-resistance response of test plants and are considered to mimic the action of salicylic acid. Among these chemicals, 2,6-dichloroisonicotinic acid and benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester provoke systemic acquired resistance (SAR) and were also shown to induce the expression of class III chitinase in grapevine. The SAR response is classified by an unchanged phenotype of tissues, but the mechanistic basis is unknown. Treatment of the cultured V. vinifera cells with either fungal elicitor or low concentrations of salicylic acid and 2,6-dichloroisonicotinic acid, respectively, raised the CCoAOMT or stilbene synthase transcript abundance, suggesting that grapevine is capable of the SAR response, whereas benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester was ineffective. The data imply for the first time (to our knowledge) that the expression of phenyl-propanoid genes in grapevine is induced by SAR activators without phenotypic consequences and suggest a role for CCoAOMT and stilbene synthase in the disease-resistance response leading beyond the level of pathogenesis-related proteins as markers of the SAR.
Collapse
Affiliation(s)
- G Busam
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
477
|
Schweizer P, Buchala A, Metraux JP. Gene-Expression Patterns and Levels of Jasmonic Acid in Rice Treated with the Resistance Inducer 2,6-Dichloroisonicotinic Acid. PLANT PHYSIOLOGY 1997; 115:61-70. [PMID: 12223792 PMCID: PMC158460 DOI: 10.1104/pp.115.1.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Acquired disease resistance can be induced in rice (Oryza sativa) by a number of synthetic or natural compounds, but the molecular mechanisms behind the phenomenon are poorly understood. One of the synthetic inducers of resistance, 2,6-dichloroisonicotinic acid (INA), efficiently protected rice leaves from infection by the rice blast fungus Magnaporthe grisea (Hebert) Barr. A comparison of gene-expression patterns in plants treated with INA versus plants inoculated with the compatible pathogen M. grisea or the incompatible pathogen Pseudomonas syringae pv syringae revealed only a marginal overlap: 6 gene products, including pathogenesis-related proteins (PR1-PR9), accumulated in both INA-treated and pathogen-attacked leaves, whereas 26 other gene products accumulated only in INA-treated or only in pathogen-attacked leaves. Lipoxygenase enzyme activity and levels of nonconjugated jasmonic acid (JA) were enhanced in leaves of plants treated with a high dose of INA (100 ppm). Exogenously applied JA enhanced the gene induction and plant protection caused by lower doses of INA (0.1 to 10 ppm) that by themselves did not give rise to enhanced levels of endogenous (-)-JA. These data suggest that INA, aside from activating a pathogen-induced signaling pathway, also induces events that are not related to pathogenesis. JA acts as an enhancer of both types of INA-induced reactions in rice.
Collapse
Affiliation(s)
- P. Schweizer
- Institut de Biologie Vegetale, Universite de Fribourg, Route Albert-Gockel 3, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
478
|
Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. THE PLANT CELL 1997. [PMID: 9338960 DOI: 10.2307/3870444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.
Collapse
Affiliation(s)
- S A Bowling
- Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
479
|
Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. THE PLANT CELL 1997; 9:1573-84. [PMID: 9338960 PMCID: PMC157034 DOI: 10.1105/tpc.9.9.1573] [Citation(s) in RCA: 426] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.
Collapse
Affiliation(s)
- S A Bowling
- Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
480
|
Van Wees SC, Pieterse CM, Trijssenaar A, Van 't Westende YA, Hartog F, Van Loon LC. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:716-24. [PMID: 9245833 DOI: 10.1094/mpmi.1997.10.6.716] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Selected nonpathogenic, root-colonizing bacteria are able to elicit induced systemic resistance (ISR) in plants. To elucidate the molecular mechanisms underlying this type of systemic resistance, an Arabidopsis-based model system was developed in which Pseudomonas syringae pv. tomato and Fusarium oxysporum f. sp. raphani were used as challenging pathogens. In Arabidopsis thaliana ecotypes Columbia and Landsberg erecta, colonization of the rhizosphere by P. fluorescens strain WCS417r induced systemic resistance against both pathogens. In contrast, ecotype RLD did not respond to WCS417r treatment, whereas all three ecotypes expressed systemic acquired resistance upon treatment with salicylic acid (SA). P. fluorescens strain WCS374r, previously shown to induce ISR in radish, did not elicit ISR in Arabidopsis. The opposite was found for P. putida strain WCS358r, which induced ISR in Arabidopsis but not in radish. These results demonstrate that rhizosphere pseudomonads are differentially active in eliciting ISR in related plant species. The outer membrane lipopolysaccharide (LPS) of WCS417r is the main ISR-inducing determinant in radish and carnation, and LPS-containing cell walls also elicit ISR in Arabidopsis. However, mutant WCS417rOA-, lacking the O-antigenic side chain of the LPS, induced levels of protection similar to those induced by wild-type WCS417r. This indicates that ISR-inducing bacteria produce more than a single factor that trigger ISR in Arabidopsis. Furthermore, WCS417r and WCS358r induced protection in both wild-type Arabidopsis and SA-nonaccumulating NahG plants without activating pathogenesis-related gene expression. This suggests that elicitation of an SA-independent signaling pathway is a characteristic feature of ISR-inducing biocontrol bacteria.
Collapse
Affiliation(s)
- S C Van Wees
- Department of Plant Ecology and Evolutionary Biology, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
481
|
Hu X, Reddy AS. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. PLANT MOLECULAR BIOLOGY 1997; 34:949-59. [PMID: 9290646 DOI: 10.1023/a:1005893119263] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. We isolated a complementary DNA (ATLP-3) encoding a PR5-like protein from Arabidopsis which is distinct from two other previously reported PR5 cDNAs from the same plant species. The predicted ATLP-3 protein with its amino-terminal signal sequence is 245 amino acids in length and is acidic with a pl of 4.8. The deduced amino acid sequence of ATLP-3 shows significant sequence similarity with PR5 and thaumatin-like proteins from Arabidopsis and other plants and contains a putative signal sequence at the amino-terminus. The expression of ATLP-3 and a related gene (ATLP-1) that we previously isolated from Arabidopsis was induced by pathogen infection and salicylic acid, a known inducer of pathogenesis-related genes. Southern blot analysis indicates that the ATLP-1 and ATLP-3 are coded by single-copy genes. To study the effect of ATLP-1 and ATLP-3 proteins on fungal growth, the cDNA regions corresponding to putative mature protein were expressed in Escherichia coli and the cDNA encoded proteins were purified. ATLP-1 and ATLP-3 proteins cross-reacted with anti-osmotin and anti-zeamatin antibodies. ATLP-3 protein showed antifungal activity against several fungal pathogens suggesting that ATLP-3 may be involved in plant defense against fungal pathogens.
Collapse
Affiliation(s)
- X Hu
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
482
|
Fodor J, Gullner G, Adam AL, Barna B, Komives T, Kiraly Z. Local and Systemic Responses of Antioxidants to Tobacco Mosaic Virus Infection and to Salicylic Acid in Tobacco (Role in Systemic Acquired Resistance). PLANT PHYSIOLOGY 1997; 114:1443-1451. [PMID: 12223782 PMCID: PMC158437 DOI: 10.1104/pp.114.4.1443] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Changes in ascorbate and glutathione levels and in activities of ascorbate peroxidase, catalase, dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD) were investigated in tobacco mosaic virus (TMV)-inoculated lower leaves and in non-inoculated upper leaves of Nicotiana tabacum L. cv Xanthi-nc. In separate experiments the effects of exogenous salicylic acid (SA) were also studied. Symptom appearance after TMV inoculation was preceded by a slight, transient decline of ascorbate peroxidase, GR, GST, and SOD activities in the inoculated lower leaves, but after the onset of necrosis these activities and the glutathione level substantially increased. Ascorbic acid level and DHAR activity declined and dehydroascorbate accumulated in the inoculated leaves. In upper leaves, the glutathione level and the activities of GR, GST, and SOD increased 10 to 14 d after TMV inoculation of the lower leaves, concomitantly with the development of systemic acquired resistance. From the six distinct SOD isoenzymes found in tobacco leaves, only the activities of Cu,Zn-SOD isoenzymes were affected by TMV. SA injection induced DHAR, GR, GST, and SOD activities. Catalase activities were not modified by TMV infection or SA treatment. It is supposed that stimulated antioxidative processes contribute to the suppression of necrotic symptom development in leaves with systemic acquired resistance.
Collapse
Affiliation(s)
- J. Fodor
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, Hungary H-1525 Budapest
| | | | | | | | | | | |
Collapse
|
483
|
Affiliation(s)
- Y Yang
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway 08855, USA
| | | | | |
Collapse
|
484
|
Tornero P, Gadea J, Conejero V, Vera P. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:624-34. [PMID: 9204567 DOI: 10.1094/mpmi.1997.10.5.624] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathogenesis-related (PR) proteins form a heterogeneous family of plant proteins that are likely to be involved in defense and are inducible by pathogen attacks. One group of PRs, represented by the subfamily PR-1, are low-molecular-weight proteins of unknown biochemical function. Here we describe the cloning and characterization of two closely related genes encoding a basic and an acidic PR-1 protein (PR1b1 and PR1a2) from tomato (Lycopersicon esculentum). We present a comparative study of the mode of transcriptional regulation of these two genes in transgenic tobacco plants using a series of promoter-GUS fusions. Unexpectedly, the chimeric PR1a2/GUS gene is not induced by pathogenic signals but instead shows constitutive expression with a reproducible developmental expression pattern. It is expressed in shoot meristems, trichomes, and cortical cells as well as in vascular and nearby tissues of the mature stem. This constitutive expression pattern may represent preemption of plant defenses against potential pathogens. Conversely, the chimeric PR1b1/GUS gene does not show any constitutive expression in the plant, but it is transcriptionally activated following pathogen attack. Upon infection by tobacco mosaic virus, the PR1b1 gene is strongly activated locally in tissues undergoing the hypersensitive response but not systemically in uninoculated tissues. Furthermore, its expression is induced by both salicylic acid and ethylene precursors, two signals that coexist and apparently mediate the activation of local defenses during the hypersensitive response. We speculate that the different mode of expression of the two genes presented here, together with that reported previously for the induction of other PR-1 genes in systemic, uninoculated tissues, may all be complementary and necessary for the plant to acquire an efficient refractory state to resist pathogen attacks.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Molecular Sequence Data
- Plant Proteins/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Nicotiana/genetics
- Nicotiana/virology
- Tobacco Mosaic Virus/pathogenicity
Collapse
Affiliation(s)
- P Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | |
Collapse
|
485
|
Hunt MD, Delaney TP, Dietrich RA, Weymann KB, Dangl JL, Ryals JA. Salicylate-independent lesion formation in Arabidopsis lsd mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:531-6. [PMID: 9204559 DOI: 10.1094/mpmi.1997.10.5.531] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In many interactions of plants with pathogens, the primary host defense reaction is accompanied by plant cell death at the site of infection. The resulting lesions are correlated with the establishment of an inducible resistance in plants called systemic acquired resistance (SAR), for which salicylic acid (SA) accumulation is a critical signaling event in Arabidopsis and tobacco. In Arabidopsis, the lesions simulating disease (lsd) mutants spontaneously develop lesions in the absence of pathogen infection. Furthermore, lsd mutants express SAR marker genes when lesions are present and are resistant to the same spectrum of pathogens as plants activated for SAR by necrogenic pathogen infection. To assess the epistatic relationship between SA accumulation and cell death, transgenic Arabidopsis unable to accumulate SA due to the expression of the salicylate hydroxylase (nahG) gene were used in crosses with the dominant mutants lsd2 or lsd4. Progeny from the crosses were inhibited for SAR gene expression and disease resistance. However, these progeny retained the spontaneous cell death phenotype similar to siblings not expressing nahG. Because lesions form in the absence of SA accumulation for isd2 and lsd4, a model is suggested in which lesion formation in these two mutants is determined prior to SA accumulation in SAR signal transduction. By contrast, the loss of SAR gene expression and disease resistance in nahG-expressing lsd mutants indicates that these traits are dependent upon SA accumulation in the SAR signal transduction pathway.
Collapse
Affiliation(s)
- M D Hunt
- Biotechnology and Genomics Center, Novartis Crop Protection, Inc., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
486
|
Abstract
Plants cope with pathogen attacks by using mechanisms of resistance that rely both on preformed protective defenses and on inducible defenses. The latter are the most well studied, and progress is being made in determining which induced responses are responsible for limiting pathogen growth. Many plant-pathogen interactions are accompanied by plant cell death. Recent evidence suggests that this cell death is often programmed and results from an active process on the part of the host. The review considers the roles and possible mechanisms of plant cell death in response to pathogens.
Collapse
Affiliation(s)
- Jean T. Greenberg
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, Colorado 80309
| |
Collapse
|
487
|
Capelli N, Diogon T, Greppin H, Simon P. Isolation and characterization of a cDNA clone encoding an osmotin-like protein from Arabidopsis thaliana. Gene 1997; 191:51-6. [PMID: 9210588 DOI: 10.1016/s0378-1119(97)00029-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A phage library of cDNA from Arabidopsis thaliana has been screened with oligodeoxyribonucleotides designed from regions of high homology found in tobacco osmotin and other osmotin-like proteins. One of the selected clones, Atosm34, presents a 734 bp open reading frame encoding a polypeptide of 244 amino acids, including the putative N-terminal signal and C-terminal propeptide sequences. Comparative alignment reveals extensive homologies to osmotin and the osmotin-like proteins found in Solanaceae, and also to a related polypeptide found in soybean. Genomic hybridization suggests that the cDNA obtained here corresponds to a single copy gene, and RNA blot analysis showed that the level of expression is highest in old leaves.
Collapse
Affiliation(s)
- N Capelli
- Laboratoire de Biochimie et Physiologie Végétales, Université de Geneve, Switzerland
| | | | | | | |
Collapse
|
488
|
Curtis MD, Rae AL, Rusu AG, Harrison SJ, Manners JM. A peroxidase gene promoter induced by phytopathogens and methyl jasmonate in transgenic plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:326-38. [PMID: 9100378 DOI: 10.1094/mpmi.1997.10.3.326] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The expression of two closely related peroxidase isogenes, Shpx6a and Shpx6b, of the legume Stylosanthes humilis was studied using isogene-specific reverse transcriptase PCR techniques. Results indicated that transcripts of both genes were rapidly induced following inoculation with the fungal pathogen Colletotrichum gloeosporioides, wounding and treatment with the defense regulator methyl jasmonate (MeJA). In contrast treatment of leaves of S. humilis with abscisic acid (ABA) and salicylic acid (SA) did not induce transcripts of either isogene. A genomic clone containing the Shpx6b gene was isolated and 594 bp of 5' sequence upstream of the translation start was fused in frame to the coding region of the uidA reporter gene and introduced into tobacco. Expression from the Shpx6b promoter in transgenic plants was determined by histochemical staining and quantitative assays of beta-glucuronidase (GUS). In transgenic tobacco, GUS expression was detected in cotyledons, vascular cells of young leaves, anthers, pollen, and the stigma and style. Wounding of the tobacco plants produced very localized GUS staining. Much more extensive staining for GUS was observed following inoculation of tobacco leaves with conidia of the fungal pathogen Cercospora nicotianae and the inoculation of wound sites with mycelium of the Oomycete pathogen Phytophthora parasitica var. nicotianae. Treatment of mature leaves with methyl jasmonate induced GUS activity while treatment with ABA, SA, and H2O2 had no effect. A similar strong induction of GUS activity was measured in young transgenic seedlings germinated on MeJA while some, but much weaker, induction of GUS activity was observed in seedlings treated with SA. The sequence of the promoter contained motifs homologous to putative cis elements in other plant genes responsive to MeJA. The Shpx6b gene is the first plant peroxidase gene shown to be induced by both microbial pathogens and MeJA and its promoter will be useful for investigations of signaling processes during fungal infection and for the expression of foreign gene products at infection sites.
Collapse
Affiliation(s)
- M D Curtis
- Cooperative Research Centre for Tropical Plant Pathology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
489
|
Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. THE PLANT CELL 1997; 9:425-439. [PMID: 9090885 DOI: 10.2307/3870492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The NIM1 (for noninducible immunity) gene product is involved in the signal transduction cascade leading to both systemic acquired resistance (SAR) and gene-for-gene disease resistance in Arabidopsis. We have isolated and characterized five new alleles of nim1 that show a range of phenotypes from weakly impaired in chemically induced pathogenesis-related protein-1 gene expression and fungal resistance to very strongly blocked. We have isolated the NIM1 gene by using a map-based cloning procedure. Interestingly, the NIM1 protein shows sequence homology to the mammalian signal transduction factor I kappa B subclass alpha. NF-kappa B/I kappa B signaling pathways are implicated in disease resistance responses in a range of organisms from Drosophila to mammals, suggesting that the SAR signaling pathway in plants is representative of an ancient and ubiquitous defense mechanism in higher organisms.
Collapse
Affiliation(s)
- J Ryals
- Biotechnology and Genomics Center, Novartis Crop Protection, Inc., Research Triangle Park, North Carolina 27709-2257, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. THE PLANT CELL 1997; 9:425-39. [PMID: 9090885 PMCID: PMC156928 DOI: 10.1105/tpc.9.3.425] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The NIM1 (for noninducible immunity) gene product is involved in the signal transduction cascade leading to both systemic acquired resistance (SAR) and gene-for-gene disease resistance in Arabidopsis. We have isolated and characterized five new alleles of nim1 that show a range of phenotypes from weakly impaired in chemically induced pathogenesis-related protein-1 gene expression and fungal resistance to very strongly blocked. We have isolated the NIM1 gene by using a map-based cloning procedure. Interestingly, the NIM1 protein shows sequence homology to the mammalian signal transduction factor I kappa B subclass alpha. NF-kappa B/I kappa B signaling pathways are implicated in disease resistance responses in a range of organisms from Drosophila to mammals, suggesting that the SAR signaling pathway in plants is representative of an ancient and ubiquitous defense mechanism in higher organisms.
Collapse
Affiliation(s)
- J Ryals
- Biotechnology and Genomics Center, Novartis Crop Protection, Inc., Research Triangle Park, North Carolina 27709-2257, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
491
|
Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997; 88:57-63. [PMID: 9019406 DOI: 10.1016/s0092-8674(00)81858-9] [Citation(s) in RCA: 916] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Arabidopsis NPR1 gene controls the onset of systemic acquired resistance (SAR), a plant immunity, to a broad spectrum of pathogens that is normally established after a primary exposure to avirulent pathogens. Mutants with defects in NPR1 fail to respond to various SAR-inducing treatments, displaying little expression of pathogenesis-related (PR) genes and exhibiting increased susceptibility to infections. NPR1 was cloned using a map-based approach and was found to encode a novel protein containing ankyrin repeats. The lesion in one npr1 mutant allele disrupted the ankyrin consensus sequence, suggesting that these repeats are important for NPR1 function. Furthermore, transformation of the cloned wild-type NPR1 gene into npr1 mutants not only complemented the mutations, restoring the responsiveness to SAR induction with respect to PR-gene expression and resistance to infections, but also rendered the transgenic plants more resistant to infection by P. syringae in the absence of SAR induction.
Collapse
Affiliation(s)
- H Cao
- Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
492
|
|
493
|
Sticher L, Mauch-Mani B, Métraux JP. Systemic acquired resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 1997; 35:235-70. [PMID: 15012523 DOI: 10.1146/annurev.phyto.35.1.235] [Citation(s) in RCA: 460] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper examines induced resistance (SAR) in plants against various insect and pathogenic invaders. SAR confers quantitative protection against a broad spectrum of microorganisms in a manner comparable to immunization in mammals, although the underlying mechanisms differ. Discussed here are the molecular events underlying SAR: the mechanisms involved in SAR, including lignification and other structural barriers, pathogenesis-related proteins and their expression, and the signals for SAR including salicylic acid. Recent findings on the biological role of systemin, ethylene, jasmonates, and electrical signals are reviewed. Chemical activators of SAR comprise inorganic compounds, natural compounds, and synthetic compounds. Plants known to exhibit SAR and induced systemic resistance are listed.
Collapse
Affiliation(s)
- L Sticher
- Institut de Biologie Vegetale, Universite de Fribourg, 3 route A. Gockel, Fribourg, 1700 Switzerland.
| | | | | |
Collapse
|
494
|
Shah J, Tsui F, Klessig DF. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:69-78. [PMID: 9002272 DOI: 10.1094/mpmi.1997.10.1.69] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays an important signaling role in the resistance of many plants to pathogen invasion. Increases in endogenous SA levels have been associated with the hypersensitive response as well as systemic acquired resistance (SAR). SA also induces the expression of a subset of the pathogenesis-related (PR) genes. However, relatively little is known about the events occurring subsequent to SA accumulation during a resistance response. In order to identify mutations in components of the SA signal transduction pathway, we have developed a genetic screen in Arabidopsis thaliana that utilizes the Agrobacterium tumefaciens tms2 gene as a counter-selectable marker. SA-inducible expression of the tms2 gene from the tobacco PR-1a promoter confers sensitivity to alpha-naphthalene acetamide (alpha-NAM), resulting in inhibition of root growth in germinating transgenic Arabidopsis seedlings. Mutants in which root growth is insensitive to alpha-NAM have been selected from this PR-1a:tms2 transgenic line with the expectation that a subset will lack a regulatory component downstream of SA. The sail mutant so identified expressed neither the PR-1a:tms2 transgene nor the endogenous Arabidopsis PR-1, PR-2, and PR-5 genes in response to SA. These genes also were not induced in sai1 by 2,6-dichloroisonicotinic acid (INA) or benzothiadiazole (BTH), two chemical inducers of SAR. As expected of a mutation acting downstream of SA, sai1 plants accumulate SA and its glucoside in response to infection with an avirulent pathogen and are more susceptible to this avirulent pathogen than the wild-type parent. sai1 is allelic to npr1, a previously identified SA-noninducible mutation. The recessive nature of the noninducible sai1 mutation suggests that the wild-type SAI1 gene acts as a positive regulator in the SA signal transduction pathway.
Collapse
Affiliation(s)
- J Shah
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855, USA
| | | | | |
Collapse
|
495
|
Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. THE PLANT CELL 1996; 8:2309-2323. [PMID: 8989885 DOI: 10.2307/3870470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response.
Collapse
Affiliation(s)
- I A Penninckx
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. THE PLANT CELL 1996; 8:2309-23. [PMID: 8989885 PMCID: PMC161354 DOI: 10.1105/tpc.8.12.2309] [Citation(s) in RCA: 564] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response.
Collapse
Affiliation(s)
- I A Penninckx
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Zhao J, Last RL. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. THE PLANT CELL 1996; 8:2235-44. [PMID: 8989880 PMCID: PMC161348 DOI: 10.1105/tpc.8.12.2235] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Little is known about the mechanisms that couple regulation of secondary metabolic pathways to the synthesis of primary metabolic precursors. Camalexin, an indolic secondary metabolite, appears to be the major phytoalexin in Arabidopsis. It was previously shown that camalexin accumulation is caused by infection with plant pathogens, by abiotic elicitors, and in spontaneous lesions in the accelerated cell death mutant acd2. We demonstrate that the accumulation of this phytoalexin is accompanied by the induction of the mRNAs and proteins for all of the tryptophan biosynthetic enzymes tested. A strong correlation was observed between the magnitude of camalexin accumulation and the induction of tryptophan biosynthetic proteins, indicating coordinate regulation of these processes. Production of disease symptoms is not sufficient for the response because systemic infection with cauliflower mosaic virus or cucumber mosaic virus did not induce the tryptophan pathway enzymes or camalexin accumulation. Salicylic acid appears to be required, but unlike other documented pathogenesis-related proteins, it is not sufficient for the coordinate induction. Results with trp mutants suggest that the tryptophan pathway is not rate limiting for camalexin accumulation. Taken together, these results are consistent with the hypothesis that the regulation of the tryptophan pathway in plants responds to needs for biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- J Zhao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA
| | | |
Collapse
|
498
|
Hunt MD, Neuenschwander UH, Delaney TP, Weymann KB, Friedrich LB, Lawton KA, Steiner HY, Ryals JA. Recent advances in systemic acquired resistance research--a review. Gene 1996; 179:89-95. [PMID: 8955633 DOI: 10.1016/s0378-1119(96)00429-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about the signal transduction events that lead to the establishment of the broad-spectrum, inducible plant immunity called systemic acquired resistance (SAR). Salicylic acid (SA) accumulation has been shown to be essential for the expression of SAR and plays a key role in SAR signaling. Hydrogen peroxide has been proposed to serve as a second messenger of SA. However, our results do not support such a role in the establishment of SAR. Further elucidation of SAR signal transduction has been facilitated by the identification and characterization of mutants. The lesions simulating disease (lsd). resistance response mutant class exhibits spontaneous lesions similar to those that occur during the hypersensitive response. Interestingly, some lsd mutants lose their lesioned phenotype when SA accumulation is prevented by expression of the nahG gene (encoding salicylate hydroxylase), thereby providing evidence for a feedback loop in SAR signal transduction. Characterization of a mutant non-responsive to SAR activator treatments has provided additional evidence for common signaling components between SAR and gene-for-gene resistance.
Collapse
Affiliation(s)
- M D Hunt
- Agricultural Biotechnology Research Unit, Ciba-Geigy Corporation, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
499
|
Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. THE PLANT CELL 1996; 8:2033-46. [PMID: 8953768 PMCID: PMC161332 DOI: 10.1105/tpc.8.11.2033] [Citation(s) in RCA: 357] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The interaction between Arabidopsis and the biotrophic oomycete Peronospora parasitica (downy mildew) provides an attractive model pathosystem to identify molecular components of the host that are required for genotype-specific recognition of the parasite. These components are the so-called RPP genes (for resistance to P. parasitica). Mutational analysis of the ecotype Wassilewskija (Ws-0) revealed an RPP-nonspecific locus called EDS1 (for enhanced disease susceptibility) that is required for the function of RPP genes on chromosomes 3 (RPP1/RPP14 and RPP10) and 4 (RPP12). Genetic analyses demonstrated that the eds1 mutation is recessive and is not a defective allele of any known RPP gene, mapping to the bottom arm of chromosome 3 (approximately 13 centimorgans below RPP1/RPP14). Phenotypically, the Ws-eds1 mutant seedlings supported heavy sporulation by P. parasitica isolates that are each diagnostic for one of the RPP genes in wild-type Ws-0; none of the isolates is capable of sporulating on wild-type Ws-0. Ws-eds1 seedlings exhibited enhanced susceptibility to some P. parasitica isolates when compared with a compatible wild-type ecotype, Columbia, and the eds1 parental ecotype, Ws-0. This was observed as earlier initiation of sporulation and elevated production of conidiosporangia. Surprisingly, cotyledons of Ws-eds1 also supported low sporulation by five isolates of P. parasitica from Brassica oleracea. These isolates were unable to sporulate on > 100 ecotypes of Arabidopsis, including wild-type Ws-0. An isolate of Albugo candida (white blister) from B. oleracea also sporulated on Ws-eds1, but the mutant exhibited no alteration in phenotype when inoculated with several oomycete isolates from other host species. The bacterial resistance gene RPM1, conferring specific recognition of the avirulence gene avrB from Pseudomonas syringae pv glycinea, was not compromised in Ws-eds1 plants. The mutant also retained full responsiveness to the chemical inducer of systemic acquired resistance, 2,6-dichloroisonicotinic acid; Ws-eds1 seedlings treated with 2,6-dichloroisonicotinic acid became resistant to the Ws-0-compatible and Ws-0-incompatible P. parasitica isolates Emwa1 and Noco2, respectively. In summary, the EDS1 gene appears to be a necessary component of the resistance response specified by several RPP genes and is likely to function upstream from the convergence of disease resistance pathways in Arabidopsis.
Collapse
Affiliation(s)
- J E Parker
- Sainsbury Laboratory, Norwich Research Park, United Kingdom
| | | | | | | | | | | |
Collapse
|
500
|
Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. THE PLANT CELL 1996; 8:2033-2046. [PMID: 8953768 DOI: 10.2307/3870410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The interaction between Arabidopsis and the biotrophic oomycete Peronospora parasitica (downy mildew) provides an attractive model pathosystem to identify molecular components of the host that are required for genotype-specific recognition of the parasite. These components are the so-called RPP genes (for resistance to P. parasitica). Mutational analysis of the ecotype Wassilewskija (Ws-0) revealed an RPP-nonspecific locus called EDS1 (for enhanced disease susceptibility) that is required for the function of RPP genes on chromosomes 3 (RPP1/RPP14 and RPP10) and 4 (RPP12). Genetic analyses demonstrated that the eds1 mutation is recessive and is not a defective allele of any known RPP gene, mapping to the bottom arm of chromosome 3 (approximately 13 centimorgans below RPP1/RPP14). Phenotypically, the Ws-eds1 mutant seedlings supported heavy sporulation by P. parasitica isolates that are each diagnostic for one of the RPP genes in wild-type Ws-0; none of the isolates is capable of sporulating on wild-type Ws-0. Ws-eds1 seedlings exhibited enhanced susceptibility to some P. parasitica isolates when compared with a compatible wild-type ecotype, Columbia, and the eds1 parental ecotype, Ws-0. This was observed as earlier initiation of sporulation and elevated production of conidiosporangia. Surprisingly, cotyledons of Ws-eds1 also supported low sporulation by five isolates of P. parasitica from Brassica oleracea. These isolates were unable to sporulate on > 100 ecotypes of Arabidopsis, including wild-type Ws-0. An isolate of Albugo candida (white blister) from B. oleracea also sporulated on Ws-eds1, but the mutant exhibited no alteration in phenotype when inoculated with several oomycete isolates from other host species. The bacterial resistance gene RPM1, conferring specific recognition of the avirulence gene avrB from Pseudomonas syringae pv glycinea, was not compromised in Ws-eds1 plants. The mutant also retained full responsiveness to the chemical inducer of systemic acquired resistance, 2,6-dichloroisonicotinic acid; Ws-eds1 seedlings treated with 2,6-dichloroisonicotinic acid became resistant to the Ws-0-compatible and Ws-0-incompatible P. parasitica isolates Emwa1 and Noco2, respectively. In summary, the EDS1 gene appears to be a necessary component of the resistance response specified by several RPP genes and is likely to function upstream from the convergence of disease resistance pathways in Arabidopsis.
Collapse
Affiliation(s)
- J E Parker
- Sainsbury Laboratory, Norwich Research Park, United Kingdom
| | | | | | | | | | | |
Collapse
|