451
|
Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 2014; 4:2151. [PMID: 23877117 DOI: 10.1038/ncomms3151] [Citation(s) in RCA: 549] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022] Open
Abstract
The human gut microbiota is a reservoir of antibiotic resistance genes, but little is known about their diversity and richness within the gut. Here we analyse the antibiotic resistance genes of gut microbiota from 162 individuals. We identify a total of 1,093 antibiotic resistance genes and find that Chinese individuals harbour the highest number and abundance of antibiotic resistance genes, followed by Danish and Spanish individuals. Single-nucleotide polymorphism-based analysis indicates that antibiotic resistance genes from the two European populations are more closely related while the Chinese ones are clustered separately. We also confirm high abundance of tetracycline resistance genes with this large cohort study. Our study provides a broad view of antibiotic resistance genes in the human gut microbiota.
Collapse
|
452
|
Macfarlane S. Antibiotic treatments and microbes in the gut. Environ Microbiol 2014; 16:919-24. [PMID: 24471523 DOI: 10.1111/1462-2920.12399] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/11/2014] [Indexed: 12/29/2022]
Abstract
Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health.
Collapse
Affiliation(s)
- Sandra Macfarlane
- Microbiology and Gut Biology Group, Ninewells Hospital Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
453
|
Forslund K, Sunagawa S, Coelho LP, Bork P. Metagenomic insights into the human gut resistome and the forces that shape it. Bioessays 2014; 36:316-29. [PMID: 24474281 DOI: 10.1002/bies.201300143] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We show how metagenomic analysis of the human gut antibiotic resistome, compared across large populations and against environmental or agricultural resistomes, suggests a strong anthropogenic cause behind increasing antibiotic resistance in bacteria. This area has been the subject of intense and polarized debate driven by economic and political concerns; therefore such recently available insights address an important need. We derive and compare antibiotic resistomes of human gut microbes from 832 individuals from ten different countries. We observe and describe significant differences between samples from these countries in the gut resistance potential, in line with expectations from antibiotic usage and exposure in medical and food production contexts. Our results imply roles for both of these sources in increased resistance among pathogens in recent history. In contrast, other available metadata such as age, body mass index, sex, or health status have little effect on the antibiotic resistance potential of human gut microbes. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Kristoffer Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | | |
Collapse
|
454
|
Card RM, Warburton PJ, MacLaren N, Mullany P, Allan E, Anjum MF. Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans. PLoS One 2014; 9:e86428. [PMID: 24466089 PMCID: PMC3899262 DOI: 10.1371/journal.pone.0086428] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/07/2013] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim). The most commonly detected genes were erm(B), blaTEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy.
Collapse
Affiliation(s)
- Roderick M. Card
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Philip J. Warburton
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Nikki MacLaren
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Peter Mullany
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Elaine Allan
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
455
|
Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, De Santis B, Brera C, Caroli AM, Milanesi L, Marabotti A. Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci 2014; 18:145-61. [PMID: 24621061 PMCID: PMC4485698 DOI: 10.1179/1476830513y.0000000108] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. Objective Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. Methods We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. Discussion Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the ‘gut-brain axis’ communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment–xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. Conclusions We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease.
Collapse
Affiliation(s)
- Alessandra Mezzelani
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
- Correspondence to: Alessandra Mezzelani, Institute for Biomedical Technologies, National Research Council, Milan, Segrate, Italy.
| | - Martina Landini
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Francesco Facchiano
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Maria Elisabetta Raggi
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Laura Villa
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Massimo Molteni
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Barbara De Santis
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Carlo Brera
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Anna Maria Caroli
- Dip. Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia (BS), Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Anna Marabotti
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
456
|
Roberts AP, Mullany P. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 2014; 8:1441-50. [DOI: 10.1586/eri.10.106] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
457
|
Abstract
Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community.
Collapse
Affiliation(s)
- Stephanie J Yaung
- Program in Medical Engineering Medical Physics, Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
458
|
Ghosh TS, Gupta SS, Nair GB, Mande SS. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS One 2013; 8:e83823. [PMID: 24391833 PMCID: PMC3877126 DOI: 10.1371/journal.pone.0083823] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
The spread of antibiotic resistance, originating from the rampant and unrestrictive use of antibiotics in humans and livestock over the past few decades has emerged as a global health problem. This problem has been further compounded by recent reports implicating the gut microbial communities to act as reservoirs of antibiotic resistance. We have profiled the presence of probable antibiotic resistance genes in the gut flora of 275 individuals from eight different nationalities. For this purpose, available metagenomic data sets corresponding to 275 gut microbiomes were analyzed. Sequence similarity searches of the genomic fragments constituting each of these metagenomes were performed against genes conferring resistance to around 240 antibiotics. Potential antibiotic resistance genes conferring resistance against 53 different antibiotics were detected in the human gut microflora analysed in this study. In addition to several geography/country-specific patterns, four distinct clusters of gut microbiomes, referred to as ‘Resistotypes’, exhibiting similarities in their antibiotic resistance profiles, were identified. Groups of antibiotics having similarities in their resistance patterns within each of these clusters were also detected. Apart from this, mobile multi-drug resistance gene operons were detected in certain gut microbiomes. The study highlighted an alarmingly high abundance of antibiotic resistance genes in two infant gut microbiomes. The results obtained in the present study presents a holistic ‘big picture’ on the spectra of antibiotic resistance within our gut microbiota across different geographies. Such insights may help in implementation of new regulations and stringency on the existing ones.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- BioSciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., Pune, Maharashtra, India
| | - Sourav Sen Gupta
- Translational Health Sciences and Technology Institute, Gurgaon, Haryana, India
| | | | - Sharmila S. Mande
- BioSciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
459
|
Fouhy F, O’Connell Motherway M, Fitzgerald GF, Ross RP, Stanton C, van Sinderen D, Cotter PD. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams. PLoS One 2013; 8:e82653. [PMID: 24324818 PMCID: PMC3855789 DOI: 10.1371/journal.pone.0082653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022] Open
Abstract
Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.
Collapse
Affiliation(s)
- Fiona Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Microbiology Department, University College Cork, Cork, Ireland
| | - Mary O’Connell Motherway
- Microbiology Department, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Gerald F. Fitzgerald
- Microbiology Department, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Douwe van Sinderen
- Microbiology Department, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
460
|
Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ, Moya A, Latorre A, Gosalbes MJ. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 2013; 8:e80201. [PMID: 24282523 PMCID: PMC3839934 DOI: 10.1371/journal.pone.0080201] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/28/2013] [Indexed: 02/07/2023] Open
Abstract
The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing) microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Alejandro Artacho
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
| | - Henrik Knecht
- Institute for Clinical Molecular Biology at the Christian-Albrechts University, Kiel, Germany
| | - María Loreto Ferrús
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
| | - Anette Friedrichs
- Institute for Clinical Molecular Biology at the Christian-Albrechts University, Kiel, Germany
- Department for Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan J. Ott
- Institute for Clinical Molecular Biology at the Christian-Albrechts University, Kiel, Germany
- Department for Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andrés Moya
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Amparo Latorre
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud del Centro Superior de Investigación en Salud Pública e Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
461
|
Chen B, Yang Y, Liang X, Yu K, Zhang T, Li X. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12753-12760. [PMID: 24125531 DOI: 10.1021/es403818e] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.
Collapse
Affiliation(s)
- Baowei Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
462
|
Shetty SA, Marathe NP, Lanjekar V, Ranade D, Shouche YS. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 2013; 8:e79353. [PMID: 24260205 PMCID: PMC3832451 DOI: 10.1371/journal.pone.0079353] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022] Open
Abstract
With increasing number of novel bacteria being isolated from the human gut ecosystem, there is a greater need to study their role in the gut ecosystem and their effect on the host health. In the present study, we carried out in silico genome-wide analysis of two novel Megasphaera sp. isolates NM10 (DSM25563) and BL7 (DSM25562), isolated from feces of two healthy individuals and validated the key features by in vitro studies. The analysis revealed the general metabolic potential, adaptive features and the potential effects of these isolates on the host. The comparative genome analysis of the two human gut isolates NM10 and BL7 with ruminal isolate Megasphaera elsdenii (DSM20460) highlighted the differential adaptive features for their survival in human gut. The key findings include features like bile resistance, presence of various sensory and regulatory systems, stress response systems, membrane transporters and resistance to antibiotics. Comparison of the “glycobiome” based on the genomes of the ruminal isolate with the human gut isolates NM10 and BL revealed the presence of diverse and unique sets of Carbohydrate-Active enzymes (CAZymes) amongst these isolates, with a higher collection of CAZymes in the human gut isolates. This could be attributed to the difference in host diet and thereby the environment, consequently suggesting host specific adaptation in these isolates. In silico analysis of metabolic potential predicted the ability of these isolates to produce important metabolites like short chain fatty acids (butyrate, acetate, formate, and caproate), vitamins and essential amino acids, which was further validated by in vitro experiments. The ability of these isolates to produce important metabolites advocates for a potential healthy influence on the host. Further in vivo studies including transcriptomic and proteomic analysis will be required for better understanding the role and impact of these Megasphaera sp. isolates NM10 and BL7 on the human host.
Collapse
Affiliation(s)
- Sudarshan Anand Shetty
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | - Dilip Ranade
- Agharkar Research Institute, Pune, Maharashtra, India
| | - Yogesh S. Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
463
|
Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G, Razia Y, Qin X, Tarr PI, Dantas G. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS One 2013; 8:e78822. [PMID: 24236055 PMCID: PMC3827270 DOI: 10.1371/journal.pone.0078822] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022] Open
Abstract
Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome), yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure), and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000), and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301). We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway). This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective antibiotic pressure in the human host, and that cryptic gut microbes are an important resistance reservoir. The observed transferability of gut-associated resistance genes to a gram-negative (E. coli) host also suggests that the potential for gut-associated resistomes to threaten human health by mediating antibiotic resistance in pathogens warrants further investigation.
Collapse
Affiliation(s)
- Aimée M. Moore
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sanket Patel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kevin J. Forsberg
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bin Wang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gayle Bentley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yasmin Razia
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Gastroenterology, Department of Pediatrics, Children’s Hospital and Regional Medical Center, Seattle, Washington, United States of America
| | - Xuan Qin
- Department of Microbiology, Seattle Children’s Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gautam Dantas
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
464
|
|
465
|
|
466
|
Abstract
ABSTRACT
Recent studies have shown that antibiotic resistance genes are omnipresent in nature. Human use of antimicrobial compounds as therapeutics, growth-promoting agents, pesticides, etc., over the past half century have contributed to this situation.
Collapse
|
467
|
Diene SM, Rolain JM. Investigation of antibiotic resistance in the genomic era of multidrug-resistant Gram-negative bacilli, especially Enterobacteriaceae, Pseudomonas and Acinetobacter. Expert Rev Anti Infect Ther 2013; 11:277-96. [PMID: 23458768 DOI: 10.1586/eri.13.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The increase and spread of multidrug-resistant (MDR) Gram-negative bacteria, including Enterobacteriaceae, Pseudomonas and Acinetobacter species, have become major concerns worldwide. Although the frequent misuse of antibiotic drugs has greatly contributed to worldwide antibiotic resistance by causing a large dispersal of resistance determinants, recent studies demonstrate that these resistance determinants could have emerged from ancient or environmental sources. Moreover, during the last 10 years, we have been witnessing the emergence and development of technologies for high-throughput sequencing, coinciding with an exponential increase in the number of bacterial genomes sequenced. These sequencing technologies allow a complete study of MDR bacterial genomes and are the best way to investigate the genetic determinants of antimicrobial resistance. Accordingly, studies using genome sequencing to decipher resistance determinants in Enterobacteriaceae, Pseudomonas and Acinetobacter species have demonstrated several advantages including, among others: an exhaustive identification of resistance determinants from any clinical, epidemiological or environmental MDR bacterium; identification of the acquisition mechanisms for resistance determinants exchanged between bacterial species through mobile genetic elements and elucidation and understanding, in record time (less than 1 week), of some critical or epidemic events caused by particular pathogenic bacteria. Therefore, it is clear today that the bacterial genome sequencing approach has revolutionized all fields of scientific research and represents a powerful tool to explore the world of microorganisms.
Collapse
Affiliation(s)
- Seydina M Diene
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Bd Jean Moulin 13385 Marseille Cedex 05, France
| | | |
Collapse
|
468
|
|
469
|
Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Antibiotics (Basel) 2013; 2:367-99. [PMID: 27029309 PMCID: PMC4790270 DOI: 10.3390/antibiotics2030367] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022] Open
Abstract
Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.
Collapse
|
470
|
Sun CL, Relman DA. Microbiota's 'little helpers': bacteriophages and antibiotic-associated responses in the gut microbiome. Genome Biol 2013; 14:127. [PMID: 23906048 PMCID: PMC4053952 DOI: 10.1186/gb-2013-14-7-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibiotics alter the abundance and types of bacteriophage-associated genes in the mouse gut, suggesting that phage help bacterial communities during times of stress.
Collapse
|
471
|
Ursell LK, Van Treuren W, Metcalf JL, Pirrung M, Gewirtz A, Knight R. Replenishing our defensive microbes. Bioessays 2013; 35:810-7. [PMID: 23836415 DOI: 10.1002/bies.201300018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large-scale characterization of the human microbiota has largely focused on Western adults, yet these populations may be uncharacteristic because of their diets and lifestyles. In particular, the rise of "Western diseases" may in part stem from reduced exposure to, or even loss of, microbes with which humans have coevolved. Here, we review beneficial microbes associated with pathogen resistance, highlighting the emerging role of complex microbial communities in protecting against disease. We discuss ways in which modern lifestyles and practices may deplete physiologically important microbiota, and explore prospects for reintroducing or encouraging the growth of beneficial microbes to promote the restoration of healthy microbial ecosystems.
Collapse
Affiliation(s)
- Luke K Ursell
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | | | | | | | | | | |
Collapse
|
472
|
Broaders E, Gahan CG, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 2013; 4:271-80. [PMID: 23651955 PMCID: PMC3744512 DOI: 10.4161/gmic.24627] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.
Collapse
Affiliation(s)
- Eileen Broaders
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G.M. Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,School of Pharmacy; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- School of Biosciences; Cardiff University; Cardiff, United Kingdom,Correspondence to: Julian R. Marchesi,
| |
Collapse
|
473
|
Rolain JM. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 2013; 4:173. [PMID: 23805136 PMCID: PMC3690338 DOI: 10.3389/fmicb.2013.00173] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022] Open
Abstract
The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.
Collapse
Affiliation(s)
- Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Aix-Marseille Université Marseille, France
| |
Collapse
|
474
|
Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol 2013; 4:145. [PMID: 23760651 PMCID: PMC3675766 DOI: 10.3389/fmicb.2013.00145] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/21/2013] [Indexed: 12/04/2022] Open
Abstract
Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.
Collapse
Affiliation(s)
- Erica C Pehrsson
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
475
|
The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents 2013; 42:133-40. [PMID: 23746717 DOI: 10.1016/j.ijantimicag.2013.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 11/21/2022]
Abstract
To determine the association of tetracycline resistance determinants with tigecycline sensitivity, tetracycline-resistant Salmonella spp. isolated from clinical and food samples were tested for the presence of tetracycline resistance determinants, tigecycline sensitivity, and the impact of tetA on tigecycline resistance. In addition, the impacts of multiple resistance mechanisms on tigecycline resistance were determined using an isolate with ramR mutation. Of the 49 tetracycline-resistant Salmonella isolates screened, 32 were positive for tetA, 13 were positive for tetB, 2 were positive for tetC and 1 isolate was positive for both tetA and tetB. The minimum inhibitory concentration (MIC) of tigecycline for tetA-carrying isolates ranged from 0.19 mg/L to 3mg/L (mode 0.75 mg/L), whereas the MIC of tigecycline for tetB-carrying isolates ranged from 0.064 mg/L to 0.5mg/L (modes 0.25mg/L and 0.38 mg/L, excluding the isolate with both tetA and tetB). Double frameshift mutations in codons 201, 202 and 203 were observed in partial sequences of the tetA genes in these strains and the majority of published tetA gene sequences. Curing of the tetA genes from three isolates reduced the tigecycline MICs, whilst deletion of ramR increased tigecycline MICs. This study indicates that the tetA gene decreases sensitivity to tigecycline in Salmonella spp. at a low level. With additional resistance mechanisms, tetA-carrying strains can reach the breakpoint for tigecycline resistance.
Collapse
|
476
|
Olsen I, Tribble GD, Fiehn NE, Wang BY. Bacterial sex in dental plaque. J Oral Microbiol 2013; 5:20736. [PMID: 23741559 PMCID: PMC3672468 DOI: 10.3402/jom.v5i0.20736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/14/2022] Open
Abstract
Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.
Collapse
Affiliation(s)
- Ingar Olsen
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Gena D. Tribble
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nils-Erik Fiehn
- Faculty of Health Sciences, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
477
|
Varela AR, Manaia CM. Human health implications of clinically relevant bacteria in wastewater habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3550-3569. [PMID: 23508533 DOI: 10.1007/s11356-013-1594-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | |
Collapse
|
478
|
Perry JA, Wright GD. The antibiotic resistance "mobilome": searching for the link between environment and clinic. Front Microbiol 2013; 4:138. [PMID: 23755047 PMCID: PMC3667243 DOI: 10.3389/fmicb.2013.00138] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 01/30/2023] Open
Abstract
Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Julie A Perry
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada ; Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
479
|
Ruppé E, Andremont A. Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 2013; 4:129. [PMID: 23755045 PMCID: PMC3664761 DOI: 10.3389/fmicb.2013.00129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiota is a complex environment that hosts 1013 to 1014 bacteria. Among these bacteria stand multidrug-resistant enterobacteria (MDRE), which intestinal densities can substantially vary, especially according to antibiotic exposure. The intestinal density of MDRE and their relative abundance (i.e., the proportion between the density of MDRE and the density of total enterobacteria) could play a major role in the infection process or patient-to-patient transmission. This review discusses the recent advances in understanding (i) what causes variations in the density or relative abundance of intestinal colonization, (ii) what are the clinical consequences of these variations, and (iii) what are the perspectives for maintaining these markers at low levels.
Collapse
Affiliation(s)
- Etienne Ruppé
- Laboratoire de Bactériologie, AP-HP, Hôpitaux Paris Nord Val de Seine site Bichat-Claude Bernard, Paris, France
| | | |
Collapse
|
480
|
Wallace BD, Redinbo MR. The human microbiome is a source of therapeutic drug targets. Curr Opin Chem Biol 2013; 17:379-84. [PMID: 23680493 DOI: 10.1016/j.cbpa.2013.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
It was appreciated early in drug discovery that the microbiota play an important role in the efficacy of therapeutic compounds. Indeed, the first antibiotic sulfa drugs were shown in the 1940s to be transformed by the bacteria that encode what we now call the intestinal microbiome. Here we briefly review the roles symbiotic bacteria play in the chemistry of human health, and we focus on the emerging appreciation that specific enzyme targets expressed by microbial symbiotes can be selectively disrupted to achieve clinical outcomes. We conclude that components of the microbiome should be considered 'druggable targets,' and we suggest that our rapidly evolving understanding of the chemical biology of mammalian-microbial symbiosis will translate into improved human health.
Collapse
Affiliation(s)
- Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
481
|
Djordjevic SP, Stokes HW, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86. [PMID: 23641238 PMCID: PMC3639385 DOI: 10.3389/fmicb.2013.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security.
Collapse
|
482
|
Xiao S, Zhang LF, Zhang X, Li SM, Xue FQ. Tracing antibacterial compounds from Acalypha australis
Linn. by spectrum-effect relationships and semi-preparative HPLC. J Sep Sci 2013; 36:1667-76. [DOI: 10.1002/jssc.201201202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sui Xiao
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Shanghai China
| | - Li-Fang Zhang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Shanghai China
| | - Xu Zhang
- School of Pharmacy; Shanghai Jiaotong University; Shanghai China
| | - Su-Mei Li
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Shanghai China
| | - Fei-Qun Xue
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Shanghai China
| |
Collapse
|
483
|
Gray B, Hall P, Gresham H. Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. SENSORS 2013; 13:5130-66. [PMID: 23598501 PMCID: PMC3673130 DOI: 10.3390/s130405130] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery.
Collapse
Affiliation(s)
- Brian Gray
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-505-265-1711 (ext. 2841)
| | - Pamela Hall
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
| | - Hattie Gresham
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| |
Collapse
|
484
|
Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4:87. [PMID: 23616784 PMCID: PMC3627978 DOI: 10.3389/fmicb.2013.00087] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of micro-organisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR) genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors. Recent studies using (functional) metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as polymerase chain reaction for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this “resistome” and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.
Collapse
Affiliation(s)
- John Penders
- Department of Medical Microbiology, Maastricht University Medical Centre+ Maastricht, Netherlands
| | | | | | | |
Collapse
|
485
|
Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol 2013; 58:1123-8. [PMID: 23591127 DOI: 10.1016/j.archoralbio.2013.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was twofold: survey samples from acute and chronic endodontic infections for the presence of genes encoding resistance to beta-lactams, tetracycline and erythromycin, and evaluate the ability of treatment to eliminate these genes from root canals. DESIGN DNA extracts from samples of abscess aspirates (n=25) and root canals of teeth with asymptomatic apical periodontitis (n=24) were used as template for direct detection of the genes blaTEM, cfxA, tetM, tetQ, tetW, and ermC using real-time polymerase chain reaction (PCR). Bacterial presence was determined using PCR with universal bacterial primers. Root canals of the asymptomatic cases were also sampled and evaluated after chemomechanical procedures using NiTi instruments with 2.5% NaOCl irrigation. RESULTS All abscess and initial root canal samples were positive for bacteria. At least one of the target resistance genes was found in 36% of the abscess samples and 67% of the asymptomatic cases. The most prevalent genes in abscesses were blaTEM (24%) and ermC (24%), while tetM (42%) and tetW (29%) prevailed in asymptomatic cases. The blaTEM gene was significantly associated with acute cases (p=0.02). Conversely, tetM was significantly more prevalent in asymptomatic cases (p=0.008). Treatment eliminated resistance genes from most cases. CONCLUSIONS Acute and chronic endodontic infections harboured resistance genes for 3 classes of widely used antibiotics. In most cases, treatment was effective in eliminating these genes, but there were a few cases in which they persisted. The implications of persistence are unknown. Direct detection of resistance genes in abscesses may be a potential method for rapid diagnosis and establishment of proactive antimicrobial therapy.
Collapse
|
486
|
Abstract
Despite increasing concerns over inappropriate use of antibiotics in medicine and food production, population-level resistance transfer into the human gut microbiota has not been demonstrated beyond individual case studies. To determine the "antibiotic resistance potential" for entire microbial communities, we employ metagenomic data and quantify the totality of known resistance genes in each community (its resistome) for 68 classes and subclasses of antibiotics. In 252 fecal metagenomes from three countries, we show that the most abundant resistance determinants are those for antibiotics also used in animals and for antibiotics that have been available longer. Resistance genes are also more abundant in samples from Spain, Italy, and France than from Denmark, the United States, or Japan. Where comparable country-level data on antibiotic use in both humans and animals are available, differences in these statistics match the observed resistance potential differences. The results are robust over time as the antibiotic resistance determinants of individuals persist in the human gut flora for at least a year.
Collapse
|
487
|
van der Meer JWM, Vandenbroucke-Grauls CMJE. Resistance to selective decontamination: the jury is still out. THE LANCET. INFECTIOUS DISEASES 2013; 13:282-3. [DOI: 10.1016/s1473-3099(13)70014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
488
|
Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013; 303:287-92. [PMID: 23499305 DOI: 10.1016/j.ijmm.2013.02.009] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The intrinsic antibiotic resistome is a naturally occurring phenomenon that predates antibiotic chemotherapy and is present in all bacterial species. In addition to the intrinsic resistance mediated by the bacterial outer membrane and active efflux, studies have shown that a surprising number of additional genes and genetic loci also contribute to this phenotype. Antibiotic resistance is rife in both the clinic and the environment; novel therapeutic strategies need to be developed in order to prevent a major global clinical threat. The possibility of inhibiting elements comprising the intrinsic resistome in bacterial pathogens offers the promise for repurposing existing antibiotics against intrinsically resistant bacteria.
Collapse
Affiliation(s)
- Georgina Cox
- DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada
| | | |
Collapse
|
489
|
Stecher B, Maier L, Hardt WD. 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 2013; 11:277-84. [DOI: 10.1038/nrmicro2989] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
490
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
491
|
Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013; 4:20. [PMID: 23422936 PMCID: PMC3574975 DOI: 10.3389/fmicb.2013.00020] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022] Open
Abstract
Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.
Collapse
Affiliation(s)
- Steve P Bernier
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
492
|
Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci Rep 2013; 3:1107. [PMID: 23346364 PMCID: PMC3551230 DOI: 10.1038/srep01107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 01/26/2023] Open
Abstract
The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.
Collapse
|
493
|
Galleria mellonella as a model host to study gut microbe homeostasis and brain infection by the human pathogen listeria monocytogenes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:27-39. [PMID: 23708825 DOI: 10.1007/10_2013_203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gastrointestinal tract in both mammals and insects is associated with microbes (collectively the microbiota), which are controlled by the intestinal immune system. These microbes regulate pathogens that can infect gut epithelial cells, and there is increasing evidence for a reciprocal relationship between beneficial and pathogenic bacteria in the gut and the intestinal immune system. Deciphering these complex interactions between the microbiota and intestinal immune system in mammals requires surrogate model systems, such as larvae of the greater wax moth Galleria mellonella. The exposure of G. mellonella microbiota to antibiotics induces immunity and stress-related genes in the intestine. The model can also provide insight into the virulence mechanisms of pathogens such as Listeria monocytogenes in the human gut and brain. We also discuss the current uses of G. mellonella as a model to develop therapeutic strategies against listeriosis.
Collapse
|
494
|
Maillet N, Lemaitre C, Chikhi R, Lavenier D, Peterlongo P. Compareads: comparing huge metagenomic experiments. BMC Bioinformatics 2012; 13 Suppl 19:S10. [PMID: 23282463 PMCID: PMC3526429 DOI: 10.1186/1471-2105-13-s19-s10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Nowadays, metagenomic sample analyses are mainly achieved by comparing them with a priori knowledge stored in data banks. While powerful, such approaches do not allow to exploit unknown and/or "unculturable" species, for instance estimated at 99% for Bacteria. Methods This work introduces Compareads, a de novo comparative metagenomic approach that returns the reads that are similar between two possibly metagenomic datasets generated by High Throughput Sequencers. One originality of this work consists in its ability to deal with huge datasets. The second main contribution presented in this paper is the design of a probabilistic data structure based on Bloom filters enabling to index millions of reads with a limited memory footprint and a controlled error rate. Results We show that Compareads enables to retrieve biological information while being able to scale to huge datasets. Its time and memory features make Compareads usable on read sets each composed of more than 100 million Illumina reads in a few hours and consuming 4 GB of memory, and thus usable on today's personal computers. Conclusion Using a new data structure, Compareads is a practical solution for comparing de novo huge metagenomic samples. Compareads is released under the CeCILL license and can be freely downloaded from http://alcovna.genouest.org/compareads/.
Collapse
Affiliation(s)
- Nicolas Maillet
- INRIA Rennes - Bretagne Atlantique/IRISA, EPI GenScale, Rennes, France.
| | | | | | | | | |
Collapse
|
495
|
Salloto GRB, Cardoso AM, Coutinho FH, Pinto LH, Vieira RP, Chaia C, Lima JL, Albano RM, Martins OB, Clementino MM. Pollution impacts on bacterioplankton diversity in a tropical urban coastal lagoon system. PLoS One 2012; 7:e51175. [PMID: 23226484 PMCID: PMC3511411 DOI: 10.1371/journal.pone.0051175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/30/2012] [Indexed: 01/29/2023] Open
Abstract
Despite a great number of published studies addressing estuarine, freshwater and marine bacterial diversity, few have examined urban coastal lagoons in tropical habitats. There is an increasing interest in monitoring opportunistic pathogens as well as indigenous microbial community members in these water bodies by current molecular and microbiological approaches. In this work, bacterial isolates were obtained through selective plate dilution methods to evaluate antibiotic resistances. In addition, 16S rRNA gene libraries were prepared from environmental waters and mixed cultures grown in BHI medium inoculated with Jacarepaguá lagoon waters. Denaturing gradient gel electrophoresis (DGGE) analyses showed distinct community profiles between environmental communities from each studied site and their cultured counterparts. A total of 497 bacterial sequences were analyzed by MOTHUR, yielding 245 operational taxonomic units (OTUs) grouped at 97% similarity. CCA diagrams showcased how several environmental variables affect the distribution of 18 bacterial orders throughout the three distinct habitats. UniFrac metrics and Venn diagrams revealed that bacterial communities retrieved through each experimental approach were significantly different and that only one OTU, closely related to Vibrio cholerae, was shared between them. Potentially pathogenic bacteria were isolated from most sampled environments, fifty percent of which showed antibiotic resistance.
Collapse
Affiliation(s)
- Gigliola R. B. Salloto
- Laboratório de Microrganismos de Referência, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alexander M. Cardoso
- Diretoria de Programa, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
- * E-mail:
| | - Felipe H. Coutinho
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo H. Pinto
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo P. Vieira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catia Chaia
- Laboratório de Microrganismos de Referência, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joyce L. Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho M. Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando B. Martins
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maysa M. Clementino
- Laboratório de Microrganismos de Referência, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
496
|
Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11541-9. [PMID: 23035771 DOI: 10.1021/es302657r] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial resistance remains a serious and growing human health challenge. The water environment may represent a key dissemination pathway of resistance elements to and from humans. However, quantitative relationships between landscape features and antibiotic resistance genes (ARGs) have not previously been identified. The objective of this study was to examine correlations between ARGs and putative upstream anthropogenic sources in the watershed. sul1 (sulfonamide) and tet(W) (tetracycline) were measured using quantitative polymerase chain reaction in bed and suspended sediment within the South Platte River Basin, which originates from a pristine region in the Rocky Mountains and runs through a gradient of human activities. A geospatial database was constructed to delineate surface water pathways from animal feeding operations, wastewater treatment plants, and fish hatchery and rearing units to river monitoring points. General linear regression models were compared. Riverine sul1 correlated with upstream capacities of animal feeding operations (R(2) = 0.35, p < 0.001) and wastewater treatment plants (R(2) = 0.34, p < 0.001). Weighting for the inverse distances from animal feeding operations along transport pathways strengthened the observed correlations (R(2) = 0.60-0.64, p < 0.001), suggesting the importance of these pathways in ARG dissemination. Correlations were upheld across the four sampling events during the year, and averaging sul1 measurements in bed and suspended sediments over all events yielded the strongest correlation (R(2) = 0.92, p < 0.001). Conversely, a significant relationship with landscape features was not evident for tet(W), which, in contrast to sul1, is broadly distributed in the pristine region and also relatively more prevalent in animal feeding operation lagoons. The findings highlight the need to focus attention on quantifying the contribution of water pathways to the antibiotic resistance disease burden in humans and offer insight into potential strategies to control the spread of ARGs.
Collapse
Affiliation(s)
- Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
497
|
Bäckhed F, Fraser C, Ringel Y, Sanders M, Sartor R, Sherman P, Versalovic J, Young V, Finlay B. Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host Microbe 2012; 12:611-22. [DOI: 10.1016/j.chom.2012.10.012] [Citation(s) in RCA: 511] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
498
|
Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio 2012; 3:mBio.00377-12. [PMID: 23111871 PMCID: PMC3487773 DOI: 10.1128/mbio.00377-12] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antibiotic treatment can impact nontarget microbes, enriching the pool of resistance genes available to pathogens and altering community profiles of microbes beneficial to hosts. The gut microbiota of adult honeybees, a distinctive community dominated by eight bacterial species, provides an opportunity to examine evolutionary responses to long-term treatment with a single antibiotic. For decades, American beekeepers have routinely treated colonies with oxytetracycline for control of larval pathogens. Using a functional metagenomic screen of bacteria from Maryland bees, we detected a high incidence of tetracycline/oxytetracycline resistance. This resistance is attributable to known resistance loci for which nucleotide sequences and flanking mobility genes were nearly identical to those from human pathogens and from bacteria associated with farm animals. Surveys using diagnostic PCR and sequencing revealed that gut bacteria of honeybees from diverse localities in the United States harbor eight tetracycline resistance loci, including efflux pump genes (tetB, tetC, tetD, tetH, tetL, and tetY) and ribosome protection genes (tetM and tetW), often at high frequencies. Isolates of gut bacteria from Connecticut bees display high levels of tetracycline resistance. Resistance genes were ubiquitous in American samples, though rare in colonies unexposed for 25 years. In contrast, only three resistance loci, at low frequencies, occurred in samples from countries not using antibiotics in beekeeping and samples from wild bumblebees. Thus, long-term antibiotic treatment has caused the bee gut microbiota to accumulate resistance genes, drawn from a widespread pool of highly mobile loci characterized from pathogens and agricultural sites. We found that 50 years of using antibiotics in beekeeping in the United States has resulted in extensive tetracycline resistance in the gut microbiota. These bacteria, which form a distinctive community present in healthy honeybees worldwide, may function in protecting bees from disease and in providing nutrition. In countries that do not use antibiotics in beekeeping, bee gut bacteria contained far fewer resistance genes. The tetracycline resistance that we observed in American samples reflects the capture of mobile resistance genes closely related to those known from human pathogens and agricultural sites. Thus, long-term treatment to control a specific pathogen resulted in the accumulation of a stockpile of resistance capabilities in the microbiota of a healthy gut. This stockpile can, in turn, provide a source of resistance genes for pathogens themselves. The use of novel antibiotics in beekeeping may disrupt bee health, adding to the threats faced by these pollinators.
Collapse
|
499
|
Port JA, Wallace JC, Griffith WC, Faustman EM. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound. PLoS One 2012; 7:e48000. [PMID: 23144718 PMCID: PMC3483302 DOI: 10.1371/journal.pone.0048000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022] Open
Abstract
Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ∼550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial public health monitoring as well as more targeted and functionally-based investigations.
Collapse
Affiliation(s)
- Jesse A. Port
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Institute for Risk Analysis and Risk Communication, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - James C. Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Institute for Risk Analysis and Risk Communication, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Institute for Risk Analysis and Risk Communication, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Institute for Risk Analysis and Risk Communication, School of Public Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
500
|
Rôças IN, Siqueira JF. Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Anaerobe 2012; 18:576-80. [PMID: 23108290 DOI: 10.1016/j.anaerobe.2012.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/29/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes.
Collapse
Affiliation(s)
- Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Estácio de Sá University, Rua Alfredo Baltazar da Silveira, 580/cobertura, Recreio, Rio de Janeiro 22790-710, RJ, Brazil
| | | |
Collapse
|