451
|
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016; 22:479-496. [PMID: 27161598 PMCID: PMC4885782 DOI: 10.1016/j.molmed.2016.04.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.
Collapse
Affiliation(s)
- Natasha C Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Fabien P Chevalier
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
452
|
Farup J, Dalgas U, Keytsman C, Eijnde BO, Wens I. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients. Front Physiol 2016; 7:193. [PMID: 27303309 PMCID: PMC4885877 DOI: 10.3389/fphys.2016.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/13/2016] [Indexed: 12/05/2022] Open
Abstract
Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells—SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7+), myonuclei (MN) and central nuclei content and fiber cross-sectional area (fCSA) was quantified using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fibers in both MS (119%, p < 0.01) and HC (69%, p < 0.05), whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p < 0.05). No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and per fCSA in MS patients increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients.
Collapse
Affiliation(s)
- Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus UniversityAarhus, Denmark; Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus UniversityAarhus, Denmark
| | - Ulrik Dalgas
- Section of Sport Science, Department of Public Health, Aarhus University Aarhus, Denmark
| | - Charly Keytsman
- Faculty of Medicine and Life Sciences, REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Hasselt University Diepenbeek, Belgium
| | - Bert O Eijnde
- Faculty of Medicine and Life Sciences, REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Hasselt University Diepenbeek, Belgium
| | - Inez Wens
- Faculty of Medicine and Life Sciences, REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Hasselt University Diepenbeek, Belgium
| |
Collapse
|
453
|
Qahar M, Takuma Y, Mizunoya W, Tatsumi R, Ikeuchi Y, Nakamura M. Semaphorin 3A promotes activation of Pax7, Myf5, and MyoD through inhibition of emerin expression in activated satellite cells. FEBS Open Bio 2016; 6:529-39. [PMID: 27239431 PMCID: PMC4880721 DOI: 10.1002/2211-5463.12050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
We previously showed that Semaphorin 3A (Sema3A) expression was induced when quiescent muscle satellite cells were stimulated by hepatocyte growth factor and became activated satellite cells (ASCs). However, how Sema3A regulates genes in the early phase of ASCs remains unclear. In this study, we investigated whether Sema3A signaling can regulate the early phase of ASCs, an important satellite cell stage for postnatal growth, repair, and maintenance of skeletal muscle. We showed that expression of the myogenic proliferation regulatory factors Pax7 and Myf5 was decreased in myoblasts transfected with Sema3A siRNA. These cells failed to activate expression MyoD, another myogenic proliferation regulatory factor, during differentiation. Interestingly, some of the Sema3A-depleted cells did not express Pax7 and MyoD and had enlarged nuclei and very large cytoplasmic areas. We also observed that Pax7 and Myf5 expression was increased in Myc-Sema3A overexpressing myoblasts. BrdU analysis indicated that Sema3A regulated proliferation of ASCs. These findings suggest that Sema3A signaling can modulate expression of Pax7, Myf5, and MyoD. Moreover, we found that expression of emerin, an inner nuclear membrane protein, was regulated by Sema3A signaling. Emerin was identified by positional cloning as the gene responsible for the X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD). In conclusion, our results support a role for Sema3A in maintaining ASCs through regulation, via emerin, of Pax7, Myf5, and MyoD expression.
Collapse
Affiliation(s)
- Mulan Qahar
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yuko Takuma
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| |
Collapse
|
454
|
González N, Moresco JJ, Cabezas F, de la Vega E, Bustos F, Yates JR, Olguín HC. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors. PLoS One 2016; 11:e0154919. [PMID: 27144531 PMCID: PMC4856311 DOI: 10.1371/journal.pone.0154919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.
Collapse
Affiliation(s)
- Natalia González
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States of America
| | - Hugo C. Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- * E-mail:
| |
Collapse
|
455
|
Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun 2016; 7:11415. [PMID: 27138650 PMCID: PMC4857399 DOI: 10.1038/ncomms11415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. Muscle PDGFRβ+ cells are interstitial stem/progenitor cells with myogenic potential. Here, Yao et al. show that PDGFRβ+ cell-derived laminin actively regulates their proliferation, differentiation and fate determination.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, Minnesota 55812, USA
| | - Erin H Norris
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA.,The Feil Family Brain and Mind Research Institute, New York, New York 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
456
|
|
457
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
458
|
Wang X, Shen QW, Wang J, Zhang Z, Feng F, Chen T, Zhang Y, Wei H, Li Z, Wang X, Wang Y. KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling. Stem Cells 2016; 34:1310-20. [PMID: 26930448 DOI: 10.1002/stem.2346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 11/11/2022]
Abstract
Retaining muscle stem satellite cell (SC) quiescence is important for the maintenance of stem cell population and tissue regeneration. Accumulating evidence supports the model where key extracellular signals play crucial roles in maintaining SC quiescence or activation, however, the intracellular mechanisms that mediate niche signals to control SC behavior are not fully understood. Here, we reported that KLF7 functioned as a key mediator involved in low-level TGF-β signaling and canonical Notch signaling-induced SC quiescence and myoblast arrest. The data obtained showed that KLF7 was upregulated in quiescent SCs and nonproliferating myoblasts. Silence of KLF7 promoted SCs activation and myoblasts proliferation, but overexpression of KLF7 induced myogenic cell arrest. Notably, the expression of KLF7 was regulated by TGF-β and Notch3 signaling. Knockdown of KLF7 diminished low-level TGF-β and canonical Notch signaling-induced SC quiescence. Investigation into the mechanism revealed that KLF7 regulation of SC function was dependent on p21 and acetylation of Lys227 and/or 231 in the DNA binding domain of KLF7. Our study provides new insights into the regulatory network of muscle stem cell quiescence. Stem Cells 2016;34:1310-1320.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qingwu W Shen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Jie Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhiguo Zhang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, People's Republic of China
| | - Fu Feng
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ting Chen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanyan Zhang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huan Wei
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhongwen Li
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
459
|
Abstract
Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiescent or actively dividing states. 'Professional' stem cells may also co-exist with facultative stem cells, which are more specialized daughter cells that revert to a stem cell state under specific tissue damage conditions. Here, we discuss stem cell strategies as seen in three solid mammalian tissues: the intestine, mammary gland and skeletal muscle.
Collapse
|
460
|
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 2016; 17:267-79. [PMID: 26956195 DOI: 10.1038/nrm.2016.7] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
461
|
Tierney MT, Sacco A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol 2016; 26:434-444. [PMID: 26948993 DOI: 10.1016/j.tcb.2016.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.
Collapse
Affiliation(s)
- Matthew T Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
462
|
Matthews BG, Torreggiani E, Roeder E, Matic I, Grcevic D, Kalajzic I. Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells. Bone 2016; 84:69-77. [PMID: 26721734 PMCID: PMC4755912 DOI: 10.1016/j.bone.2015.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/14/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
Abstract
Heterotopic ossification (HO) is a pathological process where bone forms in connective tissues such as skeletal muscle. Previous studies have suggested that muscle-resident non-myogenic mesenchymal progenitors are the likely source of osteoblasts and chondrocytes in HO. However, the previously identified markers of muscle-resident osteoprogenitors label up to half the osteoblasts within heterotopic lesions, suggesting other cell populations are involved. We have identified alpha smooth muscle actin (αSMA) as a marker of osteoprogenitor cells in bone and periodontium, and of osteo-chondro progenitors in the periosteum during fracture healing. We therefore utilized a lineage tracing approach to evaluate whether αSMACreERT2 identifies osteoprogenitors in the muscle. We show that in the muscle, αSMACreERT2 labels both perivascular cells, and satellite cells. αSMACre-labeled cells undergo osteogenic differentiation in vitro and form osteoblasts and chondrocytes in BMP2-induced HO in vivo. In contrast, Pax7CreERT2-labeled muscle satellite cells were restricted to myogenic differentiation in vitro, and rarely contributed to HO in vivo. Our data indicate that αSMACreERT2 labels a large proportion of osteoprogenitors in skeletal muscle, and therefore represents another marker of muscle-resident cells with osteogenic potential under HO-inducing stimulus. In contrast, muscle satellite cells make minimal contribution to bone formation in vivo.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Elena Torreggiani
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Igor Matic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Danka Grcevic
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
463
|
Rossi G, Antonini S, Bonfanti C, Monteverde S, Vezzali C, Tajbakhsh S, Cossu G, Messina G. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression. Cell Rep 2016; 14:2238-2249. [PMID: 26923583 PMCID: PMC4793149 DOI: 10.1016/j.celrep.2016.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 10/25/2022] Open
Abstract
Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Antonini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Monteverde
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Chiara Vezzali
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Giulio Cossu
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; Institute of Inflammation and Repair, University of Manchester, Oxford Road, M13 9PL Manchester, UK
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
464
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
465
|
Tierney MT, Gromova A, Sesillo FB, Sala D, Spenlé C, Orend G, Sacco A. Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development. Cell Rep 2016; 14:1940-52. [PMID: 26904948 PMCID: PMC4778082 DOI: 10.1016/j.celrep.2016.01.072] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/22/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) exhibit distinct behavior during successive phases of developmental myogenesis. However, how their transition to adulthood is regulated is poorly understood. Here, we show that fetal MuSCs resist progenitor specification and exhibit altered division dynamics, intrinsic features that are progressively lost postnatally. After transplantation, fetal MuSCs expand more efficiently and contribute to muscle repair. Conversely, niche colonization efficiency increases in adulthood, indicating a balance between muscle growth and stem cell pool repopulation. Gene expression profiling identified several extracellular matrix (ECM) molecules preferentially expressed in fetal MuSCs, including tenascin-C, fibronectin, and collagen VI. Loss-of-function experiments confirmed their essential and stagespecific role in regulating MuSC function. Finally, fetal-derived paracrine factors were able to enhance adult MuSC regenerative potential. Together, these findings demonstrate that MuSCs change the way in which they remodel their microenvironment to direct stem cell behavior and support the unique demands of muscle development or repair.
Collapse
Affiliation(s)
- Matthew Timothy Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anastasia Gromova
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0685, USA
| | - Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Sala
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Caroline Spenlé
- Inserm U1109, MN3T Team, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 3 Avenue Molière, 67200 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Gertraud Orend
- Inserm U1109, MN3T Team, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 3 Avenue Molière, 67200 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; LabEx Medalis, Université de Strasbourg, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
466
|
Blanc RS, Vogel G, Chen T, Crist C, Richard S. PRMT7 Preserves Satellite Cell Regenerative Capacity. Cell Rep 2016; 14:1528-1539. [PMID: 26854227 DOI: 10.1016/j.celrep.2016.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023] Open
Abstract
Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.
Collapse
Affiliation(s)
- Roméo Sébastien Blanc
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Gillian Vogel
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Taiping Chen
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Colin Crist
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada.
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
467
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
468
|
Cebrià F. Planarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support. Front Cell Dev Biol 2016; 4:8. [PMID: 26904543 PMCID: PMC4744845 DOI: 10.3389/fcell.2016.00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
The body-wall musculature of adult planarians consists of intricately organized muscle fibers, which after amputation are regenerated rapidly and with great precision through the proliferation and differentiation of pluripotent stem cells. These traits make the planarian body-wall musculature a potentially useful model for the study of cell proliferation, differentiation, and pattern formation. Planarian body-wall muscle shows some ambiguous features common to both skeletal and smooth muscle cells. However, its skeletal nature is implied by the expression of skeletal myosin heavy-chain genes and the myogenic transcription factor myoD. Where and when planarian stem cells become committed to the myogenic lineage during regeneration, how the new muscle cells are integrated into the pre-existing muscle net, and the identity of the molecular pathway controlling the myogenic gene program are key aspects of planarian muscle regeneration that need to be addressed. Expression of the conserved transcription factor myoD has been recently demonstrated in putative myogenic progenitors. Moreover, recent studies suggest that differentiated muscle cells may provide positional information to planarian stem cells during regeneration. Here, I review the limited available knowledge on planarian muscle regeneration.
Collapse
Affiliation(s)
- Francesc Cebrià
- Department of Genetics, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of BarcelonaBarcelona, Spain
| |
Collapse
|
469
|
Kalamgi RC, Larsson L. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Front Physiol 2016; 7:23. [PMID: 26869939 PMCID: PMC4740381 DOI: 10.3389/fphys.2016.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
The complete loss of mechanical stimuli of skeletal muscles, i.e., the loss of external strain, related to weight bearing, and internal strain, related to the contraction of muscle cells, is uniquely observed in pharmacologically paralyzed or deeply sedated mechanically ventilated intensive care unit (ICU) patients. The preferential loss of myosin and myosin associated proteins in limb and trunk muscles is a significant characteristic of critical illness myopathy (CIM) which separates CIM from other types of acquired muscle weaknesses in ICU patients. Mechanical silencing is an important factor triggering CIM. Microgravity or ground based microgravity models form the basis of research on the effect of muscle unloading-reloading, but the mechanisms and effects may differ from the ICU conditions. In order to understand how mechanical tension regulates muscle mass, it is critical to know how muscles sense mechanical information and convert stimulus to intracellular biochemical actions and changes in gene expression, a process called cellular mechanotransduction. In adult skeletal muscles and muscle fibers, this process may differ, the same stimulus can cause divergent response and the same fiber type may undergo opposite changes in different muscles. Skeletal muscle contains multiple types of mechano-sensors and numerous structures that can be affected differently and hence respond differently in distinct muscles.
Collapse
Affiliation(s)
- Rebeca C Kalamgi
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
470
|
Shelar SB, Narasimhan M, Shanmugam G, Litovsky SH, Gounder SS, Karan G, Arulvasu C, Kensler TW, Hoidal JR, Darley-Usmar VM, Rajasekaran NS. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle. FASEB J 2016; 30:1865-79. [PMID: 26839378 DOI: 10.1096/fj.201500153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023]
Abstract
Recently we have reported that age-dependent decline in antioxidant levels accelerated apoptosis and skeletal muscle degeneration. Here, we demonstrate genetic ablation of the master cytoprotective transcription factor, nuclear factor (erythroid-derived-2)-like 2 (Nrf2), aggravates cardiotoxin (CTX)-induced tibialis anterior (TA) muscle damage. Disruption of Nrf2 signaling sustained the CTX-induced burden of reactive oxygen species together with compromised expression of antioxidant genes and proteins. Transcript/protein expression of phenotypic markers of muscle differentiation, namely paired box 7 (satellite cell) and early myogenic differentiation and terminal differentiation (myogenin and myosin heavy chain 2) were increased on d 2 and 4 postinjury but later returned to baseline levels on d 8 and 15 in wild-type (WT) mice. In contrast, these responses were persistently augmented in Nrf2-null mice suggesting that regulation of the regeneration-related signaling mechanisms require Nrf2 for normal functioning. Furthermore, Nrf2-null mice displayed slower regeneration marked by dysregulation of embryonic myosin heavy chain temporal expression. Histologic observations illustrated that Nrf2-null mice displayed smaller, immature TA muscle fibers compared with WT counterparts on d 15 after CTX injury. Improvement in TA muscle morphology and gain in muscle mass evident in the WT mice was not noticeable in the Nrf2-null animals. Taken together these data show that the satellite cell activation, proliferation, and differentiation requires a functional Nrf2 system for effective healing following injury.-Shelar, S. B., Narasimhan, M., Shanmugam, G., Litovsky, S. H., Gounder, S. S., Karan, G., Arulvasu, C., Kensler, T. W., Hoidal, J. R., Darley-Usmar, V. M., Rajasekaran, N. S. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Sandeep Balu Shelar
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gobinath Shanmugam
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Silvio Hector Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sellamuthu S Gounder
- Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John R Hoidal
- Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Victor M Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Cardiovascular Medicine/Pulmonary Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
471
|
Snijders T, Smeets JSJ, van Kranenburg J, Kies AK, van Loon LJC, Verdijk LB. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training. Acta Physiol (Oxf) 2016; 216:231-9. [PMID: 26407634 DOI: 10.1111/apha.12609] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/30/2015] [Accepted: 09/20/2015] [Indexed: 11/27/2022]
Abstract
AIM Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. METHODS Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. RESULTS Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P < 0.01). Myonuclear content increased significantly over time in both the type I (P < 0.01) and type II (P < 0.001) muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P < 0.001). CONCLUSION Increases in myonuclear domain size do not appear to drive myonuclear accretion and muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans.
Collapse
Affiliation(s)
- T. Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; Maastricht the Netherlands
| | - J. S. J. Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; Maastricht the Netherlands
| | - J. van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; Maastricht the Netherlands
| | - A. K. Kies
- DSM Biotechnology Center; Applied Biochemistry Department; Delft the Netherlands
| | - L. J. C. van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; Maastricht the Netherlands
| | - L. B. Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; Maastricht the Netherlands
| |
Collapse
|
472
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
473
|
Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS One 2016; 11:e0147198. [PMID: 26807982 PMCID: PMC4726569 DOI: 10.1371/journal.pone.0147198] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
Background A longstanding goal in regenerative medicine is to reconstitute functional tissus or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised. Methods We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite) cells (SC) and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®. Results We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a “dead zone” devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. Conclusions Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired outcome. Although in all models the muscle regenerates completely, the trajectories of the regenerative process vary considerably. Furthermore, we show that histological parameters are not wholly sufficient to declare that regeneration is complete as molecular alterations (e.g. cycling SCs, cytokines) could have a major persistent impact.
Collapse
Affiliation(s)
- David Hardy
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Est University, Créteil, France
| | - Aurore Besnard
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Mathilde Latil
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Grégory Jouvion
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris France
| | - David Briand
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Cédric Thépenier
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- IRBA, Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Aurélie Guguin
- Inserm, U955, Plateforme de Cytométrie en Flux, Créteil, France
| | - Barbara Gayraud-Morel
- Institut Pasteur, Stem Cells & Development Unit, Department of Developmental & Stem Cell Biology, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines and Inflammation Unit, Infection and Epidemiology Department, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development Unit, Department of Developmental & Stem Cell Biology, Paris, France
| | - Pierre Rocheteau
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Fabrice Chrétien
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris France
- Centre Hospitalier Sainte Anne, Laboratoire de Neuropathologie, Paris, France
- * E-mail:
| |
Collapse
|
474
|
Escobar H, Schöwel V, Spuler S, Marg A, Izsvák Z. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e277. [PMID: 26784637 PMCID: PMC5012550 DOI: 10.1038/mtna.2015.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022]
Abstract
Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| |
Collapse
|
475
|
Czerwinska AM, Grabowska I, Archacka K, Bem J, Swierczek B, Helinska A, Streminska W, Fogtman A, Iwanicka-Nowicka R, Koblowska M, Ciemerych MA. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene. Stem Cells Dev 2016; 25:285-300. [PMID: 26649785 PMCID: PMC4761802 DOI: 10.1089/scd.2015.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs.
Collapse
Affiliation(s)
- Areta M Czerwinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Iwona Grabowska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Karolina Archacka
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Joanna Bem
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Barbara Swierczek
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anita Helinska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Wladyslawa Streminska
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Anna Fogtman
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Marta Koblowska
- 2 Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics , Polish Academy of Sciences, Warsaw, Poland .,3 Department of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Maria A Ciemerych
- 1 Department of Cytology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
476
|
Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle 2016; 6:1. [PMID: 26783424 PMCID: PMC4716636 DOI: 10.1186/s13395-016-0072-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate by virtue of its resident stem cells (satellite cells). This capacity declines with aging, although whether this is due to extrinsic changes in the environment and/or to cell-intrinsic mechanisms associated to aging has been a matter of intense debate. Furthermore, while some groups support that satellite cell aging is reversible by a youthful environment, others support cell-autonomous irreversible changes, even in the presence of youthful factors. Indeed, whereas the parabiosis paradigm has unveiled the environment as responsible for the satellite cell functional decline, satellite cell transplantation studies support cell-intrinsic deficits with aging. In this review, we try to shed light on the potential causes underlying these discrepancies. We propose that the experimental paradigm used to interrogate intrinsic and extrinsic regulation of stem cell function may be a part of the problem. The assays deployed are not equivalent and may overburden specific cellular regulatory processes and thus probe different aspects of satellite cell properties. Finally, distinct subsets of satellite cells may be under different modes of molecular control and mobilized preferentially in one paradigm than in the other. A better understanding of how satellite cells molecularly adapt during aging and their context-dependent deployment during injury and transplantation will lead to the development of efficacious compensating strategies that maintain stem cell fitness and tissue homeostasis throughout life.
Collapse
Affiliation(s)
- Andrew S Brack
- Department of Orthopaedic Surgery, Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, University of California San Francisco, 35 Medical Way, San Francisco, CA 94143 USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University, ICREA and Ciberned, Dr. Aiguader, 88, E-08003, Barcelona, Spain
| |
Collapse
|
477
|
Biacchesi S, Jouvion G, Mérour E, Boukadiri A, Desdouits M, Ozden S, Huerre M, Ceccaldi PE, Brémont M. Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection. Vet Res 2016; 47:9. [PMID: 26743565 PMCID: PMC4705810 DOI: 10.1186/s13567-015-0301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022] Open
Abstract
Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.
Collapse
Affiliation(s)
- Stéphane Biacchesi
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Grégory Jouvion
- Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France.
| | - Emilie Mérour
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Abdelhak Boukadiri
- UMR INRA, Génétique Animale et Biologie Intégrative, Equipe Génétique Immunité et Santé, Jouy-en-Josas, France.
| | - Marion Desdouits
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Simona Ozden
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France.
| | - Michel Huerre
- Institut Pasteur, Unité Recherche et Expertise Histotechnologie et Pathologie, Paris, France.
| | - Pierre-Emmanuel Ceccaldi
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Michel Brémont
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| |
Collapse
|
478
|
Uezumi A, Kasai T, Tsuchida K. Identification, Isolation, and Characterization of Mesenchymal Progenitors in Mouse and Human Skeletal Muscle. Methods Mol Biol 2016; 1460:241-253. [PMID: 27492177 DOI: 10.1007/978-1-4939-3810-0_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesenchymal progenitors residing in the muscle interstitial space contribute to pathogeneses such as fat infiltration and fibrosis. Because fat infiltration and fibrosis are hallmarks of diseased muscle, it is important to establish an accurate and reproducible method for isolating mesenchymal progenitors for research on muscle diseases. In this chapter, we describe methods based on fluorescence-activated cell sorting (FACS) to purify mesenchymal progenitors from mouse and human skeletal muscle using the most reliable marker for mesenchymal progenitors, PDGFRα. These methods allow concurrent isolation of the muscle stem cells called satellite cells. The quality of isolated mesenchymal progenitors is confirmed by their remarkable adipogenic potential without myogenic capacity, while purified satellite cells possess robust myogenic activity with no adipogenic potential. Simultaneous isolation of both mesenchymal progenitors and satellite cells from mouse and human tissues provides a powerful platform for studying skeletal muscle regeneration and diseases.
Collapse
Affiliation(s)
- Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Takehiro Kasai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
479
|
Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, Koromilas A, Crist C. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell 2016; 18:79-90. [DOI: 10.1016/j.stem.2015.09.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/21/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
|
480
|
Joanisse S, Parise G. Cytokine Mediated Control of Muscle Stem Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:27-44. [DOI: 10.1007/978-3-319-27511-6_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
481
|
Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK. Diabetes 2016; 65:188-200. [PMID: 26384382 PMCID: PMC4686944 DOI: 10.2337/db15-0647] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations.
Collapse
Affiliation(s)
- Xing Fu
- Washington Center for Muscle Biology, Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington State University, Pullman, WA
| | - Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA
| | - Shuming Zhang
- School of Food Science, Washington State University, Pullman, WA
| | - Marc Foretz
- INSERM U1016, Institut Cochin, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France CNRS UMR 8104, Paris, France
| | - Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France CNRS UMR 8104, Paris, France
| | - Min Du
- Washington Center for Muscle Biology, Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington State University, Pullman, WA
| |
Collapse
|
482
|
Smeriglio P, Alonso-Martin S, Masciarelli S, Madaro L, Iosue I, Marrocco V, Relaix F, Fazi F, Marazzi G, Sassoon DA, Bouché M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions via epigenetic modulation of Sca-1 and Pw1 promoters. FASEB J 2015; 30:1404-15. [PMID: 26672000 DOI: 10.1096/fj.15-275420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fatein vitro In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regenerationin vivofollowing transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potentialin vivoand replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, includingSca-1andPw1 Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouché, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functionsviaepigenetic modulation of Sca-1 and Pw1 promoters.
Collapse
Affiliation(s)
- Piera Smeriglio
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Sonia Alonso-Martin
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Silvia Masciarelli
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Luca Madaro
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Ilaria Iosue
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Valeria Marrocco
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Frédéric Relaix
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Francesco Fazi
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Giovanna Marazzi
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - David A Sassoon
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Marina Bouché
- *Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition Unité Mixte de Recherche en Santé 1166 INSERM/Sorbonne University (Pierre and Marie Curie University, Paris VI), Paris, France; Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Unit of Histology, Sapienza University of Rome, Rome, Italy; INSERM Unité 955 Institut Mondor de Recherche Biomédicale, Creteil, France; Université Paris-Est Créteil, Faculty of Medicine, Creteil, France; Sorbonne Universités, Pierre and Marie Curie University, Paris VI, INSERM Unité Mixte de Recherche en Santé 974, Centre National de la Recherche Scientifique FRE3617, Center for Research in Myology, Paris, France; Etablissement Français du Sang, Creteil, France; and Université Paris Est, Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| |
Collapse
|
483
|
Rocheteau P, Chatre L, Briand D, Mebarki M, Jouvion G, Bardon J, Crochemore C, Serrani P, Lecci PP, Latil M, Matot B, Carlier PG, Latronico N, Huchet C, Lafoux A, Sharshar T, Ricchetti M, Chrétien F. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun 2015; 6:10145. [PMID: 26666572 PMCID: PMC4682118 DOI: 10.1038/ncomms10145] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity. Sepsis patients often develop muscle atrophy that can last for years. Here the authors show in a mouse model that sepsis causes long-term impairment of the satellite cells, affecting mitochondrial function and energy metabolism, and that injection of mesenchymal stem cells restores satellite cell metabolism and muscle regeneration.
Collapse
Affiliation(s)
- P Rocheteau
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - L Chatre
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Stem Cells and Development, 75724 cedex15, Paris, France.,Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3525, 75724 cedex15, Paris, France
| | - D Briand
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - M Mebarki
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - G Jouvion
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - J Bardon
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - C Crochemore
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Stem Cells and Development, 75724 cedex15, Paris, France.,Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3525, 75724 cedex15, Paris, France
| | - P Serrani
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - P P Lecci
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - M Latil
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France
| | - B Matot
- NMR Laboratory, Institute of Myology, Paris 75013, France.,CEA, I2BM, MIRCen, NMR Laboratory, Paris 75013, France
| | - P G Carlier
- NMR Laboratory, Institute of Myology, Paris 75013, France.,CEA, I2BM, MIRCen, NMR Laboratory, Paris 75013, France
| | - N Latronico
- Anesthesia and Reanimation Department, Department of Surgery, University of Brescia, Brescia 25121, Italy
| | - C Huchet
- INSERM UMR1087/ CNRS UMR6291, Institut du Thorax, Therassay, Université de Nantes, Faculté des Sciences et des Techniques, F44322 Nantes 44000, France
| | - A Lafoux
- INSERM UMR1087/ CNRS UMR6291, Institut du Thorax, Therassay, Université de Nantes, Faculté des Sciences et des Techniques, F44322 Nantes 44000, France
| | - T Sharshar
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France.,Service de réanimation médico-chirurgicale adulte, Hôpital Raymond Poincaré, Garches 92380, France.,Université Versailles Saint Quentin, Versailles 78000, France.,TRIGGERSEP, F-CRIN Network, Versailles 78000, France
| | - M Ricchetti
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Stem Cells and Development, 75724 cedex15, Paris, France.,Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3525, 75724 cedex15, Paris, France
| | - F Chrétien
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, 75724 cedex15, Paris, France.,TRIGGERSEP, F-CRIN Network, Versailles 78000, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris 75014, France.,Paris Descartes University, Sorbonne Paris Cité, Paris 75006, France
| |
Collapse
|
484
|
Lu Y, Bradley JS, Siegel PB, Yang N, Johnson SE. Selection for divergent body size alters rates of embryonic skeletal muscle formation and muscle gene expression patterns. Dev Growth Differ 2015; 57:614-24. [PMID: 26660844 DOI: 10.1111/dgd.12250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
Abstract
The impact of divergent selection for body size on embryogenesis is poorly understood. The objective of this experiment was to document skeletal muscle development during embryogenesis in two lines of chickens that display divergent growth as adults. Results reveal that after 54 generations of opposing selection from a common founder population, the embryos from the low weight select (LWS) line develop more rapidly during early embryogenesis than those from the high weight select (HWS) line. Muscle formation during the late embryonic period is more rapid and extensive in the HWS embryo than in the LWS contemporary. Isolated muscle progenitors from embryonic day 10 HWS embryos proliferated more rapidly, forming fibers sooner with a larger size than the LWS cells. The limited myogenic capacity of the LWS progenitor cells is not attributed to altered patterns of expression of Pax7, Pax3 or the myogenic regulatory factor genes. Members of the fibroblast growth factor family are potent mitogens and inhibitors of myoblast differentiation. Transcript abundance of FGF2 and FGF4 was measured in cultures of HWS and LWS progenitors as a function of time. The pattern of expression of FGF4 was similar between HWS and LWS with a large increase between days 1 and 3 followed by a reduction at day 5 of culture. Expression of FGF2 in LWS muscle cells did not change while a significant reduction in FGF2 expression was observed by day 5 in the HWS. Our results indicate that divergent selection for postnatal growth has altered embryonic development.
Collapse
Affiliation(s)
- Yue Lu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Jennifer S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
485
|
Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015; 6:10123. [PMID: 26648529 PMCID: PMC4682113 DOI: 10.1038/ncomms10123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
486
|
Pagano AF, Demangel R, Brioche T, Jublanc E, Bertrand-Gaday C, Candau R, Dechesne CA, Dani C, Bonnieu A, Py G, Chopard A. Muscle Regeneration with Intermuscular Adipose Tissue (IMAT) Accumulation Is Modulated by Mechanical Constraints. PLoS One 2015; 10:e0144230. [PMID: 26629696 PMCID: PMC4668059 DOI: 10.1371/journal.pone.0144230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022] Open
Abstract
Sports trauma are able to induce muscle injury with fibrosis and accumulation of intermuscular adipose tissue (IMAT), which affect muscle function. This study was designed to investigate whether hypoactivity would influence IMAT accumulation in regenerating mouse skeletal muscle using the glycerol model of muscle regeneration. The animals were immediately hindlimb unloaded for 21 days after glycerol injection into the tibialis anterior (TA) muscle. Muscle fiber and adipocyte cross-sectional area (CSA) and IMAT accumulation were determined by histomorphometric analysis. Adipogenesis during regenerative processes was examined using RT-qPCR and Western blot quantification. Twenty-one days of hindlimb unloading resulted in decreases of 38% and 50.6% in the muscle weight/body weight ratio and CSA, respectively, in soleus muscle. Glycerol injection into TA induced IMAT accumulation, reaching 3% of control normal-loading muscle area. This IMAT accumulation was largely inhibited in unloading conditions (0.09%) and concomitant with a marked reduction in perilipin and FABP4 protein content, two key markers of mature adipocytes. Induction of PPARγ and C/EBPα mRNA, two markers of adipogenesis, was also decreased. Furthermore, the protein expression of PDGFRα, a cell surface marker of fibro/adipogenic progenitors, was much lower in regenerating TA from the unloaded group. Exposure of regenerating muscle to hypoactivity severely reduces IMAT development and accumulation. These results provide new insight into the mechanisms regulating IMAT development in skeletal muscle and highlight the importance of taking into account the level of mechanical constraint imposed on skeletal muscle during the regeneration processes.
Collapse
Affiliation(s)
- Allan F. Pagano
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Rémi Demangel
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Elodie Jublanc
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Christelle Bertrand-Gaday
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Robin Candau
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Claude A. Dechesne
- Université Nice-Sophia Antipolis, iBV, CNRS UMR7277, INSERM U1091, 06107, Nice, France
| | - Christian Dani
- Université Nice-Sophia Antipolis, iBV, CNRS UMR7277, INSERM U1091, 06107, Nice, France
| | - Anne Bonnieu
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
- * E-mail:
| |
Collapse
|
487
|
Dey D, Goldhamer DJ, Yu PB. Contributions of muscle-resident progenitor cells to homeostasis and disease. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:175-188. [PMID: 29075589 PMCID: PMC5654566 DOI: 10.1007/s40610-015-0025-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to regulate regeneration or repair. We describe the known phylogenetic and functional relationships of the multiple progenitor populations residing within skeletal muscle, their putative roles in the coordination of injury repair, and their possible contributions to health and disease.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| | - David J. Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| |
Collapse
|
488
|
Jackson JR, Kirby TJ, Fry CS, Cooper RL, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skelet Muscle 2015; 5:41. [PMID: 26579218 PMCID: PMC4647638 DOI: 10.1186/s13395-015-0065-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Satellite cells, or muscle stem cells, have been thought to be responsible for all muscle plasticity, but recent studies using genetically modified mouse models that allow for the conditional ablation of satellite cells have challenged this dogma. Results have confirmed the absolute requirement of satellite cells for muscle regeneration but surprisingly also showed that they are not required for adult muscle growth. While the function of satellite cells in muscle growth and regeneration is becoming better defined, their role in the response to aerobic activity remains largely unexplored. The purpose of the current study was to assess the involvement of satellite cells in response to aerobic exercise by evaluating the effect of satellite cell depletion on wheel running performance. Results Four-month-old female Pax7/DTA mice (n = 8–12 per group) were satellite cell depleted via tamoxifen administration; at 6 months of age, mice either remained sedentary or were provided with running wheels for 8 weeks. Plantaris muscles were significantly depleted of Pax7+cells (≥90 % depleted), and 8 weeks of wheel running did not result in an increase in Pax7+ cells, or in myonuclear accretion. Interestingly, satellite cell-depleted animals ran ~27 % less distance and were 23 % slower than non-depleted animals. Wheel running was associated with elevated succinate dehydrogenase activity, muscle vascularization, lipid accumulation, and a significant shift toward more oxidative myosin heavy chain isoforms, as well as an increase in voltage dependent anion channel abundance, a marker of mitochondrial density. Importantly, these changes were independent of satellite cell content. Interestingly, depletion of Pax7+ cells from intra- as well as extrafusal muscle fibers resulted in atrophy of intrafusal fibers, thickening of muscle spindle-associated extracellular matrix, and a marked reduction of functional outcomes including grip strength, gait fluidity, and balance, which likely contributed to the impaired running performance. Conclusions Depletion of Pax7-expressing cells in muscle resulted in reduced voluntary wheel running performance, without affecting markers of aerobic adaptation; however, their absence may perturb proprioception via disruption of muscle spindle fibers resulting in loss of gross motor coordination, indicating that satellite cells have a yet unexplored role in muscle function. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Tyler J Kirby
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Present address: Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY USA
| | - Christopher S Fry
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Present address: Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX USA
| | - Robin L Cooper
- Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Department of Biology, University of Kentucky, Lexington, KY USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| |
Collapse
|
489
|
Jiang C, Wang JH, Yue F, Kuang S. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion. Dev Biol 2015; 409:16-25. [PMID: 26586200 DOI: 10.1016/j.ydbio.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/07/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
Abstract
Skeletal muscle development (myogenesis) is a complex but precisely orchestrated process involving spatiotemporal regulation of the proliferation, differentiation and fusion of myogenic progenitor cells (myoblasts). Here we identify brain expressed x-linked gene 1 (Bex1) as a transient, developmentally regulated gene involved in myoblast fusion. Bex1 expression is undetectable in adult muscles or in quiescent muscle stem cells (satellite cells). During embryonic myogenesis, however, Bex1 is robustly expressed by myogenin(+) differentiating myoblasts, but not by Pax7(+) proliferating myoblasts. Interestingly, Bex1 is initially localized in the cytoplasm and then translocates into the nucleus. During adult muscle regeneration, Bex1 is highly expressed in newly regenerated myofibers and the expression is rapidly downregulated during maturation. Consistently, in cultured myoblasts, Bex1 is not expressed at the proliferation stage but transiently expressed upon induction of myogenic differentiation, following a similar cytoplasm to nucleus translocation pattern as seen in vivo. Using gain- and loss-of-function studies, we found that overexpression of Bex1 promotes the fusion of primary myoblasts without affecting myogenic differentiation and myogenin expression. Conversely, Bex1 knockout myoblasts exhibit obvious fusion defects, even though they express normal levels of myogenin and differentiate normally. These results elucidate a novel role of Bex1 in myogenesis through regulating myoblast fusion.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jing-Hua Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
490
|
Biressi S, Miyabara EH, Gopinath SD, Carlig PMM, Rando TA. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 2015; 6:267ra176. [PMID: 25520397 DOI: 10.1126/scitranslmed.3008411] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously observed that Wnt signaling activates a fibrogenic program in adult muscle stem cells, called satellite cells, during aging. We genetically labeled satellite cells in a mouse model of Duchenne muscular dystrophy to follow their fate during the progression of the disease. We observed that a fraction of satellite cells had a reduced myogenic potential and showed enhanced expression of profibrotic genes compared to age-matched controls. By combining in vitro and in vivo results, we found that expression of transforming growth factor-β2 (TGFβ2) was induced in response to elevated canonical Wnt signaling in dystrophic muscles and that the resulting increase in TGFβ activity affected the behavior of satellite cells in an autocrine or paracrine fashion. Indeed, pharmacological inhibition of the TGFβ pathway in vivo reduced the fibrogenic characteristics of satellite cells. These studies shed new light on the cellular and molecular mechanisms responsible for stem cell dysfunction in dystrophic muscle and may contribute to the development of more effective and specific therapeutic approaches for the prevention of muscle fibrosis.
Collapse
Affiliation(s)
- Stefano Biressi
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elen H Miyabara
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. Anatomy Department, Institute of Biomedical Sciences, University of São Paulo, 2415 Lineu Prestes Avenue, São Paulo, São Paulo 05508-000, Brazil
| | - Suchitra D Gopinath
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Poppy M M Carlig
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. Neurology Service, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
491
|
Blau HM, Cosgrove BD, Ho ATV. The central role of muscle stem cells in regenerative failure with aging. Nat Med 2015; 21:854-62. [PMID: 26248268 DOI: 10.1038/nm.3918] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell-intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged.
Collapse
Affiliation(s)
- Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
492
|
Gunton JE, Girgis CM, Baldock PA, Lips P. Bone muscle interactions and vitamin D. Bone 2015; 80:89-94. [PMID: 25745883 DOI: 10.1016/j.bone.2015.02.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/17/2022]
Abstract
Beyond the established roles of vitamin D in bone and mineral homeostasis, we are becoming increasingly aware of its diverse effects in skeletal muscle. Subjects with severe vitamin D deficiency or mutations of the vitamin D receptor develop generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D in musculoskeletal physiology. At a mechanistic level, vitamin D exerts wide-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, facilitating cross-talk between these tissues. In this review, we discuss emerging evidence that vitamin D regulates bone and muscle in a direct, integrated fashion, positioning the vitamin D pathway as a potential therapeutic target for musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Jenny E Gunton
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | - Christian M Girgis
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia
| | - Paul A Baldock
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Paul Lips
- Department of Internal Medicine/Endocrinology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
493
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
494
|
Schaaf GJ, van Gestel TJM, Brusse E, Verdijk RM, de Coo IFM, van Doorn PA, van der Ploeg AT, Pijnappel WWMP. Lack of robust satellite cell activation and muscle regeneration during the progression of Pompe disease. Acta Neuropathol Commun 2015; 3:65. [PMID: 26510925 PMCID: PMC4625612 DOI: 10.1186/s40478-015-0243-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/08/2015] [Indexed: 01/01/2023] Open
Abstract
Introduction Muscle stem cells termed satellite cells are essential for muscle regeneration. A central question in many neuromuscular disorders is why satellite cells are unable to prevent progressive muscle wasting. We have analyzed muscle fiber pathology and the satellite cell response in Pompe disease, a metabolic myopathy caused by acid alpha-glucosidase deficiency and lysosomal glycogen accumulation. Pathology included muscle fiber vacuolization, loss of cross striation, and immune cell infiltration. Results The total number of Pax7-positive satellite cells in muscle biopsies from infantile, childhood onset and adult patients (with different ages and disease severities) were indistinguishable from controls, indicating that the satellite cell pool is not exhausted in Pompe disease. Pax7/Ki67 double stainings showed low levels of satellite cell proliferation similar to controls, while MyoD and Myogenin stainings showed undetectable satellite cell differentiation. Muscle regenerative activity monitored with expression of embryonic Myosin Heavy Chain was weak in the rapidly progressing classic infantile form and undetectable in the more slowly progressive childhood and adult onset disease including in severely affected patients. Conclusions These results imply that ongoing muscle wasting in Pompe disease may be explained by insufficient satellite cell activation and muscle regeneration. The preservation of the satellite cell pool may offer a venue for the development of novel treatment strategies directed towards the activation of endogenous satellite cells. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0243-x) contains supplementary material, which is available to authorized users.
Collapse
|
495
|
Le Roux I, Konge J, Le Cam L, Flamant P, Tajbakhsh S. Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nat Commun 2015; 6:8528. [PMID: 26503169 PMCID: PMC4639798 DOI: 10.1038/ncomms9528] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/01/2015] [Indexed: 12/29/2022] Open
Abstract
Regeneration relies on coordinated action of multiple cell types to reconstitute the damaged tissue. Here we inactivate the endocytic adaptor protein Numb in skeletal muscle stem cells prior to chronic or severe muscle injury in mice. We observe two types of senescence in regenerating muscle; a transient senescence in non-myogenic cells of control and Numb mutant mice that partly depends on INK4a/ARF activity, and a persistent senescence in myogenic cells lacking Numb. The senescence levels of Numb-deficient muscle is reduced to wild type levels by an anti-oxidant treatment or p53 ablation, resulting in functional rescue of the regenerative potential in Numb mutants. Ex vivo experiments suggest that Numb-deficient senescent cells recruit macrophages to sustain inflammation and drive fibrosis, two hallmarks of the impaired muscle regeneration in Numb mutants. These findings provide insights into previously reported developmental and oncogenic senescence that are also differentially regulated by p53.
Collapse
Affiliation(s)
- Isabelle Le Roux
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Julie Konge
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Laurent Le Cam
- Molecular Basis of Carcinogenesis, Institut de Recherche en Cancérologie de Montpellier, 208 rue des Apothicaires, Montpellier, cedex 5 34298, France
| | - Patricia Flamant
- Human Histopathology and Animal Models, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
496
|
Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC, Parise G. Satellite cells in human skeletal muscle plasticity. Front Physiol 2015; 6:283. [PMID: 26557092 PMCID: PMC4617172 DOI: 10.3389/fphys.2015.00283] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada ; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Bryon R McKay
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Sophie Joanisse
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
497
|
Riederer I, Bonomo AC, Mouly V, Savino W. Laminin therapy for the promotion of muscle regeneration. FEBS Lett 2015; 589:3449-53. [DOI: 10.1016/j.febslet.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022]
|
498
|
Mizuno S, Yoda M, Shimoda M, Tohmonda T, Okada Y, Toyama Y, Takeda S, Nakamura M, Matsumoto M, Horiuchi K. A Disintegrin and Metalloprotease 10 (ADAM10) Is Indispensable for Maintenance of the Muscle Satellite Cell Pool. J Biol Chem 2015; 290:28456-28464. [PMID: 26453297 DOI: 10.1074/jbc.m115.653477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Satellite cells (SCs) are muscle-specific stem cells that are essential for the regeneration of damaged muscles. Although SCs have a robust capacity to regenerate myofibers, the number of SCs decreases with aging, leading to insufficient recovery after muscle injury. We herein show that ADAM10 (a disintegrin and metalloprotease 10), a membrane-bound proteolytic enzyme with a critical role in Notch processing (S2 cleavage), is essential for the maintenance of SC quiescence. We generated mutant mice in which ADAM10 in SCs can be conditionally abrogated by tamoxifen injection. Tamoxifen-treated mutant mice did not show any apparent defects and grew normally under unchallenged conditions. However, these mice showed a nearly complete loss of muscle regeneration after chemically induced muscle injury. In situ hybridization and flow cytometric analyses revealed that the mutant mice had significantly less SCs compared with wild type controls. Of note, we found that inactivation of ADAM10 in SCs severely compromised Notch signaling and led to dysregulated myogenic differentiation, ultimately resulting in deprivation of the SC pool in vivo. Taken together, the present findings underscore the role of ADAM10 as an indispensable component of Notch signaling in SCs and for maintaining the SC pool.
Collapse
Affiliation(s)
- Sakiko Mizuno
- Departments of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Anti-aging Orthopedic Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Shimoda
- Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takahide Tohmonda
- Anti-aging Orthopedic Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasunori Okada
- Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiaki Toyama
- Departments of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Masaya Nakamura
- Departments of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Departments of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Horiuchi
- Departments of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Anti-aging Orthopedic Research, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
499
|
Messi ML, Li T, Wang ZM, Marsh AP, Nicklas B, Delbono O. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. J Gerontol A Biol Sci Med Sci 2015; 71:1273-80. [PMID: 26447161 DOI: 10.1093/gerona/glv176] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 11/14/2022] Open
Abstract
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.
Collapse
Affiliation(s)
- María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tao Li
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
500
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|