451
|
Hasan M, Azim KF, Imran MAS, Chowdhury IM, Urme SRA, Parvez MSA, Uddin MB, Ahmed SSU. Comprehensive genome based analysis of Vibrio parahaemolyticus for identifying novel drug and vaccine molecules: Subtractive proteomics and vaccinomics approach. PLoS One 2020; 15:e0237181. [PMID: 32813697 PMCID: PMC7444560 DOI: 10.1371/journal.pone.0237181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant Vibrio parahaemolyticus has become a significant public health concern. The development of effective drugs and vaccines against Vibrio parahaemolyticus is the current research priority. Thus, we aimed to find out effective drug and vaccine targets using a comprehensive genome-based analysis. A total of 4822 proteins were screened from V. parahaemolyticus proteome. Among 16 novel cytoplasmic proteins, 'VIBPA Type II secretion system protein L' and 'VIBPA Putative fimbrial protein Z' were subjected to molecular docking with 350 human metabolites, which revealed that Eliglustat, Simvastatin and Hydroxocobalamin were the top drug molecules considering free binding energy. On the contrary, 'Sensor histidine protein kinase UhpB' and 'Flagellar hook-associated protein of 25 novel membrane proteins were subjected to T-cell and B-cell epitope prediction, antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking analysis to generate the most immunogenic epitopes. Three subunit vaccines were constructed by the combination of highly antigenic epitopes along with suitable adjuvant, PADRE sequence and linkers. The designed vaccine constructs (V1, V2, V3) were analyzed by their physiochemical properties and molecular docking with MHC molecules- results suggested that the V1 is superior. Besides, the binding affinity of human TLR-1/2 heterodimer and construct V1 could be biologically significant in the development of the vaccine repertoire. The vaccine-receptor complex exhibited deformability at a minimum level that also strengthened our prediction. The optimized codons of the designed construct was cloned into pET28a(+) vector of E. coli strain K12. However, the predicted drug molecules and vaccine constructs could be further studied using model animals to combat V. parahaemolyticus associated infections.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Abdus Shukur Imran
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ishtiak Malique Chowdhury
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Md. Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
452
|
Bhuiyan MA, Quayum ST, Ahammad F, Alam R, Samad A, Nain Z. Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Res 2020. [DOI: 10.12688/f1000research.24975.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Rift Valley fever virus (RVFV) is an emerging arbovirus infecting both animals and humans. Any form of direct contact with body fluids, blood or tissue of infected animals is the mode of transmission of this pathogen. Despite being an emerging virus, no proper vaccinations are yet available for the public. Our objective is to compose a multiepitope vaccine utilizing immuno-bioinformatics as a strategy against RVFV. Methods: To identify immunodominant epitopes and design a potent vaccine candidate, we applied a series of immunoinformatic approaches with molecular dynamics and immune response simulation frameworks. Results: A glycoprotein with the highest antigenicity was selected and employed for determining promising epitopes. We selected T cell epitopes based on their immunological potencies and cytokine inducing properties, while B cell epitopes were selected based on their antigenic features. Finally, we selected four cytotoxic T-lymphocyte, two helper T-lymphocyte, and three linear B-lymphocyte epitopes that were arranged into a vaccine construct with appropriate adjuvants and linkers. The chimera protein was modeled, refined, and validated prior to docking against toll-like receptor 4. Docking studies suggest strong binding interactions while dynamics simulation revealed the stable nature of the docked complex. Furthermore, the immune simulation showed robust and prolonged immune responses with rapid antigen clearance. Finally, codon optimization and cloning conducted with Escherichia coli K12 suggests high translation efficiency within the host system. Conclusion: We believe that our designed multiepitope vaccine is a promising prophylactic candidate against RVFV pathogenesis.
Collapse
|
453
|
Genomic Analysis of the SUMO-Conjugating Enzyme and Genes under Abiotic Stress in Potato ( Solanum tuberosum L.). Int J Genomics 2020; 2020:9703638. [PMID: 32802829 PMCID: PMC7335410 DOI: 10.1155/2020/9703638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
SUMO-conjugating enzymes (SCE) and SUMO (Small Ubiquitin-Like Modifiers) genes are important components of SUMOylation. SCE has a crucial role during the SUMOylation process which acts as a catalyst to transfer SUMO to the target protein. Comprehensive studies on SCE and SUMO have been performed in some plants, but studies on these genes remain limited in potato. This study is aimed at exploring the role of StSCE and StSUMO genes in abiotic stress conditions. Nine and seven putative StSCEs and StSUMO genes, respectively, were identified using different methods and databases available for potato. Chromosomal localization showed that SCE and StSUMO genes are unevenly distributed on 7 different chromosomes. Potato genome database was accessed for the expression profile of StSCE and StSUMO genes, and these genes were differentially expressed in different tissues and organs during different phases of plant growth. The expression patterns on different treatments were further evaluated using qRT-PCR for all the StSCE and StSUMO genes. The expression was upregulated in StSCE1/5/6 and 7 under salt and PEG treatment. StSUMO 1/2 and 4 were upregulated under salt stress whereas StSCE9 and StSUMO2 and 4 were observed downregulated under PEG treatment. The results of this study could be useful to explore the role of StSCE genes in potato improvement.
Collapse
|
454
|
Wang Y, Liu A. Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9081044. [PMID: 32824436 PMCID: PMC7463459 DOI: 10.3390/plants9081044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Dendrobium officinale Kimura et Migo is of great importance as a traditional Chinese herb due to its abundant metabolites. The family of basic helix-loop-helix (bHLH) transcription factors widely exists in plants and plays an essential role in plant growth and development, secondary metabolism as well as responses to environmental changes. However, there is limited information on bHLH genes in D. officinale. In the present study, a total of 98 putative DobHLH genes were identified at the genomic level, which could be classified into 18 clades. Gene structures and conserved motifs in DobHLH genes showed high conservation during their evolution. The conserved amino acids and DNA bindings of DobHLH proteins were predicted, both of which are pivotal for their function. Furthermore, gene expression from eight tissues showed that some DobHLH genes were ubiquitously expressed while other DobHLH genes were expressed in the specific tissues. Expressional changes of DobHLH genes under MeJA and ABA treatments were detected by qRT-PCR. The protein-protein interactions between DobHLHs were predicted and several interactions were confirmed by yeast two hybrid. Therefore, our results here contribute to the understanding of bHLH genes in D. officinale and lay a foundation for the further functional study of its biological processes.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China;
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan, China
| |
Collapse
|
455
|
Sillen M, Weeks SD, Strelkov SV, Declerck PJ. Structural Insights into the Mechanism of a Nanobody That Stabilizes PAI-1 and Modulates Its Activity. Int J Mol Sci 2020; 21:ijms21165859. [PMID: 32824134 PMCID: PMC7461574 DOI: 10.3390/ijms21165859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
- Correspondence:
| |
Collapse
|
456
|
Wi S, Hwang IS, Jo BH. Engineering a Plant Viral Coat Protein for In Vitro Hybrid Self-Assembly of CO2-Capturing Catalytic Nanofilaments. Biomacromolecules 2020; 21:3847-3856. [DOI: 10.1021/acs.biomac.0c00925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suhan Wi
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - In Seong Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
457
|
Van Orden MJ, Newsom S, Rajan R. CRISPR type II-A subgroups exhibit phylogenetically distinct mechanisms for prespacer insertion. J Biol Chem 2020; 295:10956-10968. [PMID: 32513871 DOI: 10.1074/jbc.ra120.013554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas is an adaptive immune system that protects prokaryotes against foreign nucleic acids. Prokaryotes gain immunity by acquiring short pieces of the invading nucleic acid termed prespacers and inserting them into their CRISPR array. In type II-A systems, Cas1 and Cas2 proteins insert prespacers always at the leader-repeat junction of the CRISPR array. Among type II-A CRISPR systems, three distinct groups (G1, G2, and G3) exist according to the extent of DNA sequence conservation at the 3' end of the leader. However, the mechanisms by which these conserved motifs interact with their cognate Cas1 and Cas2 proteins remain unclear. Here, we performed in vitro integration assays, finding that for G1 and G2, the insertion site is recognized through defined mechanisms, at least in members examined to date, whereas G3 exhibits no sequence-specific insertion. G1 first recognized a 12-bp sequence at the leader-repeat junction and performed leader-side insertion before proceeding to spacer-side insertion. G2 recognized the full repeat sequence and could perform independent leader-side or spacer-side insertions, although the leader-side insertion was faster than spacer-side. The prespacer morphology requirements for Cas1-Cas2 varied, with G1 stringently requiring a 5-nucleotide 3' overhang and G2 being able to insert many forms of prespacers with variable efficiencies. These results highlight the intricacy of protein-DNA sequence interactions within the seemingly similar type II-A integration complexes and provide mechanistic insights into prespacer insertion. These interactions can be fine-tuned to expand the Cas1-Cas2 toolset for inserting small DNAs into diverse DNA targets.
Collapse
Affiliation(s)
- Mason J Van Orden
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
458
|
Zaheer T, Waseem M, Waqar W, Dar HA, Shehroz M, Naz K, Ishaq Z, Ahmad T, Ullah N, Bakhtiar SM, Muhammad SA, Ali A. Anti-COVID-19 multi-epitope vaccine designs employing global viral genome sequences. PeerJ 2020; 8:e9541. [PMID: 32832263 PMCID: PMC7409810 DOI: 10.7717/peerj.9541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The coronavirus SARS-CoV-2 is a member of the Coronaviridae family that has caused a global public health emergency. Currently, there is no approved treatment or vaccine available against it. The current study aimed to cover the diversity of SARS-CoV-2 strains reported from all over the world and to design a broad-spectrum multi-epitope vaccine using an immunoinformatics approach. METHODS For this purpose, all available complete genomes were retrieved from GISAID and NGDC followed by genome multiple alignments to develop a global consensus sequence to compare with the reference genome. Fortunately, comparative genomics and phylogeny revealed a significantly high level of conservation between the viral strains. All the Open Reading Frames (ORFs) of the reference sequence NC_045512.2 were subjected to epitope mapping using CTLpred and HLApred, respectively. The predicted CTL epitopes were then screened for antigenicity, immunogenicity and strong binding affinity with HLA superfamily alleles. HTL predicted epitopes were screened for antigenicity, interferon induction potential, overlapping B cell epitopes and strong HLA DR binding potential. The shortlisted epitopes were arranged into two multi-epitope sequences, Cov-I-Vac and Cov-II-Vac, and molecular docking was performed with Toll-Like Receptor 8 (TLR8). RESULTS The designed multi-epitopes were found to be antigenic and non-allergenic. Both multi-epitopes were stable and predicted to be soluble in an Escherichia coli expression system. The molecular docking with TLR8 also demonstrated that they have a strong binding affinity and immunogenic potential. These in silico analyses suggest that the proposed multi-epitope vaccine can effectively evoke an immune response.
Collapse
Affiliation(s)
- Tahreem Zaheer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maaz Waseem
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Walifa Waqar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hamza Arshad Dar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Shehroz
- Department of Biotechnology, Virtual University of Pakistan, Peshawar, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahir Ahmad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nimat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
459
|
Molecular Evolution and Characterization of Fish Stathmin Genes. Animals (Basel) 2020; 10:ani10081328. [PMID: 32752168 PMCID: PMC7460142 DOI: 10.3390/ani10081328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Stathmin is a highly conserved microtubule remodeling protein. Here, 175 putative stathmin genes were identified in 27 species of fish. Gene organization, motif distribution, divergence of duplicated genes, functional divergence, synteny relationship, and protein-protein interaction were performed to investigate their evolutionary history. In addition, expression profiles of some stathmins were examined under dimethoate treatment. The results will provide useful references for further functional analyses. Abstract Stathmin is a highly conserved microtubule remodeling protein, involved in many biological processes such as signal transduction, cell proliferation, neurogenesis and so on. However, little evolutional information has been reported about this gene family in fish. In this study, 175 stathmin genes were identified in 27 species of fish. Conserved exon-intron structure and motif distributions were found in each group. Divergence of duplicated genes implied the species’ adaptation to the environment. Functional divergence suggested that the evolution of stathmin is mainly influenced by purifying selection, and some residues may undergo positive selection. Moreover, synteny relationship near the stathmin locus was relatively conserved in some fish. Network analyses also exhibited 74 interactions, implying functional diversity. The expression pattern of some stathmin genes was also investigated under pesticide stress. These will provide useful references for their functional research in the future.
Collapse
|
460
|
Beg MA, Athar F. Molecular modeling and in silico characterization of mycobacterial Rv3101c and Rv3102c proteins: prerequisite molecular target in cell division. ACTA ACUST UNITED AC 2020. [DOI: 10.15406/ppij.2020.08.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
461
|
Gupta A, Rosato AJ, Cui F. Vaccine candidate designed against carcinoembryonic antigen-related cell adhesion molecules using immunoinformatics tools. J Biomol Struct Dyn 2020; 39:6084-6098. [PMID: 32720576 DOI: 10.1080/07391102.2020.1797539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Gupta
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Andrew J Rosato
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
462
|
Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach. Vaccines (Basel) 2020; 8:vaccines8030423. [PMID: 32731461 PMCID: PMC7565012 DOI: 10.3390/vaccines8030423] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to work out a peptide-based multi-epitope vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We predicted different B-cell and T-cell epitopes by using the Immune Epitopes Database (IEDB). Homology modeling of the construct was done using SWISS-MODEL and then docked with different toll-like-receptors (TLR4, TLR7, and TLR8) using PatchDock, HADDOCK, and FireDock, respectively. From the overlapped epitopes, we designed five vaccine constructs C1–C5. Based on antigenicity, allergenicity, solubility, different physiochemical properties, and molecular docking scores, we selected the vaccine construct 1 (C1) for further processing. Docking of C1 with TLR4, TLR7, and TLR8 showed striking interactions with global binding energy of −43.48, −65.88, and −60.24 Kcal/mol, respectively. The docked complex was further simulated, which revealed that both molecules remain stable with minimum RMSF. Activation of TLRs induces downstream pathways to produce pro-inflammatory cytokines against viruses and immune system simulation shows enhanced antibody production after the booster dose. In conclusion, C1 was the best vaccine candidate among all designed constructs to elicit an immune response SARS-CoV-2 and combat the coronavirus disease (COVID-19).
Collapse
|
463
|
Koruza K, Murray AB, Mahon BP, Hopkins JB, Knecht W, McKenna R, Fisher SZ. Biophysical Characterization of Cancer-Related Carbonic Anhydrase IX. Int J Mol Sci 2020; 21:E5277. [PMID: 32722392 PMCID: PMC7432807 DOI: 10.3390/ijms21155277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Upregulation of carbonic anhydrase IX (CA IX) is associated with several aggressive forms of cancer and promotes metastasis. CA IX is normally constitutively expressed at low levels in selective tissues associated with the gastrointestinal tract, but is significantly upregulated upon hypoxia in cancer. CA IX is a multi-domain protein, consisting of a cytoplasmic region, a single-spanning transmembrane helix, an extracellular CA catalytic domain, and a proteoglycan-like (PG) domain. Considering the important role of CA IX in cancer progression and the presence of the unique PG domain, little information about the PG domain is known. Here, we report biophysical characterization studies to further our knowledge of CA IX. We report the 1.5 Å resolution crystal structure of the wild-type catalytic domain of CA IX as well as small angle X-ray scattering and mass spectrometry of the entire extracellular region. We used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize the spontaneous degradation of the CA IX PG domain and confirm that it is only the CA IX catalytic domain that forms crystals. Small angle X-ray scattering analysis of the intact protein indicates that the PG domain is not randomly distributed and adopts a compact distribution of shapes in solution. The observed dynamics of the extracellular domain of CA IX could have physiological relevance, including observed cleavage and shedding of the PG domain.
Collapse
Affiliation(s)
- Katarina Koruza
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
| | - A. Briana Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; (A.B.M.); (R.M.)
| | - Brian P. Mahon
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; (A.B.M.); (R.M.)
| | - S. Zoë Fisher
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
- Scientific Activities Division, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden
| |
Collapse
|
464
|
Wang B, Hara K, Kawabata A, Nishimura M, Wakata A, Tjan LH, Poetranto AL, Yamamoto C, Haseda Y, Aoshi T, Munakata L, Suzuki R, Komatsu M, Tsukamoto R, Itoh T, Nishigori C, Saito Y, Matozaki T, Mori Y. Tetrameric glycoprotein complex gH/gL/gQ1/gQ2 is a promising vaccine candidate for human herpesvirus 6B. PLoS Pathog 2020; 16:e1008609. [PMID: 32702057 PMCID: PMC7377363 DOI: 10.1371/journal.ppat.1008609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine. Human herpesvirus 6B (HHV-6B) is known as the cause of the common childhood febrile illness exanthem subitum in its primary infection, and it develops into a lifelong latent infection in almost all individuals. Severe complications such as meningitis and encephalitis can occur in both the primary infection and reactivation. There is no established treatment or vaccine. The tetrameric glycoprotein complex gH/gL/gQ1/gQ2 (tetramer) on the viral envelope is the ligand for the entry of HHV-6B, which is the critical part for its infection. Here, we established a soluble form of the tetramer and purified it to homogeneity. After several immunizations of tetramer along with different combinations of adjuvants in mice, we observed that it greatly induced defensive immunity against HHV-6B, indicating that the tetramer has the potential to become a vaccine candidate. Moreover, our results also revealed that combinations of distinct adjuvants with the tetramer would be useful as an HHV-6B vaccine strategy for different purposes.
Collapse
Affiliation(s)
- Bochao Wang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kouichi Hara
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akiko Kawabata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Aika Wakata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Anna Lystia Poetranto
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Chisato Yamamoto
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasunari Haseda
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Masato Komatsu
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Ryuko Tsukamoto
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
465
|
Choi YJ, Ohn JH, Kim N, Kim W, Park K, Won S, Sael L, Shin CM, Lee SM, Lee S, An HJ, Jang DM, Han BW, Lee HS, Kang SJ, Kim JS, Lee DH. Family-based exome sequencing combined with linkage analyses identifies rare susceptibility variants of MUC4 for gastric cancer. PLoS One 2020; 15:e0236197. [PMID: 32701958 PMCID: PMC7377420 DOI: 10.1371/journal.pone.0236197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies of gastric cancer (GC) cases have revealed common gastric cancer susceptibility loci with low effect size. We investigated rare variants with high effect size via whole-exome sequencing (WES) of subjects with familial clustering of gastric cancer. WES of DNAs from the blood of 19 gastric cancer patients and 36 unaffected family members from 14 families with two or more gastric cancer patients were tested. Linkage analysis combined with association tests were performed using Pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) software. Based on the logarithm of odds (LOD) and permutation-based composite likelihood ratio test (CLRT) from pVAAST, MUC4 was identified as a predisposing gene (LOD P-value = 1.9×10-5; permutation-based P-value of CLRT ≤ 9.9×10-9). In a larger cohort consisting of 597 GC patients and 9,759 healthy controls genotyped with SNP array, we discovered common variants in MUC4 regions (rs148735556, rs11717039, and rs547775645) significantly associated with GC supporting the association of MUC4 with gastric cancer. And the MUC4 variants were found in higher frequency in The Cancer Genome Atlas Study (TCGA) germline samples of patients with multiple cancer types. Immunohistochemistry indicated that MUC4 was downregulated in the noncancerous gastric mucosa of subjects with MUC4 germline missense variants, suggesting that loss of the protective function of MUC4 predisposes an individual to gastric cancer. Rare variants in MUC4 can be novel gastric cancer susceptibility loci in Koreans possessing the familial clustering of gastric cancer.
Collapse
Affiliation(s)
- Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Wonji Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kyungtaek Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Lee Sael
- Department of Artificial Intelligence and Data Science, Ajou University, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sejoon Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Dong Man Jang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Byung Woo Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Joo Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
466
|
Chai S, Zhang X, Jia Z, Xu X, Zhang Y, Wang S, Feng Z. Identification and characterization of a novel bifunctional cellulase/hemicellulase from a soil metagenomic library. Appl Microbiol Biotechnol 2020; 104:7563-7572. [DOI: 10.1007/s00253-020-10766-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
|
467
|
Zhang Y, Chang Y, Shen J, Mei X, Xue C. Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7032-7039. [PMID: 32520542 DOI: 10.1021/acs.jafc.0c02404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porphyran is the major polysaccharide of laver and mainly composed of 3-linked β-d-galactopyranose (G) and 4-linked α-l-galactopyranose-6-sulfate (L6S) units. Structural heterogeneity of porphyran highly originates from the natural methylation on the O-6 position of G units (GMe). Here, a GH16 porphyranase Por16C_Wf was cloned from a porphyran-related polysaccharide utilization locus of Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It hydrolyzed porphyran in a random endo-acting manner. Using a glycomics strategy combining liquid chromatography-mass spectrometry and glycoinformatics, the subsite specificity was clarified. Por16C_Wf accommodated both G and GMe at subsites -1 and +2. This is the first report on the sequence of porphyranases hydrolyzing consecutive methyl-porphyranobiose moieties, which shed light on the diversity in subsite specificity of porphyranases. Por16C_Wf was the first characterized enzyme in subfamily 14 of the GH16 family. The defined and novel activity of Por16C_Wf implied that it could serve as a favorable tool in the full degradation and structural investigation of porphyran.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
468
|
Cupo RR, Shorter J. Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations. eLife 2020; 9:e55279. [PMID: 32573439 PMCID: PMC7343390 DOI: 10.7554/elife.55279] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78 resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence, whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish that a mitochondrial AAA+ protein, Skd3 (human ClpB), couples ATP hydrolysis to protein disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase activity. Indeed, PARL-activated Skd3 solubilizes α-synuclein fibrils connected to Parkinson's disease. Human cells lacking Skd3 exhibit reduced solubility of various mitochondrial proteins, including anti-apoptotic Hax1. Importantly, Skd3 variants linked to 3-methylglutaconic aciduria, a severe mitochondrial disorder, display diminished disaggregase activity (but not always reduced ATPase activity), which predicts disease severity. Thus, Skd3 is a potent protein disaggregase critical for human health.
Collapse
Affiliation(s)
- Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
469
|
Edwardraja S, Guo Z, Whitfield J, Lantadilla IR, Johnston WA, Walden P, Vickers CE, Alexandrov K. Caged Activators of Artificial Allosteric Protein Biosensors. ACS Synth Biol 2020; 9:1306-1314. [PMID: 32339455 DOI: 10.1021/acssynbio.9b00500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of proteins to interconvert unrelated biochemical inputs and outputs underlays most energy and information processing in biology. A common conversion mechanism involves a conformational change of a protein receptor in response to a ligand binding or a covalent modification, leading to allosteric activity modulation of the effector domain. Designing such systems rationally is a central goal of synthetic biology and protein engineering. A two-component sensory system based on the scaffolding of modules in the presence of an analyte is one of the most generalizable biosensor architectures. An inherent problem of such systems is dependence of the response on the absolute and relative concentrations of the components. Here we use the example of two-component sensory systems based on calmodulin-operated synthetic switches to analyze and address this issue. We constructed "caged" versions of the activating domain thereby creating a thermodynamic barrier for spontaneous activation of the system. We demonstrate that the caged biosensor architectures could operate at concentrations spanning 3 orders of magnitude and are applicable to electrochemical, luminescent, and fluorescent two-component biosensors. We analyzed the activation kinetics of the caged biosensors and determined that the core allosteric switch is likely to be the rate limiting component of the system. These findings provide guidance for predictable engineering of robust sensory systems with inputs and outputs of choice.
Collapse
Affiliation(s)
- Selvakumar Edwardraja
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jason Whitfield
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland 4001, Australia
| | | | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland 4001, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
470
|
Oliveira NGJ, Cardoso MH, Velikova N, Giesbers M, Wells JM, Rezende TMB, de Vries R, Franco OL. Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential. Sci Rep 2020; 10:9127. [PMID: 32499582 PMCID: PMC7272458 DOI: 10.1038/s41598-020-66164-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The spread of multi-drug resistance and the slow pace at which antibiotics come onto the market are undermining our ability to treat human infections, leading to high mortality rates. Aiming to overcome this global crisis, antimicrobial peptides are considered promising alternatives to counter bacterial infections with multi-drug resistant bacteria. The cathelicidins comprise a well-studied class of AMPs whose members have been used as model molecules for sequence modifications, aiming at enhanced biological activities and stability, along with reduced toxic effects on mammalian cells. Here, we describe the antimicrobial activities, modes of action and structural characterization of two novel cathelicidin-like peptides, named BotrAMP14 and CrotAMP14, which were re-designed from snake batroxicidin and crotalicidin, respectively. BotrAMP14 and CrotAMP14 showed broad-spectrum antibacterial activity against susceptible microorganisms and clinical isolates with minimal inhibitory concentrations ranging from 2–35.1 μM. Moreover, both peptides had low cytotoxicity against Caco-2 cells in vitro. In addition, in vivo toxicity against Galleria mellonella moth larvae revealed that both peptides led to>76% larval survival after 144 h. Microscopy studies suggest that BotrAMP14 and CrotAMP14 destabilize E. coli membranes. Furthermore, circular dichroism and molecular dynamics simulations indicate that, in a membrane-like environment, both peptides adopt α-helical structures that interact with bilayer phospholipids through hydrogen bonds and electrostatic interaction. Thus, we concluded that BotrAMP14 and CrotAMP14 are helical membrane active peptides, with similar antibacterial properties but lower cytotoxicity than the larger parent peptides batroxicidin and crotalicidin, having advantages for drug development strategies.
Collapse
Affiliation(s)
- Nelson G J Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, Brazil
| | - Nadya Velikova
- Host-Microbe Interactomics, Animal Science Department, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Science Department, Wageningen University and Research, Wageningen, The Netherlands
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,Curso de Odontologia, Universidade Católica de Brasília, Campus I, Águas Claras, Brasília, Distrito Federal, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília-DF, Brazil
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil. .,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, Brazil. .,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, Brazil.
| |
Collapse
|
471
|
Didelon M, Khafif M, Godiard L, Barbacci A, Raffaele S. Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family With Response to Fungal Pathogens. Front Genet 2020; 11:491. [PMID: 32547597 PMCID: PMC7272662 DOI: 10.3389/fgene.2020.00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogen infection triggers extensive reprogramming of the plant transcriptome, including numerous genes the function of which is unknown. Due to their wide taxonomic distribution, genes encoding proteins with Domains of Unknown Function (DUFs) activated upon pathogen challenge likely play important roles in disease. In Arabidopsis thaliana, we identified thirteen genes harboring a DUF4228 domain in the top 10% most induced genes after infection by the fungal pathogen Sclerotinia sclerotiorum. Based on functional information collected through homology and contextual searches, we propose to refer to this domain as the pathogen and abiotic stress response, cadmium tolerance, disordered region-containing (PADRE) domain. Genome-wide and phylogenetic analyses indicated that PADRE is specific to plants and diversified into 10 subfamilies early in the evolution of Angiosperms. PADRE typically occurs in small single-domain proteins with a bipartite architecture. PADRE N-terminus harbors conserved sequence motifs, while its C-terminus includes an intrinsically disordered region with multiple phosphorylation sites. A pangenomic survey of PADRE genes expression upon S. sclerotiorum inoculation in Arabidopsis, castor bean, and tomato indicated consistent expression across species within phylogenetic groups. Multi-stress expression profiling and co-expression network analyses associated AtPADRE genes with the induction of anthocyanin biosynthesis and responses to chitin and to hypoxia. Our analyses reveal patterns of sequence and expression diversification consistent with the evolution of a role in disease resistance for an uncharacterized family of plant genes. These findings highlight PADRE genes as prime candidates for the functional dissection of mechanisms underlying plant disease resistance to fungi.
Collapse
Affiliation(s)
| | | | | | | | - Sylvain Raffaele
- Université de Toulouse, Laboratoire des Interactions Plantes Micro-organismes (LIPM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) – Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| |
Collapse
|
472
|
Zhao T, Wu T, Zhang J, Wang Z, Pei T, Yang H, Li J, Xu X. Genome-Wide Analyses of the Genetic Screening of C 2H 2-Type Zinc Finger Transcription Factors and Abiotic and Biotic Stress Responses in Tomato ( Solanum lycopersicum) Based on RNA-Seq Data. Front Genet 2020; 11:540. [PMID: 32547602 PMCID: PMC7270337 DOI: 10.3389/fgene.2020.00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
C2H2-type zinc finger proteins are classic and extensively studied members of the zinc finger family. C2H2-type zinc finger proteins participate in plant growth, development and stress responses. In this study, 99 C2H2-type zinc finger protein genes were identified and classified into four groups, and many functionally related cis-elements were identified. Differential C2H2-ZFP gene expression and specific responses were analyzed under drought, cold, salt, and pathogen stresses based on RNA-Seq data. Thirty-two C2H2 genes were identified in response to multiple stresses. Seven, 3, 5, and 8 genes were specifically expressed under drought, cold, salt, and pathogenic stresses, respectively. Five glycometabolism and sphingolipid-related pathways and the endocytosis pathway were enriched by KEGG analysis. The results of this study represent a foundation for further study of the function of C2H2-type zinc finger proteins and will provide us with genetic resources for stress tolerance breeding.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tairu Wu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jia Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ziyu Wang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tong Pei
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
473
|
Kim DG, Nguyen TTH, Kwon NH, Sung J, Lim S, Kang EJ, Lee J, Seo WY, Kim A, Chang YS, Shim H, Kim S. An Isoform of the Oncogenic Splice Variant AIMP2-DX2 Detected by a Novel Monoclonal Antibody. Biomolecules 2020; 10:biom10060820. [PMID: 32471182 PMCID: PMC7356629 DOI: 10.3390/biom10060820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
AIMP2-DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multifunctional protein 2), is highly expressed in lung cancer and involved in tumor progression in vivo. Oncogenic function of AIMP2-DX2 and its correlation with poor prognosis of cancer patients have been well established; however, the application of this potentially important biomarker to cancer research and diagnosis has been hampered by a lack of antibodies specific for the splice variant, possibly due to the poor immunogenicity and/or stability of AIMP2-DX2. In this study a monoclonal antibody, H5, that specifically recognizes AIMP2-DX2 and its isoforms was generated via rabbit immunization and phage display techniques, using a short peptide corresponding to the exon 1/3 junction sequence as an antigen. Furthermore, based on mutagenesis, limited cleavage, and mass spectrometry studies, it is also suggested that the endogenous isoform of AIMP2-DX2 recognized by H5 is produced by proteolytic cleavage of 33 amino acids from N-terminus and is capable of inducing cell proliferation similarly to the uncleaved protein. H5 monoclonal antibody is applicable to enzyme-linked immunosorbent assay, immunoblot, immunofluorescence, and immunohistochemistry, and expected to be a valuable tool for detecting AIMP2-DX2 with high sensitivity and specificity for research and diagnostic purposes.
Collapse
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Thi Thu Ha Nguyen
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Junsik Sung
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Semi Lim
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Eun-Joo Kang
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Jihye Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Woo Young Seo
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
| | - Arum Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 63 Gil-20, Eonju-ro, Gangnam-gu, Seoul 06229, Korea; (A.K.); (Y.S.C.)
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, 63 Gil-20, Eonju-ro, Gangnam-gu, Seoul 06229, Korea; (A.K.); (Y.S.C.)
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
- Correspondence: (H.S.); (S.K.)
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Korea; (D.G.K.); (N.H.K.); (J.S.); (S.L.); (E.-J.K.); (J.L.); (W.Y.S.)
- Correspondence: (H.S.); (S.K.)
| |
Collapse
|
474
|
Sabbir MG. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis. Cell Commun Signal 2020; 18:80. [PMID: 32460794 PMCID: PMC7251913 DOI: 10.1186/s12964-020-00575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Circulatory iron is a hazardous biometal. Therefore, iron is transported in a redox-safe state by a serum glycoprotein - transferrin (TF). Different organs acquire iron from the systemic circulation through a tightly regulated mechanism at the blood-tissue interface which involves receptor-mediated internalization of TF. Thus, abnormal TF trafficking may lead to iron dyshomeostasis associated with several diseases including neurodegeneration. Iron -induced toxicity can cause neuronal damage to iron-sensitive brain regions. Recently, it was discovered that CAMKK2, a calcium (Ca2+)/calmodulin-activated kinase, controls receptor-mediated TF trafficking in mouse tissues, specifically in the brain. The biological function of CAMKK2 is mediated through multiple downstream effectors. Both CAMKK2 and one of its downstream kinase, CAMK4, exhibit overlapping expression in mouse brain. The role of CAMK4 in vesicular transport has been reported and loss of CAMKK2 or CAMK4 leads to cognitive defects in mouse. Therefore, it was hypothesized that CAMKK2-CAMK4 signaling regulates receptor-mediated TF trafficking and iron homeostasis which may be responsible for the neuronal malfunction observed in CAMKK2- or CAMK4-deficient mice. Methods CAMK4−/− mouse was used to study tissue-specific turnover of TF, TF-receptor (TFRC) and iron. CRISPR/Cas9-based CAMKK2 and/or CAMK4 deleted human embryonic kidney-derived HEK293 cell clones were used to study the molecular defects in receptor-mediated TF trafficking. Further, a “zero functional G protein” condition in HEK293 cell was exploited to study CAMKK2-CAMK4 signaling-mediated regulation of intracellular Ca2+ homeostasis which was linked to calcium signaling during TF trafficking. Results Loss of CAMK4 leads to abnormal post-translational modifications (PTMs) and turnover of TF in mouse cerebellum and liver which was associated with iron dyshomeostasis in these tissues. The HEK293 cell-based study revealed that the absence of CAMKK2-CAMK4 signaling altered intracellular Ca2+ homeostasis and lead to abnormal calcium signaling during TF trafficking. Also, CAMKK2-CAMK4 signaling deficiency affected the molecular interaction of TF and TF-receptor-associated protein complexes which indicated a potential failure in the recruitment of interacting proteins due to differential PTMs in TF. Conclusion Overall, this study established a novel mechanistic link between intracellular Ca2+ level, receptor-mediated TF trafficking, and iron homeostasis, all regulated by CAMKK2-CAMK4 signaling. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Alzo Biosciences Inc., San Diego, CA, USA.
| |
Collapse
|
475
|
Vallejos-Sánchez K, Lopez JM, Antiparra R, Toscano E, Saavedra H, Kirwan DE, Amzel LM, Gilman RH, Maruenda H, Sheen P, Zimic M. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep 2020; 10:8356. [PMID: 32433489 PMCID: PMC7239899 DOI: 10.1038/s41598-020-65173-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 01/31/2023] Open
Abstract
Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA ∆A438, and RpsA ∆A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA ∆A438, and each of the truncated variants of RpsA ∆A438, are reported.
Collapse
Affiliation(s)
- Katherine Vallejos-Sánchez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Juan M Lopez
- Pontificia Universidad Católica del Perú, Departamento de Ciencias, Sección Química, Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), Lima, Perú
| | - Ricardo Antiparra
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Emily Toscano
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Harry Saavedra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD., USA
| | - Daniela E Kirwan
- Infection and Immunity Research Institute, St George's, University of London, London, England
| | - L M Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD., USA
| | - R H Gilman
- International Health Department. Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Helena Maruenda
- Pontificia Universidad Católica del Perú, Departamento de Ciencias, Sección Química, Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú.
| |
Collapse
|
476
|
Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Biophys J 2020; 118:2537-2548. [PMID: 32348722 PMCID: PMC7231920 DOI: 10.1016/j.bpj.2020.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorine incorporation is ideally suited to many NMR techniques, and incorporation of fluorine into proteins and fragment libraries for drug discovery has become increasingly common. Here, we use one-dimensional 19F NMR lineshape analysis to quantify the kinetics and equilibrium thermodynamics for the binding of a fluorine-labeled Src homology 3 (SH3) protein domain to four proline-rich peptides. SH3 domains are one of the largest and most well-characterized families of protein recognition domains and have a multitude of functions in eukaryotic cell signaling. First, we showe that fluorine incorporation into SH3 causes only minor structural changes to both the free and bound states using amide proton temperature coefficients. We then compare the results from lineshape analysis of one-dimensional 19F spectra to those from two-dimensional 1H-15N heteronuclear single quantum coherence spectra. Their agreement demonstrates that one-dimensional 19F lineshape analysis is a robust, low-cost, and fast alternative to traditional heteronuclear single quantum coherence-based experiments. The data show that binding is diffusion limited and indicate that the transition state is highly similar to the free state. We also measured binding as a function of temperature. At equilibrium, binding is enthalpically driven and arises from a highly positive activation enthalpy for association with small entropic contributions. Our results agree with those from studies using different techniques, providing additional evidence for the utility of 19F NMR lineshape analysis, and we anticipate that this analysis will be an effective tool for rapidly characterizing the energetics of protein interactions.
Collapse
Affiliation(s)
| | - Jhoan S Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher A Waudby
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
477
|
Tóth L, Váradi G, Boros É, Borics A, Ficze H, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. Biofungicidal Potential of Neosartorya ( Aspergillus) Fischeri Antifungal Protein NFAP and Novel Synthetic γ-Core Peptides. Front Microbiol 2020; 11:820. [PMID: 32477291 PMCID: PMC7237641 DOI: 10.3389/fmicb.2020.00820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Because of enormous crop losses worldwide due to pesticide-resistant plant pathogenic fungi, there is an increasing demand for the development of novel antifungal strategies in agriculture. Antifungal proteins (APs) and peptides are considered potential biofungicides; however, several factors limit their direct agricultural application, such as the high cost of production, narrow antifungal spectrum, and detrimental effects to plant development and human/animal health. This study evaluated the safety of the application of APs and peptides from the ascomycete Neosartorya fischeri as crop preservatives. The full-length N. fischeri AP (NFAP) and novel rationally designed γ-core peptide derivatives (PDs) γNFAP-opt and γNFAP-optGZ exhibited efficacy by inhibiting the growth of the agriculturally relevant filamentous ascomycetes in vitro. A high positive net charge, however, neither the hydrophilicity nor the primary structure supported the antifungal efficacy of these PDs. Further testing demonstrated that the antifungal activity did not require a conformational change of the β-pleated NFAP or the canonically ordered conformation of the synthetic PDs. Neither hemolysis nor cytotoxicity was observed when the NFAP and γNFAP-opt were applied at antifungally effective concentrations in human cell lines. Similarly, the Medicago truncatula plants that served as toxicity model and were grown from seedlings that were treated with NFAP, γNFAP-opt, or γNFAP-optGZ failed to exhibit morphological aberrations, reduction in primary root length, or the number of lateral roots. Crop protection experiments demonstrated that NFAP and associated antifungal active γ-core PDs were able to protect tomato fruits against the postharvest fungal pathogen Cladosporium herbarum.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Boros
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hargita Ficze
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
478
|
Automated Cell-Free Multiprotein Synthesis Facilitates the Identification of a Secretory, Oligopeptide Elicitor-Like, Immunoreactive Protein of the Oomycete Pythium insidiosum. mSystems 2020; 5:5/3/e00196-20. [PMID: 32398276 PMCID: PMC7219551 DOI: 10.1128/msystems.00196-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis. Protein production relies on time-consuming genetic engineering and in vivo expression, which is a bottleneck for functional studies in the postgenomic era. Cell-free protein synthesis (CFPS) overcomes the limitation of in vivo protein biosynthesis by processing in vitro transcription and translation of multiple genes to proteins within hours. We employed an automated CFPS to simultaneously synthesize proteins from 24 genes of the oomycete Pythium insidiosum (which causes the life-threatening disease pythiosis) and screen for a diagnostic and therapeutic target. CFPS successfully synthesized 18 proteins (∼75% success rate). One protein, namely, I06, was explicitly recognized by all pythiosis sera, but not control sera, tested. Py. insidiosum secreted a significant amount of I06. The protein architecture of I06 is compatible with the oligopeptide elicitor (OPEL) of the phylogenetically related plant-pathogenic oomycete Phytophthora parasitica. The OPEL-like I06 protein of Py. insidiosum can stimulate host antibody responses, similar to the P. parasitica OPEL that triggers plant defense mechanisms. OPEL-like I06 homologs are present only in the oomycetes. Py. insidiosum contains two OPEL-like I06 homologs, but only one of the two homologs was expressed during hyphal growth. Twenty-nine homologs derived from 15 oomycetes can be phylogenetically divided into two groups. The OPEL-like genes might occur in the common ancestor, before independently undergoing gene gain and loss during the oomycete speciation. In conclusion, CFPS offers a fast in vitro protein synthesis. CFPS simultaneously generated multiple proteins of Py. insidiosum and facilitated the identification of the secretory OPEL-like I06 protein, a potential target for the development of a control measure against the pathogen. IMPORTANCE Technical limitations of conventional biotechnological methods (i.e., genetic engineering and protein synthesis) prevent extensive functional studies of the massive amounts of genetic information available today. We employed a cell-free protein synthesis system to rapidly and simultaneously generate multiple proteins from genetic codes of the oomycete Pythium insidiosum, which causes the life-threatening disease called pythiosis, in humans and animals worldwide. We aimed to screen for potential diagnostic and therapeutic protein targets of this pathogen. Eighteen proteins were synthesized. Of the 18 proteins, one was a secreted immunoreactive protein, called I06, that triggered host immunity and was recognized explicitly by all tested sera from pythiosis patients. It is one of the OPEL proteins; these proteins are present only in the unique group of microorganisms called oomycetes. Here, we demonstrated that cell-free protein synthesis was useful for the production of multiple proteins to facilitate functional studies and identify a potential target for diagnosis and treatment of pythiosis.
Collapse
|
479
|
Wang X, Qian P, Cui H, Yao L, Yuan J. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium. EMBO J 2020; 39:e104168. [PMID: 32395856 PMCID: PMC7327484 DOI: 10.15252/embj.2019104168] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Morphogenesis of many protozoans depends on a polarized establishment of cytoskeletal structures. In malaria-causing parasites, this can be observed when a round zygote develops into an elongated motile ookinete within the mosquito stomach. This morphogenesis is mediated by the pellicle cytoskeletal structures, including the inner membrane complex (IMC) and the underlying subpellicular microtubules (SPMs). How the parasite maintains the IMC-SPM connection and establishes a dome-like structure of SPM to support cell elongation is unclear. Here, we show that palmitoylation of N-terminal cysteines of two IMC proteins (ISP1/ISP3) regulates the IMC localization of ISP1/ISP3 and zygote-to-ookinete differentiation. Palmitoylation of ISP1/ISP3 is catalyzed by an IMC-residing palmitoyl-S-acyl-transferase (PAT) DHHC2. Surprisingly, DHHC2 undergoes self-palmitoylation at C-terminal cysteines via its PAT activity, which controls DHHC2 localization in IMC after zygote formation. IMC-anchored ISP1 and ISP3 interact with microtubule component β-tubulin, serving as tethers to maintain the proper structure of SPM during zygote elongation. This study identifies the first PAT-substrate pair in malaria parasites and uncovers a protein palmitoylation cascade regulating microtubule cytoskeleton.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
480
|
Butt BG, Owen DJ, Jeffries CM, Ivanova L, Hill CH, Houghton JW, Ahmed MF, Antrobus R, Svergun DI, Welch JJ, Crump CM, Graham SC. Insights into herpesvirus assembly from the structure of the pUL7:pUL51 complex. eLife 2020; 9:e53789. [PMID: 32391791 PMCID: PMC7289601 DOI: 10.7554/elife.53789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Herpesviruses acquire their membrane envelopes in the cytoplasm of infected cells via a molecular mechanism that remains unclear. Herpes simplex virus (HSV)-1 proteins pUL7 and pUL51 form a complex required for efficient virus envelopment. We show that interaction between homologues of pUL7 and pUL51 is conserved across human herpesviruses, as is their association with trans-Golgi membranes. We characterized the HSV-1 pUL7:pUL51 complex by solution scattering and chemical crosslinking, revealing a 1:2 complex that can form higher-order oligomers in solution, and we solved the crystal structure of the core pUL7:pUL51 heterodimer. While pUL7 adopts a previously-unseen compact fold, the helix-turn-helix conformation of pUL51 resembles the cellular endosomal complex required for transport (ESCRT)-III component CHMP4B and pUL51 forms ESCRT-III-like filaments, suggesting a direct role for pUL51 in promoting membrane scission during virus assembly. Our results provide a structural framework for understanding the role of the conserved pUL7:pUL51 complex in herpesvirus assembly.
Collapse
Affiliation(s)
- Benjamin G Butt
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Danielle J Owen
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg SiteHamburgGermany
| | - Lyudmila Ivanova
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Chris H Hill
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Jack W Houghton
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Md Firoz Ahmed
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg SiteHamburgGermany
| | - John J Welch
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Colin M Crump
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Stephen C Graham
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
481
|
Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, Sinz A, Calderón Villalobos LIA. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat Commun 2020; 11:2277. [PMID: 32385295 PMCID: PMC7210949 DOI: 10.1038/s41467-020-16147-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states. Auxin-mediated recruitment of AUX/IAAs by the F-box protein TIR1 prompts rapid AUX/IAA ubiquitylation and degradation. By resolving auxin receptor topology, the authors show that intrinsically disordered regions near the degrons of two Aux/IAA proteins reinforce complex assembly and position Aux/IAAs for ubiquitylation.
Collapse
Affiliation(s)
- Michael Niemeyer
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Elena Moreno Castillo
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Verona Wilde
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Antje Hellmuth
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Sophia L Samodelov
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Panagiotis L Kastritis
- ZIK HALOMEM & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
482
|
Bianco PR. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes (Basel) 2020; 11:E471. [PMID: 32357475 PMCID: PMC7290993 DOI: 10.3390/genes11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, NY 14221, USA
| |
Collapse
|
483
|
Knox-Brown P, Rindfleisch T, Günther A, Balow K, Bremer A, Walther D, Miettinen MS, Hincha DK, Thalhammer A. Similar Yet Different-Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins. Int J Mol Sci 2020; 21:E2794. [PMID: 32316452 PMCID: PMC7215670 DOI: 10.3390/ijms21082794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.
Collapse
Affiliation(s)
- Patrick Knox-Brown
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Tobias Rindfleisch
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Anne Günther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Kim Balow
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anne Bremer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
- Department for Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dirk Walther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Markus S. Miettinen
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany;
| | - Dirk K. Hincha
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| |
Collapse
|
484
|
Khan MAA, Ami JQ, Faisal K, Chowdhury R, Ghosh P, Hossain F, Abd El Wahed A, Mondal D. An immunoinformatic approach driven by experimental proteomics: in silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasit Vectors 2020; 13:196. [PMID: 32295617 PMCID: PMC7160903 DOI: 10.1186/s13071-020-04064-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by dimorphic Leishmania species is a parasitic disease with high socioeconomic burden in endemic areas worldwide. Sustaining control of VL in terms of proper and prevailing immunity development is a global necessity amid unavailability of a prophylactic vaccine. Screening of experimental proteome of the human disease propagating form of Leishmania donovani (amastigote) can be more pragmatic for in silico mining of novel vaccine candidates. Methods By using an immunoinformatic approach, CD4+ and CD8+ T cell-specific epitopes from experimentally reported L. donovani proteins having secretory potential and increased abundance in amastigotes were screened. A chimera linked with a Toll-like receptor 4 (TLR4) peptide adjuvant was constructed and evaluated for physicochemical characteristics, binding interaction with TLR4 in simulated physiological condition and the trend of immune response following hypothetical immunization. Results Selected epitopes from physiologically important L. donovani proteins were found mostly conserved in L. infantum, covering theoretically more than 98% of the global population. The multi-epitope chimeric vaccine was predicted as stable, antigenic and non-allergenic. Structural analysis of vaccine-TLR4 receptor docked complex and its molecular dynamics simulation suggest sufficiently stable binding interface along with prospect of non-canonical receptor activation. Simulation dynamics of immune response following hypothetical immunization indicate active and memory B as well as CD4+ T cell generation potential, and likely chance of a more Th1 polarized response. Conclusions The methodological approach and results from this study could facilitate more informed screening and selection of candidate antigenic proteins for entry into vaccine production pipeline in future to control human VL.![]()
Collapse
Affiliation(s)
- Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Jenifar Quaiyum Ami
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Khaledul Faisal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Ahmed Abd El Wahed
- Microbiology and Animal Hygiene Division, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh.
| |
Collapse
|
485
|
Widjaja M, Berry IJ, Jarocki VM, Padula MP, Dumke R, Djordjevic SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci Rep 2020; 10:6384. [PMID: 32286369 PMCID: PMC7156367 DOI: 10.1038/s41598-020-63136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.
Collapse
Affiliation(s)
- Michael Widjaja
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Iain James Berry
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Veronica Maria Jarocki
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Roger Dumke
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Medizinische Mikrobiologie und Hygiene, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Steven Philip Djordjevic
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia. .,Proteomics Core Facility and School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
486
|
Structural Characterization of an ACP from Thermotoga maritima: Insights into Hyperthermal Adaptation. Int J Mol Sci 2020; 21:ijms21072600. [PMID: 32283632 PMCID: PMC7178038 DOI: 10.3390/ijms21072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Thermotoga maritima, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable Thermotoga maritima acyl carrier protein (Tm-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of Tm-ACP, we investigated the structure and dynamics of Tm-ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of Tm-ACP (101.4 °C) far exceeds that of other ACPs, owing to extensive ionic interactions and tight hydrophobic packing. The D59 residue, which replaces Pro/Ser of other ACPs, mediates ionic clustering between helices III and IV. This creates a wide pocket entrance to facilitate the accommodation of long acyl chains required for hyperthermal adaptation of the T. maritima cell membrane. Tm-ACP is revealed to be the first ACP that harbor an amide proton hyperprotected against hydrogen/deuterium exchange for I15. The hydrophobic interactions mediated by I15 appear to be the key driving forces of the global folding process of Tm-ACP. Our findings provide insights into the structural basis of the hyperthermal adaptation of ACP, which might have allowed T. maritima to survive in hot ancient oceans.
Collapse
|
487
|
Pelaez-Aguilar A, Valdés-García G, French-Pacheco L, Pastor N, Amero C, Rivillas-Acevedo L. Site-Specific Interactions with Copper Promote Amyloid Fibril Formation for λ6aJL2-R24G. ACS OMEGA 2020; 5:7085-7095. [PMID: 32280849 PMCID: PMC7143407 DOI: 10.1021/acsomega.9b03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Light-chain amyloidosis (AL) is one of the most common systemic amyloidoses, and it is characterized by the deposition of immunoglobulin light chain (LC) variable domains as insoluble amyloid fibers in vital organs and tissues. The recombinant protein 6aJL2-R24G contains λ6a and JL2 germline genes and also contains the Arg24 by Gly substitution. This mutation is present in 25% of all amyloid-associated λ6 LC cases, reduces protein stability, and increases the propensity to form amyloid fibers. In this study, it was found that the interaction of 6aJL2-R24G with Cu(II) decreases the thermal stability of the protein and accelerates the amyloid fibril formation, as observed by fluorescence spectroscopy. Isothermal calorimetry titration showed that Cu(II) binds to the protein with micromolar affinity. His99 may be one of the main Cu(II) interaction sites, as observed by nuclear magnetic resonance spectroscopy. The binding of Cu(II) to His99 induces larger fluctuations of the CDR1 and loop C″, as shown by molecular dynamics simulations. Thus, Cu(II) binding may be inducing the loss of interactions between CDR3 and CDR1, making the protein less stable and more prone to form amyloid fibers. This study provides insights into the mechanism of metal-induced aggregation of the 6aJL2-R24G protein and sheds light on the bio-inorganic understanding of AL disease.
Collapse
Affiliation(s)
- Angel
E. Pelaez-Aguilar
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Gilberto Valdés-García
- Department
of Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Leidys French-Pacheco
- Centro
de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Nina Pastor
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
- Department
of Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carlos Amero
- Centro
de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Lina Rivillas-Acevedo
- Centro
de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| |
Collapse
|
488
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
489
|
Musashi-1: An Example of How Polyalanine Tracts Contribute to Self-Association in the Intrinsically Disordered Regions of RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21072289. [PMID: 32225071 PMCID: PMC7177541 DOI: 10.3390/ijms21072289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have intrinsically disordered regions (IDRs) whose biophysical properties have yet to be explored to the same extent as those of the folded RNA interacting domains. These IDRs are essential to the formation of biomolecular condensates, such as stress and RNA granules, but dysregulated assembly can be pathological. Because of their structural heterogeneity, IDRs are best studied by NMR spectroscopy. In this study, we used NMR spectroscopy to investigate the structural propensity and self-association of the IDR of the RBP Musashi-1. We identified two transient α-helical regions (residues ~208–218 and ~270–284 in the IDR, the latter with a polyalanine tract). Strong NMR line broadening in these regions and circular dichroism and micrography data suggest that the two α-helical elements and the hydrophobic residues in between may contribute to the formation of oligomers found in stress granules and implicated in Alzheimer’s disease. Bioinformatics analysis suggests that polyalanine stretches in the IDRs of RBPs may have evolved to promote RBP assembly.
Collapse
|
490
|
Backman LRF, Huang YY, Andorfer MC, Gold B, Raines RT, Balskus EP, Drennan CL. Molecular basis for catabolism of the abundant metabolite trans-4-hydroxy-L-proline by a microbial glycyl radical enzyme. eLife 2020; 9:e51420. [PMID: 32180548 PMCID: PMC7077986 DOI: 10.7554/elife.51420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/19/2020] [Indexed: 02/04/2023] Open
Abstract
The glycyl radical enzyme (GRE) superfamily utilizes a glycyl radical cofactor to catalyze difficult chemical reactions in a variety of anaerobic microbial metabolic pathways. Recently, a GRE, trans-4-hydroxy-L-proline (Hyp) dehydratase (HypD), was discovered that catalyzes the dehydration of Hyp to (S)-Δ1-pyrroline-5-carboxylic acid (P5C). This enzyme is abundant in the human gut microbiome and also present in prominent bacterial pathogens. However, we lack an understanding of how HypD performs its unusual chemistry. Here, we have solved the crystal structure of HypD from the pathogen Clostridioides difficile with Hyp bound in the active site. Biochemical studies have led to the identification of key catalytic residues and have provided insight into the radical mechanism of Hyp dehydration.
Collapse
Affiliation(s)
- Lindsey RF Backman
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yolanda Y Huang
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Mary C Andorfer
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
491
|
Comprehensive Analysis of the TIFY Gene Family and Its Expression Profiles under Phytohormone Treatment and Abiotic Stresses in Roots of Populus trichocarpa. FORESTS 2020. [DOI: 10.3390/f11030315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The TIFY gene family is specific to land plants, exerting immense influence on plant growth and development as well as responses to biotic and abiotic stresses. Here, we identify 25 TIFY genes in the poplar (Populus trichocarpa) genome. Phylogenetic tree analysis revealed these PtrTIFY genes were divided into four subfamilies within two groups. Promoter cis-element analysis indicated most PtrTIFY genes possess stress- and phytohormone-related cis-elements. Quantitative real-time reverse transcription polymerase chain reaction (qRT–PCR) analysis showed that PtrTIFY genes displayed different expression patterns in roots under abscisic acid, methyl jasmonate, and salicylic acid treatments, and drought, heat, and cold stresses. The protein interaction network indicated that members of the PtrTIFY family may interact with COI1, MYC2/3, and NINJA. Our results provide important information and new insights into the evolution and functions of TIFY genes in P. trichocarpa.
Collapse
|
492
|
Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet 2020; 16:e1008649. [PMID: 32163413 PMCID: PMC7093028 DOI: 10.1371/journal.pgen.1008649] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/24/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Unicellular organisms have the prevalent challenge to survive under oxidative stress of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). ROS are present as by-products of photosynthesis and aerobic respiration. These reactive species are even employed by multicellular organisms as potent weapons against microbes. Although bacterial defences against lethal and sub-lethal oxidative stress have been studied in model bacteria, the role of fluctuating H2O2 concentrations remains unexplored. It is known that sub-lethal exposure of Escherichia coli to H2O2 results in enhanced survival upon subsequent exposure. Here we investigate the priming response to H2O2 at physiological concentrations. The basis and the duration of the response (memory) were also determined by time-lapse quantitative proteomics. We found that a low level of H2O2 induced several scavenging enzymes showing a long half-life, subsequently protecting cells from future exposure. We then asked if the phenotypic resistance against H2O2 alters the evolution of resistance against oxygen stress. Experimental evolution of H2O2 resistance revealed faster evolution and higher levels of resistance in primed cells. Several mutations were found to be associated with resistance in evolved populations affecting different loci but, counterintuitively, none of them was directly associated with scavenging systems. Our results have important implications for host colonisation and infections where microbes often encounter reactive oxygen species in gradients. Throughout evolution, bacteria were exposed to reactive oxygen species and evolved the ability to scavenge toxic oxygen radicals. Furthermore, multicellular organisms evolved the ability to produce such oxygen species directed against pathogens. Recent studies also suggest that ROS such as H2O2 play an important role during host gut colonisation by its microbiota. Traditionally, experiments with different antimicrobials have been carried out using fixed concentrations while in nature, including in intra-host environments, microbes are more likely to experience this type of stress in steps or gradients. Here we show that bacteria treated with sub-lethal concentrations of H2O2 (priming) survive far better than non-treated cells when they subsequently encounter a higher concentration. We also found that the 'priming' response has a protective role from lethal mutagenesis. This protection is provided by long-lived proteins that, upon priming, remain at a high level for several generations as determined by time-lapse LC-mass spectrometry. Bacteria that were primed evolved H2O2 resistance faster and to a higher level. Moreover, mutations that increase resistance to H2O2, as determined by whole-genome sequencing (WGS), do not occur in known scavenger encoding genes but in loci coding for other functions, at least in E. coli.
Collapse
|
493
|
Montero DA, Del Canto F, Salazar JC, Céspedes S, Cádiz L, Arenas-Salinas M, Reyes J, Oñate Á, Vidal RM. Immunization of mice with chimeric antigens displaying selected epitopes confers protection against intestinal colonization and renal damage caused by Shiga toxin-producing Escherichia coli. NPJ Vaccines 2020; 5:20. [PMID: 32194997 PMCID: PMC7067774 DOI: 10.1038/s41541-020-0168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.
Collapse
Affiliation(s)
- David A Montero
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,2Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Del Canto
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Céspedes
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leandro Cádiz
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Arenas-Salinas
- 3Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - José Reyes
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M Vidal
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,5Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
494
|
Jain M, Muthukumaran J, Singh AK. Structural and functional characterization of chitin binding lectin from Datura stramonium: insights from phylogenetic analysis, protein structure prediction, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:1698-1716. [DOI: 10.1080/07391102.2020.1737234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
495
|
Van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. Biomolecules 2020; 10:biom10030430. [PMID: 32164257 PMCID: PMC7175280 DOI: 10.3390/biom10030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of functional, folded, and isotopically enriched membrane proteins is an enduring bottleneck for nuclear magnetic resonance (NMR) studies. Indeed, historically, protein yield optimization has been insufficient to allow NMR analysis of many complex Eukaryotic membrane proteins. However, recent work has found that manipulation of plasmid codons improves the odds of successful NMR-friendly protein production. In the last decade, numerous studies showed that matching codon usage patterns in recombinant gene sequences to those in the native sequence is positively correlated with increased protein yield. This phenomenon, dubbed codon harmonization, may be a powerful tool in optimizing recombinant expression of difficult-to-produce membrane proteins for structural studies. Here, we apply this technique to an inward rectifier K+ Channel (Kir) 3.1-KirBac1.3 chimera. Kir3.1 falls within the G protein-coupled inward rectifier K+ (GIRK) channel family, thus NMR studies may inform on the nuances of GIRK gating action in the presence and absence of its G Protein, lipid, and small molecule ligands. In our hands, harmonized plasmids increase protein yield nearly two-fold compared to the traditional ‘fully codon optimized’ construct. We then employ a fluorescence-based functional assay and solid-state NMR correlation spectroscopy to show the final protein product is folded and functional.
Collapse
Affiliation(s)
- Evan Van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Anil K. Mehta
- National High Magnetic Field Laboratory and McKnight Brain Institute, University of Florida, Box 10015, Gainesville, FL 32610, USA;
| | - Isaac Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Benjamin Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
- Correspondence:
| |
Collapse
|
496
|
Laureanti JA, Ginovska B, Buchko GW, Schenter GK, Hebert M, Zadvornyy OA, Peters JW, Shaw WJ. A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO2 Hydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph A. Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Gregory K. Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Margaret Hebert
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Oleg A. Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - John W. Peters
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wendy J. Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
497
|
Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci Rep 2020; 10:4295. [PMID: 32152363 PMCID: PMC7062692 DOI: 10.1038/s41598-020-59953-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.
Collapse
|
498
|
Podgorski J, Calabrese J, Alexandrescu L, Jacobs-Sera D, Pope W, Hatfull G, White S. Structures of Three Actinobacteriophage Capsids: Roles of Symmetry and Accessory Proteins. Viruses 2020; 12:v12030294. [PMID: 32182721 PMCID: PMC7150772 DOI: 10.3390/v12030294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Here, we describe the structure of three actinobacteriophage capsids that infect Mycobacterium smegmatis. The capsid structures were resolved to approximately six angstroms, which allowed confirmation that each bacteriophage uses the HK97-fold to form their capsid. One bacteriophage, Rosebush, may have a novel variation of the HK97-fold. Four novel accessory proteins that form the capsid head along with the major capsid protein were identified. Two of the accessory proteins were minor capsid proteins and showed some homology, based on bioinformatic analysis, to the TW1 bacteriophage. The remaining two accessory proteins are decoration proteins that are located on the outside of the capsid and do not resemble any previously described bacteriophage decoration protein. SDS-PAGE and mass spectrometry was used to identify the accessory proteins and bioinformatic analysis of the accessory proteins suggest they are used in many actinobacteriophage capsids.
Collapse
Affiliation(s)
- Jennifer Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Joshua Calabrese
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Lauren Alexandrescu
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Welkin Pope
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Simon White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
- Correspondence:
| |
Collapse
|
499
|
Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci Rep 2020; 10:3977. [PMID: 32132546 PMCID: PMC7055323 DOI: 10.1038/s41598-020-60274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 μM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.
Collapse
|
500
|
Majee P, Jain N, Kumar A. Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: a putative prophylactic solution for the deadly virus. J Biomol Struct Dyn 2020; 39:1461-1480. [PMID: 32093573 DOI: 10.1080/07391102.2020.1734088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nipah virus (NPV) is one of the most notorious viruses with a very high fatality rate. Because of the recurrent advent of this virus and its severe neurological implications, often leading to high mortality, the WHO R&D Blueprint, 2018 has listed the Nipah virus as one of the emerging infectious diseases requiring urgent research and development effort. Yet there is a major layback in the development of effective vaccines or drugs against NPV. In this study, we have designed a stable multivalent vaccine combining several T-cell and B-cell epitopes of the essential Nipah viral proteins with the help of different ligands and adjuvants which can effectively induce both humoral and cellular immune responses in human. Different advanced immune-informatic tools confirm the stability, high immunogenicity and least allergenicity of the vaccine candidate. The standard molecular dynamic cascade analysis validates the stable interaction of the vaccine construct with the human Toll-like receptor 3 (TLR3) complex. Later, codon optimization and in silico cloning in a known pET28a vector system shows the possibility for the expression of this vaccine in a simple organism like E.coli. It is believed that with further in vitro and in vivo validation, this vaccine construct can pose to be a better prophylactic solution to the Nipah viral disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| |
Collapse
|