5101
|
Boss IW, Renne R. Viral miRNAs and immune evasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:708-14. [PMID: 21757042 DOI: 10.1016/j.bbagrm.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
Abstract
Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Isaac W Boss
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, FL, USA.
| | | |
Collapse
|
5102
|
Wong AMG, Kong KL, Tsang JWH, Kwong DLW, Guan XY. Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer 2011; 118:698-710. [PMID: 21720996 DOI: 10.1002/cncr.26309] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) microRNAs are abundant in nasopharyngeal carcinoma (NPC) tumors. With recent advances in serum microRNA detection, the distinct presence of EBV microRNAs in serum could aid in screening endemic regions for NPC. A proposed network of genes targeted by these microRNAs could also shed light on EBV-associated tumorigenesis. METHODS MicroRNA microarray profiling of 5 paired NPC biopsies was followed by validation of 12 up-regulated EBV microRNAs (BART1-3p, 2-5p, 5, 6-5p, 6-3p, 7, 8, 9, 14, 17-5p, 18-5p, 19-3p) in 15 additional cases by real-time polymerase chain reaction. Tumor (cellular) and serum microRNA copy numbers from the same 15 patients were correlated. Expression of the same microRNAs were also examined in EBV-positive cell lines C666 and NP460hTERT+EBV. Bioinformatic tools helped predict cellular target genes, which were later confirmed by gene expression analysis. RESULTS The authors' high-throughput approach shows that EBV microRNAs are generally more up-regulated than microRNAs of human origin. Twenty-nine of 39 EBV microRNAs were significantly up-regulated in tumor versus their nontumor biopsies (P < .05). Upon successfully validating 12 selected EBV microRNAs in 15 additional paired NPC cases, the authors found that their distinct presence in the serum of NPC patients positively correlated with cellular copy numbers of EBV microRNAs. Further investigation of potential EBV microRNA target genes revealed inhibition of tumor suppressor genes (eg, PTEN) and extensive deregulation of several pathways frequently involved in NPC (eg, Wnt signaling). CONCLUSIONS Increasing knowledge of host-virus interaction via microRNAs may provide feasible explanations underlying NPC tumorigenesis along with the development of biomarkers for screening high-risk populations.
Collapse
Affiliation(s)
- Alissa Michelle Go Wong
- Department of Clinical Oncology and Center for Cancer Research, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
5103
|
Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124:175-84. [PMID: 21690488 DOI: 10.1161/circulationaha.110.012237] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Essential hypertension has been recognized as a disease resulting from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in cardiac hypertrophy and heart failure. However, little is known about the roles of miRNAs in essential hypertension. METHODS AND RESULTS Using microarray-based miRNA expression profiling, we compared the miRNA expressions in plasma samples from 13 hypertensive patients and 5 healthy control subjects. Twenty-seven miRNAs were found to be differentially expressed. The expressions of selected miRNAs (miR-296-5p, let-7e, and a human cytomegalovirus [HCMV]-encoded miRNA, hcmv-miR-UL112) were validated independently in plasma samples from 24 hypertensive patients and 22 control subjects. The absolute expression levels of hcmv-miR-UL112, miR-296-5p, and let-7e were further determined in 127 patients and 67 control subjects (fold changes are 2.5, 0.5, and 1.7 respectively; all P<0.0001). Additionally, we demonstrated that interferon regulatory factor 1 is a direct target of hcmv-miR-UL112. Increased HCMV seropositivity and quantitative titers were found in the hypertension group compared with the control group (52.7% versus 30.9%, P=0.0005; 1870 versus 54 copies per 1 mL plasma, P<0.0001). Seropositivity, log-transformed copies of HCMV, and hcmv-miR-UL112 were independently associated with an increased risk of hypertension (odds ratio, 2.48; 95% confidence interval, 1.48 to 4.15; P=0.0005; odds ratio, 1.97; 95% confidence interval, 1.58 to 2.46; P<0.0001; and odds ratio, 2.55; 95% confidence interval, 1.98 to 3.27; P<0.0001, respectively). CONCLUSIONS We report for the first time a circulating miRNA profile for hypertensive patients and demonstrate a novel link between HCMV infection and essential hypertension. These findings may reveal important insights into the pathogenesis of essential hypertension. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. UNIQUE IDENTIFIER: NCT00420784.
Collapse
Affiliation(s)
- Shuqiang Li
- Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5104
|
Abstract
The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
5105
|
Kanai A. [Virus, phage, transposon and their regulatory small non-coding RNAs]. Uirusu 2011; 61:25-34. [PMID: 21972553 DOI: 10.2222/jsv.61.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many reports have been accumulated describing not a few microRNAs (miRNAs) in eukaryotes target viral genomes, whereas a number of viruses also encode miRNA genes. These small RNAs play important roles on viral infection and their replication. In germ cells, another small RNA, piRNA is reported to repress endogenous transposons. Furthermore, CRISPR RNA target virus/phage genomes in both archaea and bacteria. Therefore, small RNA is deeply involved in a broad range of biological defense systems. This system may be applied not only to control replication of viruses or phages but also provide implication on regulating the growth of microorganisms including pathogenic bacteria.
Collapse
Affiliation(s)
- Akio Kanai
- Institute for Advanced Biosciences, Keio University Tsuruoka, Yamagata 997-0017, Japan.
| |
Collapse
|
5106
|
Lepiller Q, Aziz Khan K, Di Martino V, Herbein G. Cytomegalovirus and tumors: two players for one goal-immune escape. Open Virol J 2011; 5:60-9. [PMID: 21760870 PMCID: PMC3134960 DOI: 10.2174/1874357901105010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) and the human tumor cell share the same objectives: escape the recognition and destruction by the immune system and establish a state of immune tolerance conducive for their development. For early tumor development, the escape of the first lines of defense of the immune surveillance is a critical step which determines survival or destruction. The presence of CMV on the tumor site and its involvement in carcinogenesis as initiator or promoter is increasingly documented. In this article, we highlight the similarity between mechanisms used by tumors and CMV to circumvent the immune defenses and evade from immune surveillance. We suggest that CMV and tumors help one another for their common objective. CMV gets shelter in immunologically poor environment of the tumor cells. In return CMV, by acting directly on the cancer cell and/or on the tumor microenvironment, provides the tumor cell the ways to promote its immune escape and development of immune tolerance.
Collapse
Affiliation(s)
- Quentin Lepiller
- Department of Virology, University of Franche-Comte, UPRES EA 4266, IFR 133, CHU Besancon, F-25030 Besanon, France
| | | | | | | |
Collapse
|
5107
|
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39:7223-33. [PMID: 21609964 PMCID: PMC3167594 DOI: 10.1093/nar/gkr254] [Citation(s) in RCA: 1504] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been detected in human body fluids, including peripheral blood plasma as extracellular nuclease resistant entities. However, the origin and function of extracellular circulating miRNA remain essentially unknown. Here, we confirmed that circulating mature miRNA in contrast to mRNA or snRNA is strikingly stable in blood plasma and cell culture media. Furthermore, we found that most miRNA in plasma and cell culture media completely passed through 0.22 µm filters but remained in the supernatant after ultracentrifugation at 110 000g indicating the non-vesicular origin of the extracellular miRNA. Furthermore, western blot immunoassay revealed that extracellular miRNA ultrafiltrated together with the 96 kDa Ago2 protein, a part of RNA-induced silencing complex. Moreover, miRNAs in both blood plasma and cell culture media co-immunoprecipited with anti-Ago2 antibody in a detergent free environment. This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins. We hypothesize that extracellular miRNAs are in the most part by-products of dead cells that remain in extracellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex. Nevertheless, our data does not reject the possibility that some miRNAs can be associated with exosomes.
Collapse
Affiliation(s)
- Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
5108
|
Yu G, He QY. Functional similarity analysis of human virus-encoded miRNAs. J Clin Bioinforma 2011; 1:15. [PMID: 21884632 PMCID: PMC3164608 DOI: 10.1186/2043-9113-1-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/19/2011] [Indexed: 12/17/2022] Open
Abstract
miRNAs are a class of small RNAs that regulate gene expression via RNA silencing machinery. Some viruses also encode miRNAs, contributing to the complex virus-host interactions. A better understanding of viral miRNA functions would be useful in designing new preventive strategies for treating diseases induced by viruses. To meet the challenge for how viruses module host gene expression by their encoded miRNAs, we measured the functional similarities among human viral miRNAs by using a method we reported previously. Higher order functions regulated by viral miRNAs were also identified by KEGG pathway analysis on their targets. Our study demonstrated the biological processes involved in virus-host interactions via viral miRNAs. Phylogenetic analysis suggested that viral miRNAs have distinct evolution rates compared with their corresponding genome.
Collapse
Affiliation(s)
- Guangchuang Yu
- Institute of Life and Health Engineering and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | | |
Collapse
|
5109
|
Groth A, Klöss S, von Strandmann EP, Koehl U, Koch J. Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun 2011; 3:344-54. [PMID: 21576922 DOI: 10.1159/000327014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
Human natural killer (NK) cells recognize and efficiently eliminate MHC class I low or negative malignant targets and virally infected host cells, without requirement for prior sensitization. However, viruses and various tumor cells display elaborate adaptations to evade and overcome immunosurveillance. The current review focuses on escape mechanisms of viruses and malignantly transformed 'stressed' cells to evade from NK cell cytotoxicity. A general overview of recent clinical studies using allogeneic donor NK cells is given, summarizing first data about a possible benefit for patients suffering from high-risk leukemia and solid tumors. Finally, the review discusses the future perspectives and hypotheses aiming to improve therapeutic NK cell strategies against tumor immune escape mechanisms.
Collapse
Affiliation(s)
- Ariane Groth
- Institute of Biomedical Research, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
5110
|
Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 2011; 32:256-64. [PMID: 21565554 DOI: 10.1016/j.it.2011.04.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 12/16/2022]
Abstract
In the intestine, multiple interactions occur with the external world. Thus, the intestinal mucosal barrier has to tolerate millions of microorganisms that commonly inhabit the gut, degrade and absorb food, and establish tolerance or immunity, depending on the nature of the encountered antigens. Recent findings have highlighted that intestinal epithelial cells are not simply a barrier, but also are crucial for integrating these external and internal signals and for coordinating the ensuing immune response. Here, I review these findings and show how epithelial cells harmonize information that comes from inflammatory and non-inflammatory components of the microbiota to preserve intestinal homeostasis. If dysregulated, this immunomodulatory function of epithelial cells might contribute to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Maria Rescigno
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy.
| |
Collapse
|
5111
|
Abstract
MicroRNAs (miRNAs) provide new therapeutic targets for many diseases, while their myriad roles in development and cellular processes make them fascinating to study. We still do not fully understand the molecular mechanisms by which miRNAs regulate gene expression nor do we know the complete repertoire of mRNAs each miRNA regulates. However, recent progress in the development of effective strategies to block miRNAs suggests that anti-miRNA drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- J A Broderick
- Program in Neuroscience, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
5112
|
Shimanovich U, Volkov V, Eliaz D, Aizer A, Michaeli S, Gedanken A. Stabilizing RNA by the sonochemical formation of RNA nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1068-1074. [PMID: 21456085 DOI: 10.1002/smll.201002238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Indexed: 05/30/2023]
Abstract
Biological macromolecules, including DNA, RNA, and proteins, have intrinsic features that make them potential building blocks for the bottom-up fabrication of nanodevices. Unlike DNA, RNA is a more versatile molecule whose range in the cell is from 21 to thousands of nucleotides and is usually folded into stem and loop structures. RNA is unique in nanoscale fabrication due to its diversity in size, function, and structure. Because gene expression analysis is becoming a clinical reality and there is a need to collect RNA in minute amounts from clinical samples, keeping the RNA intact is a growing challenge. RNA samples are notoriously difficult to handle because of their highly labile nature and tendency to degrade even under controlled RNase-free conditions and maintenance in the cold. Silencing the RNA that induces the RNA interference is viewed as the next generation of therapeutics. The stabilization and delivery of RNA to cells are the major concerns in making siRNAs usable drugs. For the first time, ultrasonic waves are shown to convert native RNA molecules to RNA nanospheres. The creation of the nanobubbles is performed by a one-step reaction. The RNA nanospheres are stable at room temperature for at least one month. Additionally, the nanospheres can be inserted into mammalian cancer cells (U2OS). This research achieves: 1) a solution to RNA storage; and 2) a way to convert RNA molecules to RNA particles. RNA nanosphere formation is a reversible process, and by using denaturing conditions, the RNA can be refolded into intact molecules.
Collapse
Affiliation(s)
- Ulyana Shimanovich
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
5113
|
|
5114
|
Nellore A, Fishman JA. NK cells, innate immunity and hepatitis C infection after liver transplantation. Clin Infect Dis 2011; 52:369-77. [PMID: 21217184 DOI: 10.1093/cid/ciq156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver transplantation in patients with active hepatitis C virus (HCV) infection is followed by almost universal recurrence of viral infection. The control of HCV infection has been characterized largely in terms of the HCV-specific function of T-lymphocytes and the adaptive immune response. Emerging data suggest that components of the innate immune system, including natural killer cells, have a central role in determining the nature of posttransplant HCV infection and the likelihood of response to antiviral therapy. This review examines the emerging evidence implicating innate immunity in the pathogenesis of posttransplant HCV infections and the potential therapeutic implications of these observations.
Collapse
Affiliation(s)
- Anoma Nellore
- Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
5115
|
Abstract
The irritable bowel syndrome (IBS) is a common disorder of unknown etiology. Recently, a group of dysregulated microRNAs (miRNAs) in blood microvesicles and in colon tissue have been identified in IBS patients. miRNAs have been shown to modulate specific biological processes such as differentiation, proliferation, apoptosis and metabolism. The ideal strategy would be to use specific miRNAs as both diagnostic and therapeutic tools to recover intestinal function and treat intractable gastrointestinal symptoms. In conclusion, further study of the functional role of miRNAs will lead to a better understanding of the dysregulation of intestinal pathways in IBS patients. The results may lead to preventive and/or therapeutic strategies that use small molecules (such as mimics or inhibitors of specific miRNAs) to affect genetic and epigenetic control. Future clinical trials may use microvesicle-associated miRNA-based therapies by using specific inhibitors/mimics of miRNA to target gene expression and treat IBS.
Collapse
|
5116
|
Poole E, McGregor Dallas SR, Colston J, Joseph RSV, Sinclair J. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34⁺ progenitors. J Gen Virol 2011; 92:1539-1549. [PMID: 21471310 DOI: 10.1099/vir.0.031377-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV; human herpesvirus 5) is known to be CD34(+) haematopoietic progenitor cells, and it is likely that carriage of latent virus has profound effects on cellular gene expression in order to optimize latency and reactivation. As microRNAs (miRNAs) play important roles in regulating stem-cell gene expression, this study asked whether latent carriage of HCMV led to changes in cellular miRNA expression. A comprehensive miRNA screen showed the differential regulation of a number of cellular miRNAs during HCMV latency in CD34(+) progenitor cells. One of these, hsa-miR-92a, was robustly decreased in three independent miRNA screens. Latency-induced change in hsa-miR-92a results in an increase in expression of GATA-2 and subsequent increased expression of cellular IL-10, which aids the maintenance of latent viral genomes in CD34(+) cells, probably resulting from their increased survival.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stuart R McGregor Dallas
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Colston
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert Samuel V Joseph
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
5117
|
Shan J, Feng L, Luo L, Wu W, Li C, Li S, Li Y. MicroRNAs: potential biomarker in organ transplantation. Transpl Immunol 2011; 24:210-5. [PMID: 21459143 DOI: 10.1016/j.trim.2011.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/26/2011] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRs) are non-coding RNAs that could regulate gene expression at the posttranscriptional level, and have been indicated to be involved in diverse biological processes. They are emerging as master regulator of immune response and may likely play a key role in transplant rejection process. The extensive and comprehensive use of miR microarrays has enabled the identification of miRs as potential biomarkers for transplantation; many miRs have been reported associated with transplant rejection. Here we reviewed the emerging data on transplant recipients' miRs expression pattern, and discussed the possible mechanism of how miRs regulate transplant immune response.
Collapse
Affiliation(s)
- Juan Shan
- Key Laboratory of Transplant Engineering and Immunology of Health Ministry of China, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China
| | | | | | | | | | | | | |
Collapse
|
5118
|
Gu W, An J, Ye P, Zhao KN, Antonsson A. Prediction of conserved microRNAs from skin and mucosal human papillomaviruses. Arch Virol 2011; 156:1161-71. [PMID: 21442230 DOI: 10.1007/s00705-011-0974-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 03/08/2011] [Indexed: 12/26/2022]
Abstract
Eight human papillomavirus (HPV) types including four cutaneous HPV types (HPV-5, HPV-8, HPV-20 and HPV-38) and four mucosal HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) were selected for this miRNA study. Pre-miRNAs were predicted using a computer programme, and the conserved mature miRNAs were compared to currently known miRNAs. Predicted HPV miRNAs related to miR-466, -467 and -669 were common and specific to the mucosal HPV types. Northern blot hybridization confirmed a predicted miRNA in HPV-positive cervical cancer cell lines encoded by mucosal HPVs. HPV-38 was predicted to express an miRNA conserved to human let-7a and the expression of let-7a, in HPV-38-positive non-melanoma skin cancer (NMSC) biopsies was 10-fold higher than those with HPV-positive (for other types except HPV-38) and HPV-negative NMSCs, suggesting that let-7a expression might be related to HPV-38 infection. Potential gene targets of the predicted miRNA that may aid HPV in infection and pathogenesis were also analysed.
Collapse
Affiliation(s)
- Wenyi Gu
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, The University of Queensland, Woolloongabba, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
5119
|
Post-transcriptional regulation of ULBP1 ligand for the activating immunoreceptor NKG2D involves 3' untranslated region. Hum Immunol 2011; 72:470-8. [PMID: 21406206 DOI: 10.1016/j.humimm.2011.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 02/19/2011] [Accepted: 03/09/2011] [Indexed: 12/21/2022]
Abstract
The stress-inducible ULBP1 cell surface ligand for the activating immunoreceptor NKG2D allows recognition and lysis of tumor cells by natural killer (NK) and T cells. Understanding of mechanisms regulating ULBP1 expression is limited, but it is important for exploiting NKG2D-dependent antitumor responses. We studied the role of 3' untranslated region (3' UTR) in post-transcriptional regulation of ULBP1 expression in Jurkat and HeLa cells. Analysis of 2.4 kb-long 3' UTR revealed the presence of four AU-rich elements (ARE) and more then 200 putative microRNA binding sites. Stable or transient delivery of luciferase reporter constructs containing ULBP1-3' UTR sequences resulted in a strong reduction of luciferase activity to 7-22% with the full-length 3' UTR or 19%-62% with its fragments, indicating a contribution of 3' UTR to regulation of ULBP1 gene. Mutations introduced to ARE motifs significantly diminished luciferase activity, suggesting mRNA stabilizing effect of ARE. Among ULBP1-specific candidate microRNAs, we found miR-140-5p/-409-3p/-433-3p/-650 expressed in HeLa and Jurkat cells, and the microRNA involvement was supported by luciferase reporter assays with constructs carrying seed sequence mutations. However, microRNA overexpression or partial silencing of the microRNA processing enzyme Drosha did not equivocally clarify the role of microRNAs in regulation of ULBP1. Altogether these results provide evidence for a novel 3' UTR-mediated mechanism of regulation of ULBP1 at the post-transcriptional level.
Collapse
|
5120
|
Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, Kredo-Russo S, Avnit-Sagi T, Cojocaru G, Zreik F, Bentwich Z, Poy MN, Artis D, Walker MD, Hornstein E, Pikarsky E, Ben-Neriah Y. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol 2011; 12:239-246. [PMID: 21278735 DOI: 10.1038/ni.1994] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 12/12/2022]
Abstract
Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.
Collapse
Affiliation(s)
- Moshe Biton
- Lautenberg Center for Immunology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5121
|
Ha TY. The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immune Netw 2011; 11:11-41. [PMID: 21494372 PMCID: PMC3072673 DOI: 10.4110/in.2011.11.1.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022] Open
Abstract
The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Korea
| |
Collapse
|
5122
|
Hemida MG, Ye X, Thair S, Yang D. Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations. Mol Diagn Ther 2011; 14:271-82. [PMID: 21053993 PMCID: PMC7099301 DOI: 10.1007/bf03256383] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New therapeutic approaches are urgently needed for serious diseases, including cancer, cardiovascular diseases, viral infections, and others. A recent direction in drug development is the utilization of nucleic acidbased therapeutic molecules, such as antisense oligonucleotides, ribozymes, short interfering RNA (siRNA), and microRNA (miRNA). miRNAs are endogenous, short, non-coding RNA molecules. Some viruses encode their own miRNAs, which play pivotal roles in viral replication and immune evasion strategies. Conversely, viruses that do not encode miRNAs may manipulate host cell miRNAs for the benefits of their replication. miRNAs have therefore become attractive tools for the study of viral pathogenesis. Lately, novel therapeutic strategies based on miRNA technology for the treatment of viral diseases have been progressing rapidly. Although this new generation of molecular therapy is promising, there are still several challenges to face, such as targeting delivery to specific tissues, avoiding off-target effects of miRNAs, reducing the toxicity of the drugs, and overcoming mutations and drug resistance. In this article, we review the current knowledge of the role and therapeutic potential of miRNAs in viral diseases, and discuss the limitations of these therapies, as well as strategies to overcome them to provide safe and effective clinical applications of these new therapeutics.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Pathology and Laboratory Medicine, University of British Columbia, Heart and Lung Institute, St Paul's Hospital, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
5123
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
5124
|
Insights into Polyomaviridae microRNA function derived from study of the bandicoot papillomatosis carcinomatosis viruses. J Virol 2011; 85:4487-500. [PMID: 21345962 DOI: 10.1128/jvi.02557-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several different members of the Polyomaviridae, including some human pathogens, encode microRNAs (miRNAs) that lie antisense with respect to the early gene products, the tumor (T) antigens. These miRNAs negatively regulate T antigen expression by directing small interfering RNA (siRNA)-like cleavage of the early transcripts. miRNA mutant viruses of some members of the Polyomaviridae express increased levels of early proteins during lytic infection. However, the importance of miRNA-mediated negative regulation of the T antigens remains uncertain. Bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1) is associated with papillomas and carcinomas in the endangered marsupial the western barred bandicoot (Perameles bougainville). BPCV1 is the founding member of a new group of viruses that remarkably share distinct properties in common with both the polyomavirus and papillomavirus families. Here, we show that BPCV1 encodes, in the same orientation as the papillomavirus-like transcripts, a miRNA located within a long noncoding region (NCR) of the genome. Furthermore, this NCR serves the function of both promoter and template for the primary transcript that gives rise to the miRNA. Unlike the polyomavirus miRNAs, the BPCV1 miRNA is not encoded antisense to the T antigen transcripts but rather lies in a separate, proximal region of the genome. We have mapped the 3' untranslated region (UTR) of the BPCV1 large T antigen early transcript and identified a functional miRNA target site that is imperfectly complementary to the BPCV1 miRNA. Chimeric reporters containing the entire BPCV1 T antigen 3' UTR undergo negative regulation when coexpressed with the BPCV1 miRNA. Notably, the degree of negative regulation observed is equivalent to that of an identical reporter that is engineered to bind to the BPCV1 miRNA with perfect complementarity. We also show that this miRNA and this novel mode of early gene regulation are conserved with the related BPCV2. Finally, papillomatous lesions from a western barred bandicoot express readily detectable levels of this miRNA, stressing its likely importance in vivo. Combined, the alternative mechanisms of negative regulation of T antigen expression between the BPCVs and the polyomaviruses support the importance of miRNA-mediated autoregulation in the life cycles of some divergent polyomaviruses and polyomavirus-like viruses.
Collapse
|
5125
|
Bauman Y, Nachmani D, Vitenshtein A, Tsukerman P, Drayman N, Stern-Ginossar N, Lankry D, Gruda R, Mandelboim O. An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 2011; 9:93-102. [PMID: 21320692 DOI: 10.1016/j.chom.2011.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/28/2010] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
Abstract
The human polyoma viruses JCV and BKV establish asymptomatic persistent infection in 65%-90% of humans but can cause severe illness under immunosuppressive conditions. The mechanisms by which these viruses evade immune recognition are unknown. Here we show that a viral miRNA identical in sequence between JCV and BKV targets the stress-induced ligand ULBP3, which is a protein recognized by the killer receptor NKG2D. Consequently, viral miRNA-mediated ULBP3 downregulation results in reduced NKG2D-mediated killing of virus-infected cells by natural killer (NK) cells. Importantly, when the activity of the viral miRNA was inhibited during infection, NK cells killed the infected cells more efficiently. Because NKG2D is also expressed by various T cell subsets, we propose that JCV and BKV use an identical miRNA that targets ULBP3 to escape detection by both the innate and adaptive immune systems, explaining how these viruses remain latent without being eliminated by the immune system.
Collapse
Affiliation(s)
- Yoav Bauman
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
5126
|
Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M, Cullen BR, Delecluse HJ. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 2011; 7:e1001294. [PMID: 21379335 PMCID: PMC3040666 DOI: 10.1371/journal.ppat.1001294] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/14/2011] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic human herpesvirus, induces cell proliferation after infection of resting B lymphocytes, its reservoir in vivo. The viral latent proteins are necessary for permanent B cell growth, but it is unknown whether they are sufficient. EBV was recently found to encode microRNAs (miRNAs) that are expressed in infected B cells and in some EBV-associated lymphomas. EBV miRNAs are grouped into two clusters located either adjacent to the BHRF1 gene or in introns contained within the viral BART transcripts. To understand the role of the BHRF1 miRNA cluster, we have constructed a virus mutant that lacks all its three members (Δ123) and a revertant virus. Here we show that the B cell transforming capacity of the Δ123 EBV mutant is reduced by more than 20-fold, relative to wild type or revertant viruses. B cells exposed to the knock-out virus displayed slower growth, and exhibited a two-fold reduction in the percentage of cells entering the cell cycle S phase. Furthermore, they displayed higher latent gene expression levels and latent protein production than their wild type counterparts. Therefore, the BHRF1 miRNAs accelerate B cell expansion at lower latent gene expression levels. Thus, this miRNA cluster simultaneously enhances expansion of the virus reservoir and reduces the viral antigenic load, two features that have the potential to facilitate persistence of the virus in the infected host. Thus, the EBV BHRF1 miRNAs may represent new therapeutic targets for the treatment of some EBV-associated lymphomas.
Collapse
Affiliation(s)
- Regina Feederle
- Department of Virus Associated Tumours, German Cancer Research Center, Heidelberg, Germany
| | - Sarah D. Linnstaedt
- Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Helmut Bannert
- Department of Virus Associated Tumours, German Cancer Research Center, Heidelberg, Germany
| | - Helge Lips
- Department of Virus Associated Tumours, German Cancer Research Center, Heidelberg, Germany
| | - Maja Bencun
- Department of Virus Associated Tumours, German Cancer Research Center, Heidelberg, Germany
| | - Bryan R. Cullen
- Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Henri-Jacques Delecluse
- Department of Virus Associated Tumours, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
5127
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
5128
|
Lampen MH, van Hall T. Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol 2011; 23:293-8. [PMID: 21295956 DOI: 10.1016/j.coi.2010.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Defects in MHC-I antigen presentation represent a common feature of cancer and allow evasion from T cell recognition. Recent findings from immunotherapy in melanoma suggested that irreversible MHC-I defects enable escape from immune pressure. Although loss of antigen presentation is known for many years, strategies to counteract these defects are scarce and largely unexamined. Now that the first forms of T-cell-based immunotherapy show clinical efficacy and reach FDA approval, this issue deserves urgent awareness. Here we describe possible roads leading to corrections of MHC-I defects in tumors and describe a salvage pathway for CTL by targeting novel tumor antigens that we recently uncovered.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Netherlands
| | | |
Collapse
|
5129
|
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411:325-43. [PMID: 21277611 DOI: 10.1016/j.virol.2011.01.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/04/2011] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of viral gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category is a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection.
Collapse
Affiliation(s)
- Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Martinistr, Hamburg, Germany.
| | | |
Collapse
|
5130
|
Tsai KN, Chen GW. Influenza genome diversity and evolution. Microbes Infect 2011; 13:479-88. [PMID: 21276870 DOI: 10.1016/j.micinf.2011.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 12/14/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022]
Abstract
The influenza viruses contain highly variable genomes and are able to infect a wide range of host species. Large-scale sequencing projects have collected abundant influenza sequence data for assessing influenza genome diversity and evolution. This work reviews current influenza sequence databases characteristics and statistics, as well as recent studies utilizing these databases to unravel influenza virus diversity and evolution. Also discussed are the newest deep sequencing methods and their applications to influenza virus research.
Collapse
Affiliation(s)
- Kun-Nan Tsai
- Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan 333, Taiwan, ROC
| | | |
Collapse
|
5131
|
NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood 2011; 117:848-56. [DOI: 10.1182/blood-2010-08-301374] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Information on natural killer (NK)–cell receptor-ligand interactions involved in the response to human cytomegalovirus (HCMV) is limited and essentially based on the study of infected fibroblasts. Experimental conditions were set up to characterize the NK response to HCMV-infected myeloid dendritic cells (DCs). Monocyte-derived DCs (moDCs) infected by the TB40/E HCMV strain down-regulated the expression of human leukocyte antigen class I molecules and specifically activated autologous NK-cell populations. NKG2D ligands appeared virtually undetectable in infected moDCs, reflecting the efficiency of immune evasion mechanisms, and explained the lack of antagonistic effects of NKG2D-specific monoclonal antibody. By contrast, DNAM-1 and DNAM-1 ligands (DNAM-1L)–specific monoclonal antibodies inhibited the NK response at 48 hours after infection, although the impact of HCMV-dependent down-regulation of DNAM-1L in infected moDCs was perceived at later stages. moDCs constitutively expressed ligands for NKp46 and NKp30 natural cytotoxicity receptors, which were partially reduced on HCMV infection; yet, only NKp46 appeared involved in the NK response. In contrast to previous reports in fibroblasts, human leukocyte antigen-E expression was not preserved in HCMV-infected moDCs, which triggered CD94/NKG2A+ NK-cell activation. The results provide an insight on key receptor-ligand interactions involved in the NK-cell response against HCMV-infected moDCs, stressing the importance of the dynamics of viral immune evasion mechanisms.
Collapse
|
5132
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011. [PMID: 21248040 DOI: 10.1128/jvi.01923-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
5133
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011; 85:3473-85. [PMID: 21248040 DOI: 10.1128/jvi.01923-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
5134
|
Abstract
Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22 ± 3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis.
Collapse
Affiliation(s)
- Karlie Plaisance-Bonstaff
- Department of Molecular Genetics and Microbiology, University of Florida Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
5135
|
Jaé N, Preusser C, Krüger T, Tkacz ID, Engstler M, Michaeli S, Bindereif A. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biol 2011; 8:90-100. [PMID: 21282982 DOI: 10.4161/rna.8.1.13985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pre-mRNA splicing in trypanosomes requires the SMN-mediated assembly of small nuclear ribonucleoproteins (snRNPs). In contrast to higher eukaryotes, the cellular localization of snRNP biogenesis and the involvement of nuclear-cytoplasmic trafficking in trypanosomes are controversial. By using RNAi knockdown of SMN in T. brucei to investigate its functional role in snRNP assembly, we found dramatic changes in the steady-state levels of snRNAs and snRNPs: The SL RNA accumulates, whereas U1, U4, and U5 snRNA levels decrease, and Sm core assembly in particular of the SL RNA is strongly reduced. In addition, SMN depletion blocks U4/U6 di-snRNP formation; the variant Sm core of the U2 snRNP, however, still forms efficiently after SMN knockdown. Concerning the longstanding question, whether nuclear-cytoplasmic trafficking is involved in trypanosomal snRNP biogenesis, fluorescence in situ hybridization (FISH) and immunofluorescence assays revealed that the SL RNA genes and transcripts colocalize with SMN. Remarkably, SMN silencing leads to a nucleoplasmic accumulation of both SL RNA and the Sm proteins. In sum, our data demonstrate an essential and snRNA-selective role of SMN in snRNP biogenesis in vivo and strongly argue for a nucleoplasmic Sm core assembly of the SL RNP.
Collapse
Affiliation(s)
- Nicolas Jaé
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | | | | | | | |
Collapse
|
5136
|
Teferedegne B, Murata H, Quiñones M, Peden K, Lewis AM. Patterns of microRNA expression in non-human primate cells correlate with neoplastic development in vitro. PLoS One 2010; 5:e14416. [PMID: 21203544 PMCID: PMC3008671 DOI: 10.1371/journal.pone.0014416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/29/2010] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression post-transcriptionally. They play a critical role in developmental and physiological processes and have been implicated in the pathogenesis of several diseases including cancer. To identify miRNA signatures associated with different stages of neoplastic development, we examined the expression profile of 776 primate miRNAs in VERO cells (a neoplastically transformed cell line being used for the manufacture of viral vaccines), progenitor primary African green monkey kidney (pAGMK) cells, and VERO cell derivatives: spontaneously immortalized, non-tumorigenic, low-passage VERO cells (10-87 LP); tumorigenic, high-passage VERO cells (10-87 HP); and a cell line (10-87 T) derived from a 10-87 HP cell tumor xenograft in athymic nude mice. When compared with pAGMK cells, the majority of miRNAs were expressed at lower levels in 10-87 LP, 10-87 HP, and 10-87 T cells. We identified 10 up-regulated miRNAs whose level of expression correlated with VERO cell evolution from a non-tumorigenic phenotype to a tumorigenic phenotype. The overexpression of miR-376a and the polycistronic cluster of miR-376a, miR-376b and miR-376c conferred phenotypic changes to the non-tumorigenic 10-87 LP cells that mimic the tumorigenic 10-87 HP cells. Thirty percent of miRNAs that were components of the identified miRNAs in our spontaneously transformed AGMK cell model are also dysregulated in a variety of human tumors. These results may prove to be relevant to the biology of neoplastic development. In addition, one or more of these miRNAs could be biomarkers for the expression of a tumorigenic phenotype.
Collapse
Affiliation(s)
- Belete Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
5137
|
Abstract
One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
5138
|
Abstract
One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
5139
|
Elefant N, Berger A, Shein H, Hofree M, Margalit H, Altuvia Y. RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res 2010; 39:D188-94. [PMID: 21149264 PMCID: PMC3013742 DOI: 10.1093/nar/gkq1233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Computational identification of putative microRNA (miRNA) targets is an important step towards elucidating miRNA functions. Several miRNA target-prediction algorithms have been developed followed by publicly available databases of these predictions. Here we present a new database offering miRNA target predictions of several binding types, identified by our recently developed modular algorithm RepTar. RepTar is based on identification of repetitive elements in 3'-UTRs and is independent of both evolutionary conservation and conventional binding patterns (i.e. Watson-Crick pairing of 'seed' regions). The modularity of RepTar enables the prediction of targets with conventional seed sites as well as rarer targets with non-conventional sites, such as sites with seed wobbles (G-U pairing in the seed region), 3'-compensatory sites and the newly discovered centered sites. Furthermore, RepTar's independence of conservation enables the prediction of cellular targets of the less evolutionarily conserved viral miRNAs. Thus, the RepTar database contains genome-wide predictions of human and mouse miRNAs as well as predictions of cellular targets of human and mouse viral miRNAs. These predictions are presented in a user-friendly database, which allows browsing through the putative sites as well as conducting simple and advanced queries including data intersections of various types. The RepTar database is available at http://reptar.ekmd.huji.ac.il.
Collapse
Affiliation(s)
- Naama Elefant
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
5140
|
Leung AKL, Sharp PA. MicroRNA functions in stress responses. Mol Cell 2010; 40:205-15. [PMID: 20965416 DOI: 10.1016/j.molcel.2010.09.027] [Citation(s) in RCA: 643] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/08/2010] [Accepted: 09/28/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of ∼22 nucleotide short noncoding RNAs that play key roles in fundamental cellular processes, including how cells respond to changes in environment or, broadly defined, stresses. Responding to stresses, cells either choose to restore or reprogram their gene expression patterns. This decision is partly mediated by miRNA functions, in particular by modulating the amount of miRNAs, the amount of mRNA targets, or the activity/mode of action of miRNA-protein complexes. In turn, these changes determine the specificity, timing, and concentration of gene products expressed upon stresses. Dysregulation of these processes contributes to chronic diseases, including cancers.
Collapse
Affiliation(s)
- Anthony K L Leung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
5141
|
Schleiss MR. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines. J Clin Invest 2010; 120:4192-7. [PMID: 21099107 DOI: 10.1172/jci45250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that was rapidly cleared by NK cells. The virus functioned as a safe and highly effective vaccine. Demonstration of the ability to engineer a safe and highly effective live virus vaccine in a relevant rodent model of CMV infection may open the door to clinical trials of safer and more immunogenic HCMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, Minneapolis, Minnesota, USA.
| |
Collapse
|
5142
|
Zhang H, Hardamon C, Sagoe B, Ngolab J, Bui JD. Studies of the H60a locus in C57BL/6 and 129/Sv mouse strains identify the H60a 3'UTR as a regulator of H60a expression. Mol Immunol 2010; 48:539-45. [PMID: 21093919 DOI: 10.1016/j.molimm.2010.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/01/2010] [Accepted: 10/22/2010] [Indexed: 01/12/2023]
Abstract
The minor histocompatibility antigen 60 (H60a) is expressed in BALB/C and 129/Sv but not in C57BL/6 strains of mice. We recently found that IFNγ down-regulates H60a, but the mechanism of regulation is not known. To better understand the regulation of H60a, we examined the genomic locus of H60a in 129/Sv and C57BL/6 strains. We found that the upstream regulatory region of H60a was present and functional in both strains. Interestingly, IFNγ can down-regulate H60a transcripts in cell lines from 129/Sv but not C57BL/6 strains of mice, suggesting that IFNγ-dependent regulation of H60a proceeds through cis elements other than the conserved promoter region. We determined that the regulation of H60a by IFNγ proceeds through the 3'UTR of H60a, which is present in 129/Sv, but not C57BL/6 cells. We also found that the H60a 3'UTR and microRNAs can contribute to the level of constitutive expression of H60a in tumor cell lines. We conclude that in 129/Sv strain mice, H60a can be regulated by its 3'UTR through IFNγ and unknown microRNAs. Since H60a mediates NK cell target recognition, our studies identify a cis element that can regulate virus and tumor surveillance.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | | | | | | | |
Collapse
|
5143
|
Tufekci KU, Oner MG, Genc S, Genc K. MicroRNAs and Multiple Sclerosis. Autoimmune Dis 2010; 2011:807426. [PMID: 21188194 PMCID: PMC3003960 DOI: 10.4061/2011/807426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/16/2010] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have recently emerged as a new class of modulators of gene expression. miRNAs control protein synthesis by targeting mRNAs for translational repression or degradation at the posttranscriptional level. These noncoding RNAs are endogenous, single-stranded molecules approximately 22 nucleotides in length and have roles in multiple facets of immunity, from regulation of development of key cellular players to activation and function in immune responses. Recent studies have shown that dysregulation of miRNAs involved in immune responses leads to autoimmunity. Multiple sclerosis (MS) serves as an example of a chronic and organ-specific autoimmune disease in which miRNAs modulate immune responses in the peripheral immune compartment and the neuroinflammatory process in the brain. For MS, miRNAs have the potential to serve as modifying drugs. In this review, we summarize current knowledge of miRNA biogenesis and mode of action and the diverse roles of miRNAs in modulating the immune and inflammatory responses. We also review the role of miRNAs in autoimmunity, focusing on emerging data regarding miRNA expression patterns in MS. Finally, we discuss the potential of miRNAs as a disease marker and a novel therapeutic target in MS. Better understanding of the role of miRNAs in MS will improve our knowledge of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | | | | | | |
Collapse
|
5144
|
Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog 2010; 6:e1001184. [PMID: 21085608 PMCID: PMC2978723 DOI: 10.1371/journal.ppat.1001184] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 10/07/2010] [Indexed: 02/06/2023] Open
Abstract
Understanding how hepatitis C virus (HCV) induces and circumvents the host's natural killer (NK) cell-mediated immunity is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that chronic HCV infection is associated with expression of ligands for NKG2D, the MHC class I-related Chain (MIC) molecules, on hepatocytes. However, NKG2D expression is downmodulated on circulating NK cells, and consequently NK cell-mediated cytotoxic capacity and interferon-γ production are impaired. Using an endotoxin-free recombinant NS5A protein, we show that NS5A stimulation of monocytes through Toll-like Receptor 4 (TLR4) promotes p38- and PI3 kinase-dependent IL-10 production, while inhibiting IL-12 production. In turn, IL-10 triggers secretion of TGFβ which downmodulates NKG2D expression on NK cells, leading to their impaired effector functions. Moreover, culture supernatants of HCV JFH1 replicating Huh-7.5.1 cells reproduce the effect of recombinant NS5A on NKG2D downmodulation. Exogenous IL-15 can antagonize the TGFβ effect and restore normal NKG2D expression on NK cells. We conclude that NKG2D-dependent NK cell functions are modulated during chronic HCV infection, and demonstrate that this alteration can be prevented by exogenous IL-15, which could represent a meaningful adjuvant for therapeutic intervention.
Collapse
|
5145
|
Human cytomegalovirus immunity and immune evasion. Virus Res 2010; 157:151-60. [PMID: 21056604 DOI: 10.1016/j.virusres.2010.10.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) infection induces both innate immune responses including Natural Killer cells as well as adaptive humoral and cell mediated (CD4+ helper, CD8+ cytotoxic and γδ T cell) responses which lead to the resolution of acute primary infection. Despite such a robust primary immune response, HCMV is still able to establish latency. Long term memory T cell responses are maintained at high frequency and are thought to prevent clinical disease following periodic reactivation of the virus. As such, a balance is established between the immune response and viral reactivation. Loss of this balance in the immunocompromised host can lead to unchecked viral replication following reactivation of latent virus, with consequent disease and mortality. HCMV encodes multiple immune evasion mechanisms that target both the innate and acquired immune system. This article describes the current understanding of Natural killer cell, antibody and T cell mediated immune responses and the mechanisms that the virus utilizes to subvert these responses.
Collapse
|
5146
|
Doniger T, Katz R, Wachtel C, Michaeli S, Unger R. A comparative genome-wide study of ncRNAs in trypanosomatids. BMC Genomics 2010; 11:615. [PMID: 21050447 PMCID: PMC3091756 DOI: 10.1186/1471-2164-11-615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 11/04/2010] [Indexed: 01/18/2023] Open
Abstract
Background Recent studies have provided extensive evidence for multitudes of non-coding RNA (ncRNA) transcripts in a wide range of eukaryotic genomes. ncRNAs are emerging as key players in multiple layers of cellular regulation. With the availability of many whole genome sequences, comparative analysis has become a powerful tool to identify ncRNA molecules. In this study, we performed a systematic genome-wide in silico screen to search for novel small ncRNAs in the genome of Trypanosoma brucei using techniques of comparative genomics. Results In this study, we identified by comparative genomics, and validated by experimental analysis several novel ncRNAs that are conserved across multiple trypanosomatid genomes. When tested on known ncRNAs, our procedure was capable of finding almost half of the known repertoire through homology over six genomes, and about two-thirds of the known sequences were found in at least four genomes. After filtering, 72 conserved unannotated sequences in at least four genomes were found, 29 of which, ranging in size from 30 to 392 nts, were conserved in all six genomes. Fifty of the 72 candidates in the final set were chosen for experimental validation. Eighteen of the 50 (36%) were shown to be expressed, and for 11 of them a distinct expression product was detected, suggesting that they are short ncRNAs. Using functional experimental assays, five of the candidates were shown to be novel H/ACA and C/D snoRNAs; these included three sequences that appear as singletons in the genome, unlike previously identified snoRNA molecules that are found in clusters. The other candidates appear to be novel ncRNA molecules, and their function is, as yet, unknown. Conclusions Using comparative genomic techniques, we predicted 72 sequences as ncRNA candidates in T. brucei. The expression of 50 candidates was tested in laboratory experiments. This resulted in the discovery of 11 novel short ncRNAs in procyclic stage T. brucei, which have homologues in the other trypansomatids. A few of these molecules are snoRNAs, but most of them are novel ncRNA molecules. Based on this study, our analysis suggests that the total number of ncRNAs in trypanosomatids is in the range of several hundred.
Collapse
Affiliation(s)
- Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
5147
|
Soroceanu L, Cobbs CS, Colapietro P, Pileri P, Colleoni F, Avagliano L, Doi P, Bulfamante G, Miozzo M, Cetin I. Is HCMV a tumor promoter? Virus Res 2010; 157:193-203. [PMID: 21036194 DOI: 10.1016/j.virusres.2010.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus that causes persistent infection in humans and can cause severe disease in fetuses and immunocompromised individuals. Although HCMV is not currently causally implicated in human cancer, emerging evidence suggests that HCMV infection and expression may be specifically associated with human malignancies including malignant glioma, colon, and prostate cancer. In addition, multiple investigators have demonstrated that HCMV can dysregulate signaling pathways involved in initiation and promotion of malignancy, including tumor suppressor, mitogenic signaling, inflammatory, immune regulation, angiogenesis and invasion, and epigenetic mechanisms. This review highlights some of the recent evidence that HCMV might play a role in modulating the tumor microenvironment as well as in the initiation and promotion of tumor cells themselves.
Collapse
Affiliation(s)
- Liliana Soroceanu
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA. liliana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5148
|
Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 2010; 85:378-89. [PMID: 20980502 DOI: 10.1128/jvi.01900-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in posttranscriptional regulation. miRNAs are utilized in organisms ranging from plants to higher mammals, and data have shown that DNA viruses also use this method for host and viral gene regulation. Here, we report the sequencing of the small RNAs in rat cytomegalovirus (RCMV)-infected fibroblasts and persistently infected salivary glands. We identified 24 unique miRNAs that mapped to hairpin structures found within the viral genome. While most miRNAs were detected in both samples, four were detected exclusively in the infected fibroblasts and two were specific for the infected salivary glands. The RCMV miRNAs are distributed across the viral genome on both the positive and negative strands, with clusters of miRNAs at a number of locations, including near viral genes r1 and r111. The RCMV miRNAs have a genomic positional orientation similar to that of the miRNAs described for mouse cytomegalovirus, but they do not share any substantial sequence conservation. Similar to other reported miRNAs, the RCMV miRNAs had considerable variation at their 3' and 5' ends. Interestingly, we found a number of specific examples of differential isoform usage between the fibroblast and salivary gland samples. We determined by real-time PCR that expression of the RCMV miRNA miR-r111.1-2 is highly expressed in the salivary glands and that miR-R87-1 is expressed in most tissues during the acute infection phase. Our study identified the miRNAs expressed by RCMV in vitro and in vivo and demonstrated that expression is tissue specific and associated with a stage of viral infection.
Collapse
|
5149
|
Dhuruvasan K, Sivasubramanian G, Pellett PE. Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 2010; 157:180-92. [PMID: 20969901 DOI: 10.1016/j.virusres.2010.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 miRNAs, and miRNAs are also encoded by some viruses, including HCMV, which encodes at least 14 miRNAs. Some of the HCMV miRNAs are known to target both viral and cellular genes, including important immunomodulators. In addition to expressing their own miRNAs, infections with some viruses, including HCMV, can result in changes in the expression of cellular miRNAs that benefit virus replication. In this review, we summarize the connections between miRNAs and HCMV biology. We describe the nature of miRNA genes, miRNA biogenesis and modes of action, methods for studying miRNAs, HCMV-encoded miRNAs, effects of HCMV infection on cellular miRNA expression, roles of miRNAs in HCMV biology, and possible HCMV-related diagnostic and therapeutic applications of miRNAs.
Collapse
Affiliation(s)
- Kavitha Dhuruvasan
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, 6225 Scott Hall, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
5150
|
Cédile O, Popa N, Pollet-Villard F, Garmy N, Ibrahim EC, Boucraut J. The NKG2D ligands RAE-1δ and RAE-1ε differ with respect to their receptor affinity, expression profiles and transcriptional regulation. PLoS One 2010; 5:e13466. [PMID: 20976056 PMCID: PMC2957426 DOI: 10.1371/journal.pone.0013466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/21/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND RAE-1 is a ligand of the activating receptor NKG2D expressed by NK cells, NKT, γδT and some CD8(+)T lymphocytes. RAE-1 is overexpressed in tumor cell lines and its expression is induced after viral infection and genotoxic stress. We have recently demonstrated that RAE-1 is expressed in the adult subventricular zone (SVZ) from C57BL/6 mice. RAE-1 is also expressed in vitro by neural stem/progenitor cells (NSPCs) and plays a non-immune role in cell proliferation. The C57BL/6 mouse genome contains two rae-1 genes, rae-1δ and rae-1ε encoding two different proteins. The goals of this study are first to characterize the in vivo and in vitro expression of each gene and secondly to elucidate the mechanisms underlying their respective expression, which are far from known. PRINCIPAL FINDINGS We observed that Rae-1δ and Rae-1ε transcripts are differentially expressed according to tissues, pathological conditions and cell lines. Embryonic tissue and the adult SVZ mainly expressed Rae-1δ transcripts. The NSPCs derived from the SVZ also mainly expressed RAE-1δ. The interest of this result is especially related to the observation that RAE-1δ is a weak NKG2D ligand compared to RAE-1ε. On the contrary, cell lines expressed either similar levels of RAE-1δ and RAE-1ε proteins or only RAE-1ε. Since the protein expression correlated with the level of transcripts for each rae-1 gene, we postulated that transcriptional regulation is one of the main processes explaining the difference between RAE-1δ and RAE-1ε expression. We indeed identified two different promoter regions for each gene: one mainly involved in the control of rae-1δ gene expression and the other in the control of rae-1ε expression. CONCLUSIONS/SIGNIFICANCE RAE-1δ and RAE-1ε differ with respect to their function and the control of their expression. Immune function would be mainly exerted by RAE-1ε and non-immune function by RAE-1δ.
Collapse
Affiliation(s)
- Oriane Cédile
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Natalia Popa
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Frédéric Pollet-Villard
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Nicolas Garmy
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - El Chérif Ibrahim
- NICN, CNRS, UMR 6184, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - José Boucraut
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|