5301
|
Hong SN, Park C, Park SJ, Lee CK, Ye BD, Kim YS, Lee S, Chae J, Kim JI, Kim YH. Deep resequencing of 131 Crohn's disease associated genes in pooled DNA confirmed three reported variants and identified eight novel variants. Gut 2016; 65:788-96. [PMID: 25731871 DOI: 10.1136/gutjnl-2014-308617] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Genome wide association studies (GWAS) and meta-analyses for Crohn's disease (CD) have not fully explained the heritability of CD, suggesting that additional loci are yet to be found and that the known loci may contain high effect rare risk variants that have thus far gone undetected by GWAS. While the cost of deep sequencing remains too high to analyse many samples, targeted sequencing of pooled DNA samples allows the efficient and cost effective capture of all variations in a target region. DESIGN We performed pooled sequencing in 500 Korean CD cases and 1000 controls to evaluate the coding exon and 5' and 3' untranslated regions of 131 CD associated genes. The identified genetic variants were validated using genotyping in an independent set of 500 CD cases and 1000 controls. RESULTS Pooled sequencing identified 30 common/low single nucleotide variants (SNVs) in 12 genes and 3 rare SNVs in 3 genes. Our results confirmed a significant association of CD with the following previously reported risk loci: rs3810936 in TNFSF15 (OR=1.83, p<2.2×10(-16)), rs76418789 in IL23R (OR=0.47, p=1.14×10(-8)) and rs2241880 in ATG16L1 (OR=1.30, p=5.28×10(-6)). In addition, novel loci were identified in TNFSF8 (rs3181374, OR=1.53, p=1.03×10(-14)), BTNL2 (rs28362680, OR=1.47, p=9.67×10(-11)), HLA-DQA2 (rs3208181, OR=1.36, p=4.66×10(-6)), STAT3 (rs1053004, OR=1.29, p=2.07×10(-5)), NFKBIA (rs2273650, OR=0.80, p=3.93×10(-4)), NKX2-3 (rs888208, OR=0.82, p=6.37×10(-4)) and DNAH12 (rs4462937, OR=1.13, p=3.17×10(-2)). A novel rare SNV, rs200735402 in CARD9, was shown to have a protective effect (OR=0.09, p=5.28×10(-5)). CONCLUSIONS Our deep resequencing of 131 CD associated genes confirmed 3 reported risk loci and identified 8 novel risk loci for CD in Koreans, providing new insights into the genetic architecture of CD.
Collapse
Affiliation(s)
- Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changho Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Kyun Lee
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology and Inflammatory Bowel Disease Center, Asan Medical Centre, University of Ulsan College of Medicine
| | - You Sun Kim
- Department of Internal Medicine, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Seungbok Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Jeesoo Chae
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
5302
|
McLeod O, Silveira A, Valdes-Marquez E, Björkbacka H, Almgren P, Gertow K, Gådin JR, Bäcklund A, Sennblad B, Baldassarre D, Veglia F, Humphries SE, Tremoli E, de Faire U, Nilsson J, Melander O, Hopewell JC, Clarke R, Björck HM, Hamsten A, Öhrvik J, Strawbridge RJ. Genetic loci on chromosome 5 are associated with circulating levels of interleukin-5 and eosinophil count in a European population with high risk for cardiovascular disease. Cytokine 2016; 81:1-9. [PMID: 26821299 PMCID: PMC4837217 DOI: 10.1016/j.cyto.2016.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
IL-5 is a Th2 cytokine which activates eosinophils and is suggested to have an atheroprotective role. Genetic variants in the IL5 locus have been associated with increased risk of CAD and ischemic stroke. In this study we aimed to identify genetic variants associated with IL-5 concentrations and apply a Mendelian randomisation approach to assess IL-5 levels for causal effect on intima-media thickness in a European population at high risk of coronary artery disease. We analysed SNPs within robustly associated candidate loci for immune, inflammatory, metabolic and cardiovascular traits. We identified 2 genetic loci for IL-5 levels (chromosome 5, rs56183820, BETA=0.11, P=6.73E(-5) and chromosome 14, rs4902762, BETA=0.12, P=5.76E(-6)) and one for eosinophil count (rs72797327, BETA=-0.10, P=1.41E(-6)). Both chromosome 5 loci were in the vicinity of the IL5 gene, however the association with IL-5 levels failed to replicate in a meta-analysis of 2 independent cohorts (rs56183820, BETA=0.04, P=0.2763, I(2)=24, I(2)-P=0.2516). No significant associations were observed between SNPs associated with IL-5 levels or eosinophil count and IMT measures. Expression quantitative trait analyses indicate effects of the IL-5 and eosinophil-associated SNPs on RAD50 mRNA expression levels (rs12652920 (r2=0.93 with rs56183820) BETA=-0.10, P=8.64E(-6) and rs11739623 (r2=0.96 with rs72797327) BETA=-0.23, P=1.74E(-29), respectively). Our data do not support a role for IL-5 levels and eosinophil count in intima-media thickness, however SNPs associated with IL-5 and eosinophils might influence stability of the atherosclerotic plaque via modulation of RAD50 levels.
Collapse
Affiliation(s)
- Olga McLeod
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Elsa Valdes-Marquez
- CTSU - Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter Almgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karl Gertow
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Bäcklund
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Sennblad
- Cardiovascular Medicine Unit, Department of Medicine, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Damiano Baldassarre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Jemma C Hopewell
- CTSU - Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robert Clarke
- CTSU - Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Öhrvik
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Västerås, Uppsala University, SE-72189 Västerås, Sweden
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5303
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
|
5304
|
Li Q, Lee CH, Peters LA, Mastropaolo LA, Thoeni C, Elkadri A, Schwerd T, Zhu J, Zhang B, Zhao Y, Hao K, Dinarzo A, Hoffman G, Kidd BA, Murchie R, Adham ZA, Guo C, Kotlarz D, Cutz E, Walters TD, Shouval DS, Curran M, Dobrin R, Brodmerkel C, Snapper SB, Klein C, Brumell JH, Hu M, Nanan R, Snanter-Nanan B, Wong M, Le Deist F, Haddad E, Roifman CM, Deslandres C, Griffiths AM, Gaskin KJ, Uhlig HH, Schadt EE, Muise AM. Variants in TRIM22 That Affect NOD2 Signaling Are Associated With Very-Early-Onset Inflammatory Bowel Disease. Gastroenterology 2016; 150:1196-1207. [PMID: 26836588 PMCID: PMC4842103 DOI: 10.1053/j.gastro.2016.01.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Severe forms of inflammatory bowel disease (IBD) that develop in very young children can be caused by variants in a single gene. We performed whole-exome sequence (WES) analysis to identify genetic factors that might cause granulomatous colitis and severe perianal disease, with recurrent bacterial and viral infections, in an infant of consanguineous parents. METHODS We performed targeted WES analysis of DNA collected from the patient and her parents. We validated our findings by a similar analysis of DNA from 150 patients with very-early-onset IBD not associated with known genetic factors analyzed in Toronto, Oxford, and Munich. We compared gene expression signatures in inflamed vs noninflamed intestinal and rectal tissues collected from patients with treatment-resistant Crohn's disease who participated in a trial of ustekinumab. We performed functional studies of identified variants in primary cells from patients and cell culture. RESULTS We identified a homozygous variant in the tripartite motif containing 22 gene (TRIM22) of the patient, as well as in 2 patients with a disease similar phenotype. Functional studies showed that the variant disrupted the ability of TRIM22 to regulate nucleotide binding oligomerization domain containing 2 (NOD2)-dependent activation of interferon-beta signaling and nuclear factor-κB. Computational studies demonstrated a correlation between the TRIM22-NOD2 network and signaling pathways and genetic factors associated very early onset and adult-onset IBD. TRIM22 is also associated with antiviral and mycobacterial effectors and markers of inflammation, such as fecal calprotectin, C-reactive protein, and Crohn's disease activity index scores. CONCLUSIONS In WES and targeted exome sequence analyses of an infant with severe IBD characterized by granulomatous colitis and severe perianal disease, we identified a homozygous variant of TRIM22 that affects the ability of its product to regulate NOD2. Combined computational and functional studies showed that the TRIM22-NOD2 network regulates antiviral and antibacterial signaling pathways that contribute to inflammation. Further study of this network could lead to new disease markers and therapeutic targets for patients with very early and adult-onset IBD.
Collapse
Affiliation(s)
- Qi Li
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Cheng Hiang Lee
- Gastroenterology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia,The James Fairfax Institute of Paediatric Nutrition, the University of Sydney, New South Wales, Australia
| | - Lauren A Peters
- Icahn School of Medicine at Mount Sinai, New York, New York, USA. Graduate School of Biomedical Sciences, New York, New York, USA,Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Lucas A Mastropaolo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Cornelia Thoeni
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Nuffield Department Clinical Medicine, Experimental Medicine Division, University of Oxford, and Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Yongzhong Zhao
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Ke Hao
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Antonio Dinarzo
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Gabriel Hoffman
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Brian A Kidd
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Ryan Murchie
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Ziad Al Adham
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Conghui Guo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Dror S Shouval
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Mark Curran
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA 19477
| | - Radu Dobrin
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA 19477
| | | | - Scott B Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, USA,Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Boston, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - John H Brumell
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Molecular Genetics, University of Toronto
| | - Mingjing Hu
- Gastroenterology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia,The James Fairfax Institute of Paediatric Nutrition, the University of Sydney, New South Wales, Australia
| | - Ralph Nanan
- Gastroenterology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia,The James Fairfax Institute of Paediatric Nutrition, the University of Sydney, New South Wales, Australia
| | - Brigitte Snanter-Nanan
- Gastroenterology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia,The James Fairfax Institute of Paediatric Nutrition, the University of Sydney, New South Wales, Australia
| | - Melanie Wong
- Immunology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Francoise Le Deist
- Department of Microbiology and Immunology, CHU Sainte Justine and Department of Microbiology, Infectiology and Immunology, University of Montreal, QC, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Department of Pediatrics, Department of Microbiology, Infectiology and Immunology, University of Montreal, QC, Canada
| | - Chaim M Roifman
- Division of Immunology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Colette Deslandres
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin J Gaskin
- Gastroenterology Department, The Children's Hospital at Westmead, Westmead, 2145, New South Wales, Australia,The James Fairfax Institute of Paediatric Nutrition, the University of Sydney, New South Wales, Australia
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department Clinical Medicine, Experimental Medicine Division, University of Oxford, and Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Eric E Schadt
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences and the Icahn Institute for Genomics and Multiscale Biology, New York, NY 10029
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5305
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Mark S. Sundrud
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| |
Collapse
|
5306
|
Kamada N, Rogler G. The Innate Immune System: A Trigger for Many Chronic Inflammatory Intestinal Diseases. Inflamm Intest Dis 2016; 1:70-77. [PMID: 29922660 DOI: 10.1159/000445261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mononuclear phagocytes, such as monocytes, macrophages, and dendritic cells, are important cellular components of the innate immune system that contribute to the pathogenesis of many intestinal inflammatory diseases. Summary While mononuclear phagocytes play a key role in the induction of inflammation in many different tissues through production of pro-inflammatory cytokines and chemokines (such as IL-1, TNF, IL-6, IL-8 and MCP-1), free oxygen radicals (also termed 'oxidative burst'), proteases (such as cathepsins) and tissue-degrading enzymes (such as metalloproteinases), resident macrophages as well as dendritic cells in the intestine display an anergic and 'tolerogenic' phenotype mediating tolerance to commensal bacteria. In recent years many single nucleotide polymorphisms (SNPs) in genes mainly expressed in the above-mentioned cell types have been identified to convey an increased risk of autoimmune diseases. SNPs in the NOD2, ATG16L1 and TNFSF15 genes, which are involved in the function of the innate immune cells, are identified as risk factors for Crohn's disease (CD). Of note, these genes are involved in the different functions in the innate immune cells. For example, while NOD2 is required for intracellular recognition of microbial components, ATG16L1 is involved in autophagy responses against intracellular microbes. Likewise, TNFSF15 contributes to the induction of inflammatory responses by innate immune cells. Furthermore, the frequency of mutations in these genes differs by ethnicity. Genetic variations in the NOD2 and ATG16L1 genes are associated with CD in Caucasians but much less in Eastern Asian populations, whereas SNPs in TNFSF15 are dominated in Asian populations. Thus, different genetic risks may eventually lead to similar impairments in innate immune cells, thereby developing the same disease in Western and Asian patients with CD. Key Messages Despite differences in risk genes, similar mechanisms associated with the innate immune system may trigger autoimmune and chronic inflammatory intestinal diseases in East and West.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
5307
|
Meng F, Zhou R, Wu S, Zhang Q, Jin Q, Zhou Y, Plouffe SW, Liu S, Song H, Xia Z, Zhao B, Ye S, Feng XH, Guan KL, Zou J, Xu P. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev 2016; 30:1086-100. [PMID: 27125670 PMCID: PMC4863739 DOI: 10.1101/gad.277533.116] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
Here, Meng et al. investigated how interferon regulatory factor 3 (IRF3) activation, a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is regulated. They demonstrate that Mst1, a stress response kinase, represses cytosolic antiviral sensing and defense through the repression of RNA virus-induced activation of TBK1 and interference with the IRF3 homodimerization and chromatin binding via direct phosphorylation of IRF3 Thr253 and Thr75 residues. Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.
Collapse
Affiliation(s)
- Fansen Meng
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ruyuan Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shiying Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qiuheng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Steven W Plouffe
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Shengduo Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Hai Song
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China; Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5308
|
Fok CY, Sara Holland K, Gil-Zaragozano E, Prosad Paul S. The role of nurses and dietitians in managing paediatric coeliac disease. ACTA ACUST UNITED AC 2016; 25:449-55. [DOI: 10.12968/bjon.2016.25.8.449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chi-Yee Fok
- 4th Year Medical Student, University of Bristol
| | | | - Elena Gil-Zaragozano
- Clinical Nurse Specialist in Paediatric Gastroenterology, Bristol Royal Hospital for Children
| | | |
Collapse
|
5309
|
Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population. Sci Rep 2016; 6:24974. [PMID: 27108704 PMCID: PMC4842956 DOI: 10.1038/srep24974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population.
Collapse
|
5310
|
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016; 127:3154-64. [PMID: 27114460 DOI: 10.1182/blood-2015-11-679902] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
Collapse
|
5311
|
Wei WH, Bowes J, Plant D, Viatte S, Yarwood A, Massey J, Worthington J, Eyre S. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis. Sci Rep 2016; 6:25014. [PMID: 27109064 PMCID: PMC4842957 DOI: 10.1038/srep25014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/08/2016] [Indexed: 11/10/2022] Open
Abstract
Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.
Collapse
Affiliation(s)
- Wen-Hua Wei
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John Bowes
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Darren Plant
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sebastien Viatte
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annie Yarwood
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jonathan Massey
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5312
|
Assadi G, Saleh R, Hadizadeh F, Vesterlund L, Bonfiglio F, Halfvarson J, Törkvist L, Eriksson AS, Harris HE, Sundberg E, D'Amato M. LACC1 polymorphisms in inflammatory bowel disease and juvenile idiopathic arthritis. Genes Immun 2016; 17:261-4. [PMID: 27098602 DOI: 10.1038/gene.2016.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 02/06/2023]
Abstract
The function of the Laccase domain-containing 1 (LACC1) gene is unknown, but genetic variation at this locus has been reported to consistently affect the risk of Crohn's disease (CD) and leprosy. Recently, a LACC1 missense mutation was found in patients suffering from monogenic forms of CD, but also systemic juvenile idiopathic arthritis. We tested the hypothesis that LACC1 single nucleotide polymorphisms (SNPs), in addition to CD, are associated with juvenile idiopathic arthritis (JIA, non-systemic), and another major form of inflammatory bowel disease, ulcerative colitis (UC). We selected 11 LACC1 tagging SNPs, and tested their effect on disease risk in 3855 Swedish individuals from three case-control cohorts of CD, UC and JIA. We detected false discovery rate corrected significant associations with individual markers in all three cohorts, thereby expanding previous results for CD also to UC and JIA. LACC1's link to several inflammatory diseases suggests a key role in the human immune system and justifies further characterization of its function(s).
Collapse
Affiliation(s)
- G Assadi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - R Saleh
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - L Vesterlund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - F Bonfiglio
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - J Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - L Törkvist
- Gastrocentrum, Karolinska University Hospital, StockhoCrohn'slm, Sweden
| | - A S Eriksson
- Gatroenterology Unit, Department of Internal Medicine, Sahlgren's University Hospital/Östra, Göteborg, Sweden
| | - H E Harris
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - E Sundberg
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5313
|
Deželak M, Repnik K, Koder S, Ferkolj I, Potočnik U. A Prospective Pharmacogenomic Study of Crohn's Disease Patients during Routine Therapy with Anti-TNF-α Drug Adalimumab: Contribution of ATG5, NFKB1, and CRP Genes to Pharmacodynamic Variability. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:296-309. [PMID: 27096233 DOI: 10.1089/omi.2016.0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease is often treated with the anti-tumor necrosis factor-α drug adalimumab. However, about 20%-40% of patients do not display adequate therapeutic response. We prospectively evaluated, during a routine therapy of Crohn's disease patients, the candidate autophagy-related genes ATG12 and ATG5 and the inflammation-related genes NFKB1, NFKBIA, and CRP as potential predictors of adalimumab treatment response (pharmacodynamics). The associations of haplotypes and SNPs in these genes with response to drug therapy, biochemical parameters, and body mass were determined at baseline and after 4, 12, 20, and 30 weeks of therapy. Association analysis showed that haplotypes defined with the SNPs rs9373839 and rs510432 in ATG5 gene were significantly associated with positive response to therapy (p < 0.002). In addition, allele C and genotypes CC and CT of the rs1130864 in the CRP gene were positively associated with therapeutic response (p < 0.002). To the best of our knowledge, this is the first report that supports the association of SNPs in ATG5 and CRP genes with response to adalimumab therapy in Crohn's disease. Further study of these biological pathways in larger and independent clinical samples is warranted as novel streams of research on precision medicine and diagnostics for Crohn's disease.
Collapse
Affiliation(s)
- Matjaž Deželak
- 1 Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor , Maribor, Slovenia
| | - Katja Repnik
- 1 Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor , Maribor, Slovenia .,2 Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor , Maribor, Slovenia
| | - Silvo Koder
- 3 University Medical Centre Maribor , Maribor, Slovenia
| | - Ivan Ferkolj
- 4 University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Uroš Potočnik
- 1 Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor , Maribor, Slovenia .,2 Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor , Maribor, Slovenia
| |
Collapse
|
5314
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
5315
|
Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 2016; 16:295-309. [PMID: 27087661 DOI: 10.1038/nri.2016.36] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.
Collapse
Affiliation(s)
- Takeshi Tanoue
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
5316
|
Mak TN, Brüggemann H. Vimentin in Bacterial Infections. Cells 2016; 5:cells5020018. [PMID: 27096872 PMCID: PMC4931667 DOI: 10.3390/cells5020018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.
Collapse
Affiliation(s)
- Tim N Mak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
5317
|
Wendland JR, Ehlers MD. Translating Neurogenomics Into New Medicines. Biol Psychiatry 2016; 79:650-6. [PMID: 26140822 DOI: 10.1016/j.biopsych.2015.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Brain disorders remain one of the defining challenges of modern medicine and among the most poorly served with new therapeutics. Advances in human neurogenetics have begun to shed light on the genomic architecture of complex diseases of mood, cognition, brain development, and neurodegeneration. From genome-wide association studies to rare variants, these findings hold promise for defining the pathogenesis of brain disorders that have resisted simple molecular description. However, the path from genetics to new medicines is far from clear and can take decades, even for the most well-understood genetic disorders. In this review, we define three challenges for the field of neurogenetics that we believe must be addressed to translate human genetics efficiently into new therapeutics for brain disorders.
Collapse
Affiliation(s)
- Jens R Wendland
- PharmaTherapeutics Clinical Research, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts
| | - Michael D Ehlers
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts.
| |
Collapse
|
5318
|
Kinugasa T, Akagi Y. Status of colitis-associated cancer in ulcerative colitis. World J Gastrointest Oncol 2016; 8:351-357. [PMID: 27096030 PMCID: PMC4824713 DOI: 10.4251/wjgo.v8.i4.351] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/08/2015] [Accepted: 02/17/2016] [Indexed: 02/05/2023] Open
Abstract
Surgical therapy for ulcerative colitis (UC) depends on the medical therapy administered for the patient’s condition. UC is a benign disease. However, it has been reported that the rare cases of cancer in UC patients are increasing, and such cases have a worse prognosis. Recently, surgical therapy has greatly changed, there has been quite an increase in the number of UC patients with high-grade dysplasia and/or cancer. These lesions are known as colitis-associated cancer (CAC). The relationship between inflammation and tumorigenesis is well-established, and in the last decade, a great deal of supporting evidence has been obtained from genetic, pharmacological, and epidemiological studies. Inflammatory bowel disease, especially UC, is an important risk factor for the development of colon cancer. We should determine the risk factors for UC patients with cancer based on a large body of data, and we should attempt to prevent the increase in the number of such patients using these newly identified risk factors in the near future. Actively introducing the surgical treatment in addition to medical treatment should be considered. Several physicians should analyze UC from their unique perspectives in order to establish new clinically relevant diagnostic and treatment methods in the future. This article discusses CAC, including its etiology, mechanism, diagnosis, and treatment in UC patients.
Collapse
|
5319
|
Kwak IY, Pan W. Adaptive gene- and pathway-trait association testing with GWAS summary statistics. Bioinformatics 2016; 32:1178-84. [PMID: 26656570 PMCID: PMC5860182 DOI: 10.1093/bioinformatics/btv719] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Gene- and pathway-based analyses offer a useful alternative and complement to the usual single SNP-based analysis for GWAS. On the other hand, most existing gene- and pathway-based tests are not highly adaptive, and/or require the availability of individual-level genotype and phenotype data. It would be desirable to have highly adaptive tests applicable to summary statistics for single SNPs. This has become increasingly important given the popularity of large-scale meta-analyses of multiple GWASs and the practical availability of either single GWAS or meta-analyzed GWAS summary statistics for single SNPs. RESULTS We extend two adaptive tests for gene- and pathway-level association with a univariate trait to the case with GWAS summary statistics without individual-level genotype and phenotype data. We use the WTCCC GWAS data to evaluate and compare the proposed methods and several existing methods. We further illustrate their applications to a meta-analyzed dataset to identify genes and pathways associated with blood pressure, demonstrating the potential usefulness of the proposed methods. The methods are implemented in R package aSPU, freely and publicly available. AVAILABILITY AND IMPLEMENTATION https://cran.r-project.org/web/packages/aSPU/ CONTACT: weip@biostat.umn.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Il-Youp Kwak
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5320
|
Tehranchi AK, Myrthil M, Martin T, Hie BL, Golan D, Fraser HB. Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk. Cell 2016; 165:730-41. [PMID: 27087447 DOI: 10.1016/j.cell.2016.03.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/30/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
Cis-regulatory elements such as transcription factor (TF) binding sites can be identified genome-wide, but it remains far more challenging to pinpoint genetic variants affecting TF binding. Here, we introduce a pooling-based approach to mapping quantitative trait loci (QTLs) for molecular-level traits. Applying this to five TFs and a histone modification, we mapped thousands of cis-acting QTLs, with over 25-fold lower cost compared to standard QTL mapping. We found that single genetic variants frequently affect binding of multiple TFs, and CTCF can recruit all five TFs to its binding sites. These QTLs often affect local chromatin and transcription but can also influence long-range chromosomal contacts, demonstrating a role for natural genetic variation in chromosomal architecture. Thousands of these QTLs have been implicated in genome-wide association studies, providing candidate molecular mechanisms for many disease risk loci and suggesting that TF binding variation may underlie a large fraction of human phenotypic variation.
Collapse
Affiliation(s)
| | - Marsha Myrthil
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Trevor Martin
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian L Hie
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - David Golan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5321
|
Zupančič K, Skok K, Repnik K, Weersma RK, Potočnik U, Skok P. Multi-locus genetic risk score predicts risk for Crohn's disease in Slovenian population. World J Gastroenterol 2016; 22:3777-3784. [PMID: 27076762 PMCID: PMC4814740 DOI: 10.3748/wjg.v22.i14.3777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/01/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To develop a risk model for Crohn's disease (CD) based on homogeneous population. METHODS In our study were included 160 CD patients and 209 healthy individuals from Slovenia. The association study was performed for 112 single nucleotide polymorphisms (SNPs). We generated genetic risk scores (GRS) based on the number of risk alleles using weighted additive model. Discriminatory accuracy was measured by area under ROC curve (AUC). For risk evaluation, we divided individuals according to positive and negative likelihood ratios (LR) of a test, with LR > 5 for high risk group and LR < 0.20 for low risk group. RESULTS The highest accuracy, AUC of 0.78 was achieved with GRS combining 33 SNPs with optimal sensitivity and specificity of 75.0% and 72.7%, respectively. Individuals with the highest risk (GRS > 5.54) showed significantly increased odds of developing CD (OR = 26.65, 95%CI: 11.25-63.15) compared to the individuals with the lowest risk (GRS < 4.57) which is a considerably greater risk captured than in one SNP with the highest effect size (OR = 3.24). When more than 33 SNPs were included in GRS, discriminatory ability was not improved significantly; AUC of all 74 SNPs was 0.76. CONCLUSION The authors proved the possibility of building accurate genetic risk score based on 33 risk variants on Slovenian CD patients which may serve as a screening tool in the targeted population.
Collapse
|
5322
|
Abstract
Genome-wide association studies (GWAS) have associated many single variants with complex disease, yet the better part of heritable complex disease risk remains unexplained. Analytical tools designed to work under specific population genetic models are needed. Rare variants are increasingly shown to be important in human complex disease, but most existing GWAS data do not cover rare variants. Explicit population genetic models predict that genes contributing to complex traits and experiencing recurrent, unconditionally deleterious, mutation will harbor multiple rare, causative mutations of subtle effect. It is difficult to identify genes harboring rare variants of large effect that contribute to complex disease risk via the single marker association tests typically used in GWAS. Gene/region-based association tests may have the power detect associations by combining information from multiple markers, but have yielded limited success in practice. This is partially because many methods have not been widely applied. Here, we empirically demonstrate the utility of a procedure based on the rank truncated product (RTP) method, filtered to reduce the effects of linkage disequilibrium. We apply the procedure to the Wellcome Trust Case Control Consortium (WTCCC) data set, and uncover previously unidentified associations, some of which have been replicated in much larger studies. We show that, in the absence of significant rare variant coverage, RTP based methods still have the power to detect associated genes. We recommend that RTP-based methods be applied to all existing GWAS data to maximize the usefulness of those data. For this, we provide efficient software implementing our procedure.
Collapse
|
5323
|
Claes AK, Zhou JY, Philpott DJ. NOD-Like Receptors: Guardians of Intestinal Mucosal Barriers. Physiology (Bethesda) 2016; 30:241-50. [PMID: 25933824 DOI: 10.1152/physiol.00025.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The NOD-like receptors (NLRs) are cytosolic pattern-recognition receptors, which are critically involved in mucosal immune defense. The association of the NLR, NOD2, with inflammatory bowel disease first pointed to the NLRs potential function as guardians of the intestinal barrier. Since then, several studies have emphasized the importance of NLRs in maintaining gut homeostasis and intestinal infections, and in shaping the microbiota. In this review, we will highlight the function of NLRs in intestinal inflammation.
Collapse
Affiliation(s)
- Anne-Kathrin Claes
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Division Models of Inflammation, Leibniz Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany; and Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Jun Yu Zhou
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
5324
|
Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation. Gene 2016; 586:234-8. [PMID: 27063510 DOI: 10.1016/j.gene.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
Abstract
Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms.
Collapse
|
5325
|
Nagy E, Rodriguiz RM, Wetsel WC, MacIver NJ, Hale LP. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease. PLoS One 2016; 11:e0152764. [PMID: 27045690 PMCID: PMC4821577 DOI: 10.1371/journal.pone.0152764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 (“T/I” mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 (“T/I-het” dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for development of therapies to prevent reproductive complications and/or growth failure in humans with IBD.
Collapse
Affiliation(s)
- Eniko Nagy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nancie J. MacIver
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura P. Hale
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5326
|
Kang E, Yousefi M, Gruenheid S. R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice. PLoS One 2016; 11:e0152859. [PMID: 27046199 PMCID: PMC4821485 DOI: 10.1371/journal.pone.0152859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn's disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Mitra Yousefi
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology and Complex Traits Group, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
5327
|
Martinez-Chamorro A, Moreno A, Gómez-García M, Cabello MJ, Martin J, Lopez-Nevot MÁ. MICA*A4 protects against ulcerative colitis, whereas MICA*A5.1 is associated with abscess formation and age of onset. Clin Exp Immunol 2016; 184:323-31. [PMID: 26940143 DOI: 10.1111/cei.12786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease, the aetiology of which remains unknown. Several studies have demonstrated the genetic basis of disease, identifying more than 130 susceptibility loci. The major histocompatibility complex class I chain-related gene A (MICA) is a useful candidate to be involved in UC pathogenesis, because it could be important in recognizing the integrity of the epithelial cell and its response to stress. The aim of this study was to analyse the relationship between polymorphisms in the transmembrane domain of MICA and susceptibility to develop UC. A total of 340 patients with UC and 636 healthy controls were genotyped for MICA transmembrane polymorphism using a polymerase chain reaction (PCR) combined with fluorescent technology. Different MICA alleles were determined depending on the PCR product size. The allele MICA*A4 was less frequent in patients than in controls (P = 0·003; OR = 0·643), and this protective role is higher when it forms haplotype with B*27 (P = 0·002; OR = 0·294). The haplotype HLA-B*52/MICA*A6 was also associated with UC [P = 0·001; odds ratio (OR) = 2·914]. No other alleles, genotypes or haplotypes were related with UC risk. Moreover, MICA*A5.1 is associated independently with abscesses (P = 0·002; OR = 3·096) and its frequency is lower in patients diagnosed between ages 17 and 40 years (P = 0·007; OR = 0·633), meaning an extreme age on onset. No association with location, extra-intestinal manifestations or need for surgery was found.
Collapse
Affiliation(s)
| | - A Moreno
- Section of Immunology, Hospital Virgen de las Nieves
| | | | - M J Cabello
- Digestive Section, Hospital Virgen de las Nieves
| | - J Martin
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - M Á Lopez-Nevot
- Section of Immunology, Hospital Virgen de las Nieves.,University of Granada
| |
Collapse
|
5328
|
Lyons J, Herring CA, Banerjee A, Simmons AJ, Lau KS. Multiscale analysis of the murine intestine for modeling human diseases. Integr Biol (Camb) 2016; 7:740-57. [PMID: 26040649 DOI: 10.1039/c5ib00030k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14,000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50,000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future.
Collapse
Affiliation(s)
- Jesse Lyons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
5329
|
Epigenetics in Paediatric Gastroenterology, Hepatology, and Nutrition: Present Trends and Future Perspectives. J Pediatr Gastroenterol Nutr 2016; 62:521-9. [PMID: 26628441 DOI: 10.1097/mpg.0000000000001053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetics can be defined as stable, potentially heritable changes in the cellular phenotype caused by mechanisms other than alterations to the underlying DNA sequence. As such, any observed phenotypic changes including organ development, aging, and the occurrence of disease could be driven by epigenetic mechanisms in the presence of stable cellular DNA sequences. Indeed, with the exception of rare mutations, the human genome-sequence has remained remarkably stable over the past centuries. In contrast, substantial changes to our environment as part of our modern life style have not only led to a significant reduction of certain infectious diseases but also seen the exponential increase in complex traits including obesity and multifactorial diseases such as autoimmune disorders. It is becoming increasingly clear that epigenetic mechanisms operate at the interface between the genetic code and our environment, and a large body of existing evidence supports the importance of environmental factors such as diet and nutrition, infections, and exposure to toxins on human health. This seems to be particularly the case during vulnerable periods of human development such as pregnancy and early life. Importantly, as the first point of contact for many of such environmental factors including nutrition, the digestive system is being increasingly linked to a number of "modern" pathologies. In this review article, we aim to give a brief introduction to the basic molecular principals of epigenetics and provide a concise summary of the existing evidence for the role of epigenetic mechanisms in gastrointestinal health and disease, hepatology, and nutrition.
Collapse
|
5330
|
Abstract
BACKGROUND A dysregulated mucosal immune response to the intestinal environment in a genetically susceptible host is hypothesized to be critical to the pathogenesis of Crohn's disease (CD). Therefore, we examined CD-susceptibility genes involved in the immune response through a genome-wide association study and consecutive genotyping of human leukocyte antigens (HLAs) and killer cell immunoglobulin-like receptors. METHODS An initial genome-wide association study was performed with 275 CD patients and 2369 controls from a Korean population. To validate the loci identified in the genome-wide association study, replication genotyping was performed in a different cohort of 242 CD patients and 1066 controls. Finally, high-resolution genotyping of HLA and killer cell immunoglobulin-like receptor was performed. RESULTS Four susceptibility loci, a promoter region in tumor necrosis factor (ligand) superfamily member (TNFSF15) and 3 independent regions in HLAs, showed significant associations with CD. Among them, rs114985235 in the intergenic region between HLA-B and HLA-C showed the strongest association, with an increased risk of CD (P = 8.71 × 10; odds ratio, 2.25). HLA typing in this region showed HLA-C*01 to be responsible for the association of CD among 43 HLA-B and HLA-C genotypes identified in the Korean population. However, the interaction of HLA-C with killer cell immunoglobulin-like receptor had little effect on the development of CD. CONCLUSIONS We newly identified HLA-C*01 as a prominent CD-susceptibility HLA allotype in the Korean population. In addition, these results confirm that genetic variations in immune response genes, such as HLAs and TNFSF15, are important host factors for the pathogenesis of CD.
Collapse
|
5331
|
Siegmund B, Feakins RM, Barmias G, Ludvig JC, Teixeira FV, Rogler G, Scharl M. Results of the Fifth Scientific Workshop of the ECCO (II): Pathophysiology of Perianal Fistulizing Disease. J Crohns Colitis 2016; 10:377-386. [PMID: 26681764 PMCID: PMC4946764 DOI: 10.1093/ecco-jcc/jjv228] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022]
Abstract
The fifth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of fistulas to the disease course of patients with Crohn's disease (CD). The objectives were to reach a better understanding of the pathophysiological mechanisms underlying the formation of CD fistulas; to identify future topics in fistula research that could provide insights into pathogenesis; to develop novel therapeutic approaches; and to review current therapeutic strategies (with clarification of existing approaches to prevention, diagnosis and treatment). The results of the workshop are presented in two separate manuscripts. This manuscript describes current state-of-the-art knowledge about fistula pathogenesis, including the roles of epithelial-to-mesenchymal transition and cytokine matrix remodelling enzymes, and highlights the common association between fistulas and stenosis in CD. The review also considers the possible roles that genetic predisposition and intestinal microbiota play in fistula development. Finally, it proposes future directions and needs for fistula research that might substantially increase our understanding of this complex condition and help unravel novel therapeutic strategies and specific targets for treatment. Overall, it aims to highlight unanswered questions in fistula research and to provide a framework for future research work.
Collapse
Affiliation(s)
- Britta Siegmund
- Department of Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roger M Feakins
- Department of Histopathology, Royal London Hospital, London, UK
| | - Giorgos Barmias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Juliano Coelho Ludvig
- ESADI Clinic and Gastroenterology Unit, Santa Isabel Hospital, Blumenau, Santa Catarina, Brazil
| | - Fabio Vieira Teixeira
- Colorectal Unit, Gastrosaude Clinic, Marilia, Sao Paulo, Brazil Department of Surgery, UNESP Botucatu, Sao Paulo, Brazil
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5332
|
Novel Associations Between Major Histocompatibility Complex and Pediatric-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2016; 62:567-72. [PMID: 26398154 DOI: 10.1097/mpg.0000000000000984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Major histocompatibility complex (MHC) genes have been widely studied in adult inflammatory bowel disease (IBD), but data on MHC genes are scarce in pediatric IBD. This study focused on MHC association of genes with pediatric-onset IBD and its different phenotypes. METHODS Blood samples of 103 patients with pediatric IBD (Crohn disease or ulcerative colitis) were collected at Children's Hospital, University of Helsinki, Finland. HLA-A, -B, -DRB1 alleles and complement C4A and C4B gene copy numbers were determined and constructed into haplotypes by a Bayesian algorithm (PHASE). A general population cohort (n = 149) served as a control. HLA-alleles and C4 deficiency frequencies were compared between patients and controls with χ-squared and Fisher exact test with Bonferroni correction (Pcorr). RESULTS One MHC haplotype HLA-A03; HLA-B07; 1 C4A gene; 1 C4B gene; HLA-DRB115 was more common in Crohn disease and ulcerative colitis than in controls (7/61, 11.5%, 6/42, 14.3% and 1/149, 0.7%, respectively, odds ratio (OR) = 19.19, 95% CI 2.31-159.57, Pcorr = 0.004 for Crohn disease vs controls and OR = 24.67, 95% CI 2.88-211.36, Pcorr = 0.002 for ulcerative colitis vs controls). Two MHC markers were associated with clinical characteristics. HLA-DRB101 was more common in patients with milder disease course, that is, no need for anti-tumor necrosis factor (TNF)-α medication (18/32, 56.2% vs 19/71, 26.8% without and with anti-TNF-α medication, respectively, OR = 0.28, 95% CI 0.12-0.68, Pcorr = 0.032). C4B deficiency (<2 C4B genes) was associated with complicated recovery after surgery (12/16, 75.0% vs 4/16, 25.0%, respectively, OR = 9.00, 95% CI 1.82-44.59, Pcorr = 0.025). CONCLUSIONS One MHC haplotype is strongly linked with pediatric-onset IBD, whereas the need for immunomodulatory therapy and surgery outcome associates with other distinct MHC gene markers.
Collapse
|
5333
|
Yamamoto-Furusho JK, Sánchez-Morales GE, García-Rangel D, Vargas-Alarcón G. Genetic polymorphisms of interleukin-22 in patients with ulcerative colitis. REVISTA DE GASTROENTEROLOGIA DE MEXICO 2016; 81:86-90. [PMID: 26994530 DOI: 10.1016/j.rgmx.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a multifactorial and polygenic disease. Interleukin-22 (IL-22) is an immunomodulatory cytokine that belongs to the IL-10 family. Currently, some IL-22 polymorphisms have been associated with inflammatory processes such as rheumatoid arthritis and psoriasis vulgaris, but there are no studies on UC. AIM The aim of this work was to study the frequency of polymorphisms of IL-22 in Mexican patients with UC. METHODS We studied a total of 199 Mexican patients with confirmed UC and 697 healthy controls. All individuals were born in Mexico, at least three family generations earlier. A blood sample was obtained from the UC patients and healthy controls in order to perform DNA extraction and then to determine the frequency of IL-22 polymorphisms (rs2227485, rs2272478, rs2227491). RESULTS No statistical significance was found in the gene and genotype frequencies of three SNPs of IL-22 (rs2227485, rs2272478, rs2227491) between the UC patients and healthy controls. No association was found between those IL-22 SNPs and clinical features of UC. CONCLUSIONS There was no association between IL-22 SNPs (rs2227485, rs2272478, rs2227491) and the development of UC in a Mexican population.
Collapse
Affiliation(s)
- J K Yamamoto-Furusho
- Clínica de Enfermedad Inflamatoria Intestinal, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.
| | - G E Sánchez-Morales
- Clínica de Enfermedad Inflamatoria Intestinal, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - D García-Rangel
- Clínica de Enfermedad Inflamatoria Intestinal, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - G Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
5334
|
Xu Z, Pan W. Binomial Mixture Model Based Association Testing to Account for Genetic Heterogeneity for GWAS. Genet Epidemiol 2016; 40:202-9. [PMID: 26916514 PMCID: PMC4814320 DOI: 10.1002/gepi.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWAS) have confirmed the ubiquitous existence of genetic heterogeneity for common disease: multiple common genetic variants have been identified to be associated, while many more are yet expected to be uncovered. However, the single SNP (single-nucleotide polymorphism) based trend test (or its variants) that has been dominantly used in GWAS is based on contrasting the allele frequency difference between the case and control groups, completely ignoring possible genetic heterogeneity. In spite of the widely accepted notion of genetic heterogeneity, we are not aware of any previous attempt to apply genetic heterogeneity motivated methods in GWAS. Here, to explicitly account for unknown genetic heterogeneity, we applied a mixture model based single-SNP test to the Wellcome Trust Case Control Consortium (WTCCC) GWAS data with traits of Crohn's disease, bipolar disease, coronary artery disease, and type 2 diabetes, identifying much larger numbers of significant SNPs and risk loci for each trait than those of the popular trend test, demonstrating potential power gain of the mixture model based test.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5335
|
Regeling A, Imhann F, Volders HH, Blokzijl T, Bloks VW, Weersma RK, Dijkstra G, Faber KN. HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochim Biophys Acta Mol Basis Dis 2016; 1862:788-796. [DOI: 10.1016/j.bbadis.2016.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
|
5336
|
Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M. Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants. JAMA Psychiatry 2016; 73:369-77. [PMID: 26963595 PMCID: PMC7005318 DOI: 10.1001/jamapsychiatry.2015.3018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE The recent implication of 108 genomic loci in schizophrenia marked a great advancement in our understanding of the disease. Against the background of its polygenic nature there is a necessity to identify how schizophrenia risk genes interplay. As regulators of gene expression, microRNAs (miRNAs) have repeatedly been implicated in schizophrenia etiology. It is therefore of interest to establish their role in the regulation of schizophrenia risk genes in disease-relevant biological processes. OBJECTIVE To examine the role of miRNAs in schizophrenia in the context of disease-associated genetic variation. DESIGN, SETTING, AND PARTICIPANTS The basis of this study was summary statistics from the largest schizophrenia genome-wide association study meta-analysis to date (83 550 individuals in a meta-analysis of 52 genome-wide association studies) completed in 2014 along with publicly available data for predicted miRNA targets. We examined whether schizophrenia risk genes were more likely to be regulated by miRNA. Further, we used gene set analyses to identify miRNAs that are regulators of schizophrenia risk genes. MAIN OUTCOMES AND MEASURES Results from association tests for miRNA targetomes and related analyses. RESULTS In line with previous studies, we found that similar to other complex traits, schizophrenia risk genes were more likely to be regulated by miRNAs (P < 2 × 10-16). Further, the gene set analyses revealed several miRNAs regulating schizophrenia risk genes, with the strongest enrichment for targets of miR-9-5p (P = .0056 for enrichment among the top 1% most-associated single-nucleotide polymorphisms, corrected for multiple testing). It is further of note that MIR9-2 is located in a genomic region showing strong evidence for association with schizophrenia (P = 7.1 × 10-8). The second and third strongest gene set signals were seen for the targets of miR-485-5p and miR-137, respectively. CONCLUSIONS AND RELEVANCE This study provides evidence for a role of miR-9-5p in the etiology of schizophrenia. Its implication is of particular interest as the functions of this neurodevelopmental miRNA tie in with established disease biology: it has a regulatory loop with the fragile X mental retardation homologue FXR1 and regulates dopamine D2 receptor density.
Collapse
Affiliation(s)
- Mads Engel Hauberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark2Lundbeck Foundation Initiative of Integrative Psychiatric Research, Lundbeck, Denmark3Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York5Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York6Institute for Genomics and Multiscale Biology, Icahn School of M
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark2Lundbeck Foundation Initiative of Integrative Psychiatric Research, Lundbeck, Denmark3Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark9Bioinformatics Research Centre, Aarhu
| | - Anders Dupont Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark2Lundbeck Foundation Initiative of Integrative Psychiatric Research, Lundbeck, Denmark3Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark10Research Department P, Aarhus Univer
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark2Lundbeck Foundation Initiative of Integrative Psychiatric Research, Lundbeck, Denmark3Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5337
|
Crawley E, Jenkins H. Non-specific abdominal pain in childhood. Arch Dis Child 2016; 101:299. [PMID: 26612474 DOI: 10.1136/archdischild-2015-309383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/24/2015] [Indexed: 11/03/2022]
Affiliation(s)
- Esther Crawley
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Huw Jenkins
- Department of Paediatric Gastroenterology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
5338
|
Saadati HR, Wittig M, Helbig I, Häsler R, Anderson CA, Mathew CG, Kupcinskas L, Parkes M, Karlsen TH, Rosenstiel P, Schreiber S, Franke A. Genome-wide rare copy number variation screening in ulcerative colitis identifies potential susceptibility loci. BMC MEDICAL GENETICS 2016; 17:26. [PMID: 27037036 PMCID: PMC4818401 DOI: 10.1186/s12881-016-0289-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
Background Ulcerative colitis (UC), a complex polygenic disorder, is one of the main subphenotypes of inflammatory bowel disease. A comprehensive dissection of the genetic etiology of UC needs to assess the contribution of rare genetic variants including copy number variations (CNVs) to disease risk. In this study, we performed a multi-step genome-wide case-control analysis to interrogate the presence of disease-relevant rare copy number variants. Methods One thousand one hundred twenty-one German UC patients and 1770 healthy controls were initially screened for rare deletions and duplications employing SNP-array data. Quantitative PCR and high density custom array-CGH were used for validation of identified CNVs and fine mapping. Two main follow-up panels consisted of an independent cohort of 451 cases and 1274 controls, in which CNVs were assayed through quantitative PCR, and a British cohort of 2396 cases versus 4886 controls with CNV genotypes based on array data. Additional sample sets were assessed for targeted and in silico replication. Results Twenty-four rare copy number variants (14 deletions and 10 duplications), overrepresented in UC patients were identified in the initial screening panel. Follow-up of these CNV regions in four independent case-control series as well as an additional public in silico control group (totaling 4439 UC patients and 15,961 healthy controls) revealed three copy number variants enriched in UC patients; a 15.8 kb deletion upstream of ABCC4 and CLDN10 at13q32.1 (0.43 % cases, 0.11 % controls), a 119 kb duplication at 7p22.1, overlapping RNF216, ZNF815, OCM and CCZ1 (0.13 % cases, 0.01 % controls) and a 134 kb large duplication upstream of the KCNK9 gene at 8q24.3 (0.22 % carriers among cases, 0.03 % carriers among controls). The trend of association with UC was present after the P-values were corrected for combining data from different subpopulations. Break-point mapping of the deleted region suggested non-allelic homologous recombination as the mechanism underlying its formation. Conclusion Our study presents a pragmatic approach for effective rare CNV screening of SNP-array data sets and implicates the potential contribution of rare structural variants in the pathogenesis of UC. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0289-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamid Reza Saadati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Ingo Helbig
- Department of Neuropediatrics, University Clinic Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, Building 9, 24105, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Christopher G Mathew
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Mickeviciaus 9, Kaunas, LT, 44307, Lithuania
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Clinic for Specialized Medicine and Surgery, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany.,Department of Internal Medicine, University Hospital Schleswig-Holstein, Schittenhelmstraße 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany.
| |
Collapse
|
5339
|
Vermeire S, Joossens M, Verbeke K, Wang J, Machiels K, Sabino J, Ferrante M, Van Assche G, Rutgeerts P, Raes J. Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10:387-94. [PMID: 26519463 PMCID: PMC4946755 DOI: 10.1093/ecco-jcc/jjv203] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Faecal microbiota transplantation is a successful therapy for patients with refractory Clostridium difficile infections. It has also been suggested as a treatment option for inflammatory bowel disease, given the role of the intestinal microbiota in this disease. We assessed the impact of faecal microbiota transplantation in patients with inflammatory bowel disease and studied predictors of clinical (non-)response in microbial profiles of donors and patients. METHODS Fourteen refractory patients (8 with ulcerative colitis and 6 with Crohn's disease) underwent ileocolonoscopy with faecal microbiota transplantation through a nasojejunal (n = 9) or rectal (n = 5) tube. Efficacy was assessed by endoscopic healing at week 8, clinical activity scores and C-reactive protein measurement. Faecal microbiota was analysed by 16S rDNA pyrosequencing. RESULTS There was no significant improvement among the 6 patients with Crohn's disease at week 8 following faecal microbiota transplantation. One patient experienced temporary clinical remission for 6 weeks. In contrast, 2/8 patients with ulcerative colitis had endoscopic remission at week 8, and of the 6 remaining patients with ulcerative colitis, 1 reported temporary remission for 6 weeks. The donor microbiota richness and the number of transferred phylotypes were associated with treatment success. Persistent increased C-reactive protein 2 weeks after transplantation was predictive of failure of response. CONCLUSION Faecal microbiota transplantation led to endoscopic and long-term (>2 years) remission in 2 out of 8 ulcerative colitis patients. Higher donor richness was associated with successful transplant. Therefore, faecal microbiota transplantation with donor prescreening could be a treatment option for selected refractory ulcerative colitis patients.
Collapse
Affiliation(s)
- Severine Vermeire
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | | | - Kristin Verbeke
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Jun Wang
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium,VIB, Center for the Biology of Disease, Leuven, Belgium
| | - Kathleen Machiels
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Gert Van Assche
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- KU Leuven, Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium,VIB, Center for the Biology of Disease, Leuven, Belgium
| |
Collapse
|
5340
|
Thornton GCD, Goldacre MJ, Goldacre R, Howarth LJ. Diagnostic outcomes following childhood non-specific abdominal pain: a record-linkage study. Arch Dis Child 2016. [PMID: 26220924 DOI: 10.1136/archdischild-2015-308198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS Non-specific abdominal pain (NSAP) is the most common diagnosis on discharge following admission for abdominal pain in childhood. Our aim was to determine the risk of subsequent hospital diagnosis of organic and functional gastroenterological conditions following a diagnosis of NSAP, and to assess the persistence of this risk. METHODS An NSAP cohort of 268,623 children aged 0-16 years was constructed from linked English Hospital Episode Statistics from 1999 to 2011. The control cohort (1,684,923 children, 0-16 years old) comprised children hospitalised with unrelated conditions. Clinically relevant outcomes were selected and standardised rate ratios were calculated. RESULTS From the NSAP cohort, 15,515 (5.8%) were later hospitalised with bowel pathology and 13,301 (5%) with a specific functional disorder. Notably, there was a 4.84 (95% CI 4.45 to 5.27) times greater risk of Crohn's disease following NSAP and a 4.23 (4.13 to 4.33) greater risk of acute appendicitis than in the control cohort. The risk of irritable bowel syndrome (IBS) was 7.22 (6.65 to 7.85) times greater following NSAP. The risks of inflammatory bowel disease (IBD), IBS and functional disorder (unspecified) were significantly increased in all age groups except <2-year-olds. The risk of underlying bowel pathology remained raised up to 10 years after first diagnosis with NSAP. CONCLUSIONS Only a small proportion of those with NSAP go on to be hospitalised with underlying bowel pathology. However, their risk is increased even at 10 years after the first hospital admission with NSAP. Diagnostic strategies need to be assessed and refined and active surveillance employed for children with NSAP.
Collapse
Affiliation(s)
- G C D Thornton
- Department of Paediatric Gastroenterology, Oxford University Hospitals Trust, Oxford, UK
| | - M J Goldacre
- Unit of Health-Care Epidemiology, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - R Goldacre
- Unit of Health-Care Epidemiology, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - L J Howarth
- Department of Paediatric Gastroenterology, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
5341
|
Abstract
BACKGROUND Cellular oxidative stress and genetic susceptibility have been implicated in the multifactorial etiology of ulcerative colitis (UC). The nuclear genome association with UC has been intensely investigated, but the role of the mitochondrial DNA (mtDNA) has received far less attention and may account for part of the missing heritability. This study is a comprehensive analysis of the mtDNA contribution to UC susceptibility. METHODS The association of mitochondrial single-nucleotide polymorphisms (mtSNPs) and haplogroups with UC was tested in 488 cases and 833 controls of European ancestry from the NIDDK IBD Genetics Consortium Ulcerative Colitis Genome-Wide Association Study available through dbGaP and from the Illumina Genotype Control Database (studies 64 and 65). RESULTS No evidence of population stratification could be detected using 218 ancestry informative markers for European Americans. Seven of the 58 tested mtSNPs were nominally associated with UC, and A10550G in MT-ND4L withstands the Bonferroni correction (P = 1.29E-06, odds ratio [ORG] [95% confidence interval (CI)] = 4.80 [2.54-9.05], 10550G allele: 8.1% of patients and 1.9% of controls). A10550G remains equally associated after conditional analyses on the 11 UC genome-wide association studies (GWAS) top SNPs (6.35E-07 < Pcond < 4.58E-06), which suggests that it constitutes an independent risk factor from nuclear-encoded susceptibility loci. We detected additive (but not multiplicative) epistatic interactions between A10550G and all 11 top GWAS hits. Subhaplogroup K1 (P = 0.021, OR [95% CI] = 1.71 [1.08-2.69]) increased the risk for UC, whereas the U5b lineage conferred protection (P = 0.016, OR [95% CI] = 0.34 [0.14-0.82]). CONCLUSIONS These results suggest that UC has a dual mitochondrial and nuclear genetic control that warrants further replication in independent data sets and reinforces its etiopathogenic complexity.
Collapse
|
5342
|
Perianal Crohn's Disease is Associated with Distal Colonic Disease, Stricturing Disease Behavior, IBD-Associated Serologies and Genetic Variation in the JAK-STAT Pathway. Inflamm Bowel Dis 2016; 22:862-9. [PMID: 26937622 PMCID: PMC5220246 DOI: 10.1097/mib.0000000000000705] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Perianal Crohn's Disease (pCD) is a particularly severe phenotype associated with poor quality of life with a reported prevalence of 12%-40%. Previous studies investigating the etiology of pCD have been limited in the numbers of subjects and the intensity of genotyping. The aim of this study was to identify clinical, serological, and genetic factors associated with pCD. METHODS We performed a case-control study comparing patients with (pCD+) and without perianal (pCD) involvement in CD; defined as the presence of perianal abscesses or fistulae. Data on demographics and clinical features were obtained by chart review. Inflammatory bowel disease-related serology was determined by enzyme-linked immunosorbent assay. Genetic data were generated using Illumina genotyping platforms. RESULTS We included 1721 patients with CD of which 524 (30.4%) were pCD+ and 1197 were pPCD. pCD was associated with distal colonic disease (Odds ratio 5.54 [3.23-9.52], P < 0.001), stricturing disease behavior (1.44 [1.14-1.81], P = 0.002) and family history of inflammatory bowel disease (4.98 [3.30-7.46], P < 0.001). pCD was associated with higher anti-sacharomyces cerevisae antibodies IgA (P < 0.001) and OmpC (P = 0.008) antibody levels. pCD was associated with known inflammatory bowel disease loci, including KIF3B, CRTC3, TRAF3IP2, JAZF1, NRIP1, MST1, FUT2, and PTGER (all P < 0.05). We also identified genetic association with genes involved in autophagy (DAPK1, P = 5.11 × 10), TNF alpha pathways (NUCB2, P = 8.68 × 10; DAPK1), IFNg pathways (DAPK1; NDFIP2, P = 8.74 × 10), and extracellular matrix and scaffolding proteins (USH1C, P = 8.68 × 10; NDFIP2; TMC07, P = 8.87 × 10). Pathway analyses implicated the JAK-Stat pathway (pc = 3.72 × 10). CONCLUSION We have identified associations between pCD, more distal colonic inflammation, Crohn's disease-associated serologies, and genetic variation in the JAK-Stat pathway.
Collapse
|
5343
|
Yamamoto-Furusho J, Sánchez-Morales G, García-Rangel D, Vargas-Alarcón G. Genetic polymorphisms of interleukin-22 in patients with ulcerative colitis. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2016. [DOI: 10.1016/j.rgmxen.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5344
|
Lopetuso LR, Petito V, Zambrano D, Orlando D, Dal Lago A, Serrichhio L, Papa A, Gasbarrini A, Scaldaferri F. Gut Microbiota: A Key Modulator of Intestinal Healing in Inflammatory Bowel Disease. Dig Dis 2016; 34:202-9. [PMID: 27028023 DOI: 10.1159/000444460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mucosal healing (MH) represents a crucial factor for maintaining gut homeostasis. Indeed, in inflammatory bowel disease, MH has become the standard therapeutical target, because it is associated with more effective disease control, more frequent steroid-free remission, lower rates of hospitalization and surgery, and improved quality of life. In this scenario, gut microbiota is a crucial player in modulating intestinal repair and regeneration process. It can act on the tumor necrosis factor-α production, modulation of reactive oxygen and nitrogen species, activity of matrix metalloproteinases and on many other mechanisms strictly involved in restoring gut health. In this review, we analyze and review the literature on the role of gut microbiota in sustaining mucosal injury and achieving MH.
Collapse
Affiliation(s)
- L R Lopetuso
- Internal Medicine Department, Gastroenterology Division, Catholic University of Sacred Hearth, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5345
|
Lauro ML, Burch JM, Grimes CL. The effect of NOD2 on the microbiota in Crohn's disease. Curr Opin Biotechnol 2016; 40:97-102. [PMID: 27035071 DOI: 10.1016/j.copbio.2016.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
Recent advancements toward the treatment of Crohn's disease (CD) indicate great promise for long-term remission. CD patients suffer from a complex host of dysregulated interactions between their innate immune system and microbiome. The most predominant link to the onset of CD is a genetic mutation in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (NOD2). NOD2 responds to the presence of bacteria and stimulates the immune response. Mutations to NOD2 promote low diversity and dysbiosis in the microbiome, leading to impaired mucosal barrier function. Current treatments suppress the immune response rather than enhancing the function of this critical protein. New progress toward stabilizing NOD2 signaling through its interactions with chaperone proteins holds potential in the development of novel CD therapeutics.
Collapse
Affiliation(s)
- Mackenzie L Lauro
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | - Jason M Burch
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | | |
Collapse
|
5346
|
Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease. PLoS Genet 2016; 12:e1005908. [PMID: 27015630 PMCID: PMC4807835 DOI: 10.1371/journal.pgen.1005908] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. The human immune system has evolved to protect us from infection and cancer, whilst avoiding damage to healthy tissue. If this complex system goes wrong, immune cells may cause inappropriate inflammation and damage, resulting in clinical disease. Examples include inflammatory bowel disease and autoimmune vasculitis, characterised by inflammation in the gut and blood vessels respectively. Genetic studies have identified many variants in our DNA code that predispose to such immune-mediated diseases. The majority of these variants lie outside protein-coding regions, and so how they influence disease risk remains largely unclear. Examining how genetic variants affect gene expression can help bridge this gap in our knowledge, but these effects are highly dependent on the cellular or environmental context such as tissue type or cellular activation status. We investigated the genetic control of gene expression in five white blood cell subtypes taken from patients with active inflammatory bowel disease and autoimmune vasculitis, and from healthy controls. We report the novel observation of distinct variants that only affect gene expression in patients with active inflammatory disease, and show that these effects can disappear following treatment. These findings provide new insights into the genetic basis of important immune-mediated diseases.
Collapse
|
5347
|
Abstract
The search for a connection between diet and human cancer has a long history in cancer research, as has interest in the mechanisms by which dietary factors might increase or decrease cancer risk. The realization that altering diet can alter the epigenetic state of genes and that these epigenetic alterations might increase or decrease cancer risk is a more modern notion, driven largely by studies in animal models. The connections between diet and epigenetic alterations, on the one hand, and between epigenetic alterations and cancer, on the other, are supported by both observational studies in humans as well as animal models. However, the conclusion that diet is linked directly to epigenetic alterations and that these epigenetic alterations directly increase or decrease the risk of human cancer is much less certain. We suggest that true and measurable effects of diet or dietary supplements on epigenotype and cancer risk are most likely to be observed in longitudinal studies and at the extremes of the intersection of dietary risk factors and human population variability. Careful analysis of such outlier populations is most likely to shed light on the molecular mechanisms by which suspected environmental risk factors drive the process of carcinogenesis.
Collapse
Affiliation(s)
- Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology and Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Jean-Pierre Issa
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
5348
|
Singh V, Yeoh BS, Chassaing B, Zhang B, Saha P, Xiao X, Awasthi D, Shashidharamurthy R, Dikshit M, Gewirtz A, Vijay-Kumar M. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2016; 2:482-498.e6. [PMID: 27458605 PMCID: PMC4957954 DOI: 10.1016/j.jcmgh.2016.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. METHODS Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout (Lcn2KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2KO mice with or without antibiotics. RESULTS Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2KO mice exhibited elevated levels of entA-expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2KO mice, via cohousing, resulted in severe colitis in Il-10KO mice. CONCLUSION Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Benyue Zhang
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Deepika Awasthi
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania,Correspondence Address correspondence to: Matam Vijay-Kumar, PhD, Department of Nutritional Sciences 222, Chandlee Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802. fax: (814) 863-6103.Department of Nutritional Sciences 222Chandlee LaboratoryThe Pennsylvania State UniversityUniversity ParkPennsylvania 16802
| |
Collapse
|
5349
|
Lacour A, Ellinghaus D, Schreiber S, Franke A, Becker T. Haplotype synthesis analysis reveals functional variants underlying known genome-wide associated susceptibility loci. Bioinformatics 2016; 32:2136-42. [PMID: 27153721 DOI: 10.1093/bioinformatics/btw125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION The functional mechanisms underlying disease association remain unknown for Genome-wide Association Studies (GWAS) susceptibility variants located outside coding regions. Synthesis of effects from multiple surrounding functional variants has been suggested as an explanation of hard-to-interpret findings. We define filter criteria based on linkage disequilibrium measures and allele frequencies which reflect expected properties of synthesizing variant sets. For eligible candidate sets, we search for haplotype markers that are highly correlated with associated variants. RESULTS Via simulations we assess the performance of our approach and suggest parameter settings which guarantee 95% sensitivity at 20-fold reduced computational cost. We apply our method to 1000 Genomes data and confirmed Crohn's Disease (CD) and Type 2 Diabetes (T2D) variants. A proportion of 36.9% allowed explanation by three-variant-haplotypes carrying at least two functional variants, as compared to 16.4% for random variants ([Formula: see text]). Association could be explained by missense variants for MUC19, PER3 (CD) and HMG20A (T2D). In a CD GWAS-imputed using haplotype reference consortium data (64 976 haplotypes)-we could confirm the syntheses of MUC19 and PER3 and identified synthesis by missense variants for 6 further genes (ZGPAZ, GPR65, CLN3/NPIPB8, LOC102723878, rs2872507, GCKR). In all instances, the odds ratios of the synthesizing haplotypes were virtually identical to that of the index SNP. In summary, we demonstrate the potential of synthesis analysis to guide functional follow-up of GWAS findings. AVAILABILITY AND IMPLEMENTATION All methods are implemented in the C/C ++ toolkit GetSynth, available at http://sourceforge.net/projects/getsynth/ CONTACT tim.becker@uni-greifswald.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- André Lacour
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Tim Becker
- Institute for Community Medicine, Ernst Moritz Arndt University Greifswald, Greifswald 17475, Germany
| |
Collapse
|
5350
|
Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J Exp Med 2016; 213:585-603. [PMID: 27001747 PMCID: PMC4821649 DOI: 10.1084/jem.20151764] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
IRF8 and IRF1 are transcriptional regulators that play critical roles in the development and function of myeloid cells, including activation of macrophages by proinflammatory signals such as interferon-γ (IFN-γ). Loss of IRF8 or IRF1 function causes severe susceptibility to infections in mice and in humans. We used chromatin immunoprecipitation sequencing and RNA sequencing in wild type and inIRF8andIRF1mutant primary macrophages to systematically catalog all of the genes bound by (cistromes) and transcriptionally activated by (regulomes) IRF8, IRF1, PU.1, and STAT1, including modulation of epigenetic histone marks. Of the seven binding combinations identified, two (cluster 1 [IRF8/IRF1/STAT1/PU.1] and cluster 5 [IRF1/STAT1/PU.1]) were found to have a major role in controlling macrophage transcriptional programs both at the basal level and after IFN-γ activation. They direct the expression of a set of genes, the IRF8/IRF1 regulome, that play critical roles in host inflammatory and antimicrobial defenses in mouse models of neuroinflammation and of pulmonary tuberculosis, respectively. In addition, this IRF8/IRF1 regulome is enriched for genes mutated in human primary immunodeficiencies and with loci associated with several inflammatory diseases in humans.
Collapse
Affiliation(s)
- David Langlais
- Department of Biochemistry, McGill University, H3G 0B1 Montreal, Quebec, Canada Complex Traits Group, McGill University, H3G 0B1 Montreal, Quebec, Canada
| | - Luis B Barreiro
- Sainte Justine Hospital Research Centre, H3T 1C5 Montreal, Quebec, Canada Department of Pediatrics, Faculty of Medicine, University of Montreal, H3T 1J4 Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, H3G 0B1 Montreal, Quebec, Canada Complex Traits Group, McGill University, H3G 0B1 Montreal, Quebec, Canada
| |
Collapse
|