501
|
SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Int J Mol Sci 2020. [PMID: 32751841 DOI: 10.3390/ijms21155475.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called "cytokine storm"), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.
Collapse
|
502
|
Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R, Bella R. SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Int J Mol Sci 2020; 21:5475. [PMID: 32751841 PMCID: PMC7432482 DOI: 10.3390/ijms21155475] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called "cytokine storm"), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97–95123 Catania, Italy; (M.P.); (F.F.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78–95123 Catania, Italy
- Oasi Research Institute–IRCCS, Via Conte Ruggero, 73–94018 Troina, Italy;
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Via Mariano Semmola, 53 –80131 Naples, Italy;
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97–95123 Catania, Italy; (M.P.); (F.F.)
| | - Raffaele Ferri
- Oasi Research Institute–IRCCS, Via Conte Ruggero, 73–94018 Troina, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87–95123 Catania, Italy;
| |
Collapse
|
503
|
Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ, Wang Y, Teng Y, Zhao Z, Cui Y, Li Y, Li XF, Li J, Zhang NN, Yang X, Chen S, Guo Y, Zhao G, Wang X, Luo DY, Wang H, Yang X, Li Y, Han G, He Y, Zhou X, Geng S, Sheng X, Jiang S, Sun S, Qin CF, Zhou Y. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020; 369:1603-1607. [PMID: 32732280 PMCID: PMC7574913 DOI: 10.1126/science.abc4730] [Citation(s) in RCA: 586] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanxiao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - De-Yan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Li
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Gencheng Han
- Institute of Military Cognition and Brain Sciences, Beijing 100850, China
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaojun Zhou
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing 100071, China
| | | | - Xiaoli Sheng
- Beijing JOINN Biologics Co., Beijing 100176, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
504
|
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, Hong W, Yang Y, Zhao Y, Ye F, Lin S, Deng W, Chen H, Lei H, Zhang Z, Luo M, Gao H, Zheng Y, Gong Y, Jiang X, Xu Y, Lv Q, Li D, Wang M, Li F, Wang S, Wang G, Yu P, Qu Y, Yang L, Deng H, Tong A, Li J, Wang Z, Yang J, Shen G, Zhao Z, Li Y, Luo J, Liu H, Yu W, Yang M, Xu J, Wang J, Li H, Wang H, Kuang D, Lin P, Hu Z, Guo W, Cheng W, He Y, Song X, Chen C, Xue Z, Yao S, Chen L, Ma X, Chen S, Gou M, Huang W, Wang Y, Fan C, Tian Z, Shi M, Wang FS, Dai L, Wu M, Li G, Wang G, Peng Y, Qian Z, Huang C, Lau JYN, Yang Z, Wei Y, Cen X, Peng X, Qin C, Zhang K, Lu G, Wei X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020; 586:572-577. [PMID: 32726802 DOI: 10.1038/s41586-020-2599-8] [Citation(s) in RCA: 559] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.
Collapse
Affiliation(s)
- Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Fanli Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yuan Zhao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Fei Ye
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Lin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Deng
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hua Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Xu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qi Lv
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Dan Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fengdi Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shunyi Wang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Guanpeng Wang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Pin Yu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongqi Liu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingwen Xu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiyan Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengtao Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanlin He
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Xue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Yao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weijin Huang
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Changfa Fan
- National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhixin Tian
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science & Engineering, Tongji University, Shanghai, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lunzhi Dai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Gen Li
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Guangyu Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Qian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Canhua Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Johnson Yiu-Nam Lau
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Cen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.,State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China. .,Emergency Department, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
505
|
Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J 2020; 17:117. [PMID: 32727485 PMCID: PMC7387805 DOI: 10.1186/s12985-020-01369-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has spread rapidly across the world and become an international public health emergency. Both SARS-CoV-2 and SARS-CoV belong to subfamily Coronavirinae in the family Coronaviridae of the order Nidovirales and they are classified as the SARS-like species while belong to different cluster. Besides, viral structure, epidemiology characteristics and pathological characteristics are also different. We present a comprehensive survey of the latest coronavirus-SARS-CoV-2-from investigating its origin and evolution alongside SARS-CoV. Meanwhile, pathogenesis, cardiovascular disease in COVID-19 patients, myocardial injury and venous thromboembolism induced by SARS-CoV-2 as well as the treatment methods are summarized in this review.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqiang Xiao
- Department of clinical medicine, Zhengzhou university, 100 Science Avenue, Zhengzhou, 450001, China
| | - Kaiyan Ye
- Second Clinical Medical College, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianghai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jinxiu Yao
- Yang Jiang Hospital, Yangjiang, 510515, Guangdong Province, China
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhang Bao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
506
|
Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de A Torre JC, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.28.225151. [PMID: 32766575 PMCID: PMC7402032 DOI: 10.1101/2020.07.28.225151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.
Collapse
|
507
|
Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, Weinreb C, Joseph PV, Larson ED, Parma V, Albers MW, Barlow LA, Datta SR, Di Pizio A. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron 2020; 107:219-233. [PMID: 32640192 PMCID: PMC7328585 DOI: 10.1016/j.neuron.2020.06.032] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.
Collapse
Affiliation(s)
- Keiland W Cooper
- Interdepartmental Neuroscience Program, University of California Irvine, Irvine, CA, USA
| | - David H Brann
- Harvard Medical School Department of Neurobiology, Boston, MA, USA
| | | | - Surabhi Bhutani
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Robert Pellegrino
- Department of Food Science, Institute of Agriculture, University of Tennessee, Knoxville, TN, USA; Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Caleb Weinreb
- Harvard Medical School Department of Neurobiology, Boston, MA, USA
| | - Paule V Joseph
- Division of Intramural Research, National Institute of Nursing Research (NINR) National Institutes of Health, Bethesda, MD, USA; National Institute on Alcohol Abuse and Alcoholism (NIAAA) National Institutes of Health, Bethesda, MD, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA and the Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Valentina Parma
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology, Graduate Program in Cell Biology, Stem Cells and Development and the Rocky Mountain Taste and Smell Center, University of Colorado, School Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | | | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
508
|
Chen J, Kelley WJ, Goldstein DR. Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:313-320. [PMID: 32493812 PMCID: PMC7343582 DOI: 10.4049/jimmunol.2000380] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Aging impairs immunity to promote diseases, especially respiratory viral infections. The current COVID-19 pandemic, resulting from SARS-CoV-2, induces acute pneumonia, a phenotype that is alarmingly increased with aging. In this article, we review findings of how aging alters immunity to respiratory viral infections to identify age-impacted pathways common to several viral pathogens, permitting us to speculate about potential mechanisms of age-enhanced mortality to COVID-19. Aging generally leads to exaggerated innate immunity, particularly in the form of elevated neutrophil accumulation across murine and large animal studies of influenza infection. COVID-19 patients who succumb exhibit a 2-fold increase in neutrophilia, suggesting that exaggerated innate immunity contributes to age-enhanced mortality to SARS-CoV-2 infection. Further investigation in relevant experimental models will elucidate the mechanisms by which aging impacts respiratory viral infections, including SARS-CoV-2. Such investigation could identify therapies to reduce the suffering of the population at large, but especially among older people, infected with respiratory viruses.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109; and
| | - William J Kelley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109;
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109; and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
509
|
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, Ritter JH, Kang LI, Dort S, Robichaud A, Head R, Holtzman MJ, Diamond MS. SARS-CoV-2 infection in the lungs of human ACE2 transgenic mice causes severe inflammation, immune cell infiltration, and compromised respiratory function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32676600 DOI: 10.1101/2020.07.09.196188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) emerged in late 2019 and has spread worldwide resulting in the Coronavirus Disease 2019 (COVID-19) pandemic. Although animal models have been evaluated for SARS-CoV-2 infection, none have recapitulated the severe lung disease phenotypes seen in hospitalized human cases. Here, we evaluate heterozygous transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lung tissues with additional spread to other organs. Remarkably, a decline in pulmonary function, as measured by static and dynamic tests of respiratory capacity, occurs 4 days after peak viral titer and correlates with an inflammatory response marked by infiltration into the lung of monocytes, neutrophils, and activated T cells resulting in pneumonia. Cytokine profiling and RNA sequencing analysis of SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with prominent signatures of NF-kB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection recapitulates many features of severe COVID-19 infection in humans and can be used to define the mechanistic basis of lung disease and test immune and antiviral-based countermeasures.
Collapse
|
510
|
Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Shrihari S, McCune BT, Harvey IB, Smith B, Keeler SP, Bloyet LM, Winkler ES, Holtzman MJ, Fremont DH, Whelan SP, Diamond MS. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.09.196386. [PMID: 32676597 PMCID: PMC7359519 DOI: 10.1101/2020.07.09.196386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections and hundreds of thousands of deaths. Accordingly, an effective vaccine is of critical importance in mitigating coronavirus induced disease 2019 (COVID-19) and curtailing the pandemic. We developed a replication-competent vesicular stomatitis virus (VSV)-based vaccine by introducing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high titers of antibodies that neutralize SARS-CoV-2 infection and target the receptor binding domain that engages human angiotensin converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice expressing human ACE2 and immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung indicating protection against pneumonia. Finally, passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals protects naïve mice from SARS-CoV-2 challenge. These data support development of VSV-eGFP-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M. Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T. McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian B. Harvey
- Departments of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany Smith
- Departments of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamus P. Keeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S. Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J. Holtzman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daved H. Fremont
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
511
|
Rathnasinghe R, Strohmeier S, Amanat F, Gillespie VL, Krammer F, García-Sastre A, Coughlan L, Schotsaert M, Uccellini M. Comparison of Transgenic and Adenovirus hACE2 Mouse Models for SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.06.190066. [PMID: 32676603 PMCID: PMC7359525 DOI: 10.1101/2020.07.06.190066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2)(1-3). Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in both the lung and brain leading to lethality. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the lung, and no clinical signs of infection with a challenge dose of 10 4 plaque forming units. The K18-hACE2 model provides a stringent model for testing the ability of vaccines and antivirals to protect against disease, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Virginia L. Gillespie
- The Center for Comparative Medicine and Surgery (CCMS) Comparative Pathology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
512
|
Trottein F, Sokol H. Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Rep 2020; 32:107915. [PMID: 32649864 PMCID: PMC7332457 DOI: 10.1016/j.celrep.2020.107915] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses cause several human diseases, including severe acute respiratory syndrome. The global coronavirus disease 2019 (COVID-19) pandemic has become a huge threat to humans. Intensive research on the pathogenic mechanisms used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed—notably to identify potential drug targets. Clinical studies of patients with COVID-19 have shown that gastrointestinal disorders appear to precede or follow the respiratory symptoms. Here, we review gastrointestinal disorders in patients with COVID-19, suggest hypothetical mechanisms leading to gut symptoms, and discuss the potential consequences of gastrointestinal disorders on the outcome of the disease. Lastly, we discuss the role of the gut microbiota during respiratory viral infections and suggest that targeting gut dysbiosis may help to control the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille-Institut Pasteur de Lille, 59000 Lille, France.
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, 78350 Jouy en Josas, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, 75012 Paris, France
| |
Collapse
|
513
|
Barrantes FJ. While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs? Front Physiol 2020; 11:820. [PMID: 32719619 PMCID: PMC7350707 DOI: 10.3389/fphys.2020.00820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
At the time of reception of this article (April 2, 2020), efforts to develop a specific vaccine against SARS-Cov-2, the causative agent of the coronavirus disease 2019 (COVID-19), had just begun trial phase 1, but full validation of this and other current developments is likely to take many more months to reach completion. The ongoing pandemic constitutes a major health burden of world proportions that is also having a devastating impact on whole economies worldwide, the knock-on effects of which could be catastrophic especially in poorer countries. Alternative measures to ameliorate the impact and hamper or minimally slow down disease progression are urgently called for. This review discusses past and currently evolving data on the etiological agent of the current pandemic, SARS-CoV-2, and its host cell receptors with a view to disclosing alternative drugs for palliative or therapeutic approaches. Firstly, SARS-CoV-2 exhibits marked tropism for cells that harbor the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) at their plasmalemma, predominantly in cells lining the oral cavity, upper respiratory tract, and bronchoalveolar cells, making these epithelial mucosae the most likely viral receptor cell targets and entry routes. Secondly, the crystal structures of several coronavirus spike proteins in complex with their cell host target receptors, and of SARS-Cov-2 in complex with an inhibitor, are now available at atomic resolution through X-ray diffraction and cryo-electron microscopy studies. Thirdly, viral entry of other viruses has been successfully blocked by inhibiting viral endogenous proteases or clathrin/dynamin-dependent endocytosis, the same internalization pathway followed by ACE2 and some viruses. Fourthly, the target cell-surface receptor molecules and SARS-CoV-2 possess other putative sites for drugs potentially modulating receptor activity or virus processing. A multi-pronged pharmacological approach attacking more than one flank of the viral-receptor interactions is worth considering as a front-line strategy.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Argentina Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
514
|
Singh A, Singh RS, Sarma P, Batra G, Joshi R, Kaur H, Sharma AR, Prakash A, Medhi B. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin 2020; 35:290-304. [PMID: 32607866 PMCID: PMC7324485 DOI: 10.1007/s12250-020-00252-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|