501
|
Gong Y, Hu M, Xu S, Wang B, Wang C, Mu X, Xu P, Jiang Y. Comparative transcriptome analysis reveals expression signatures of albino Russian sturgeon, Acipenseriformes gueldenstaedtii. Mar Genomics 2019; 46:1-7. [PMID: 30852186 DOI: 10.1016/j.margen.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Albinism is a genetically inherited condition that is caused by a series of genetic abnormalities leading to a reduction in melanin production. Russian sturgeon is one of the most valuable freshwater fish species worldwide, and albino individuals have been found in fish farms. Due to its complicated genome and scarce genome-wide genetic resources, the underlying molecular basis of albinism in Russian sturgeon is unknown. In the present study, we first generated transcriptome profile of Acipenser gueldenstaedtii using pooled tissues, which provided reliable reference sequences for future molecular genetic studies. A total of 369,441 contigs were assembled, corresponding to 32,965 unique genes. A comparative analysis of the transcripts from the skin of albino and wildtype individuals was conducted afterwards. A total of 785 unique genes were differentially expressed, including the upregulation of 385 genes and the downregulation of 400 genes in albino individuals. The expression pattern of 16 selected differentially expressed genes was validated using qRT-PCR. Additional annotation, GO enrichment analysis and gene pathway analysis indicated that the melanogenesis pathway may be interrupted in albinism. Eight potential causative genes that were highly likely to be responsible for sturgeon albinism were identified, including Dct, Tyrp1b, Slc45a2, Ctns, Pmela, Pmelb, Cd63, and Bloc1s3, which were found to be significantly down-regulated in albino Russian sturgeon. Moreover, a sliding window analysis of the ratio of nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) ratios indicated that seven out of the eight genes underwent positive selection during evolution. Our results provide a valuable basis for understanding the molecular mechanism of albinism in fish species and will facilitate future genetic selection and breeding of sturgeon with market-favored traits in aquaculture.
Collapse
Affiliation(s)
- Yiwen Gong
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mou Hu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Shijian Xu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Bin Wang
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China
| | - Xidong Mu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Peng Xu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China; Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China.
| |
Collapse
|
502
|
Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Front Oncol 2019; 9:125. [PMID: 30895170 PMCID: PMC6414436 DOI: 10.3389/fonc.2019.00125] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Lisa M Sedger
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
503
|
Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3:011503. [PMID: 31069333 PMCID: PMC6481742 DOI: 10.1063/1.5087122] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small (∼30-140 nm) lipid bilayer-enclosed particles of endosomal origin. They are a subset of extracellular vesicles (EVs) that are secreted by most cell types. There has been growing interest in exosome research in the last decade due to their emerging role as intercellular messengers and their potential in disease diagnosis. Indeed, exosomes contain proteins, lipids, and RNAs that are specific to their cell origin and could deliver cargo to both nearby and distant cells. As a result, investigation of exosome cargo contents could offer opportunities for disease detection and treatment. Moreover, exosomes have been explored as natural drug delivery vehicles since they can travel safely in extracellular fluids and deliver cargo to destined cells with high specificity and efficiency. Despite significant efforts made in this relatively new field of research, progress has been held back by challenges such as inefficient separation methods, difficulties in characterization, and lack of specific biomarkers. In this review, we summarize the current knowledge in exosome biogenesis, their roles in disease progression, and therapeutic applications and opportunities in bioengineering. Furthermore, we highlight the established and emerging technological developments in exosome isolation and characterization. We aim to consider critical challenges in exosome research and provide directions for future studies.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Alexander L. Corbett
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada, and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Emma Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
504
|
Bissig C, Croisé P, Heiligenstein X, Hurbain I, Lenk GM, Kaufman E, Sannerud R, Annaert W, Meisler MH, Weisman LS, Raposo G, van Niel G. The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation. J Cell Sci 2019; 132:jcs.229500. [PMID: 30709920 DOI: 10.1242/jcs.229500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christin Bissig
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Pauline Croisé
- IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Emily Kaufman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ragna Sannerud
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Lois S Weisman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guillaume van Niel
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France .,IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| |
Collapse
|
505
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
506
|
Batista IA, Melo SA. Exosomes and the Future of Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20030567. [PMID: 30699928 PMCID: PMC6387297 DOI: 10.3390/ijms20030567] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, associated with a late diagnosis and a five-year survival rate of 8%. Currently available treatments fall short in improving the survival and quality of life of PDAC patients. The only possible curative option is still the surgical resection of the tumor. Exosomes are extracellular vesicles secreted by cells that transport proteins, lipids, and nucleic acids to other cells, triggering phenotypic changes in the recipient cells. Tumor cells often secrete increased amounts of exosomes. Tumor exosomes are now accepted as important players in the remodeling of PDAC tumor stroma, particularly in the establishment of an immunosuppressive microenvironment. This has sparked the interest in their usefulness as mediators of immunomodulatory effects for the treatment of PDAC. In fact, exosomes are now under study to understand their potential as nanocarriers to stimulate an immune response against cancer. This review highlights the latest findings regarding the function of exosomes in tumor-driven immunomodulation, and the challenges and advantages associated with the use of these vesicles to potentiate immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ines A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Sonia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| |
Collapse
|
507
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
508
|
Abstract
Exosomes are a class of extracellular vesicles released by multiple cells types including tumor cells, with a size range of 30-100 nm and a lipid bilayer membrane. Recently, the role of exosomes in cell-to-cell communication has been extensively studied, showed that exosomes can deliver their functional RNAs and proteins to recipient cells, impacting transcription and translation of recipient cells. Emerging evidence suggests that hepatocellular carcinoma (HCC) cell-derived exosomes can construct a fertile environment to support HCC cells proliferation, grow, invasion and metastasis, development of drug resistance. Circulating exosomes can be used as noninvasive biomarkers for early diagnosis, moreover as drug delivery vehicles, provide new insights into the treatment of HCC.
Collapse
|
509
|
Guo D, Lui GYL, Lai SL, Wilmott JS, Tikoo S, Jackett LA, Quek C, Brown DL, Sharp DM, Kwan RYQ, Chacon D, Wong JH, Beck D, van Geldermalsen M, Holst J, Thompson JF, Mann GJ, Scolyer RA, Stow JL, Weninger W, Haass NK, Beaumont KA. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Int J Cancer 2019; 144:3070-3085. [PMID: 30556600 DOI: 10.1002/ijc.32064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023]
Abstract
Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Dajiang Guo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Goldie Y L Lui
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Siew Li Lai
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Shweta Tikoo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Louise A Jackett
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Darren L Brown
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Danae M Sharp
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Rain Y Q Kwan
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason H Wong
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - John F Thompson
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Richard A Scolyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jennifer L Stow
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Weninger
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
510
|
Abstract
The pathological propagation of Tau protein is a hallmark of multiple neurodegenerative disorders, collectively referred to tauopathies with Alzheimer's disease (AD) being most prevalent, but including a range of frontotemporal dementias (FTDs). The extracellular Tau is important during the progression of tauopathies, although Tau is mainly expressed intracellularly for physiological functions. Extracellular Tau could be actively secreted by one cell then taken up by adjacent cells, leading to the cell-to-cell transmission of Tau. Accumulating evidence has demonstrated that Tau propagation is not only by the trans-synaptic spreading but also via exo-synaptic spreading pathways especially under the pathological conditions. Among these, exosomes, microvesicles and tunneling nanotubes (TNTs) are proposed exo-synaptic pathways for the spread of Tau pathology. These findings have led to the idea that extracellular Tau could be a novel therapeutic target to halt the propagation of Tau pathology. From this perspective, this charter focuses on recent advances in understanding the mechanisms of Tau secretion and discusses the role of such mechanisms in the development of Tau pathology.
Collapse
Affiliation(s)
- Zhi Ruan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
511
|
Fais S, Logozzi M, Alberti G, Campanella C. Exosomal Hsp60: A Tumor Biomarker? HEAT SHOCK PROTEIN 60 IN HUMAN DISEASES AND DISORDERS 2019. [DOI: 10.1007/978-3-030-23154-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
512
|
Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34:11-30. [PMID: 29181712 PMCID: PMC6244861 DOI: 10.1007/s00467-017-3816-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles are cell-derived membrane particles ranging from 30 to 5,000 nm in size, including exosomes, microvesicles, and apoptotic bodies. They are released under physiological conditions, but also upon cellular activation, senescence, and apoptosis. They play an important role in intercellular communication. Their release may also maintain cellular integrity by ridding the cell of damaging substances. This review describes the biogenesis, uptake, and detection of extracellular vesicles in addition to the impact that they have on recipient cells, focusing on mechanisms important in the pathophysiology of kidney diseases, such as thrombosis, angiogenesis, tissue regeneration, immune modulation, and inflammation. In kidney diseases, extracellular vesicles may be utilized as biomarkers, as they are detected in both blood and urine. Furthermore, they may contribute to the pathophysiology of renal disease while also having beneficial effects associated with tissue repair. Because of their role in the promotion of thrombosis, inflammation, and immune-mediated disease, they could be the target of drug therapy, whereas their favorable effects could be utilized therapeutically in acute and chronic kidney injury.
Collapse
|
513
|
Abstract
Extracellular vesicles (EVs), and exosomes in particular, were initially considered as "garbage bags" for secretion of undesired cellular components. This view has changed considerably over the last two decades, and exosomes have now emerged as important organelles controlling cell-to-cell signaling. They are present in biological fluids and have important roles in the communication between cells in physiological and pathological processes. They are envisioned for clinical use as carriers of biomarkers, therapeutic targets, and vehicles for drug delivery. Important efforts are being made to characterize the contents of these vesicles and to understand the mechanisms that govern their biogenesis and modes of action. This chapter aims to recapitulate the place given to lipids in our understanding of exosome biology. Besides their structural role and their function as carriers, certain lipids and lipid-modifying enzymes seem to exert privileged functions in this mode of cellular communication. By extension, the use of selective "lipid inhibitors" might turn out to be interesting modulators of exosomal-based cell signaling.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France.,Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France. .,Department of Human Genetics, K. U. Leuven, Leuven, Belgium.
| |
Collapse
|
514
|
Yang B, Chen Y, Shi J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802896. [PMID: 30126052 DOI: 10.1002/adma.201802896] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/07/2018] [Indexed: 05/26/2023]
Abstract
Recent marked technological advances in the field of exosome nanotechnology have provided unprecedented opportunities to bloom the developments of exosome-related biology, chemistry, pathology, and therapeutics, which have laid a solid basis for scientific community to design exosome-based nanotheranostic platforms. The unique structural/compositional/morphological characteristics of exosomes as natural nanocarriers, as well as their fascinating physicochemical/biochemical properties, which underpin their special physiopathological roles, have triggered the concept that these cell-derived nanovesicles with intrinsic biological functions can be highly competent for the establishment of next-generation nanomedicine. Herein, efforts are made to give a comprehensive overview on the recent advances of exosome nanotechnology based on the representative examples of the current state of the art of exosome-based research, ranging from their formation, biological function, preparation, and characterization to their extensive nanomedical applications. It is highly expected that the better and clearer elucidation of the fundamental principles for advanced nanotechnology in constructing exosome-based theranostic nanoplatforms, as well as integrating the intrinsic advantages of exosomes as endogenous cell-derived nanocarriers with the advanced design methodology of traditional nanomedicine, will help to unlock the innate powers of exosomes for the establishment of next-generation theranostic nanoplatforms.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
515
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
516
|
Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018; 34:936-943. [DOI: 10.1051/medsci/2018239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Les vésicules extracellulaires (VE) suscitent un intérêt croissant lié à leur capacité à transférer du contenu biologique entre cellules. Les VE, émises dans l’espace extracellulaire, circulent via les différents fluides de l’organisme et modulent localement ou à distance les réponses des cellules avec lesquelles elles ont interagi. Des données cliniques et expérimentales étayent leur rôle dans les maladies liées au syndrome métabolique. Les VE bousculent la vision traditionnelle de la communication intercellulaire et représentent ainsi un mode de communication alternatif et versatile, qui ouvre la porte à de nouveaux concepts et opportunités tant biologiques que thérapeutiques.
Collapse
|
517
|
Exosomes-the enigmatic regulators of bone homeostasis. Bone Res 2018; 6:36. [PMID: 30534458 PMCID: PMC6286319 DOI: 10.1038/s41413-018-0039-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a heterogeneous group of cell-derived membranous structures, which mediate crosstalk interaction between cells. Recent studies have revealed a close relationship between exosomes and bone homeostasis. It is suggested that bone cells can spontaneously secret exosomes containing proteins, lipids and nucleic acids, which then to regulate osteoclastogenesis and osteogenesis. However, the network of regulatory activities of exosomes in bone homeostasis as well as their therapeutic potential in bone injury remain largely unknown. This review will detail and discuss the characteristics of exosomes, the regulatory activities of exosomes in bone homeostasis as well as the clinical potential of exosomes in bone injury. Vesicles known as exosomes may prove to be valuable clinical tools once their function is clarified. Exosomes were discovered in the 1980s but not observed in bone tissue until 2003. Minghao Zheng of the University of Western Australia, together with colleagues elsewhere, has reviewed the biology of exosomes, their role in maintaining bones, and their potential clinical uses. Exosomes carry lipids, proteins, and nucleic acids between cells. They are released by every type of bone cell, with the role of each exosome determined by its specific contents. Exosome-mediated crosstalk is involved in regulating bone remodeling, and exosomes have also been implicated in myelomas. Recent work has shown that exosome treatment can improve fracture healing. The authors conclude that a better understanding of the role of exosomes in bone homeostasis will unlock their significant clinical potential.
Collapse
|
518
|
Kerr CH, Dalwadi U, Scott NE, Yip CK, Foster LJ, Jan E. Transmission of Cricket paralysis virus via exosome-like vesicles during infection of Drosophila cells. Sci Rep 2018; 8:17353. [PMID: 30478341 PMCID: PMC6255767 DOI: 10.1038/s41598-018-35717-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
Viruses are classically characterized as being either enveloped or nonenveloped depending on the presence or absence of a lipid bi-layer surrounding their proteinaceous capsid. In recent years, many studies have challenged this view by demonstrating that some nonenveloped viruses (e.g. hepatitis A virus) can acquire an envelope during infection by hijacking host cellular pathways. In this study, we examined the role of exosome-like vesicles (ELVs) during infection of Drosophilia melanogaster S2 cells by Cricket paralysis virus (CrPV). Utilizing quantitative proteomics, we demonstrated that ELVs can be isolated from both mock- and CrPV-infected S2 cells that contain distinct set of proteins compared to the cellular proteome. Moreover, 40 proteins increased in abundance in ELVs derived from CrPV-infected cells compared to mock, suggesting specific factors associate with ELVs during infection. Interestingly, peptides from CrPV capsid proteins (ORF2) and viral RNA were detected in ELVs from infected cells. Finally, ELVs from CrPV-infected cells are infectious suggesting that CrPV may hijack ELVs to acquire an envelope during infection of S2 cells. This study further demonstrates the diverse strategies of nonenveloped viruses from invertebrates to vertebrates to acquire an envelope in order to evade the host response or facilitate transmission.
Collapse
Affiliation(s)
- Craig H Kerr
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Melbourne, Australia
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z3, Melbourne, Australia.
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver BC, V6T 1Z3, Canada.
| |
Collapse
|
519
|
Gao D, Jiang L. Exosomes in cancer therapy: a novel experimental strategy. Am J Cancer Res 2018; 8:2165-2175. [PMID: 30555736 PMCID: PMC6291654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin secreted by most cell types. They play important roles in intercellular communications and many physiological processes. DCs-derived exosomes can prime naïve T cells and activate NK cells to shrink the tumor. Tumor-derived exosomes carry a variety of tumor antigens that trigger the robust tumor antigen-specific immune response. Tumor-derived exosomes also contain metastasis or invasive-related molecules, which maybe potential targets for cancer immunotherapy. Effector T cells-derived exosomes possess cytotoxic activity of their original cells, thus cause tumor cells lysis. In this review, we summarized the recent advances on the biogenesis and composition of exosomes, the functions of anti-tumor immune response, and the promising applications on cancer immunotherapy of exosomes from different origins. Exosomes schlep efficient targets homing to tumor sites and tend to be a promising new tool of immunotherapy to fight cancer in a cell-free system.
Collapse
Affiliation(s)
- Dong Gao
- Research Institute of Shenzhen Beike Biotechnology Co., Ltd.Keyuan Road 18, Shenzhen, Guangdong, P. R. China
- Shenzhen Hornetcorn Biotechnology Co., Ltd.Shihua Road 14, Shenzhen, Guangdong, P. R. China
| | - Lingling Jiang
- Shenzhen Hornetcorn Biotechnology Co., Ltd.Shihua Road 14, Shenzhen, Guangdong, P. R. China
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityQingchun East Road 3, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
520
|
Greening DW, Simpson RJ. Understanding extracellular vesicle diversity – current status. Expert Rev Proteomics 2018; 15:887-910. [DOI: 10.1080/14789450.2018.1537788] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| |
Collapse
|
521
|
Codispoti B, Marrelli M, Paduano F, Tatullo M. NANOmetric BIO-Banked MSC-Derived Exosome (NANOBIOME) as a Novel Approach to Regenerative Medicine. J Clin Med 2018; 7:jcm7100357. [PMID: 30326618 PMCID: PMC6210357 DOI: 10.3390/jcm7100357] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues-technical issues as well as regulatory and ethical concerns-thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150⁻1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).
Collapse
Affiliation(s)
| | | | | | - Marco Tatullo
- Tecnologica Research Institute, 88900 Crotone, Italy.
| |
Collapse
|
522
|
Lapitz A, Arbelaiz A, Olaizola P, Aranburu A, Bujanda L, Perugorria MJ, Banales JM. Extracellular Vesicles in Hepatobiliary Malignancies. Front Immunol 2018; 9:2270. [PMID: 30369925 PMCID: PMC6194158 DOI: 10.3389/fimmu.2018.02270] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Primary hepatobiliary malignancies include a heterogeneous group of cancers with dismal prognosis, among which hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatoblastoma (HB) stand out. These tumors mainly arise from the malignant transformation of hepatocytes, cholangiocytes (bile duct epithelial cells) or hepatoblasts (embryonic liver progenitor cells), respectively. Early diagnosis, prognosis prediction and effective therapies are still a utopia for these diseases. Extracellular vesicles (EVs) are small membrane-enclosed spheres secreted by cells and present in biological fluids. They contain multiple types of biomolecules, such as proteins, RNA, DNA, metabolites and lipids, which make them a potential source of biomarkers as well as regulators of human pathobiology. In this review, the role of EVs in the pathogenesis of hepatobiliary cancers and their potential usefulness as disease biomarkers are highlighted. Moreover, the therapeutic value of EV regulation is discussed and future directions on basic and clinical research are indicated.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Extracellular Vesicles/genetics
- Extracellular Vesicles/immunology
- Extracellular Vesicles/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- MicroRNAs/genetics
- MicroRNAs/immunology
- Models, Genetic
- Models, Immunological
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitziber Aranburu
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- “Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas” (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- “Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas” (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- “Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas” (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
523
|
Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP. Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Front Physiol 2018; 9:1394. [PMID: 30327618 PMCID: PMC6174233 DOI: 10.3389/fphys.2018.01394] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.
Collapse
Affiliation(s)
| | | | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste – University of Trieste, Trieste, Italy
| | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
524
|
Nag S, Rani S, Mahanty S, Bissig C, Arora P, Azevedo C, Saiardi A, van der Sluijs P, Delevoye C, van Niel G, Raposo G, Setty SRG. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles. J Cell Sci 2018; 131:jcs.216226. [PMID: 30154210 PMCID: PMC6151265 DOI: 10.1242/jcs.216226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudeshna Nag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Shikha Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Christin Bissig
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Pooja Arora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Cedric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
525
|
La Greca A, Solari C, Furmento V, Lombardi A, Biani MC, Aban C, Moro L, García M, Guberman AS, Sevlever GE, Miriuka SG, Luzzani C. Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Exp Mol Med 2018; 50:1-12. [PMID: 30201949 PMCID: PMC6131549 DOI: 10.1038/s12276-018-0142-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/26/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) obtained from pluripotent stem cells (PSCs) constitute an interesting alternative to classical MSCs in regenerative medicine. Among their many mechanisms of action, MSC extracellular vesicles (EVs) are a potential suitable substitute for MSCs in future cell-free-based therapeutic approaches. Unlike cells, EVs do not elicit acute immune rejection, and they can be produced in large quantities and stored until ready to use. Although the therapeutic potential of MSC EVs has already been proven, a thorough characterization of MSC EVs is lacking. In this work, we used a label-free liquid chromatography tandem mass spectrometry proteomic approach to identify the most abundant proteins in EVs that are secreted from MSCs derived from PSCs (PD-MSCs) and from their parental induced PSCs (iPSCs). Next, we compared both datasets and found that while iPSC EVs enclose proteins that modulate RNA and microRNA stability and protein sorting, PD-MSC EVs are rich in proteins that organize extracellular matrix, regulate locomotion, and influence cell-substrate adhesion. Moreover, compared to their respective cells, iPSCs and iPSC EVs share a greater proportion of proteins, while the PD-MSC proteome appears to be more specific. Correlation and principal component analysis consistently aggregate iPSCs and iPSC EVs but segregate PD-MSC and their EVs. Altogether, these findings suggest that during differentiation, compared with their parental iPSC EVs, PD-MSC EVs acquire a more specific set of proteins; arguably, this difference might confer their therapeutic properties.
Collapse
Affiliation(s)
- Alejandro La Greca
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnolígica (ANPCyT), Buenos Aires, Argentina
| | - Claudia Solari
- Laboratorio de Regulación Génica en Células Madre, INQUIBICEN - CONICET, Departamento de Química Biológica, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Veronica Furmento
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Antonella Lombardi
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnolígica (ANPCyT), Buenos Aires, Argentina
| | - Maria Celeste Biani
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cyntia Aban
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia Moro
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela García
- Cátedra de Citología, Histología y Embriología A, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Laboratorio de Regulación Génica en Células Madre, INQUIBICEN - CONICET, Departamento de Química Biológica, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Santiago Gabriel Miriuka
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos Luzzani
- LIAN-CONICET, FLENI, Ruta 9 Km 52,5 - (B1625XAF), Belén de Escobar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
526
|
Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Iacopino DG, Campanella C. Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives. Int J Mol Sci 2018; 19:E2626. [PMID: 30189598 PMCID: PMC6164348 DOI: 10.3390/ijms19092626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90143 Palermo, Italy.
| | - Francesca Graziano
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Domenico G Iacopino
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| |
Collapse
|
527
|
Yang J, Kim EK, McDowell A, Kim YK. Microbe-derived extracellular vesicles as a smart drug delivery system. Transl Clin Pharmacol 2018; 26:103-110. [PMID: 32055558 PMCID: PMC6989235 DOI: 10.12793/tcp.2018.26.3.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiomederived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.
Collapse
Affiliation(s)
- Jinho Yang
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Eun Kyoung Kim
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Andrea McDowell
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| |
Collapse
|
528
|
DeLeo AM, Ikezu T. Extracellular Vesicle Biology in Alzheimer's Disease and Related Tauopathy. J Neuroimmune Pharmacol 2018; 13:292-308. [PMID: 29185187 PMCID: PMC5972041 DOI: 10.1007/s11481-017-9768-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are physiological vesicles secreted from most eukaryotes and contain cargos of their cell of origin. EVs, and particularly a subset of EV known as exosomes, are emerging as key mediators of cell to cell communication and waste management for cells both during normal organismal function and in disease. In this review, we investigate the rapidly growing field of exosome biology, their biogenesis, cargo loading, and uptake by other cells. We particularly consider the role of exosomes in Alzheimer's disease, both as a pathogenic agent and as a disease biomarker. We also explore the emerging role of exosomes in chronic traumatic encephalopathy. Finally, we highlight open questions in these fields and the possible use of exosomes as therapeutic targets and agents.
Collapse
Affiliation(s)
- Annina M DeLeo
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St, L-606, Boston, MA, 02118, USA.
| | - Tsuneya Ikezu
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St, L-606, Boston, MA, 02118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
529
|
Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 2018; 60:9-18. [PMID: 30076207 PMCID: PMC6314266 DOI: 10.1194/jlr.r084343] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a type of extracellular vesicle released from cells after fusion of multivesicular bodies with the plasma membrane. These vesicles are often enriched in cholesterol, SM, glycosphingolipids, and phosphatidylserine. Lipids not only have a structural role in exosomal membranes but also are essential players in exosome formation and release to the extracellular environment. Our knowledge about the importance of lipids in exosome biology is increasing due to recent technological developments in lipidomics and a stronger focus on the biological functions of these molecules. Here, we review the available information about the lipid composition of exosomes. Special attention is given to ether lipids, a relatively unexplored type of lipids involved in membrane trafficking and abundant in some exosomes. Moreover, we discuss how the lipid composition of exosome preparations may provide useful information about their purity. Finally, we discuss the role of phosphoinositides, membrane phospholipids that help to regulate membrane dynamics, in exosome release and how this process may be linked to secretory autophagy. Knowledge about exosome lipid composition is important to understand the biology of these vesicles and to investigate possible medical applications.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Nina P Hessvik
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
530
|
Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res 2018; 374:555-565. [DOI: 10.1007/s00441-018-2895-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/08/2018] [Indexed: 01/23/2023]
|
531
|
Seo N, Akiyoshi K, Shiku H. Exosome-mediated regulation of tumor immunology. Cancer Sci 2018; 109:2998-3004. [PMID: 29999574 PMCID: PMC6172045 DOI: 10.1111/cas.13735] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
Exosomes are representative extracellular vesicles (EV) derived from multivesicular endosomes (MVE) and have been described as new particles in the communication of neighborhood and/or distant cells by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and nucleotides including micro (mi) RNAs. Exosomes from immune cells and tumor cells act in part as a regulator in tumor immunology. CD8+ T cells that show potent cytotoxic activity against tumor cells reside as an inactive naïve form in the T-cell zone of secondary lymphoid organs. Once receiving tumor-specific antigenic stimulation by dendritic cells (DC), CD8+ T cells are activated and differentiated into effector CTL. Subsequently, CTL circulate systemically, infiltrate into tumor lesions through the stromal neovasculature where mesenchymal stromal cells, for example, mesenchymal stem cells (MSC) and cancer-associated fibroblasts (CAF), abundantly exist, destroy mesenchymal tumor stroma in an exosome-mediated way, go into tumor parenchyma, and attack tumor cells by specific interaction. DC-derived and regulatory T (Treg) cell-derived exosomes, respectively, promote and inhibit CTL generation in this setting. In this review, we describe the roles of exosomes from immune cells and tumor cells on the regulation of tumor progression.
Collapse
Affiliation(s)
- Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,CREST, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Kazunari Akiyoshi
- CREST, Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
532
|
WITHDRAWN: Decoding the role of extracellular vesicles in liver diseases. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
533
|
Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun 2018; 9:2932. [PMID: 30050131 PMCID: PMC6062606 DOI: 10.1038/s41467-018-05345-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery mediates cargo sorting, membrane deformation and membrane scission on the surface of endosomes, generating intraluminal vesicles (ILVs) to degrade signaling receptors. By live-cell imaging of individual endosomes in human cells, we find that ESCRT proteins are recruited in a repetitive pattern: ESCRT-0 and -I show a gradual and linear recruitment and dissociation, whereas ESCRT-III and its regulatory ATPase VPS4 display fast and transient dynamics. Electron microscopy shows that ILVs are formed consecutively, starting immediately after endocytic uptake of cargo proteins and correlating with the repeated ESCRT recruitment waves, unraveling the timing of ILV formation. Clathrin, recruited by ESCRT-0, is required for timely ESCRT-0 dissociation, efficient ILV formation, correct ILV size and cargo degradation. Thus, cargo sorting and ILV formation occur by concerted, coordinated and repetitive recruitment waves of individual ESCRT subcomplexes and are controlled by clathrin. Intraluminal vesicles are formed by the endosomal sorting complex required for transport (ESCRT) machinery. Here, the authors unravel the timing of vesicle budding, and that endosomal clathrin regulates concerted recruitment of ESCRT subcomplexes, required for efficient membrane remodeling.
Collapse
|
534
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
535
|
Bergam P, Reisecker JM, Rakvács Z, Kucsma N, Raposo G, Szakacs G, van Niel G. ABCB6 Resides in Melanosomes and Regulates Early Steps of Melanogenesis Required for PMEL Amyloid Matrix Formation. J Mol Biol 2018; 430:3802-3818. [PMID: 29940187 DOI: 10.1016/j.jmb.2018.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Genetically inheritable pigmentation defects provide a unique opportunity to reveal the function of proteins contributing to melanogenesis. Dyschromatosis universalis hereditaria (DUH) is a rare pigmentary genodermatosis associated with mutations in the ABCB6 gene. Here we use optical and electron microscopy imaging combined with biochemical tools to investigate the localization and function of ABCB6 in pigment cells. We show that ABCB6 localizes to the membrane of early melanosomes and lysosomes of the human melanocytic cell line MNT-1. Depletion of ABCB6 by siRNA impaired PMEL amyloidogenesis in early melanosomes and induced aberrant accumulation of multilamellar aggregates in pigmented melanosomes. PMEL fibril formation and normal maturation of pigmented melanosomes could be restored by the overexpression of wild-type ABCB6 but not by variants containing an inactivating catalytic mutation (K629M) or the G579E DUH mutation. In line with the impairment of PMEL matrix formation in the absence of ABCB6, morphological analysis of the retinal pigment epithelium of ABCB6 knockout mice revealed a significant decrease of melanosome numbers. Our study extends the localization of ABCB6 to melanosomes, suggesting a potential link between the function of ABCB6 and the etiology of DUH to amyloid formation in pigment cells.
Collapse
Affiliation(s)
- Ptissam Bergam
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | | | - Zsófia Rakvács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | - Gergely Szakacs
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary.
| | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France; Center for Psychiatry and Neuroscience, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris, France.
| |
Collapse
|
536
|
Lucchetti D, Fattorossi A, Sgambato A. Extracellular Vesicles in Oncology: Progress and Pitfalls in the Methods of Isolation and Analysis. Biotechnol J 2018; 14:e1700716. [PMID: 29878510 DOI: 10.1002/biot.201700716] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The possibility to study solid tumors through the analysis of extracellular vesicles in biological fluids is one of the most exciting and rapidly advancing field in cancer research. The extracellular vesicles are tiny sacs released in both physiological and pathological conditions and can be used to monitor the evolution of several pathological states, including neoplastic diseases. Indeed, these vesicles carry biological informations and can affect the behavior of recipient cells by transferring proteins, DNA, RNA, and microRNA. In this review the authors analyze the methods to collect biological fluid samples (urine, plasma/serum, and cell supernatant), and to isolate and quantify extracellular vesicles highlighting advantages and drawbacks. Moreover, the authors provide an overview on the adoption and the advantages of the methods (such as digital PCR, next generation sequencing, reverse-phase protein microarrays, flow-cytometry, etc.) most frequently used to analyze the molecular content of extracellular vesicles. Despite the great scientific interest on this topic, there is still a great uncertainty about which is the best method for the collection, isolation, quantification, and molecular evaluation of these vesicles and a standardization is needed. The features of EVs make them ideal candidates for liquid biopsy-based biomarkers. However, the small size of EVs makes their analysis very difficult and requires multiple advanced technologies, being therefore a limitation.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Fattorossi
- Department of Obstetrics and Gynecology, Fondazione Policlinico A. Gemelli, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
537
|
Brzozowski JS, Bond DR, Jankowski H, Goldie BJ, Burchell R, Naudin C, Smith ND, Scarlett CJ, Larsen MR, Dun MD, Skelding KA, Weidenhofer J. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep 2018; 8:8822. [PMID: 29891991 PMCID: PMC5995928 DOI: 10.1038/s41598-018-27180-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
To facilitate intercellular communication, cells release nano-sized, extracellular vesicles (EVs) to transfer biological cargo to both local and distant sites. EVs are enriched in tetraspanins, two of which (CD9 and CD151) have altered expression patterns in many solid tumours, including prostate cancer, as they advance toward metastasis. We aimed to determine whether EVs from prostate cells with altered CD9 and CD151 expression could influence cellular behaviour and increase the metastatic capabilities of non-tumourigenic prostate cells. EVs were isolated by ultrafiltration and characterised for their tetraspanin expression and size distribution. iTRAQ was used to identify differences between RWPE1 and tetraspanin-modified RWPE1 EV proteomes, showing an enrichment in protein degradation pathways. Addition of EVs from RWPE1 cells with reduced CD9 or increased CD151 abundance resulted in increased invasion of RWPE1 cells, and increased migration in the case of high CD151 abundance. We have been able to show that alteration of CD9 and CD151 on prostate cells alters the proteome of their resultant EVs, and that these EVs can enhance the migratory and invasive capabilities of a non-tumourigenic prostate cellular population. This work suggests that cellular tetraspanin levels can alter EVs, potentially acting as a driver of metastasis in prostate cancer.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Danielle R Bond
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Helen Jankowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Belinda J Goldie
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachel Burchell
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Crystal Naudin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Emory University, Atlanta, Georgia, USA
| | - Nathan D Smith
- ABRF, Research Services, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher J Scarlett
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Matthew D Dun
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Kathryn A Skelding
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Judith Weidenhofer
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia. .,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
538
|
Why Study Functional Amyloids? Lessons from the Repeat Domain of Pmel17. J Mol Biol 2018; 430:3696-3706. [PMID: 29886018 DOI: 10.1016/j.jmb.2018.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
One of the current challenges facing biomedical researchers is the need to develop new approaches in preventing amyloid formation that is associated with disease. While amyloid is generally considered detrimental to the cell, examples of amyloids that maintain a benign nature and serve a specific function exist. Here, we review our work on the repeat domain (RPT) of the functional amyloid Pmel17. Specifically, the RPT domain contributes in generating amyloid fibrils in melanosomes upon which melanin biosynthesis occurs. Amyloid formation of RPT was shown to be pH sensitive, aggregating only under acidic conditions associated with melanosomal pH. Furthermore, preformed fibrils rapidly dissolved at neutral pH to generate benign monomeric species. From a biological perspective, this unique reversible aggregation/disaggregation is a safeguard against an event of releasing RPT fibrils in the cytosol, resulting in rapid fibril unfolding and circumventing cytotoxicity. Understanding how melanosomes preserve a safe environment will address vital questions that remain unanswered with pathological amyloids.
Collapse
|
539
|
Zöller M, Zhao K, Kutlu N, Bauer N, Provaznik J, Hackert T, Schnölzer M. Immunoregulatory Effects of Myeloid-Derived Suppressor Cell Exosomes in Mouse Model of Autoimmune Alopecia Areata. Front Immunol 2018; 9:1279. [PMID: 29951053 PMCID: PMC6008552 DOI: 10.3389/fimmu.2018.01279] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/22/2018] [Indexed: 01/28/2023] Open
Abstract
The treatment of autoimmune diseases still poses a major challenge, frequently relying on non-specific immunosuppressive drugs. Current efforts aim at reestablishing self tolerance using immune cells with suppressive activity like the regulatory T cells (Treg) or the myeloid-derived suppressor cells (MDSC). We have demonstrated therapeutic efficacy of MDSC in mouse Alopecia Areata (AA). In the same AA model, we now asked whether MDSC exosomes (MDSC-Exo) can replace MDSC. MDSC-Exo from bone marrow cells (BMC) cultures of healthy donors could substantially facilitate treatment. With knowledge on MDSC-Exo being limited, their suitability needs to be verified in advance. Protein marker profiles suggest comparability of BMC- to ex vivo collected inflammatory MDSC/MDSC-Exo in mice with a chronic contact dermatitis, which is a therapeutic option in AA. Proteome analyses substantiated a large overlap of function-relevant molecules in MDSC and MDSC-Exo. Furthermore, MDSC-Exo are taken up by T cells, macrophages, NK, and most avidly by Treg and MDSC-Exo uptake exceeds binding of MDSC themselves. In AA mice, MDSC-Exo preferentially target skin-draining lymph nodes and cells in the vicinity of remnant hair follicles. MDSC-Exo uptake is accompanied by a strong increase in Treg, reduced T helper proliferation, mitigated cytotoxic activity, and a slight increase in lymphocyte apoptosis. Repeated MDSC-Exo application in florid AA prevented progression and sufficed for partial hair regrowth. Deep sequencing of lymphocyte mRNA from these mice revealed a significant increase in immunoregulatory mRNA, including FoxP3 and arginase 1. Downregulated mRNA was preferentially engaged in prohibiting T cell hyperreactivity. Taken together, proteome analysis provided important insights into potential MDSC-Exo activities, these Exo preferentially homing into AA-affected organs. Most importantly, changes in leukocyte mRNA seen after treatment of AA mice with MDSC-Exo sustainably supports the strong impact on the adaptive and the non-adaptive immune system, with Treg expansion being a dominant feature. Thus, MDSC-Exo could potentially serve as therapeutic agents in treating AA and other autoimmune diseases.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Kun Zhao
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Natalia Kutlu
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Nathalie Bauer
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jan Provaznik
- Gene Core Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
540
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
541
|
Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 2018; 7:14. [PMID: 29855735 PMCID: PMC5981152 DOI: 10.1186/s40169-018-0192-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid-bound particles containing nucleic acid and protein cargo which are excreted from cells under a variety of normal and pathological conditions. EVs have garnered substantial research interest in recent years, due to their potential utility as circulating biomarkers for a variety of diseases, including numerous types of cancer. The following review will discuss the current understanding of the form and function of EVs, their specific role in cancer pathogenesis and their potential for non-invasive disease diagnosis and/or monitoring. This review will also highlight several key issues for this field, including the importance of implementing robust and reproducible sample handling protocols, and the challenge of extracting an EV-specific biomarker signal from a complex biological background.
Collapse
Affiliation(s)
- R E Lane
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - D Korbie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - M M Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - M Trau
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
542
|
Leone DA, Rees AJ, Kain R. Dendritic cells and routing cargo into exosomes. Immunol Cell Biol 2018; 96:683-693. [PMID: 29797348 DOI: 10.1111/imcb.12170] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles, released from cells, are important for intercellular communication. They are heterogeneous but fall into two broad categories based on origin and function: microvesicles formed by outward budding from the plasma membrane; and exosomes that originate as intraluminal vesicles in multivesicular endosomes that fuse with the plasma membrane to release them. Extracellular vesicles generally and exosomes in particular have powerful effects on specific immune responses, and recent advances highlight their potential therapeutic uses. Dendritic cells (DC) that have internalized antigen release exosomes that express MHC class II molecules loaded with antigenic peptides, co-stimulatory molecules and intact antigen. Depending on the setting, these stimulate CD4 T-cell proliferation either directly or only in the context of accessory antigen naïve DC. Here, we discuss the reasons for this; and review current knowledge about the loading of antigen, class II and other cargo into exosomes released by DC and other professional antigen-presenting cells in the context of advances in exosome biology more generally.
Collapse
Affiliation(s)
- Dario A Leone
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrew J Rees
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
543
|
To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem 2018; 62:177-191. [PMID: 29717057 DOI: 10.1042/ebc20170076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
The release of extracellular vesicles such as exosomes provides an attractive intercellular communication pathway. Exosomes are 30- to 150-nm membrane vesicles that are generated in endosomal compartment and act as intercellular mediators in both physiological and pathological context. Despite the growing interest in exosome functions, the mechanisms responsible for their biogenesis and secretion are still not completely understood. Knowledge about these mechanisms is important because they control the composition, and hence the function and secretion, of exosomes. Exosomes are produced as intraluminal vesicles in extremely dynamic endosomal organelles, which undergo various maturation processes in order to form multivesicular endosomes. Notably, the function of multivesicular endosomes is balanced between exosome secretion and lysosomal degradation. In the present review, we present and discuss each intracellular trafficking pathway that has been reported or proposed as regulating exosome biogenesis, with a particular focus on the importance of endosomal dynamics in sorting out cargo proteins to exosomes and to the secretion of multivesicular endosomes. An overall picture reveals several key mechanisms, which mainly act at the crossroads of endosomal pathways as regulatory checkpoints of exosome biogenesis.
Collapse
|
544
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
545
|
Lee H, Abston E, Zhang D, Rai A, Jin Y. Extracellular Vesicle: An Emerging Mediator of Intercellular Crosstalk in Lung Inflammation and Injury. Front Immunol 2018; 9:924. [PMID: 29780385 PMCID: PMC5946167 DOI: 10.3389/fimmu.2018.00924] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/13/2018] [Indexed: 01/06/2023] Open
Abstract
Inflammatory lung responses are one of the characterized features in the pathogenesis of many lung diseases, including acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). Alveolar macrophages (AMs) and alveolar epithelial cells are the first line of host defense and innate immunity. Due to their central roles in both the initiation and resolution of inflammatory lung responses, AMs constantly communicate with other lung cells, including the alveolar epithelial cells. In the past, emerging evidence suggests that extracellular vesicles play an essential role in cell–cell crosstalk. In this review, we will discuss the recent findings on the intercellular communications between lung epithelial cells and alveolar macrophages, via EV-mediated signal transfer.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Eric Abston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Ashish Rai
- Department of Internal Medicine, North Shore Medical Center, Boston, MA, United States
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| |
Collapse
|
546
|
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol 2018; 9:738. [PMID: 29760691 PMCID: PMC5936763 DOI: 10.3389/fimmu.2018.00738] [Citation(s) in RCA: 663] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
Collapse
Affiliation(s)
- Eduard Willms
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Department of Microbiology I (Immunology), Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
547
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
548
|
Cho YE, Song BJ, Akbar M, Baek MC. Extracellular vesicles as potential biomarkers for alcohol- and drug-induced liver injury and their therapeutic applications. Pharmacol Ther 2018; 187:180-194. [PMID: 29621595 DOI: 10.1016/j.pharmthera.2018.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are small membranous vesicles originating from various cells and tissues, including the liver parenchymal hepatocytes and nonparenchymal cells such as Kupffer and stellate cells. Recently, the pathophysiological role of EVs, such as exosomes and microvesicles, has been increasingly recognized based on their properties of intercellular communications. These EVs travel through the circulating blood and interact with specific cells and then deliver their cargos such as nucleic acids and proteins into recipient cells. In addition, based on their stabilities, circulating EVs from body fluids such as blood, cerebrospinal fluid, urine, saliva, semen, breast milk and amniotic fluids are being studied as a valuable source of potential biomarkers for providing information about the physiological status of original cells or tissues. In addition, EVs are considered potential therapeutic agents due to their ability for intercellular communications between different cell types within the liver and between various organs through transfer of their cargos. In this review, we have briefly described recent advances in the characteristics and pathophysiological roles of EVs in alcoholic liver disease (ALD) or drug-induced liver injury (DILI) and discuss their advantages in the discovery of potential biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
549
|
Liggins MC, Flesher JL, Jahid S, Vasudeva P, Eby V, Takasuga S, Sasaki J, Sasaki T, Boissy RE, Ganesan AK. PIKfyve regulates melanosome biogenesis. PLoS Genet 2018; 14:e1007290. [PMID: 29584722 PMCID: PMC5889185 DOI: 10.1371/journal.pgen.1007290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/06/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.
Collapse
Affiliation(s)
- Marc C. Liggins
- Department of Dermatology, University of California, San Diego, San Diego, CA, United States of America
| | - Jessica L. Flesher
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Sohail Jahid
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States of America
| | - Priya Vasudeva
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States of America
| | - Victoria Eby
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University School of Medicine, Akita, Japan
| | - Junko Sasaki
- Department of Medical Biology, Akita University School of Medicine, Akita, Japan
| | - Takehiko Sasaki
- Department of Medical Biology, Akita University School of Medicine, Akita, Japan
| | - Raymond E. Boissy
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Anand K. Ganesan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States of America
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
550
|
Nanbo A, Noda T, Ohba Y. Epstein-Barr Virus Acquires Its Final Envelope on Intracellular Compartments With Golgi Markers. Front Microbiol 2018; 9:454. [PMID: 29615992 PMCID: PMC5864893 DOI: 10.3389/fmicb.2018.00454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 01/18/2023] Open
Abstract
Herpesvirus subfamilies typically acquire their final envelope in various cytoplasmic compartments such as the trans-Golgi network (TGN), and endosomes prior to their secretion into the extracellular space. However, the sites for the final envelopment of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, are poorly understood. Here, we characterized the sites for the final envelopment of EBV in Burkitt’s lymphoma cell lines induced into the lytic cycle by crosslinking cell surface IgG. Electron microscopy revealed the various stages of maturation and egress of progeny virions including mature EBV in irregular cytoplasmic vesicles. Immunofluorescence staining showed that gp350/220, the major EBV glycoprotein, and the viral capsid antigen, p18, efficiently colocalized with a cis-Golgi marker, GM130. gp350/220 partly colocalized with the TGN, which was distributed in a fragmented and dispersed pattern in the cells induced into the lytic cycle. In contrast, limited colocalization was observed between gp350/220 and endosomal markers, such as a multi-vesicular bodies marker, CD63, a recycling endosome marker, Rab11, and a regulatory secretion vesicles marker, Rab27a. Finally, we observed that treatment of cells with brefeldin A, an inhibitor of vesicle trafficking between the endoplasmic reticulum and Golgi apparatus, resulted in the perinuclear accumulation of gp350/220 and inhibition of its distribution to the plasma membrane. Brefeldin A also inhibited the release of infectious EBV. Taken together, our findings support a model in which EBV acquires its final envelope in intracellular compartments containing markers of Golgi apparatus, providing new insights into how EBV matures.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|