501
|
Srivastava D, de Toledo M, Manchon L, Tazi J, Juge F. Modulation of Yorkie activity by alternative splicing is required for developmental stability. EMBO J 2021; 40:e104895. [PMID: 33320356 PMCID: PMC7849169 DOI: 10.15252/embj.2020104895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Hippo signaling pathway is a major regulator of organ growth, which controls the activity of the transcription coactivator Yorkie (Yki) in Drosophila and its homolog YAP in mammals. Both Yki and YAP proteins exist as alternatively spliced isoforms containing either one or two WW domains. The biological importance of this conserved alternative splicing event is unknown. Here, we identify the splicing factor B52 as a regulator of yki alternative splicing in Drosophila and show that B52 modulates growth in part through modulation of yki alternative splicing. Yki isoforms differ by their transcriptional activity as well as their ability to bind and bridge PPxY motifs-containing partners, and can compete in vivo. Strikingly, flies in which yki alternative splicing has been abrogated, thus expressing only Yki2 isoform, exhibit fluctuating wing asymmetry, a signal of developmental instability. Our results identify yki alternative splicing as a new level of modulation of the Hippo pathway, that is required for growth equilibration during development. This study provides the first demonstration that the process of alternative splicing contributes to developmental robustness.
Collapse
Affiliation(s)
- Diwas Srivastava
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Marion de Toledo
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Laurent Manchon
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Jamal Tazi
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - François Juge
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| |
Collapse
|
502
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
503
|
Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 2021; 77:63-73. [PMID: 33495890 DOI: 10.1007/s13105-021-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway's influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.
Collapse
|
504
|
Besen-McNally R, Gjelsvik KJ, Losick VP. Wound-induced polyploidization is dependent on Integrin-Yki signaling. Biol Open 2021; 10:bio.055996. [PMID: 33355119 PMCID: PMC7860123 DOI: 10.1242/bio.055996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A key step in tissue repair is to replace lost or damaged cells. This occurs via two strategies: restoring cell number through proliferation or increasing cell size through polyploidization. Studies in Drosophila and vertebrates have demonstrated that polyploid cells arise in adult tissues, at least in part, to promote tissue repair and restore tissue mass. However, the signals that cause polyploid cells to form in response to injury remain poorly understood. In the adult Drosophila epithelium, wound-induced polyploid cells are generated by both cell fusion and endoreplication, resulting in a giant polyploid syncytium. Here, we identify the integrin focal adhesion complex as an activator of wound-induced polyploidization. Both integrin and focal adhesion kinase are upregulated in the wound-induced polyploid cells and are required for Yorkie-induced endoreplication and cell fusion. As a result, wound healing is perturbed when focal adhesion genes are knocked down. These findings show that conserved focal adhesion signaling is required to initiate wound-induced polyploid cell growth.
Collapse
Affiliation(s)
- Rose Besen-McNally
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 0×4469, USA
| | - Kayla J Gjelsvik
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 0×4469, USA.,Kathryn W. Davis Center for Regenerative Biology and Aging, MDI Biological Laboratory, Bar Harbor, ME, 04609, USA
| | - Vicki P Losick
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
505
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
506
|
Bauzone M, Souidi M, Dessein AF, Wisztorski M, Vincent A, Gimeno JP, Monté D, Van Seuningen I, Gespach C, Huet G. Cross-talk between YAP and RAR-RXR Drives Expression of Stemness Genes to Promote 5-FU Resistance and Self-Renewal in Colorectal Cancer Cells. Mol Cancer Res 2021; 19:612-622. [PMID: 33472949 DOI: 10.1158/1541-7786.mcr-20-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms whereby the Hippo pathway effector YAP regulates cancer cell stemness, plasticity, and chemoresistance are not fully understood. We previously showed that in 5-fluorouracil (5-FU)-resistant colorectal cancer cells, the transcriptional coactivator YAP is differentially regulated at critical transitions connected with reversible quiescence/dormancy to promote metastasis. Here, we found that experimental YAP activation in 5-FU-sensitive and 5-FU-resistant HT29 colorectal cancer cells enhanced nuclear YAP localization and the transcript levels of the retinoic acid (RA) receptors RARα/γ and RAR target genes CYP26A1, ALDH1A3, and LGR5 through RA Response Elements (RARE). In these two cell models, constitutive YAP activation reinforced the expression of the stemness biomarkers and regulators ALDH1A3, LGR5, and OCT4. Conversely, YAP silencing, RAR/RXR inhibition by the pan-RAR antagonist BMS493, and vitamin A depletion downregulated stemness traits and self-renewal. Regarding the mechanisms engaged, proximity-dependent labeling, nuclear YAP pulldown coupled with mass spectrometry, and chromatin immunoprecipitation (ChIP)/re-ChIP experiments revealed: (i) the nuclear colocalization/interaction of YAP with RARγ and RXRs; and (ii) combined genomic co-occupancy of YAP, RARα/γ, and RXRα interactomes at proximal RAREs of LGR5 and ALDH1A3 promoters. Moreover, activation of the YAP/RAR-RXR cross-talk in colorectal cancer cells promoted RAR self-activation loops via vitamin A metabolism, RA, and active RAR ligands generated by ALDH1A3. Together, our data identify YAP as a bona fide RAR-RXR transcriptional coactivator that acts through RARE-activated stemness genes. IMPLICATIONS: Targeting the newly identified YAP/RAR-RXR cross-talk implicated in cancer cell stemness maintenance may lead to multitarget combination therapies for patients with colorectal cancer.
Collapse
Affiliation(s)
- Marjolaine Bauzone
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Mouloud Souidi
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Anne-Frédérique Dessein
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Centre de Biopathologie, Lille CHU, Lille, France
| | - Maxence Wisztorski
- Université Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Audrey Vincent
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Jean-Pascal Gimeno
- Université Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Didier Monté
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Isabelle Van Seuningen
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christian Gespach
- Sorbonne Université, Inserm U938, Team TGFβ Signaling in Cellular Plasticity and Cancer, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Guillemette Huet
- Université Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France. .,Centre de Biopathologie, Lille CHU, Lille, France
| |
Collapse
|
507
|
Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel) 2021; 13:cancers13020353. [PMID: 33477952 PMCID: PMC7836002 DOI: 10.3390/cancers13020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| |
Collapse
|
508
|
Zeng R, Dong J. The Hippo Signaling Pathway in Drug Resistance in Cancer. Cancers (Basel) 2021; 13:cancers13020318. [PMID: 33467099 PMCID: PMC7830227 DOI: 10.3390/cancers13020318] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although great breakthroughs have been made in cancer treatment following the development of targeted therapy and immune therapy, resistance against anti-cancer drugs remains one of the most challenging conundrums. Considerable effort has been made to discover the underlying mechanisms through which malignant tumor cells acquire or develop resistance to anti-cancer treatment. The Hippo signaling pathway appears to play an important role in this process. This review focuses on how components in the human Hippo signaling pathway contribute to drug resistance in a variety of cancer types. This article also summarizes current pharmacological interventions that are able to target the Hippo signaling pathway and serve as potential anti-cancer therapeutics. Abstract Chemotherapy represents one of the most efficacious strategies to treat cancer patients, bringing advantageous changes at least temporarily even to those patients with incurable malignancies. However, most patients respond poorly after a certain number of cycles of treatment due to the development of drug resistance. Resistance to drugs administrated to cancer patients greatly limits the benefits that patients can achieve and continues to be a severe clinical difficulty. Among the mechanisms which have been uncovered to mediate anti-cancer drug resistance, the Hippo signaling pathway is gaining increasing attention due to the remarkable oncogenic activities of its components (for example, YAP and TAZ) and their druggable properties. This review will highlight current understanding of how the Hippo signaling pathway regulates anti-cancer drug resistance in tumor cells, and currently available pharmacological interventions targeting the Hippo pathway to eradicate malignant cells and potentially treat cancer patients.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +1-402-559-5596; Fax: +1-402-559-4651
| |
Collapse
|
509
|
Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC Proteins: Important Regulators of Hippo Signaling in Cancer. Cancers (Basel) 2021; 13:cancers13020306. [PMID: 33467643 PMCID: PMC7829927 DOI: 10.3390/cancers13020306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conserved Hippo pathway regulates cell proliferation and apoptosis via a complex interplay of transcriptional activities, post-translational protein modifications, specific protein–protein interactions and cellular transport processes. Deregulating this highly balanced system can lead to hyperproliferation, organ overgrowth and cancer. Although WWC proteins are known as components of the Hippo signaling pathway, their association with tumorigenesis is often neglected. This review aims to summarize the current knowledge on WWC proteins and their contribution to Hippo signaling in the context of cancer. Abstract The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.
Collapse
|
510
|
Yang K, Zhao Y, Du Y, Tang R. Evaluation of Hippo Pathway and CD133 in Radiation Resistance in Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8842554. [PMID: 33519935 PMCID: PMC7817273 DOI: 10.1155/2021/8842554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 01/11/2023]
Abstract
Although the Hippo pathway and CD133 have been reported to play pertinent roles in a variety of cancer, knowledge about their contribution to radiation resistance in small-cell lung cancer (SCLC) is limited. In this first-of-a-kind study, we have reported the expression of key Hippo pathway proteins in SCLC patients by immunohistochemical staining. We assessed the involvement of yes-associated protein 1 (YAP1) in radiation resistance by Cell Counting Kit-8 (CCK-8) and flow cytometry. In addition, we analysed the impact of CD133 on radiotherapy for SCLC. The mammalian Ste20-like serine/threonine kinase 2(MST2), pMST2, and pYAP1 in the Hippo pathway were not significantly associated with the disease stage and survival time in patients with SCLC. However, the pYAP1 expression showed some significance in the "YAP/TAZ subgroup" of SCLC patients. The proportion of CD133 in the SCLC cells was controlled by the YAP1 expression. The CD133 and YAP1 levels were significantly correlation with each other in tissues of SCLC patients. We sorted and isolated the CD133+ and CD133-cells in H69 and found that the cell surface glycoprotein may be associated with the radiation resistance of SCLC.In summary, we have firstly reported the expression of key Hippo pathway proteins in SCLC patients. Furthermore, we also identified that CD133 may be controlled by the expression of YAP1 in the Hippo pathway and that CD133 may be associated with the radiation resistance of SCLC.
Collapse
Affiliation(s)
- Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Yang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400000, China
| | - Yonghao Du
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Ruixiang Tang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
511
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
512
|
Li P, Wang J, Zhi L, Cai F. Linc00887 suppresses tumorigenesis of cervical cancer through regulating the miR-454-3p/FRMD6-Hippo axis. Cancer Cell Int 2021; 21:33. [PMID: 33413358 PMCID: PMC7792119 DOI: 10.1186/s12935-020-01730-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence suggested that long intergenic noncoding RNA (lincRNA) 00887 (NR_024480) reduced the invasion and metastasis of non-small cell lung cancer by sponging miRNAs degradation. However, the role and regulatory mechanism of linc00887 in the progression of cervical cancer remain largely unknown. METHODS In vivo or vitro, RT-qPCR assay was used to detect the expression of linc00887 in human normal (N = 30), cervical cancer tissues (N = 30), human normal cervical epithelial cells (Ect1/E6E7) and cervical cancer cell lines (HeLa, C33A). Then, CCK-8 and Transwell assays were used to examine cell proliferation and invasion when linc00887 was overexpressed or knocked down. In addition, bioinformatics, luciferase reporter gene and pull-down assays were used to predict and validate the relationship between linc00887 and miR-454-3p. Moreover, we detected the expression of miR-454-3p in Ect1/E6E7, HeLa and C33A cells when linc00887 was overexpressed or knocked down. Cell proliferation and invasion were also measured when pcDNA-linc00887 and miR-454-3p were transfected alone or together. Next, miR-454-3p target gene was predicted and validated by bioinformatics and luciferase reporter gene assays. Gain- and loss-of-function experiments were performed in HeLa cells to evaluate the effect of miR-454-3p or linc00887 on the expression of FERM domain containing protein 6 (FRMD6) protein and several key proteins in the FRMD6-Hippo signaling pathway. RESULTS Linc00887 was downregulated in cervical cancer tissues or human cervical cancer cell lines (Hela, C33A) compared with normal tissues or cell lines. Overexpression of linc00887 inhibited proliferation and invasion HeLa and C33A cells, while linc00887 knockdown had the opposite effect. Linc00887 bound with miR-454-3p, and overexpression of miR-454-3p rescued linc00887-induced inhibition proliferation and invasion of HeLa cells. MiR-454-3p targeted and suppressed the expression of FRMD6, and linc00887 suppressed tumorigenesis of cervical cancer through activating the FRMD6-Hippo signaling pathway. CONCLUSIONS Linc00887, sponging miR-454-3p, inhibited the progression of cervical cancer by activating the FRMD6-Hippo signaling pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Obstetrics and Gynecology, Shaanxi Province Geriatric Hospital, Xi'an, 710005, China
| | - Jinsheng Wang
- Department of Obstetrics and Gynecology, Xi'an Jingkai District Women and Children's Hospital, Xi'an, 710000, China
| | - Lingran Zhi
- Pathology Department, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Fengmei Cai
- Pathology Department, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China.
| |
Collapse
|
513
|
YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis. Angiogenesis 2021; 24:489-504. [PMID: 33400016 DOI: 10.1007/s10456-020-09760-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Ocular neovascularization is the leading cause of vision impairment in a variety of ocular diseases, such as age-related macular degeneration and retinopathy of prematurity. Emerging studies have suggested that the yes-associated protein (YAP), a downstream effector of the Hippo pathway, is involved in the pathological angiogenesis, but the mechanism are largely unknown. Here, we demonstrated that hypoxic treatment triggered YAP expression and nuclear translocation in human umbilical vein endothelial cells (HUVECs). YAP acted as a transcriptional co-activator working together with transcriptional enhancer activator domain 1 (TEAD1) to binds the promoter of the key glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3), and thereby increases PFKFB3 expression. Moreover, silencing of YAP inhibited glycolysis as well as proliferation, migration, sprouting and tube formation of HUVECs under hypoxia, all of which could be reversed by enforced expression of PFKFB3. Finally, our animal study also showed that intravitreal injection of small interfering RNA of YAP or PFKFB3 dramatically suppressed the neovascular growth in mouse models of choroidal neovascularization and oxygen-induced retinopathy. These findings provide new insights into a previously unrecognized effect of YAP on endothelial glycolysis and highlight the potential of targeting YAP/PFKFB3 axis in the treatment of ocular neovascularization.
Collapse
|
514
|
Nishiyama T, Fujioka M, Saegusa C, Oishi N, Harada T, Hosoya M, Saya H, Ogawa K. Deficiency of large tumor suppressor kinase 1 causes congenital hearing loss associated with cochlear abnormalities in mice. Biochem Biophys Res Commun 2021; 534:921-926. [PMID: 33162027 DOI: 10.1016/j.bbrc.2020.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Mammalian auditory hair cells are not spontaneously replaced. Their number and coordinated polarization are fairly well-maintained and both these factors might be essential for the cochlear amplifier. Cell cycle regulation has critical roles in regulating appropriate cell size and cell number. However, little is known about the physiological roles of the Hippo pathway, which is one of the most important signaling cascades that regulates cell growth, differentiation, and regenerative capacity in the cochlear sensory epithelium. Herein, we investigated the in vivo role of the large tumor suppressor 1 (LATS1), an essential kinase in the Hippo/yes-associated protein pathway, in the cochlea using the LATS1 knockout mice. LATS1 was expressed in hair cells and supporting cells. It was strongly expressed on the surface of the cuticular plate of the organ of Corti. We found that LATS1 knockout caused congenital hearing loss due to the irregular orientation and slightly reduced number of hair cells, whereas the number of supporting cells remained unchanged. On the surface of the hair cells, the kinocilium and stereocilia were dispersed during and after morphogenesis. However, the expression of the receptor-independent polarity regulators, such as Par3 or Gαi, was not affected. We concluded that LATS1 has an indispensable role in the maturation of mammalian auditory hair cells, but not in the development of the supporting cells, and thus, has a role in the hearing acquisition.
Collapse
Affiliation(s)
- Takanori Nishiyama
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masato Fujioka
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Chika Saegusa
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Naoki Oishi
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Tatsuhiko Harada
- Department of Otolaryngology, International University of Health and Welfare, 13-1 Higashi-kaigancho, Atami city, Shizuoka, 413-0012, Japan.
| | - Makoto Hosoya
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hideyuki Saya
- Division of Genes Regulation Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kaoru Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
515
|
RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription. Gastric Cancer 2021; 24:85-102. [PMID: 32623586 DOI: 10.1007/s10120-020-01099-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND YAP1 is a core protein of the Hippo signaling pathway and is associated with malignancy and immunosuppression. In the present study, we discovered a novel lncRNA, RP11-323N12.5, with tumor promotion and immunosuppression activities through enhancing transcription of YAP1. METHODS RP11-323N12.5 was identified using GEPIA. Its expression levels and their relationship with clinical features were investigated using clinical samples. The regulation of YAP1 transcription by RP11-323N12.5 was investigated in both GC and T cells, the tumor and immunosuppression promotion roles of RP11-323N12.5 were explored in vitro and in vivo. RESULTS RP11-323N12.5 was the most up-regulated lncRNA in human GC, based on data from the TCGA database. Its transcription was significantly positively correlated with YAP1 transcription, YAP1 downstream gene expression which contribute to tumor growth and immunosuppression. RP11-323N12.5 promoted YAP1 transcription by binding to c-MYC in the YAP1 promoter region. Meanwhile, transcription of RP11-323N12.5 was also regulated by YAP1/TAZ/TEADs activation in GC cells. RP11-323N12.5 had tumor- and immnosuppression-promoting effects by enhancing YAP1 downstream genes in GC cells. Excessive RP11-323N12.5 was also observed in tumor-infiltrating leukocytes (TILs), which may be exosome-derived and also be related to enhanced Treg differentiation as a result YAP1 up-regulation. Moreover, RP11-323N12.5 promoted tumor growth and immunosuppression via YAP1 up-regulation in vivo. CONCLUSIONS RP11-323N12.5 was the most up-regulated lncRNA in human GC and it promoted YAP1 transcription by binding to c-MYC within the YAP1 promoter in both GC and T cells. RP11-323N12.5 is an ideal therapeutic target in human GC due to its tumor-promoting and immunosuppression characteristics.
Collapse
|
516
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
517
|
Ahmad V, Vadla GP, Chabu CY. Syd/JIP3 controls tissue size by regulating Diap1 protein turnover downstream of Yorkie/YAP. Dev Biol 2021; 469:37-45. [PMID: 33022230 DOI: 10.1016/j.ydbio.2020.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
How organisms control organ size is not fully understood. We found that Syd/JIP3 is required for proper wing size in Drosophila. JIP3 mutations are associated with organ size defects in mammals. The underlying mechanisms are not well understood. We discovered that Syd/JIP3 inhibition results in a downregulation of the inhibitor of apoptosis protein 1 (Diap1) in the Drosophila wing. Correspondingly, Syd/JIP3 deficient tissues exhibit ectopic cell death and yield smaller wings. Syd/JIP3 inhibition generated similar effects in mammalian cells, indicating a conserved mechanism. We found that Yorkie/YAP stimulates Syd/JIP3 in Drosophila and mammalian cells. Notably, Syd/JIP3 is required for the full effect of Yorkie-mediated tissue growth. Thus Syd/JIP3 regulation of Diap1 functions downstream of Yorkie/YAP to control growth. This study provides mechanistic insights into the recent and perplexing link between JIP3 mutations and organ size defects in mammals, including in humans where de novo JIP3 variants are associated with microcephaly.
Collapse
Affiliation(s)
- Vakil Ahmad
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA
| | - Gangadhar P Vadla
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA
| | - Chiswili Yves Chabu
- University of Missouri, Division of Biological Sciences, Columbia, MO, 65211, USA.
| |
Collapse
|
518
|
Papageorgiou K, Mastora E, Zikopoulos A, Grigoriou ME, Georgiou I, Michaelidis TM. Interplay Between mTOR and Hippo Signaling in the Ovary: Clinical Choice Guidance Between Different Gonadotropin Preparations for Better IVF. Front Endocrinol (Lausanne) 2021; 12:702446. [PMID: 34367070 PMCID: PMC8334720 DOI: 10.3389/fendo.2021.702446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
One of the most widely used types of assisted reproduction technology is the in vitro fertilization (IVF), in which women undergo controlled ovarian stimulation through the administration of the appropriate hormones to produce as many mature follicles, as possible. The most common hormone combination is the co-administration of gonadotropin-releasing hormone (GnRH) analogues with recombinant or urinary-derived follicle-stimulating hormone (FSH). In the last few years, scientists have begun to explore the effect that different gonadotropin preparations have on granulosa cells' maturation and apoptosis, aiming to identify new predictive markers of oocyte quality and successful fertilization. Two major pathways that control the ovarian development, as well as the oocyte-granulosa cell communication and the follicular growth, are the PI3K/Akt/mTOR and the Hippo signaling. The purpose of this article is to briefly review the current knowledge about the effects that the different gonadotropins, used for ovulation induction, may exert in the biology of granulosa cells, focusing on the importance of these two pathways, which are crucial for follicular maturation. We believe that a better understanding of the influence that the various ovarian stimulation protocols have on these critical molecular cascades will be invaluable in choosing the best approach for a given patient, thereby avoiding cancelled cycles, reducing frustration and potential treatment-related complications, and increasing the pregnancy rate. Moreover, individualizing the treatment plan will help clinicians to better coordinate assisted reproductive technology (ART) programs, discuss the specific options with the couples undergoing IVF, and alleviate stress, thus making the IVF experience easier.
Collapse
Affiliation(s)
- Kyriaki Papageorgiou
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
| | - Eirini Mastora
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
- *Correspondence: Theologos M. Michaelidis, ;
| |
Collapse
|
519
|
Baker K, Kwok E, Reardon P, Rodriguez DJ, Rolland AD, Wilson JW, Prell JS, Nyarko A. Yorkie-Warts Complexes are an Ensemble of Interconverting Conformers Formed by Multivalent Interactions. J Mol Biol 2020; 433:166776. [PMID: 33383033 DOI: 10.1016/j.jmb.2020.166776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Multiple copies of WW domains and PPXY motif sequences are often reciprocally presented by regulatory proteins that interact at crucial regulatory steps in the cell life cycle. While biophysical studies of single WW domain-single PPXY motif complexes abound in the literature, the molecular mechanisms of multivalent WW domain-PPXY assemblies are still poorly understood. By way of investigating such assemblies, we characterized the multivalent association of the entire cognate binding domains, two WW sequences and five PPXY motifs respectively, of the Yorkie transcription coactivator and the Warts tumor suppressor. Isothermal titration calorimetry, sedimentation velocity, size-exclusion chromatography coupled to multi-angle light scattering and native-state mass spectrometry of Yorkie WW domains interactions with the full-length Warts PPXY domain, and numerous PPXY motif variants of Warts show that the two proteins assemble via binding of tandem WW domains to adjacent PPXY pairs to produce an ensemble of interconverting complexes of variable stoichiometries, binding energetics and WW domain occupancy. Apparently, the Yorkie tandem WW domains first target the two adjacent PPXY motifs at the C-terminus of the Warts polypeptide and additional WW domains bind unoccupied motifs. Similar ensembles of interconverting conformers may be common in multivalent WW domain-PPXY interactions to promote the adaptability and versatility of WW domain-PPXY mediated cellular processes.
Collapse
Affiliation(s)
- Kasie Baker
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ethiene Kwok
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Reardon
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Diego J Rodriguez
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Amber D Rolland
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jesse W Wilson
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - James S Prell
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA; Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Afua Nyarko
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
520
|
Deng H, Yang L, Wen P, Lei H, Blount P, Pan D. Spectrin couples cell shape, cortical tension, and Hippo signaling in retinal epithelial morphogenesis. J Cell Biol 2020; 219:133846. [PMID: 32328630 PMCID: PMC7147103 DOI: 10.1083/jcb.201907018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Although extracellular force has a profound effect on cell shape, cytoskeleton tension, and cell proliferation through the Hippo signaling effector Yki/YAP/TAZ, how intracellular force regulates these processes remains poorly understood. Here, we report an essential role for spectrin in specifying cell shape by transmitting intracellular actomyosin force to cell membrane. While activation of myosin II in Drosophila melanogaster pupal retina leads to increased cortical tension, apical constriction, and Yki-mediated hyperplasia, spectrin mutant cells, despite showing myosin II activation and Yki-mediated hyperplasia, paradoxically display decreased cortical tension and expanded apical area. Mechanistically, we show that spectrin is required for tethering cortical F-actin to cell membrane domains outside the adherens junctions (AJs). Thus, in the absence of spectrin, the weakened attachment of cortical F-actin to plasma membrane results in a failure to transmit actomyosin force to cell membrane, causing an expansion of apical surfaces. These results uncover an essential mechanism that couples cell shape, cortical tension, and Hippo signaling and highlight the importance of non–AJ membrane domains in dictating cell shape in tissue morphogenesis.
Collapse
Affiliation(s)
- Hua Deng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Limin Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pei Wen
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
521
|
Heat shock induces the nuclear accumulation of YAP1 via SRC. Exp Cell Res 2020; 399:112439. [PMID: 33359469 DOI: 10.1016/j.yexcr.2020.112439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 01/15/2023]
Abstract
Yes-associated protein 1 (YAP1), a co-transcription activator, shuttles between the cytoplasm and the nucleus. Phosphorylation by large tumor suppressor kinases (LATS1/2) is the major determinant of YAP1 subcellular localization. Unphosphorylated YAP1 interacts with transcription factors in the nucleus and regulates gene transcription, while phosphorylated YAP1 is trapped in the cytoplasm and is degraded. We found that when U2OS and HeLa cells are exposed to 42 °C, YAP1 enters the nucleus within 30 min and returns to the cytoplasm at 4 h. SRC and HSP90 are involved in nuclear accumulation and return to the cytoplasm, respectively. Upon heat shock, LATS2 forms aggregates including protein phosphatase 1 and is dephosphorylated and inactivated. SRC activation is necessary for the formation of aggregates, while HSP90 is required for their dissociation. YAP1 is involved in heat shock-induced NF-κB signaling. Mechanistically, YAP1 is implicated in strengthening the interaction between RELA and DPF3, a component of SWI/SNF chromatin remodeling complex, in response to heat shock. Thus, YAP1 plays a role as a thermosensor.
Collapse
|
522
|
Wang L, Chennupati R, Jin YJ, Li R, Wang S, Günther S, Offermanns S. YAP/TAZ Are Required to Suppress Osteogenic Differentiation of Vascular Smooth Muscle Cells. iScience 2020; 23:101860. [PMID: 33319178 PMCID: PMC7726335 DOI: 10.1016/j.isci.2020.101860] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) represent the prevailing cell type of arterial vessels and are essential for blood vessel structure and homeostasis. They have substantial potential for phenotypic plasticity when exposed to various stimuli in their local microenvironment. How VSMCs maintain their differentiated contractile phenotype is still poorly understood. Here we demonstrate that the Hippo pathway effectors YAP and TAZ play a critical role in maintaining the differentiated contractile phenotype of VSMCs. In the absence of YAP/TAZ, VSMCs lose their differentiated phenotype and undergo osteogenic differentiation, which results in vascular calcification. Osteogenic transdifferentiation was accompanied by the upregulation of Wnt target genes. The absence of YAP/TAZ in VSMCs led to Disheveled 3 (DVL3) nuclear translocation and upregulation of osteogenesis-associated genes independent of canonical Wnt/β-catenin signaling activation. Our data indicate that cytoplasmic YAP/TAZ interact with DVL3 to avoid its nuclear translocation and osteogenic differentiation, thereby maintaining the differentiated phenotype of VSMCs. YAP/TAZ play an important role in maintaining vascular SMCs contractile phenotype Loss of YAP/TAZ in vSMCs leads to reduced expression of smooth muscle marker genes Loss of YAP/TAZ in vSMCs results in reduced artery contractility Deficiency of YAP/TAZ in vSMCs leads to osteogenic transdifferentiation
Collapse
Affiliation(s)
- Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Ramesh Chennupati
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Young-June Jin
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an 710061, China
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany.,Center for Molecular Medicine, Medical Faculty, Goethe University, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhine-Main, 13347 Berlin, Germany
| |
Collapse
|
523
|
Cha B, Ho YC, Geng X, Mahamud MR, Chen L, Kim Y, Choi D, Kim TH, Randolph GJ, Cao X, Chen H, Srinivasan RS. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development 2020; 147:dev195453. [PMID: 33060128 PMCID: PMC7758626 DOI: 10.1242/dev.195453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
524
|
Driskill JH, Pan D. The Hippo Pathway in Liver Homeostasis and Pathophysiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:299-322. [PMID: 33234023 DOI: 10.1146/annurev-pathol-030420-105050] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of the regenerative capacity of the liver have converged on the Hippo pathway, a serine/threonine kinase cascade discovered in Drosophila and conserved from unicellular organisms to mammals. Genetic studies of mouse and rat livers have revealed that the Hippo pathway is a key regulator of liver size, regeneration, development, metabolism, and homeostasis and that perturbations in the Hippo pathway can lead to the development of common liver diseases, such as fatty liver disease and liver cancer. In turn, pharmacological targeting of the Hippo pathway may be utilized to boost regeneration and to prevent the development and progression of liver diseases. We review current insights provided by the Hippo pathway into liver pathophysiology. Furthermore, we present a path forward for future studies to understand how newly identified components of the Hippo pathway may control liver physiology and how the Hippo pathway is regulated in the liver.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , .,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ,
| |
Collapse
|
525
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
526
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
527
|
Vigneswaran K, Boyd NH, Oh SY, Lallani S, Boucher A, Neill SG, Olson JJ, Read RD. YAP/TAZ Transcriptional Coactivators Create Therapeutic Vulnerability to Verteporfin in EGFR-mutant Glioblastoma. Clin Cancer Res 2020; 27:1553-1569. [PMID: 33172899 DOI: 10.1158/1078-0432.ccr-20-0018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/04/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastomas (GBMs), neoplasms derived from glia and neuroglial progenitor cells, are the most common and lethal malignant primary brain tumors diagnosed in adults, with a median survival of 14 months. GBM tumorigenicity is often driven by genetic aberrations in receptor tyrosine kinases, such as amplification and mutation of EGFR. EXPERIMENTAL DESIGN Using a Drosophila glioma model and human patient-derived GBM stem cells and xenograft models, we genetically and pharmacologically tested whether the YAP and TAZ transcription coactivators, effectors of the Hippo pathway that promote gene expression via TEA domain (TEAD) cofactors, are key drivers of GBM tumorigenicity downstream of oncogenic EGFR signaling. RESULTS YAP and TAZ are highly expressed in EGFR-amplified/mutant human GBMs, and their knockdown in EGFR-amplified/mutant GBM cells inhibited proliferation and elicited apoptosis. Our results indicate that YAP/TAZ-TEAD directly regulates transcription of SOX2, C-MYC, and EGFR itself to create a feedforward loop to drive survival and proliferation of human GBM cells. Moreover, the benzoporphyrin derivative verteporfin, a disruptor of YAP/TAZ-TEAD-mediated transcription, preferentially induced apoptosis of cultured patient-derived EGFR-amplified/mutant GBM cells, suppressed expression of YAP/TAZ transcriptional targets, including EGFR, and conferred significant survival benefit in an orthotopic xenograft GBM model. Our efforts led us to design and initiate a phase 0 clinical trial of Visudyne, an FDA-approved liposomal formulation of verteporfin, where we used intraoperative fluorescence to observe verteporfin uptake into tumor cells in GBM tumors in human patients. CONCLUSIONS Together, our data suggest that verteporfin is a promising therapeutic agent for EGFR-amplified and -mutant GBM.
Collapse
Affiliation(s)
| | - Nathaniel H Boyd
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Se-Yeong Oh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Shoeb Lallani
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Boucher
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
528
|
Lang GT, Jiang YZ, Shi JX, Yang F, Li XG, Pei YC, Zhang CH, Ma D, Xiao Y, Hu PC, Wang H, Yang YS, Guo LW, Lu XX, Xue MZ, Wang P, Cao AY, Ling H, Wang ZH, Yu KD, Di GH, Li DQ, Wang YJ, Yu Y, Shi LM, Hu X, Huang W, Shao ZM. Characterization of the genomic landscape and actionable mutations in Chinese breast cancers by clinical sequencing. Nat Commun 2020; 11:5679. [PMID: 33173047 PMCID: PMC7656255 DOI: 10.1038/s41467-020-19342-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The remarkable advances in next-generation sequencing technology have enabled the wide usage of sequencing as a clinical tool. To promote the advance of precision oncology for breast cancer in China, here we report a large-scale prospective clinical sequencing program using the Fudan-BC panel, and comprehensively analyze the clinical and genomic characteristics of Chinese breast cancer. The mutational landscape of 1,134 breast cancers reveals that the most significant differences between Chinese and Western patients occurred in the hormone receptor positive, human epidermal growth factor receptor 2 negative breast cancer subtype. Mutations in p53 and Hippo signaling pathways are more prevalent, and 2 mutually exclusive and 9 co-occurring patterns exist among 9 oncogenic pathways in our cohort. Further preclinical investigation partially suggests that NF2 loss-of-function mutations can be sensitive to a Hippo-targeted strategy. We establish a public database (Fudan Portal) and a precision medicine knowledge base for data exchange and interpretation. Collectively, our study presents a leading approach to Chinese precision oncology treatment and reveals potentially actionable mutations in breast cancer. Chinese breast cancer patients have not been well represented in clinical sequencing studies. Here the authors analyse the mutational landscape of 1,134 Chinese breast cancer patients, finding actionable targets and a higher prevalence of p53 and Hippo pathway mutations compared to Western cohorts.
Collapse
Affiliation(s)
- Guan-Tian Lang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Jin-Xiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science and Technology (SAST), 250 Bibo Road, 201203, Shanghai, P.R. China
| | - Fan Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Xiao-Guang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Yu-Chen Pei
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, 688 Hongqu Road, 201315, Shanghai, P.R. China
| | - Chen-Hui Zhang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science and Technology (SAST), 250 Bibo Road, 201203, Shanghai, P.R. China
| | - Ding Ma
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Yi Xiao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Peng-Chen Hu
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science and Technology (SAST), 250 Bibo Road, 201203, Shanghai, P.R. China
| | - Hai Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Yun-Song Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Lin-Wei Guo
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Xun-Xi Lu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong'an Road, 200032, Shanghai, P.R. China
| | - Meng-Zhu Xue
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P.R. China
| | - Peng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, P.R. China
| | - A-Yong Cao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Hong Ling
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Zhong-Hua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Gen-Hong Di
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Da-Qiang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China
| | - Yun-Jin Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China.,Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, 688 Hongqu Road, 201315, Shanghai, P.R. China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, 200438, Shanghai, P.R. China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, 200438, Shanghai, P.R. China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China. .,Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, 688 Hongqu Road, 201315, Shanghai, P.R. China.
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science and Technology (SAST), 250 Bibo Road, 201203, Shanghai, P.R. China. .,Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, 688 Hongqu Road, 201315, Shanghai, P.R. China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong'an Road, 200032, Shanghai, P.R. China. .,Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, 688 Hongqu Road, 201315, Shanghai, P.R. China.
| |
Collapse
|
529
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
530
|
Dong T, Sun X, Jin H. Role of YAP1 gene in proliferation, osteogenic differentiation, and apoptosis of human periodontal ligament stem cells induced by TNF-α. J Periodontol 2020; 92:1192-1200. [PMID: 32997793 DOI: 10.1002/jper.20-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that occurs in periodontal tissues and can cause tooth loosening and loss in severe cases. As the main effector of downstream of Hippo signaling pathway, yes-related protein 1 (YAP1) plays an important role in cell proliferation and differentiation. However, the role of YAP1 in periodontitis has not been reported. METHODS Cell activity was detected by Cell Counting Kit-8 (CCK-8). YAP1 was overexpressed by cell transfection, and then RT-qPCR and western blot were used to detect the expression of YAP1. The cell proliferation was determined by clone formation assay, and the expression of proliferation-related proteins was determined by western blot. The cell differentiation was detected by ELISA kit of alkaline phosphatase activity (ALP) and alizarin red staining. Finally, western blot was used to detect the expression of differentiation-related protein and Hippo signaling pathway-related proteins. Apoptosis was detected by flow cytometry. RESULTS With the increase of concentration induced by TNF-α, the cell survival rate of human periodontal ligament stem cells (HPDLSCs) decreased significantly. After the overexpression of YAP1, cell proliferation and proliferation-related protein expression increased. Overexpression of YAP1 can improve the differentiation and the formation of osteoblasts of HPDLSCs induced by TNF-α. The expression of Hippo signaling pathway-related proteins transcriptional coactivators with PDZ binding domains (TAZ), TEA domain family member (TRED) increased and proliferation-related protein P27 decreased, whereas there was no significant change in the expression of MST1. CONCLUSION TNF-α can inhibit proliferation and osteogenic differentiation of HPDLSCs, which can be ameliorated by the YAP1 gene through the Hippo signaling pathway. Our paper suggested that YAP1 may be a potential therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Tao Dong
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuemin Sun
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - He Jin
- Department of stomatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
531
|
The mevalonate pathway promotes the metastasis of osteosarcoma by regulating YAP1 activity via RhoA. Genes Dis 2020; 9:741-752. [PMID: 35782968 PMCID: PMC9243346 DOI: 10.1016/j.gendis.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumour, and the metastasis of osteosarcoma is an important cause of death. Evidence has shown that the mevalonate pathway is highly activated and is expected to be a new target for tumour therapy. In this study, we investigated the effect of mevalonate signalling on osteosarcoma metastasis and its molecular mechanism. First, we found that the key rate-limiting enzyme of mevalonate signalling, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), was highly expressed in osteosarcoma cells, and inhibition of HMGCR with simvastatin significantly inhibited the motility of 143B cells. Next, we found that YAP1 activity was significantly upregulated in osteosarcoma cells and that YAP1 knockdown inhibited the motility of 143B cells. We also found that the mevalonate pathway regulated the motility of 143B cells by modulating YAP1 phosphorylation and cellular localization. Moreover, we found that the activity of YAP1 was regulated by the mevalonate pathway by modulating the cell membrane localization of RhoA. Finally, we demonstrated that inhibition of the mevalonate pathway notably reduced the lung metastasis of 143B cells, as reflected by the decreased incidence and number of metastatic nodules and the increased survival time of the nude mice. Taken together, our findings suggest that the mevalonate pathway can promote the metastasis of osteosarcoma by activating YAP1 via RhoA. Inhibition of the mevalonate pathway may be a promising therapeutic strategy for osteosarcoma metastasis.
Collapse
|
532
|
Wang L, Wang S, Shi Y, Li R, Günther S, Ong YT, Potente M, Yuan Z, Liu E, Offermanns S. YAP and TAZ protect against white adipocyte cell death during obesity. Nat Commun 2020; 11:5455. [PMID: 33116140 PMCID: PMC7595161 DOI: 10.1038/s41467-020-19229-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The expansion of the white adipose tissue (WAT) in obesity goes along with increased mechanical, metabolic and inflammatory stress. How adipocytes resist this stress is still poorly understood. Both in human and mouse adipocytes, the transcriptional co-activators YAP/TAZ and YAP/TAZ target genes become activated during obesity. When fed a high-fat diet (HFD), mice lacking YAP/TAZ in white adipocytes develop severe lipodystrophy with adipocyte cell death. The pro-apoptotic factor BIM, which is downregulated in adipocytes of obese mice and humans, is strongly upregulated in YAP/TAZ-deficient adipocytes under HFD, and suppression of BIM expression reduces adipocyte apoptosis. In differentiated adipocytes, TNFα and IL-1β promote YAP/TAZ nuclear translocation via activation of RhoA-mediated actomyosin contractility and increase YAP/TAZ-mediated transcriptional regulation by activation of c-Jun N-terminal kinase (JNK) and AP-1. Our data indicate that the YAP/TAZ signaling pathway may be a target to control adipocyte cell death and compensatory adipogenesis during obesity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Bcl-2-Like Protein 11/metabolism
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Death
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China.
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Yu Ting Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center Xi'an Jiaotong University, Xi'an, China
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Center for Molecular Medicine, Medical Faculty, Goethe University, Frankfurt am Main, 60590, Germany.
| |
Collapse
|
533
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
534
|
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol 2020; 236:3207-3219. [PMID: 33107052 PMCID: PMC7984063 DOI: 10.1002/jcp.30117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antennae‐like structure extent outside the cell surface. It has an important role in regulating cell‐signaling transduction to affect proliferation, differentiation and migration. Evidence is accumulating that ciliary defects lead to ciliopathies and ciliary deregulation also play crucial roles in cancer formation and progression. Interestingly, restoring the cilia can suppress proliferation in some cancer cell. However, t he role of primary cilia in cancer still be debated. In this article, we review the role of the primary cilium in cancer through architecture, signaling pathways, cilia assembly and disassembly regulators, and summarized the new findings of the primary cilium in tumor microenvironments and different cancers, highlighting novel possibilities for therapeutic target in cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheyong Liang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
535
|
Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Front Cell Dev Biol 2020; 8:573455. [PMID: 33178690 PMCID: PMC7593614 DOI: 10.3389/fcell.2020.573455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The Hippo/yes-associated protein 1 signaling pathway is an evolutionarily conserved signaling pathway. This signaling pathway is primarily involved in the regulation of stem cell self-renewal, organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. It plays an important role in embryonic development and tissue organ formation. Yes-associated protein 1 (YAP1) is a key transcription factor in the Hippo signaling pathway and is negatively regulated by this pathway. Changes in YAP1 expression levels affect the occurrence and development of a variety of tumors, but the specific mechanism associated with this phenomenon has not been thoroughly studied. Recently, several studies have described the role of YAP1 in osteoarthritis (OA). Indeed, YAP1 is involved in orthopedic degenerative diseases such as osteoporosis (OP) in addition to OA. In this review, we will summarize the significance of YAP1 in orthopedic degenerative diseases and discuss the potential of the targeted modulation of YAP1 for the treatment of these diseases.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
536
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
537
|
Abstract
Crosstalk between signaling networks can help coordinate diverse cellular functions. In this issue of Developmental Cell, Tyra et al. identify connections between the cell-growth-promoting transcription factor YAP/Yorkie and the autophagy-regulating kinase Ulk1/Atg1.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
538
|
Brekken RA. Loss of BAP1 Leads to More YAPing in Pancreatic Cancer. Cancer Res 2020; 80:1624-1625. [PMID: 32295782 DOI: 10.1158/0008-5472.can-20-0592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is increasing in incidence and is expected to be the second leading cause of cancer-related mortality by the year 2030. Understanding molecular pathways that contribute to pancreatic cancer initiation and progression provides the opportunity to uncover potential molecular vulnerabilities that can be exploited therapeutically. In this issue of Cancer Research, Lee and colleagues provide compelling evidence that BRCA1-associated protein (BAP1) functions as a tumor suppressor in pancreatic cancer by promoting the activity of the Hippo tumor suppressor pathway, highlighting YAP and TAZ, Hippo effectors, as attractive therapeutic targets in pancreatic ductal adenocarcinoma, especially in BAP1-deficient or low tumors.See related article by Lee et al., p. 1656.
Collapse
Affiliation(s)
- Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, UT Southwestern, Dallas, Texas.
| |
Collapse
|
539
|
Robledinos-Antón N, Escoll M, Guan KL, Cuadrado A. TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells 2020; 9:cells9102230. [PMID: 33023162 PMCID: PMC7600930 DOI: 10.3390/cells9102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms involved in regulation of quiescence, proliferation, and reprogramming of Neural Stem Progenitor Cells (NSPCs) of the mammalian brain are still poorly defined. Here, we studied the role of the transcriptional co-factor TAZ, regulated by the WNT and Hippo pathways, in the homeostasis of NSPCs. We found that, in the murine neurogenic niches of the striatal subventricular zone and the dentate gyrus granular zone, TAZ is highly expressed in NSPCs and declines with ageing. Moreover, TAZ expression is lost in immature neurons of both neurogenic regions. To characterize mechanistically the role of TAZ in neuronal differentiation, we used the midbrain-derived NSPC line ReNcell VM to replicate in a non-animal model the factors influencing NSPC differentiation to the neuronal lineage. TAZ knock-down and forced expression in NSPCs led to increased and reduced neuronal differentiation, respectively. TEADs-knockdown indicated that these TAZ co-partners are required for the suppression of NSPCs commitment to neuronal differentiation. Genetic manipulation of the TAZ/TEAD system showed its participation in transcriptional repression of SOX2 and the proneuronal genes ASCL1, NEUROG2, and NEUROD1, leading to impediment of neurogenesis. TAZ is usually considered a transcriptional co-activator promoting stem cell proliferation, but our study indicates an additional function as a repressor of neuronal differentiation.
Collapse
Affiliation(s)
- Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Maribel Escoll
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-383; Fax: +34-915-854-401
| |
Collapse
|
540
|
Therapeutic Potentials of MicroRNAs for Curing Diabetes Through Pancreatic β-Cell Regeneration or Replacement. Pancreas 2020; 49:1131-1140. [PMID: 32852323 DOI: 10.1097/mpa.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
MicroRNAs are a type of noncoding RNAs that regulates the expression of target genes at posttranscriptional level. MicroRNAs play essential roles in regulating the expression of different genes involved in pancreatic development, β-cell mass maintenance, and β-cell function. Alteration in the level of miRNAs involved in β-cell function leads to the diabetes. Being an epidemic, diabetes threatens the life of millions of patients posing a pressing demand for its urgent resolve. However, the currently available therapies are not substantial to cure the diabetic epidemic. Thus, researchers are trying to find new ways to replenish the β-cell mass in patients with diabetes. One promising approach is the in vivo regeneration of β-cell mass or increasing the efficiency of β-cell function. Another clinical strategy is the transplantation of in vitro developed β-like cells. Owing to their role in pancreatic β-cell development, maintenance, functioning and their involvement in diabetes, overexpression or attenuation of different miRNAs can cause β-cell regeneration in vivo or can direct the differentiation of various kinds of stem/progenitor cells to β-like cells in vitro. Here, we will summarize different strategies used by researchers to investigate the therapeutic potentials of miRNAs, with focus on miR-375, for curing diabetes through β-cell regeneration or replacement.
Collapse
|
541
|
Gao J, Han W, He Y, Zhou J, Miao J, Zhang G. Livin promotes tumor progression through YAP activation in ovarian cancer. Am J Cancer Res 2020; 10:3179-3193. [PMID: 33163264 PMCID: PMC7642671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023] Open
Abstract
Ovarian cancer is a gynecological malignant tumor with a high morbidity. Livin is a novel member of the inhibitor of apoptosis protein family, which is expressed in various malignant tumors and is suggested to be a poor prognostic factor. However, the prognostic significance of Livin and the molecular mechanisms by which Livin promotes ovarian cancer progression are poorly understood. In this study, the upregulation of Livin was confirmed both in primary specimens from ovarian cancer patients and in ovarian cancer cell lines compared to normal controls in vitro. Overexpression of specific Livin transcripts promoted cell growth and migration in vitro, while knockdown of Livin expression suppressed these cellular processes. These effects of the Livin gene were also demonstrated in a xenograft mouse model. Mechanistic studies further revealed that Livin promotes the proliferation and invasion of ovarian cancer cells by activating the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway. Furthermore, we revealed that inhibition of YAP by short-hairpin RNA prevents the growth and invasion of ovarian cancer cells in vivo and in vitro. Therefore, Livin may be a potential novel therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jianhua Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Wei Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Yanan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Jun Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Jintian Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Guangmei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| |
Collapse
|
542
|
Tran T, Mitra J, Ha T, Kavran JM. Increasing kinase domain proximity promotes MST2 autophosphorylation during Hippo signaling. J Biol Chem 2020; 295:16166-16179. [PMID: 32994222 DOI: 10.1074/jbc.ra120.015723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo pathway plays an important role in developmental biology, mediating organ size by controlling cell proliferation through the activity of a core kinase cassette. Multiple upstream events activate the pathway, but how each controls this core kinase cassette is not fully understood. Activation of the core kinase cassette begins with phosphorylation of the kinase MST1/2 (also known as STK3/4). Here, using a combination of in vitro biochemistry and cell-based assays, including chemically induced dimerization and single-molecule pulldown, we revealed that increasing the proximity of adjacent kinase domains, rather than formation of a specific protein assembly, is sufficient to trigger autophosphorylation. We validate this mechanism in cells and demonstrate that multiple events associated with the active pathway, including SARAH domain-mediated homodimerization, membrane recruitment, and complex formation with the effector protein SAV1, each increase the kinase domain proximity and autophosphorylation of MST2. Together, our results reveal that multiple and distinct upstream signals each utilize the same common molecular mechanism to stimulate MST2 autophosphorylation. This mechanism is likely conserved among MST2 homologs. Our work also highlights potential differences in Hippo signal propagation between each activating event owing to differences in the dynamics and regulation of each protein ensemble that triggers MST2 autophosphorylation and possible redundancy in activation.
Collapse
Affiliation(s)
- Thao Tran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; T. C. Jenkins Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
543
|
Daoud F, Holmberg J, Alajbegovic A, Grossi M, Rippe C, Swärd K, Albinsson S. Inducible Deletion of YAP and TAZ in Adult Mouse Smooth Muscle Causes Rapid and Lethal Colonic Pseudo-Obstruction. Cell Mol Gastroenterol Hepatol 2020; 11:623-637. [PMID: 32992050 PMCID: PMC7806867 DOI: 10.1016/j.jcmgh.2020.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS YAP (Yap1) and TAZ (Wwtr1) are transcriptional co-activators and downstream effectors of the Hippo pathway, which play crucial roles in organ size control and cancer pathogenesis. Genetic deletion of YAP/TAZ has shown their critical importance for embryonic development of the heart, vasculature, and gastrointestinal mesenchyme. The aim of this study was to determine the functional role of YAP/TAZ in adult smooth muscle cells in vivo. METHODS Because YAP and TAZ are mutually redundant, we used YAP/TAZ double-floxed mice crossed with mice that express tamoxifen-inducible CreERT2 recombinase driven by the smooth muscle-specific myosin heavy chain promoter. RESULTS Double-knockout of YAP/TAZ in adult smooth muscle causes lethality within 2 weeks, mainly owing to colonic pseudo-obstruction, characterized by severe distension and fecal impaction. RNA sequencing in colon and urinary bladder showed that smooth muscle markers and muscarinic receptors were down-regulated in the YAP/TAZ knockout. The same transcripts also correlated with YAP/TAZ in the human colon. Myograph experiments showed reduced contractility to depolarization by potassium chloride and a nearly abolished muscarinic contraction and spontaneous activity in colon rings of YAP/TAZ knockout. CONCLUSIONS YAP and TAZ in smooth muscle are guardians of colonic contractility and control expression of contractile proteins and muscarinic receptors. The knockout model has features of human chronic intestinal pseudo-obstruction and may be useful for studying this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sebastian Albinsson
- Correspondence Address correspondence to: Sebastian Albinsson, PhD, Department of Experimental Medical Science, Lund University, BMC D12, SE-221 84 Lund, Sweden.
| |
Collapse
|
544
|
Li S, Wu Y, Zhang J, Sun H, Wang X. Role of miRNA-424 in Cancers. Onco Targets Ther 2020; 13:9611-9622. [PMID: 33061443 PMCID: PMC7532073 DOI: 10.2147/ott.s266541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
microRNA (miRNA) is an important part of non-coding RNA that regulates gene expression at a posttranscriptional level. miRNA has gained increasing interest in recent years, both in research and clinical fields. miRNAs have been found to play an important role in various diseases, particularly cancer. Aberrant miR-424 expression is found in several tumors where they can function as either oncogenes or tumor-suppressor genes. Meanwhile, miR-424 is also affected by the reorganization of many other non-coding RNAs such as lncRNA and cirRNA. Several studies have found that miR-424 participates in proliferation, differentiation, apoptosis, invasion, angiogenesis, and drug resistance, and plays an important role in the tumorigenesis and progression of tumors. This review will focus on the recent progress of research on miR-424 in tumors.
Collapse
Affiliation(s)
- Shulin Li
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Jiawei Zhang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Hao Sun
- Department of Urology, Shenzhen Second People's Hospital & the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
545
|
Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:742-750. [PMID: 32981290 PMCID: PMC7641559 DOI: 10.3350/cmh.2020.0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
546
|
Guo H, Lu YW, Lin Z, Huang ZP, Liu J, Wang Y, Seok HY, Hu X, Ma Q, Li K, Kyselovic J, Wang Q, Lin JLC, Lin JJC, Cowan DB, Naya F, Chen Y, Pu WT, Wang DZ. Intercalated disc protein Xinβ is required for Hippo-YAP signaling in the heart. Nat Commun 2020; 11:4666. [PMID: 32938943 PMCID: PMC7494909 DOI: 10.1038/s41467-020-18379-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinβ, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy. We uncovered a role for Xinβ in signaling via the Hippo-YAP pathway by recruiting NF2 to the ICD to modulate cardiac function. In Xinβ mutant hearts levels of phosphorylated NF2 are substantially reduced, suggesting an impairment of Hippo-YAP signaling. Cardiac-specific overexpression of YAP rescues cardiac defects in Xinβ knock-out mice—indicating a functional and genetic interaction between Xinβ and YAP. Our study reveals a molecular mechanism by which cardiac-expressed intercalated disc protein Xinβ modulates Hippo-YAP signaling to control heart development and cardiac function in a tissue specific manner. Consequently, this pathway may represent a therapeutic target for the treatment of cardiovascular diseases. Intercalated discs ensure mechanical and electrochemical coupling during contraction of the heart. Here, the authors show that loss of Xinβ results in cardiomyocyte proliferation defects and cardiomyopathy by influencing the Hippo-YAP signalling pathway, thus affecting cardiac development and function.
Collapse
Affiliation(s)
- Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA.,Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA.,Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA.,Department of Cardiology, Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Hee Young Seok
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA.,Institute of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathryn Li
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Jan Kyselovic
- Department of Internal Medicine, Faculty of Medicine, Comenius University, Ruzinovska 6, 826 06, Bratislava, Slovak Republic
| | - Qingchuan Wang
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 20215, USA
| | - Jenny L-C Lin
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jim J-C Lin
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA
| | - Francisco Naya
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yuguo Chen
- Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
547
|
Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson's disease. Proc Natl Acad Sci U S A 2020; 117:24503-24513. [PMID: 32929029 DOI: 10.1073/pnas.2004087117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo (MST1/2) pathway plays a critical role in restricting tissue growth in adults and modulating cell proliferation, differentiation, and migration in developing organs. Netrin1, a secreted laminin-related protein, is essential for nervous system development. However, the mechanisms underlying MST1 regulation by the extrinsic signals remain unclear. Here, we demonstrate that Netrin1 reduction in Parkinson's disease (PD) activates MST1, which selectively binds and phosphorylates netrin receptor UNC5B on T428 residue, promoting its apoptotic activation and dopaminergic neuronal loss. Netrin1 deprivation stimulates MST1 activation and interaction with UNC5B, diminishing YAP levels and escalating cell deaths. Knockout of UNC5B abolishes netrin depletion-induced dopaminergic loss, whereas blockade of MST1 phosphorylating UNC5B suppresses neuronal apoptosis. Remarkably, Netrin1 is reduced in PD patient brains, associated with MST1 activation and UNC5B T428 phosphorylation, which is accompanied by YAP reduction and apoptotic activation. Hence, Netrin1 regulates Hippo (MST1) pathway in dopaminergic neuronal loss in PD via UNC5B receptor.
Collapse
|
548
|
Yu X, Li M, Cui M, Sun B, Zhou Z. Silence of yki by miR-7 regulates the Hippo pathway. Biochem Biophys Res Commun 2020; 532:446-452. [PMID: 32888651 DOI: 10.1016/j.bbrc.2020.08.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
The Hippo signaling pathway governs organ size via coordinating cell proliferation and apoptosis, and its dysregulation causes congenital diseases and cancers. The homeostasis of Hippo pathway is achieved through multiple post translational modifications. Through Drosophila genetic screening, we found that miRNAs were also involved in Hippo pathway regulation. Here, we showed that overexpression of miR-7 resulted in small wings, which were neutralized by miR-7-sponge (miR-7-sp) co-expression. Mechanistically, miR-7 inhibited the expression of Hippo pathway target genes. Epistatic analyses revealed that miR-7 modulated Hippo pathway through the transcriptional cofactor Yorkie (Yki). Consistently, overexpression of miR-7 decreased Yki protein. We further found a seed sequence of miR-7 in the yki 3'-UTR region. In addition, we discovered that miR-7 was a transcriptional target of Yki. Thus, a negative feedback loop existed for fine tuning Hippo pathway activity. Taken together, our findings uncovered a novel mechanism by which Yki was silenced by miR-7 for Hippo pathway regulation.
Collapse
Affiliation(s)
- Xuan Yu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mingming Li
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Meng Cui
- Department of Anorectum, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, Shandong, China
| | - Bing Sun
- Department of Anorectum, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, Shandong, China. http://sunbing_163.com
| | - Zizhang Zhou
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
549
|
Shin E, Kim J. The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med 2020; 52:1264-1274. [PMID: 32859951 PMCID: PMC8080831 DOI: 10.1038/s12276-020-00492-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
The transcriptional cofactor YAP and its inhibitory regulators, Hippo kinases and adapter proteins, constitute an evolutionarily conserved signaling pathway that controls organ size and cell fate. The activity of the Hippo-YAP pathway is determined by a variety of intracellular and intercellular cues, such as cell polarity, junctions, density, mechanical stress, energy status, and growth factor signaling. Recent studies have demonstrated that YAP can induce the expression of a set of genes that allow cancer cells to gain a survival advantage and aggressive behavior. Comprehensive genomic studies have revealed frequent focal amplifications of the YAP locus in human carcinomas, including head and neck squamous cell carcinoma (HNSCC). Moreover, FAT1, which encodes an upstream component of Hippo signaling, is one of the most commonly altered genes in HNSCC. In this review, we discuss the causes and functional consequences of YAP dysregulation in HNSCC. We also address interactions between YAP and other oncogenic drivers of HNSCC. Abnormal activity of a protein involved in cell proliferation may influence the progression of head and neck cancers. Head and neck squamous cell carcinoma (HNSCC) affects the skin, throat, mouth and nose tissues. Disruption to the Hippo-YAP signaling pathway, which plays a key role in cell proliferation and differentiation, is implicated in multiple cancers. Joon Kim and Eunbie Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed recent research into the role of YAP in HNSCC. Abnormal YAP protein activity triggers the expression of genes that encourage cancer cell proliferation. Mice with over-expressed YAP showed tissue overgrowth and tumor formation. High YAP levels have been found at the invasive front of HNSCC tumors, suggesting a role in metastasis. Further research is needed to verify whether YAP is a potential therapeutic target.
Collapse
Affiliation(s)
- Eunbie Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
550
|
Abstract
Cells take advantage of cross-talk in signaling pathways to integrate diverse signals and produce coordinated responses. In this issue of EMBO Reports, Jeong et al discover that the Wnt co-receptor, low-density lipoprotein (LDL) receptor-related protein LRP6, negatively regulates Hippo signaling by serving as a binding sink to sequester and inhibit Merlin, an activator of Hippo signaling (Jeong et al, 2020). This regulation is nutrient-responsive, likely using LRP6 O-GlcNAcylation as a molecular switch.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|