501
|
Luo Y, Schofield JA, Simon MD, Slavoff SA. Global Profiling of Cellular Substrates of Human Dcp2. Biochemistry 2020; 59:4176-4188. [PMID: 32365300 DOI: 10.1021/acs.biochem.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| |
Collapse
|
502
|
Diverse molecular functions of m 6A mRNA modification in cancer. Exp Mol Med 2020; 52:738-749. [PMID: 32404927 PMCID: PMC7272606 DOI: 10.1038/s12276-020-0432-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent chemical modification found on eukaryotic mRNA, is associated with almost all stages of mRNA metabolism and influences various human diseases. Recent research has implicated the aberrant regulation of m6A mRNA modification in many human cancers. An increasing number of studies have revealed that dysregulation of m6A-containing gene expression via the abnormal expression of m6A methyltransferases, demethylases, or reader proteins is closely associated with tumorigenicity. Notably, the molecular functions and cellular consequences of m6A mRNA modification often show opposite results depending on the degree of m6A modification in specific mRNA. In this review, we highlight the current progress on the underlying mechanisms of m6A modification in mRNA metabolism, particularly the functions of m6A writers, erasers, and readers in the context of tumorigenesis. A thorough investigation into the role and function of RNA modifications in cancers could yield novel therapies. The chemical modification of messenger RNA (mRNA), the molecule that carries code from DNA to synthesize proteins, is thought to play a role in influencing genetically inherited traits and diseases. A common modification found in mRNA is N6-methyladenosine (m6A). Disruption to the regulation of m6A modification has been linked with human cancers. Junho Choe and Seung Hun Han at Hanyang University in Seoul, South Korea, reviewed current understanding of the molecular mechanisms behind m6A modification, with particular reference to tumor formation. The researchers point out that abnormal expression of proteins associated with m6A may lead to heightened expression of cancer-related genes. More extensive m6A modification levels are also linked to tumor formation.
Collapse
|
503
|
Chai RC, Wu F, Wang QX, Zhang S, Zhang KN, Liu YQ, Zhao Z, Jiang T, Wang YZ, Kang CS. m 6A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas. Aging (Albany NY) 2020; 11:1204-1225. [PMID: 30810537 PMCID: PMC6402513 DOI: 10.18632/aging.101829] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation, associated with cancer initiation and progression, is dynamically regulated by the m6A RNA methylation regulators (“writers”, “erasers” and “readers”). Here, we demonstrate that most of the thirteen main m6A RNA methylation regulators are differentially expressed among gliomas stratified by different clinicopathological features in 904 gliomas. We identified two subgroups of gliomas (RM1/2) by applying consensus clustering to m6A RNA methylation regulators. Compared with the RM1 subgroup, the RM2 subgroup correlates with a poorer prognosis, higher WHO grade, and lower frequency of IDH mutation. Moreover, the hallmarks of epithelial-mesenchymal transition and TNFα signaling via NF-κB are also significantly enriched in the RM2 subgroup. This finding indicates that m6A RNA methylation regulators are closely associated with glioma malignancy. Based on this finding, we derived a risk signature, using seven m6A RNA methylation regulators, that is not only an independent prognostic marker but can also predict the clinicopathological features of gliomas. Moreover, m6A regulators are associated with the mesenchymal subtype and TMZ sensitivity in GBM. In conclusion, m6A RNA methylation regulators are crucial participants in the malignant progression of gliomas and are potentially useful for prognostic stratification and treatment strategy development.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Qi-Xue Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Shu Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA)
| | - Chun-Sheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.,Chinese Glioma Genome Atlas Network (CGGA).,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
504
|
Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY) 2020; 12:8137-8150. [PMID: 32365051 PMCID: PMC7244028 DOI: 10.18632/aging.103130] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 01/10/2023]
Abstract
Methyltransferase-like protein 3 (METTL3) regulates multiple cell functions and diseases by modulating N6-methyladenosine (m6A) modifications. However, it is still unclear whether METTL3 involves in the pathogenesis of diabetic retinopathy (DR). In the present study, we found that high-glucose inhibited RPE cell proliferation, promoted cell apoptosis and pyroptosis in a time-dependent manner. In addition, both METTL3 mRNA and miR-25-3p were low-expressed in the peripheral venous blood samples of diabetes mellitus (DM) patients compared to normal volunteers, and high-glucose inhibited METTL3 and miR-25-3p expressions in RPE cells. As expected, upregulation of METTL3 and miR-25-3p alleviated the cytotoxic effects of high-glucose on RPE cells, and knock-down of METTL3 and miR-25-3p had opposite effects. Additionally, METTL3 overexpression increased miR-25-3p levels in RPE cells in a microprocessor protein DGCR8-dependent manner, and miR-25-3p ablation abrogated the effects of overexpressed METTL3 on cell functions in high-glucose treated RPE cells. Furthermore, PTEN could be negatively regulated by miR-25-3p, and overexpression of METTL3 increased phosphorylated Akt (p-Akt) levels by targeting miR-25-3p/PTEN axis. Consistently, upregulation of PTEN abrogated the protective effects of METTL3 overexpression on RPE cells treated with high-glucose. Collectively, METTL3 rescued cell viability in high-glucose treated RPE cells by targeting miR-25-3p/PTEN/Akt signaling cascade.
Collapse
Affiliation(s)
- Xu Zha
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Xinyu Fan
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Minjun Ma
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yanni Yang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| |
Collapse
|
505
|
Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF, Zhang A, Chen S, Dai Q, Wang J. N 6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Ther Adv Chronic Dis 2020; 11:2040622320916024. [PMID: 32426101 PMCID: PMC7222229 DOI: 10.1177/2040622320916024] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although N6-methyladenosine (m6A) plays a very important role in different biological processes, its function in the brain has not been fully explored. Thus, we investigated the roles of the RNA demethylases Alkbh5/Fto in cerebral ischemia-reperfusion injury. Methods We used a rat model and primary neuronal cell culture to study the role of m6A and Alkbh5/Fto in the cerebral cortex ischemic penumbra after cerebral ischemia-reperfusion injury. We used Alkbh5-shRNA and Lv-Fto (in vitro) to regulate the expression of Alkbh5/Fto to study their regulation of m6A in the cerebral cortex and to study brain function after ischemia-reperfusion injury. Results We found that RNA m6A levels increased consecutive to the increase of Alkbh5 expression in both the cerebral cortex of rats after middle cerebral artery occlusion, and in primary neurons after oxygen deprivation/reoxygenation. In contrast, Fto expression decreased after these perturbations. Our results suggest that knocking down Alkbh5 can aggravate neuronal damage. This is due to the demethylation of Alkbh5 and Fto, which selectively demethylate the Bcl2 transcript, preventing Bcl2 transcript degradation and enhancing Bcl2 protein expression. Conclusion Collectively, our results demonstrate that the demethylases Alkbh5/Fto co-regulate m6A demethylation, which plays a crucial role in cerebral ischemia-reperfusion injury. The results provide novel insights into potential therapeutic mechanisms for stroke.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qimin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Kong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meita Felicia Balelang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Wencheng County People's Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
506
|
McIntyre ABR, Gokhale NS, Cerchietti L, Jaffrey SR, Horner SM, Mason CE. Limits in the detection of m 6A changes using MeRIP/m 6A-seq. Sci Rep 2020; 10:6590. [PMID: 32313079 PMCID: PMC7170965 DOI: 10.1038/s41598-020-63355-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many cellular mRNAs contain the modified base m6A, and recent studies have suggested that various stimuli can lead to changes in m6A. The most common method to map m6A and to predict changes in m6A between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-seq), through which methylated regions are detected as peaks in transcript coverage from immunoprecipitated RNA relative to input RNA. Here, we generated replicate controls and reanalyzed published MeRIP-seq data to estimate reproducibility across experiments. We found that m6A peak overlap in mRNAs varies from ~30 to 60% between studies, even in the same cell type. We then assessed statistical methods to detect changes in m6A peaks as distinct from changes in gene expression. However, from these published data sets, we detected few changes under most conditions and were unable to detect consistent changes across studies of similar stimuli. Overall, our work identifies limits to MeRIP-seq reproducibility in the detection both of peaks and of peak changes and proposes improved approaches for analysis of peak changes.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- Tri-Institutional Program in Computational Biology and Medicine, New York City, NY, 10065, USA.
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
507
|
Hagelskamp F, Borland K, Ramos J, Hendrick AG, Fu D, Kellner S. Broadly applicable oligonucleotide mass spectrometry for the analysis of RNA writers and erasers in vitro. Nucleic Acids Res 2020; 48:e41. [PMID: 32083657 PMCID: PMC7144906 DOI: 10.1093/nar/gkaa091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine Deaminase/metabolism
- Chromatography, Gel
- HEK293 Cells
- HeLa Cells
- Humans
- Mass Spectrometry
- Mixed Function Oxygenases/metabolism
- Oligonucleotides/analysis
- Oligonucleotides/isolation & purification
- RNA Processing, Post-Transcriptional
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/isolation & purification
- RNA, Transfer/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- RNA-Binding Proteins/metabolism
- Ribonuclease T1/metabolism
Collapse
Affiliation(s)
- Felix Hagelskamp
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alan G Hendrick
- STORM Therapeutics, Moneta Building, Babraham Research Campus, Cambridge CB22 3AT UK
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627, USA
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
508
|
The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21:501-512. [DOI: 10.1038/s41590-020-0650-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
|
509
|
Abstract
The posttranscriptional modification of messenger RNA (mRNA) and transfer RNA (tRNA) provides an additional layer of regulatory complexity during gene expression. Here, we show that a tRNA methyltransferase, TRMT10A, interacts with an mRNA demethylase FTO (ALKBH9), both in vitro and inside cells. TRMT10A installs N 1-methylguanosine (m1G) in tRNA, and FTO performs demethylation on N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) in mRNA. We show that TRMT10A ablation not only leads to decreased m1G in tRNA but also significantly increases m6A levels in mRNA. Cross-linking and immunoprecipitation, followed by high-throughput sequencing results show that TRMT10A shares a significant overlap of associated mRNAs with FTO, and these mRNAs have accelerated decay rates potentially through the regulation by a specific m6A reader, YTHDF2. Furthermore, transcripts with increased m6A upon TRMT10A ablation contain an overrepresentation of m1G9-containing tRNAs codons read by tRNAGln(TTG), tRNAArg(CCG), and tRNAThr(CGT) These findings collectively reveal the presence of coordinated mRNA and tRNA methylations and demonstrate a mechanism for regulating gene expression through the interactions between mRNA and tRNA modifying enzymes.
Collapse
|
510
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
511
|
Huang H, Weng H, Chen J. m 6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell 2020; 37:270-288. [PMID: 32183948 PMCID: PMC7141420 DOI: 10.1016/j.ccell.2020.02.004] [Citation(s) in RCA: 848] [Impact Index Per Article: 169.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
N6-Methyladenosine (m6A) RNA modification has emerged in recent years as a new layer of regulatory mechanism controlling gene expression in eukaryotes. As a reversible epigenetic modification found not only in messenger RNAs but also in non-coding RNAs, m6A affects the fate of the modified RNA molecules and plays important roles in almost all vital bioprocesses, including cancer development. Here we review the up-to-date knowledge of the pathological roles and underlying molecular mechanism of m6A modifications (in both coding and non-coding RNAs) in cancer pathogenesis and drug response/resistance, and discuss the therapeutic potential of targeting m6A regulators for cancer therapy.
Collapse
Affiliation(s)
- Huilin Huang
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hengyou Weng
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Jianjun Chen
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| |
Collapse
|
512
|
Role of m 6A in Embryonic Stem Cell Differentiation and in Gametogenesis. EPIGENOMES 2020; 4:epigenomes4010005. [PMID: 34968239 PMCID: PMC8594681 DOI: 10.3390/epigenomes4010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.
Collapse
|
513
|
Liu L, Wang Y, Wu J, Liu J, Qin Z, Fan H. N 6-Methyladenosine: A Potential Breakthrough for Human Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:804-813. [PMID: 31958696 PMCID: PMC7005339 DOI: 10.1016/j.omtn.2019.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Among more than 100 types of identified RNA modification, N6-methyladenosine (m6A) modification is the predominant mRNA modification, which regulates RNA splicing, translocation, stability, and translation. m6A modification plays critical roles in the growth, differentiation, and metabolism of cells. As a dynamic and reversible modification, m6A is catalyzed by "writers" (RNA methyltransferases), removed by "erasers" (demethylases), and interacts with "readers" (m6A-binding proteins). With more advanced technology applied to research, the molecular mechanisms of RNA methyltransferase, demethylase, and m6A-binding protein have been revealed. An increasing number of studies have implicated the correlation between m6A modification and human cancers. In this review, we summarize that the occurrence and development of various human cancers are associated with aberrant m6A modification. We also discuss the progress in research related to m6A modification, providing novel therapeutic insight and potential breakthrough in anticancer therapy.
Collapse
Affiliation(s)
- Lina Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China
| | - Yuwei Wang
- School of Stomatology, Qingdao University, Qingdao 266071, P.R. China
| | - Jie Wu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, P.R. China.
| | - Zongchang Qin
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China.
| | - Hong Fan
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, P.R. China.
| |
Collapse
|
514
|
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52:400-408. [PMID: 32210357 PMCID: PMC7156397 DOI: 10.1038/s12276-020-0407-z] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Collapse
Affiliation(s)
- Sung Ho Boo
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea.
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
515
|
Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, Peng J, Zhou Y, Jiang S, Peng J. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res 2020; 47:6130-6144. [PMID: 31037292 PMCID: PMC6614822 DOI: 10.1093/nar/gkz312] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/14/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
A complex and highly orchestrated gene expression program chiefly establishes the properties that define the adipocyte phenotype, in which the vast majority of factors are involved in transcriptional regulation. However, the mechanisms by post-transcriptional modulation are poorly understood. Here, we showed that zinc finger protein (Zfp217) couples gene transcription to m6A mRNA modification to facilitate adipogenesis. Zfp217 modulates m6A mRNA methylation by activating the transcription of m6A demethylase FTO. Consistently, depletion of Zfp217 compromises adipogenic differentiation of 3T3L1 cells and results in a global increase of m6A modification. Moreover, the interaction of Zfp217 with YTHDF2 is critical for allowing FTO to maintain its interaction with m6A sites on various mRNAs, as loss of Zfp217 leads to FTO decrease and augmented m6A levels. These findings highlight a role for Zfp217-dependent m6A modification to coordinate transcriptional and post-transcriptional regulation and thus promote adipogenic differentiation.
Collapse
Affiliation(s)
- Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaowei Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jinxin Lu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qianhui Zeng
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Jiang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
516
|
MYC Regulation of D2HGDH and L2HGDH Influences the Epigenome and Epitranscriptome. Cell Chem Biol 2020; 27:538-550.e7. [PMID: 32101699 DOI: 10.1016/j.chembiol.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/22/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial D2HGDH and L2HGDH catalyze the oxidation of D-2-HG and L-2-HG, respectively, into αKG. This contributes to cellular homeostasis in part by modulating the activity of αKG-dependent dioxygenases. Signals that control the expression/activity of D2HGDH/L2HGDH are presumed to broadly influence physiology and pathology. Using cell and mouse models, we discovered that MYC directly induces D2HGDH and L2HGDH transcription. Furthermore, in a manner suggestive of D2HGDH, L2HGDH, and αKG dependency, MYC activates TET enzymes and RNA demethylases, and promotes their nuclear localization. Consistent with these observations, in primary B cell lymphomas MYC expression positively correlated with enhancer hypomethylation and overexpression of lymphomagenic genes. Together, these data provide additional evidence for the role of mitochondria metabolism in influencing the epigenome and epitranscriptome, and imply that in specific contexts wild-type TET enzymes could demethylate and activate oncogenic enhancers.
Collapse
|
517
|
Li Y, Wang J, Huang C, Shen M, Zhan H, Xu K. RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell Biosci 2020; 10:19. [PMID: 32110378 PMCID: PMC7035649 DOI: 10.1186/s13578-020-00385-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Collapse
Affiliation(s)
- Yan Li
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Jiawen Wang
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Chunyan Huang
- Houjie Hospital of Dongguan, Dongguan, 523945 Guangdong China
| | - Meng Shen
- Chengdu Tumor Hospital, Chengdu, 610041 Sichuan China
| | - Huakui Zhan
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Keyang Xu
- 4Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023 Zhejiang China
| |
Collapse
|
518
|
Strick A, Hagen F, Gundert L, Klümper N, Tolkach Y, Schmidt D, Kristiansen G, Toma M, Ritter M, Ellinger J. The
N
6
‐methyladenosine (m
6
A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity‐associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU Int 2020; 125:617-624. [DOI: 10.1111/bju.15019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander Strick
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | - Felix Hagen
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | - Larissa Gundert
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | - Niklas Klümper
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | - Yuri Tolkach
- Institut für Pathologie Universitätsklinikum Bonn Bonn Germany
| | - Doris Schmidt
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | | | - Marieta Toma
- Institut für Pathologie Universitätsklinikum Bonn Bonn Germany
| | - Manuel Ritter
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| | - Jörg Ellinger
- Klinik und Poliklinik für Urologie und Kinderurologie Universitätsklinikum Bonn Bonn Germany
| |
Collapse
|
519
|
A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3-GENES GENOMES GENETICS 2020; 10:645-664. [PMID: 31888951 PMCID: PMC7003082 DOI: 10.1534/g3.119.400910] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of Electronic Health Records (EHR) and personalized genetics leads to powerful discoveries relevant to population health. Here we perform genome-wide association studies (GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of 6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity. Each GWAS was followed with two independent PheWASs to examine associations between extensive phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 diabetics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs. control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs validate published associations between BMI and extreme obesity and incidence of specific diagnoses and conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal EHR database to validate known associations and identify putative novel links with BMI and obesity.
Collapse
|
520
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
521
|
Molecular Mechanisms Driving mRNA Degradation by m 6A Modification. Trends Genet 2020; 36:177-188. [PMID: 31964509 DOI: 10.1016/j.tig.2019.12.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification associated with eukaryotic mRNAs, influences many steps of mRNA metabolism, including splicing, export, and translation, as well as stability. Recent studies have revealed that m6A-containing mRNAs undergo one of two distinct pathways of rapid degradation: deadenylation via the YT521-B homology (YTH) domain-containing family protein 2 (YTHDF2; an m6A reader protein)-CCR4/NOT (deadenylase) complex or endoribonucleolytic cleavage by the YTHDF2-HRSP12-ribonuclease (RNase) P/mitochondrial RNA-processing (MRP) (endoribonuclease) complex. Some m6A-containing circular RNAs (circRNAs) are also subject to endoribonucleolytic cleavage by YTHDF2-HRSP12-RNase P/MRP. Here, we highlight recent progress on the molecular mechanisms underlying rapid mRNA degradation via m6A and describe our current understanding of the dynamic regulation of m6A-mediated mRNA decay through the crosstalk between m6A (or YTHDF2) and other cellular factors.
Collapse
|
522
|
Chen H, Gu L, Orellana EA, Wang Y, Guo J, Liu Q, Wang L, Shen Z, Wu H, Gregory RI, Xing Y, Shi Y. METTL4 is an snRNA m 6Am methyltransferase that regulates RNA splicing. Cell Res 2020; 30:544-547. [PMID: 31913360 DOI: 10.1038/s41422-019-0270-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hao Chen
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Lei Gu
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiaojiao Guo
- College of Science, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Longfei Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhangfei Shen
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
523
|
Wu J, Frazier K, Zhang J, Gan Z, Wang T, Zhong X. Emerging role of m 6 A RNA methylation in nutritional physiology and metabolism. Obes Rev 2020; 21:e12942. [PMID: 31475777 PMCID: PMC7427634 DOI: 10.1111/obr.12942] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
N6 -methyladenine (m6 A) is the most prevalent type of internal RNA methylation in eukaryotic mRNA and plays critical roles in regulating gene expression for fundamental cellular processes and diverse physiological functions. Recent evidence indicates that m6 A methylation regulates physiology and metabolism, and m6 A has been increasingly implicated in a variety of human diseases, including obesity, diabetes, metabolic syndrome and cancer. Conversely, nutrition and diet can modulate or reverse m6 A methylation patterns on gene expression. In this review, we summarize the recent progress in the study of the m6 A methylation mechanisms and highlight the crosstalk between m6 A modification, nutritional physiology and metabolism.
Collapse
Affiliation(s)
- Jiamin Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Katya Frazier
- Department of Medicine, University of Chicago. Chicago, IL 60637, USA
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Zhending Gan
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| |
Collapse
|
524
|
Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X, Liu J, Yuan W. FTO - A Common Genetic Basis for Obesity and Cancer. Front Genet 2020; 11:559138. [PMID: 33304380 PMCID: PMC7701174 DOI: 10.3389/fgene.2020.559138] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, the prevalence of obesity and cancer have been rising. Since this poses a serious threat to human health, the relationship between the two has attracted much attention. This study examined whether fat mass and obesity-associated (FTO) genes are linked, taking into account a Genome-wide Association Study (GWAS) that revealed multiple single nucleotide polymorphism sites (SNPs) of the FTO gene, indicating an association between obesity and cancer in different populations. FTO proteins have been proved to participate in adipogenesis and tumorigenesis with post-transcriptional regulation of downstream molecular expression or through the target of the mammalian target protein rapamycin (mTOR). FTO inhibitors have also been found to share anti-obesity and anti-cancer effects in vivo. In this review, we comprehensively discuss the correlation between obesity and cancer by measuring FTO gene polymorphism, as well as the molecular mechanism involved in these diseases, emphasizing FTO as the common genetic basis of obesity and cancer.
Collapse
Affiliation(s)
- Ning Lan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, China
| | - Ying Lu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, China
| | - Shuangshuang Pu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaze Xi
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, China
- *Correspondence: Wenzhen Yuan,
| |
Collapse
|
525
|
Arribas-Hernández L, Brodersen P. Occurrence and Functions of m 6A and Other Covalent Modifications in Plant mRNA. PLANT PHYSIOLOGY 2020; 182:79-96. [PMID: 31748418 PMCID: PMC6945878 DOI: 10.1104/pp.19.01156] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 05/07/2023]
Abstract
Posttranscriptional control of gene expression is indispensable for the execution of developmental programs and environmental adaptation. Among the many cellular mechanisms that regulate mRNA fate, covalent nucleotide modification has emerged as a major way of controlling the processing, localization, stability, and translatability of mRNAs. This powerful mechanism is conserved across eukaryotes and controls the cellular events that lead to development and growth. As in other eukaryotes, N 6-methylation of adenosine is the most abundant and best studied mRNA modification in flowering plants. It is essential for embryonic and postembryonic plant development and it affects growth rate and stress responses, including susceptibility to plant RNA viruses. Although the mRNA modification field is young, the intense interest triggered by its involvement in stem cell differentiation and cancer has led to rapid advances in understanding how mRNA modifications control gene expression in mammalian systems. An equivalent effort from plant molecular biologists has been lagging behind, but recent work in Arabidopsis (Arabidopsis thaliana) and other plant species is starting to give insights into how this essential layer of posttranscriptional regulation works in plants, and both similarities and differences with other eukaryotes are emerging. In this Update, we summarize, connect, and evaluate the experimental work that supports our current knowledge of the biochemistry, molecular mechanisms, and biological functions of mRNA modifications in plants. We devote particular attention to N 6-methylation of adenosine and attempt to place the knowledge gained from plant studies within the context of a more general framework derived from studies in other eukaryotes.
Collapse
Affiliation(s)
| | - Peter Brodersen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
526
|
Atlas of quantitative single-base-resolution N 6-methyl-adenine methylomes. Nat Commun 2019; 10:5636. [PMID: 31822664 PMCID: PMC6904561 DOI: 10.1038/s41467-019-13561-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
Various methyltransferases and demethylases catalyse methylation and demethylation of N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) but precise methylomes uniquely mediated by each methyltransferase/demethylase are still lacking. Here, we develop m6A-Crosslinking-Exonuclease-sequencing (m6ACE-seq) to map transcriptome-wide m6A and m6Am at quantitative single-base-resolution. This allows for the generation of a comprehensive atlas of distinct methylomes uniquely mediated by every individual known methyltransferase or demethylase. Our atlas reveals METTL16 to indirectly impact manifold methylation targets beyond its consensus target motif and highlights the importance of precision in mapping PCIF1-dependent m6Am. Rather than reverse RNA methylation, we find that both ALKBH5 and FTO instead maintain their regulated sites in an unmethylated steady-state. In FTO's absence, anomalous m6Am disrupts snRNA interaction with nuclear export machinery, potentially causing aberrant pre-mRNA splicing events.
Collapse
|
527
|
An intronic FTO variant rs16952570 confers protection against thiopurine-induced myelotoxicities in multiethnic Asian IBD patients. THE PHARMACOGENOMICS JOURNAL 2019; 20:505-515. [PMID: 31813937 DOI: 10.1038/s41397-019-0126-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022]
Abstract
Thiopurines are used in the treatment of inflammatory bowel disease (IBD) but remain clinically challenging to manage due to wide interpatient variability in clinical outcomes and adverse events. Apart from genetic variants in thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) genes, polymorphisms in FTO alpha-ketoglutarate dependent dioxygenase (FTO) were found predictive of thiopurine-induced leukopenia, albeit with conflicting results. To clarify the role of FTO variants in a multiethnic Asian IBD cohort, we recruited 149 patients on thiopurine-based therapy and genotyped two FTO variants p.Ala134Thr (rs79206939) and rs16952570 T > C using Sanger sequencing. FTO p.Ala134Thr (rs79206939) was non-polymorphic and absent whereas intronic rs16952570 T > C was equally prevalent in Chinese (22%) and Indians (18%) and higher in Malays (28%). Higher nadir white blood cell (WBC) and absolute neutrophil count (ANC) levels were observed in patients harboring FTO rs16952570 CC genotypes compared with TT carriers at 4, 8, and 12 weeks after start of thiopurine therapy (P < 0.05). A similar trend was observed in patients carrying the previously well-characterized NUDT15 rs116855232 wild-type CC genotypes. Further in silico analysis suggests that FTO variants linked to rs16952570, particularly rs74018601, may play a regulatory role in altering the FTO expression. The findings from this study indicate a novel protective association with the FTO variant rs16952570 CC genotype and hematological parameters.
Collapse
|
528
|
Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M, Yi C. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 2019; 16:160-169. [PMID: 31819270 DOI: 10.1038/s41589-019-0420-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/27/2019] [Indexed: 11/09/2022]
Abstract
Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chenxu Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
529
|
The m 6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 2019; 21:36-51. [PMID: 31804615 DOI: 10.1038/s41583-019-0244-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
Abstract
The field of epitranscriptomics examines the recently deciphered form of gene expression regulation that is mediated by type- and site-specific RNA modifications. Similarly to the role played by epigenetic mechanisms - which operate via DNA and histone modifications - epitranscriptomic modifications are involved in the control of the delicate gene expression patterns that are needed for the development and activity of the nervous system and are essential for basic and higher brain functions. Here we describe the mechanisms that are involved in the writing, erasing and reading of N6-methyladenosine, the most prevalent internal mRNA modification, and the emerging roles played by N6-methyladenosine in the nervous system.
Collapse
|
530
|
Huang H, Weng H, Chen J. The Biogenesis and Precise Control of RNA m 6A Methylation. Trends Genet 2019; 36:44-52. [PMID: 31810533 DOI: 10.1016/j.tig.2019.10.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal RNA modification in mRNA, and has been found to be highly conserved and hard-coded in mammals and other eukaryotic species. The importance of m6A for gene expression regulation and cell fate decisions has been well acknowledged in the past few years. However, it was only until recently that the mechanisms underlying the biogenesis and specificity of m6A modification in cells were uncovered. We review up-to-date knowledge on the biogenesis of the RNA m6A modification, including the cis-regulatory elements and trans-acting factors that determine general de novo m6A deposition and modulate cell type-specific m6A patterns, and we discuss the biological significance of such regulation.
Collapse
Affiliation(s)
- Huilin Huang
- Department of Systems Biology and Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hengyou Weng
- Department of Systems Biology and Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| |
Collapse
|
531
|
Flamand MN, Meyer KD. The epitranscriptome and synaptic plasticity. Curr Opin Neurobiol 2019; 59:41-48. [PMID: 31108373 PMCID: PMC6858947 DOI: 10.1016/j.conb.2019.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
RNA modifications, collectively referred to as 'the epitranscriptome,' have recently emerged as a pervasive feature of cellular mRNAs which have diverse impacts on gene expression. In the last several years, technological advances improving our ability to identify mRNA modifications, coupled with the discovery of proteins that add and remove these marks, have substantially expanded our knowledge of how the epitranscriptome shapes gene expression. Efforts to uncover functional roles for mRNA modifications have begun to reveal important roles for some marks within the nervous system, and animal models have emerged which demonstrate severe neurodevelopmental and neurocognitive abnormalities resulting from the loss of mRNA modification machinery. Here, we review the recent advances in the field of neuroepitranscriptomics, with a particular emphasis on how modifications to mRNAs within the brain contribute to synaptic activity.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
532
|
Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, Cai WM, Cui L, Liu CF, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 2019; 47:e130. [PMID: 31504804 PMCID: PMC6847653 DOI: 10.1093/nar/gkz751] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, People's Republic of China
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Bing Liang Alvin Chew
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Hongping Dong
- Shanghai Blueray Biopharma, Shanghai, People's Republic of China
| | - Luang Xu
- Cancer Science Institute of Singapore, Singapore
| | - Seetharamsingh Balamkundu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Department of Microbiology, National University of Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Synthetic Biology Center, Departments of Biological Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
533
|
|
534
|
Casella G, Tsitsipatis D, Abdelmohsen K, Gorospe M. mRNA methylation in cell senescence. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1547. [PMID: 31144457 PMCID: PMC8474013 DOI: 10.1002/wrna.1547] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023]
Abstract
Cellular senescence, a developmental program central to normal aging and aging pathologies, is robustly regulated at the post-transcriptional level. This regulation involves the interaction of RNA-binding proteins and noncoding RNAs with senescence-associated messenger RNAs (mRNAs). There is increasing evidence that these associations are modulated by chemical modifications of specific mRNA nucleotides which can enhance or reduce the binding of regulatory factors. Recent technological advances in mass spectrometry, next-generation sequencing, and genome mapping have improved markedly the detection of mRNA modifications. Given the rising interest in the epitranscriptomic control of gene expression in aging, we discuss our incipient understanding of the chemical mRNA modifications, specifically m6 A and m5 C, that influence cellular senescence. This article is categorized under: RNA Export and Localization > RNA Localization RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Gabriel Casella
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
535
|
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J, Fan J, Yi C. Landscape and Regulation of m 6A and m 6Am Methylome across Human and Mouse Tissues. Mol Cell 2019; 77:426-440.e6. [PMID: 31676230 DOI: 10.1016/j.molcel.2019.09.032] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal mRNA modification, and N6,2'-O-dimethyladenosine (m6Am), found at the first-transcribed nucleotide, are two reversible epitranscriptomic marks. However, the profiles and distribution patterns of m6A and m6Am across human and mouse tissues are poorly characterized. Here, we report the m6A and m6Am methylome through profiling of 43 human and 16 mouse tissues and demonstrate strongest tissue specificity for the brain tissues. A small subset of tissue-specific m6A peaks can also readily classify tissue types. The overall m6A and m6Am level is partially correlated with the expression level of their writers and erasers. Additionally, the m6A-containing regions are enriched for SNPs. Furthermore, cross-species analysis revealed that species rather than tissue type is the primary determinant of methylation. Collectively, our study provides an in-depth resource for dissecting the landscape and regulation of the m6A and m6Am epitranscriptomic marks across mammalian tissues.
Collapse
Affiliation(s)
- Jun'e Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China; Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Mingchang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xizhan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Huang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China; Human Phenome Institute, Fudan University, Shanghai 200032, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
536
|
Reading Chemical Modifications in the Transcriptome. J Mol Biol 2019:S0022-2836(19)30598-4. [PMID: 31628951 DOI: 10.1016/j.jmb.2019.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Diverse chemical modifications have been identified in the transcriptome, leading to the emerging field of epitranscriptomics. In eukaryotic mRNA, the 5' cap and 3' poly(A) tail play important roles in regulation, and multiple internal modifications have also been revealed to participate in RNA metabolism. In this review, we focus on internal modifications in eukaryotic mRNA, including modifications to A/U/C/G bases and to ribose as well. We provide an overview of their biogenesis, high-throughput detection methods, biological functions, and regulatory mechanisms, with an emphasis on their reported reader proteins (RNA-binding proteins that specifically bind to modified RNA). We also briefly discuss the current problems in the investigation of mRNA modifications that need to be solved.
Collapse
|
537
|
FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience 2019; 418:15-24. [DOI: 10.1016/j.neuroscience.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023]
|
538
|
Rau K, Rösner L, Rentmeister A. Sequence-specific m 6A demethylation in RNA by FTO fused to RCas9. RNA (NEW YORK, N.Y.) 2019; 25:1311-1323. [PMID: 31263003 PMCID: PMC6800472 DOI: 10.1261/rna.070706.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA and associated with numerous cellular processes in health and disease. Up- and down-regulation of its "writer" or "eraser" proteins alter the global m6A level; however, modifying distinct m6A sites has remained elusive. We genetically fused the dioxygenase FTO responsible for m6A demethylation to RCas9 as an RNA-targeting module. The resulting RCas9-FTO retained demethylation activity and bound to RNA in a sequence-specific manner depending on the sgRNA and PAMmer. Using SCARLET analysis, we quantified the m6A level at a specific site and analyzed the effect of the PAM-to-m6A distance on activity. Sequence-specific demethylation by RCas9-FTO was tested on different RNA combinations and showed up to 15-fold sequence preference for target RNA compared to off-target RNA. Taken together, RCas9-FTO represents a new tool for sequence-specific demethylation of m6A in RNA that can be readily adapted to any given RNA sequence and opens the door to studying the function of distinct m6A sites.
Collapse
Affiliation(s)
- Kristina Rau
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| | - Lukas Rösner
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
539
|
Li J, Zhu L, Shi Y, Liu J, Lin L, Chen X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res 2019; 11:6084-6092. [PMID: 31632576 PMCID: PMC6789218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
N6-methyladenosine (m6A) acts as the most common mRNA modification in mammal cells. Fat Mass and Obesity-associated protein (FTO) is the firstly identified demethylase in the m6A modification. This research tries to discover the potential roles of FTO in the m6A modification in the hepatocellular carcinoma (HCC). FTO level was found to be up-regulated in the HCC tissue and cells. The over-expression of FTO was correlated to the poor prognosis of HCC individuals. Knockdown of FTO suppressed the proliferation and in vivo tumor growth, and induced the G0/G1 phase arrest. Mechanically, FTO triggered the demethylation of PKM2 mRNA and accelerated the translated production. Overall, this finding suggests the critical function of FTO in the HCC oncogenesis and its m6A modification.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| | - Lijun Zhu
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| | - Yanhong Shi
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| | - Jingnan Liu
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| | - Lin Lin
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| | - Xi Chen
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force Fuzhou 350025, Fujian, China
| |
Collapse
|
540
|
Li Y, Wu K, Quan W, Yu L, Chen S, Cheng C, Wu Q, Zhao S, Zhang Y, Zhou L. The dynamics of FTO binding and demethylation from the m 6A motifs. RNA Biol 2019; 16:1179-1189. [PMID: 31149892 PMCID: PMC6693534 DOI: 10.1080/15476286.2019.1621120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/20/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022] Open
Abstract
N6-methyladenosine (m6A) is considered as a reversible RNA modification occurring more frequently on the GAC than AAC context in vivo, which regulates post-transcriptional gene expression in mammalian cells. m6A 'writers' METTL3 and METTL14 demonstrate a strong preference for binding AC-containing motifs in living cells. However, this evidence is currently lacking for m6A erasers, leaving the dynamics of the internal m6A modification under debate recently. We analysed three recently published FTO CLIP-seq data sets and two generated in this study, one of the two known m6A 'erasers'. FTO binding peaks from all cell lines contain RRACH motifs. Only those from K562, 3T3-L1and HeLa cells were enriched in AC-containing motifs, while those from HEK293 were not. The exogenously overexpressed FTO effectively binds to m6A motif-containing RNA sites. FTO overexpression specifically removed m6A modification from GGACU and RRACU motifs in a concentration-dependent manner. These findings underline the dynamics of FTO in target selection, which is predicted to contribute to both the m6A dynamics and the FTO plasticity in biological functions and diseases.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Kejing Wu
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Shuang Chen
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Qijia Wu
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| |
Collapse
|
541
|
Heck AM, Wilusz CJ. Small changes, big implications: The impact of m 6A RNA methylation on gene expression in pluripotency and development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194402. [PMID: 31325527 PMCID: PMC6742438 DOI: 10.1016/j.bbagrm.2019.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
In order to maintain a state of self-renewal, yet retain the ability to rapidly differentiate in response to external signals, pluripotent cells exert tight control over gene expression at many levels. Recent studies have suggested that N6-methyladenosine (m6A) RNA methylation, one of the most abundant post-transcriptional modifications, is important for both pluripotency and differentiation. In this review, we summarize the current state of the m6A field, with emphasis on the impact of writers, erasers and readers of m6A on RNA metabolism and stem cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Program in Cell & Molecular Biology, and Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80525, United States of America
| | - Carol J Wilusz
- Program in Cell & Molecular Biology, and Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80525, United States of America.
| |
Collapse
|
542
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
543
|
HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N 6-methyladenosine. Nat Commun 2019; 10:3613. [PMID: 31399576 PMCID: PMC6688989 DOI: 10.1038/s41467-019-11552-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Small-molecule inhibitors for the 90-kDa heat shock protein (HSP90) have been extensively exploited in preclinical studies for the therapeutic interventions of human diseases accompanied with proteotoxic stress. By using an unbiased quantitative proteomic method, we uncover that treatment with three HSP90 inhibitors results in elevated expression of a large number of heat shock proteins. We also demonstrate that the HSP90 inhibitor-mediated increase in expression of DNAJB4 protein occurs partly through an epitranscriptomic mechanism, and is substantially modulated by the writer, eraser, and reader proteins of N6-methyladenosine (m6A). Furthermore, exposure to ganetespib leads to elevated modification levels at m6A motif sites in the 5′-UTR of DNAJB4 mRNA, and the methylation at adenosine 114 site in the 5′-UTR promotes the translation of the reporter gene mRNA. This m6A-mediated mechanism is also at play upon heat shock treatment. Cumulatively, we unveil that HSP90 inhibitors stimulate the translation of DNAJB4 through an epitranscriptomic mechanism. Cells respond to heat shock with transcriptional and translational adaptations but how HSP90 inhibition alters the heat shock proteome is largely unclear. Here, the authors analyze proteome changes upon HSP90 inhibition and show that an m6A-mediated mechanism contributes to the heat shock-induced upregulation of DNAJB4.
Collapse
|
544
|
Abstract
In two recent publications in Molecular Cell,Boulias et al. (2019) and Sendinc et al. (2019) use complementary approaches to map m6Am modification sites transcriptome-wide and demonstrate that m6Am can repress translation while increasing the stability of a subset of low-abundance transcripts.
Collapse
Affiliation(s)
- Katelyn A Doxtader
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
545
|
Liu XM, Zhou J, Mao Y, Ji Q, Qian SB. Programmable RNA N 6-methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol 2019; 15:865-871. [PMID: 31383972 PMCID: PMC6702037 DOI: 10.1038/s41589-019-0327-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/23/2019] [Indexed: 12/17/2022]
Abstract
RNA modification in the form of N6-methyladenosine (m6A) regulates nearly all the post-transcriptional processes. The asymmetric m6A deposition suggests that regional methylation may have distinct functional consequences. However, current RNA biology tools do not distinguish the contribution of individual m6A modifications. Here we report the development of “m6A editing”, a powerful approach that enables m6A installation and erasure from cellular RNAs without changing the primary sequence. We engineered fusions of CRISPR-Cas9 and a single chain m6A methyltransferase that can be programmed with a guide RNA. The resultant m6A “writers” allow functional comparison of single site methylation in different mRNA regions. We further engineered m6A “erasers” by fusing CRISPR-Cas9 with ALKBH5 or FTO to achieve site-specific demethylation of RNAs. The development of programmable m6A editing not only expands the scope of RNA engineering, but also facilitates mechanistic understanding of epitranscriptome. Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Jun Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Quanquan Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
546
|
Xu K, Sun Y, Sheng B, Zheng Y, Wu X, Xu K. Role of identified RNA N6-methyladenosine methylation in liver. Anal Biochem 2019; 578:45-50. [DOI: 10.1016/j.ab.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023]
|
547
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
548
|
Edens BM, Vissers C, Su J, Arumugam S, Xu Z, Shi H, Miller N, Rojas Ringeling F, Ming GL, He C, Song H, Ma YC. FMRP Modulates Neural Differentiation through m 6A-Dependent mRNA Nuclear Export. Cell Rep 2019; 28:845-854.e5. [PMID: 31340148 PMCID: PMC6687293 DOI: 10.1016/j.celrep.2019.06.072] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/09/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) modification of mRNA is emerging as a vital mechanism regulating RNA function. Here, we show that fragile X mental retardation protein (FMRP) reads m6A to promote nuclear export of methylated mRNA targets during neural differentiation. Fmr1 knockout (KO) mice show delayed neural progenitor cell cycle progression and extended maintenance of proliferating neural progenitors into postnatal stages, phenocopying methyltransferase Mettl14 conditional KO (cKO) mice that have no m6A modification. RNA-seq and m6A-seq reveal that both Mettl14cKO and Fmr1KO lead to the nuclear retention of m6A-modified FMRP target mRNAs regulating neural differentiation, indicating that both m6A and FMRP are required for the nuclear export of methylated target mRNAs. FMRP preferentially binds m6A-modified RNAs to facilitate their nuclear export through CRM1. The nuclear retention defect can be mitigated by wild-type but not nuclear export-deficient FMRP, establishing a critical role for FMRP in mediating m6A-dependent mRNA nuclear export during neural differentiation.
Collapse
Affiliation(s)
- Brittany M Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Caroline Vissers
- Biochemistry, Molecular and Cellular Biology Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Su
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Saravanan Arumugam
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Han Shi
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neuroscience, Department of Cell and Developmental Biology, Institute for Regeneration, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuan He
- Departments of Chemistry and Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neuroscience, Department of Cell and Developmental Biology, Institute for Regeneration, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| |
Collapse
|
549
|
Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q, Zeng W. Meclofenamic acid represses spermatogonial proliferation through modulating m 6A RNA modification. J Anim Sci Biotechnol 2019; 10:63. [PMID: 31333841 PMCID: PMC6621992 DOI: 10.1186/s40104-019-0361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background N6-Methyladenosine (m6A), the most prevalent modification in mammalian mRNA, plays important roles in numerous biological processes. Several m6A associated proteins such as methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) and YTH domain containing 2 (YTHDC2) are involved in the regulation of spermatogenesis and oogenesis. However, the role of the first detected m6A demethylase, fat mass and obesity associate protein (FTO), in germ cells remains elusive. Elucidation of FTO roles in the regulation of germ cell fate will provide novel insights into the mammalian reproduction. Methods Mouse GC-1 spg cells were treated with the ester form of meclofenamic acid (MA2) to inhibit the demethylase activity of FTO. The cellular m6A and m6Am level were analyzed through high performance liquid chromatography combined with tandem mass spectrometry (HPLC/MS-MS). The cell apoptosis was detected via TUNEL and flow cytometry. The cell proliferation was detected through EdU and western blot. The mRNA level of core cyclin dependent kinases (CDKs) was quantified via q-PCR. RNA decay assay were performed to detect RNA stability. Dual fluorescence assay was conducted to study whether MA2 affects the expression of CDK2 dependent on the m6A modification at 3’UTR. Results MA2 significantly increased the cellular m6A level and down-regulated the expression of CDK1, CDK2, CDK6 and CdC25a, resulting in arrest of G1/S transition and decrease of cell proliferation. MA2 downregulated CDK2 mRNA stability. Additionally, mutation of the predicted m6A sites in the Cdk2–3’UTR could mitigated the degradation of CDK2 mRNA after MA2 treatment. Conclusion MA2 affected CDKs expression through the m6A-dependent mRNA degradation pathway, and thus repressed spermatogonial proliferation. Electronic supplementary material The online version of this article (10.1186/s40104-019-0361-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jiayin Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yinghua Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiang Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
550
|
Williams GD, Gokhale NS, Horner SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine. Annu Rev Virol 2019; 6:235-253. [PMID: 31283446 DOI: 10.1146/annurev-virology-092818-015559] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the RNA modification N6-methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|