501
|
Zhou Q, Fan J, Ding X, Peng W, Yu X, Chen Y, Nie J. TGF-{beta}-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells. J Biol Chem 2010; 285:40019-27. [PMID: 20966078 PMCID: PMC3000984 DOI: 10.1074/jbc.m110.141341] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/25/2010] [Indexed: 12/14/2022] Open
Abstract
Par-3 is a component of Par complex, which is critical for the integrity of tight junction. We previously reported that TGF-β down-regulated Par-3 expression in rat proximal tubular epithelial cells, but the underlying mechanism remains unknown. In the present study, we demonstrated by a luciferase reporter assay that miR-491-5p down-regulated the luciferase activity through a binding site in the 3' UTR of Par-3. Overexpression of miR-491-5p dramatically decreased the expression of endogenous Par-3, disrupted tight junction, and resulted in decreased transepithelial resistance. Moreover, miR-491-5p expression was induced by TGF-β1 through the MEK/p38 MAPK pathway. Importantly, miR-491-5p levels were increased significantly in a rat model of obstructive nephropathy, in parallel with decreased Par-3 levels. Taken together, we conclude that up-regulation of miR-491-5p contributes to TGF-β-regulated Par-3 expression. Our study uncovered a novel mechanism by which TGF-β disrupts cell junction.
Collapse
Affiliation(s)
- Qin Zhou
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| | - Jinjin Fan
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| | - Xuebing Ding
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| | - Wenxing Peng
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| | - Xueqing Yu
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| | - Yueqin Chen
- the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Nie
- From the Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 and
| |
Collapse
|
502
|
Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 2010; 52:2148-57. [PMID: 20979124 PMCID: PMC3076553 DOI: 10.1002/hep.23915] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/03/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by interacting with the 3' untranslated region (3'-UTR) of multiple mRNAs. Recent studies have linked miRNAs to the development of cancer metastasis. In this study, we show that miR-194 is specifically expressed in the human gastrointestinal tract and kidney. Moreover, miR-194 is highly expressed in hepatic epithelial cells, but not in Kupffer cells or hepatic stellate cells, two types of mesenchymal cells in the liver. miR-194 expression was decreased in hepatocytes cultured in vitro, which had undergone a dedifferentiation process. Furthermore, expression of miR-194 was low in liver mesenchymal-like cancer cell lines. The overexpression of miR-194 in liver mesenchymal-like cancer cells reduced the expression of the mesenchymal cell marker N-cadherin and suppressed invasion and migration of the mesenchymal-like cancer cells both in vitro and in vivo. We further demonstrated that miR-194 targeted the 3'-UTRs of several genes that were involved in epithelial-mesenchymal transition and cancer metastasis. CONCLUSION These results support a role of miR-194, which is specifically expressed in liver parenchymal cells, in preventing liver cancer cell metastasis.
Collapse
Affiliation(s)
- Zhipeng Meng
- Division of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
503
|
Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 2010; 21:2069-80. [PMID: 20930066 PMCID: PMC3014020 DOI: 10.1681/asn.2010060633] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/28/2010] [Indexed: 01/17/2023] Open
Abstract
TGF-β1-induced expression of extracellular matrix (ECM) genes plays a major role in the development of chronic renal diseases such as diabetic nephropathy. Although many key transcription factors are known, mechanisms involving the nuclear chromatin that modulate ECM gene expression remain unclear. Here, we examined the role of epigenetic chromatin marks such as histone H3 lysine methylation (H3Kme) in TGF-β1-induced gene expression in rat mesangial cells under normal and high-glucose (HG) conditions. TGF-β1 increased the expression of the ECM-associated genes connective tissue growth factor, collagen-α1[Ι], and plasminogen activator inhibitor-1. Increased levels of chromatin marks associated with active genes (H3K4me1, H3K4me2, and H3K4me3), and decreased levels of repressive marks (H3K9me2 and H3K9me3) at these gene promoters accompanied these changes in expression. TGF-β1 also increased expression of the H3K4 methyltransferase SET7/9 and recruitment to these promoters. SET7/9 gene silencing with siRNAs significantly attenuated TGF-β1-induced ECM gene expression. Furthermore, a TGF-β1 antibody not only blocked HG-induced ECM gene expression but also reversed HG-induced changes in promoter H3Kme levels and SET7/9 occupancy. Taken together, these results show the functional role of epigenetic chromatin histone H3Kme in TGF-β1-mediated ECM gene expression in mesangial cells under normal and HG conditions. Pharmacologic and other therapies that reverse these modifications could have potential renoprotective effects for diabetic nephropathy.
Collapse
Affiliation(s)
- Guangdong Sun
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
- Division of Nephrology, 2nd Hospital of Jilin University, Changchun, China
| | - Marpadga A. Reddy
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
| | - Hang Yuan
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
- Division of Nephrology, 2nd Hospital of Jilin University, Changchun, China
| | - Linda Lanting
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
| | - Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
| | - Rama Natarajan
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California; and
| |
Collapse
|
504
|
Abstract
Interstitial and perivascular fibrosis is a hallmark of adverse cardiac remodeling in response to stress such as hypertension, valve disease, or myocardial infarction. The cross talk between fibroblasts and cardiomyocytes seems to be a major determinant of the hypertrophic response, and fibroblasts may prove to be essential regulators of cardiac remodeling. The present review summarizes current knowledge on the modulation of myocardial fibrosis by microRNAs (miRNAs), single-stranded molecules consisting of approximately 22 noncoding nucleotides that regulate a variety of target genes involved in cardiovascular (patho)physiology. Dissection of miRNA-mediated mechanisms on myocardial and cellular and subcellular levels will provide insights into the impact of miRNAs for cardiac structural changes induced by different stressors and also expand our understanding of the interdependence of different cell types in the heart with regard to extracellular matrix formation during healing and remodeling after myocardial infarction or in response to pressure overload. The first successful treatment of fibrosis and failure in a murine pressure overload model by application of miRNA antagonists such as antagomirs in vivo raises the hope that manipulating miRNAs may emerge as a novel treatment strategy for fibrotic changes not only in the heart but also in other organs.
Collapse
Affiliation(s)
- Johann Bauersachs
- Medizinische Klinik und Poliklinik I, Universitätsklinikum, Julius-Maximilians-Universität, Würzburg, Germany.
| |
Collapse
|
505
|
Davis-Dusenbery BN, Hata A. MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways. Genes Cancer 2010; 1:1100-14. [PMID: 21533017 PMCID: PMC3083114 DOI: 10.1177/1947601910396213] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that influence diverse biological outcomes through the repression of target genes during normal development and pathological responses. In particular, the alteration of miRNA expression has dramatic consequences for the progression of tumorigenesis. miRNAs undergo two processing steps that transform a long primary transcript into the mature miRNA. Although the general miRNA biogenesis pathway is well established, it is clear that not all miRNAs are created equally. Recent studies show that miRNA expression is controlled by diverse mechanisms in response to cellular stimuli. In this review, we discuss the mechanisms that govern the regulation of miRNA biogenesis with particular focus on how these mechanisms are perturbed in cancer.
Collapse
|
506
|
Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 2010; 59:2904-15. [PMID: 20699419 PMCID: PMC2963550 DOI: 10.2337/db10-0208] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 07/13/2010] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Diabetes remains a major risk factor for vascular complications that seem to persist even after achieving glycemic control, possibly due to "metabolic memory." Using cultured vascular smooth muscle cells (MVSMC) from type 2 diabetic db/db mice, we recently showed that decreased promoter occupancy of the chromatin histone H3 lysine-9 methyltransferase Suv39h1 and the associated repressive epigenetic mark histone H3 lysine-9 trimethylation (H3K9me3) play key roles in sustained inflammatory gene expression. Here we examined the role of microRNAs (miRs) in Suv39h1 regulation and function in MVSMC from diabetic mice. RESEARCH DESIGN AND METHODS We used luciferase assays with Suv39h1 3'untranslated region (UTR) reporter constructs and Western blotting of endogenous protein to verify that miR-125b targets Suv39h1. We examined the effects of Suv39h1 targeting on inflammatory gene expression by quantitative real time polymerase chain reaction (RT-qPCR), and H3K9me3 levels at their promoters by chromatin immunoprecipitation assays. RESULTS We observed significant upregulation of miR-125b with parallel downregulation of Suv39h1 protein (predicted miR-125b target) in MVSMC cultured from diabetic db/db mice relative to control db/+. miR-125b mimics inhibited both Suv39h1 3'UTR luciferase reporter activity and endogenous Suv39h1 protein levels. Conversely, miR-125b inhibitors showed opposite effects. Furthermore, miR-125b mimics increased expression of inflammatory genes, monocyte chemoattractant protein-1, and interleukin-6, and reduced H3K9me3 at their promoters in nondiabetic cells. Interestingly, miR-125b mimics increased monocyte binding to db/+ MVSMC toward that in db/db MVSMC, further imitating the proinflammatory diabetic phenotype. In addition, we found that the increase in miR-125b in db/db VSMC is caused by increased transcription of miR-125b-2. CONCLUSIONS These results demonstrate a novel upstream role for miR-125b in the epigenetic regulation of inflammatory genes in MVSMC of db/db mice through downregulation of Suv39h1.
Collapse
Affiliation(s)
- Louisa M. Villeneuve
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Mitsuo Kato
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Marpadga A. Reddy
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Mei Wang
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Linda Lanting
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- From the Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
507
|
Wang XX, Jiang T, Shen Y, Caldas Y, Miyazaki-Anzai S, Santamaria H, Urbanek C, Solis N, Scherzer P, Lewis L, Gonzalez FJ, Adorini L, Pruzanski M, Kopp JB, Verlander JW, Levi M. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 2010; 59:2916-27. [PMID: 20699418 PMCID: PMC2963551 DOI: 10.2337/db10-0019] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The pathogenesis of diabetic nephropathy is complex and involves activation of multiple pathways leading to kidney damage. An important role for altered lipid metabolism via sterol regulatory element binding proteins (SREBPs) has been recently recognized in diabetic kidney disease. Our previous studies have shown that the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, modulates renal SREBP-1 expression. The purpose of the present study was then to determine if FXR deficiency accelerates type 1 diabetic nephropathy in part by further stimulation of SREBPs and related pathways, and conversely, if a selective FXR agonist can prevent the development of type 1 diabetic nephropathy. RESEARCH DESIGN AND METHODS Insulin deficiency and hyperglycemia were induced with streptozotocin (STZ) in C57BL/6 FXR KO mice. Progress of renal injury was compared with nephropathy-resistant wild-type C57BL/6 mice given STZ. DBA/2J mice with STZ-induced hyperglycemia were treated with the selective FXR agonist INT-747 for 12 weeks. To accelerate disease progression, all mice were placed on the Western diet after hyperglycemia development. RESULTS The present study demonstrates accelerated renal injury in diabetic FXR KO mice. In contrast, treatment with the FXR agonist INT-747 improves renal injury by decreasing proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis, and modulating renal lipid metabolism, macrophage infiltration, and renal expression of SREBPs, profibrotic growth factors, and oxidative stress enzymes in the diabetic DBA/2J strain. CONCLUSIONS Our findings indicate a critical role for FXR in the development of diabetic nephropathy and show that FXR activation prevents nephropathy in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- DNA Primers
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/prevention & control
- Female
- Foam Cells/pathology
- Kidney/pathology
- Kidney/physiopathology
- Kidney Glomerulus/pathology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Polymerase Chain Reaction
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
Collapse
Affiliation(s)
- Xiaoxin X. Wang
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Tao Jiang
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Yan Shen
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Yupanqui Caldas
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Hannah Santamaria
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Cydney Urbanek
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Nathaniel Solis
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Pnina Scherzer
- Nephrology and Hypertension Services, Hadassah University Hospital, Jerusalem, Israel
| | - Linda Lewis
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jill W. Verlander
- Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida
| | - Moshe Levi
- Department of Medicine, University of Colorado Denver, and the VA Medical Center, Aurora, Colorado
- Corresponding author: Moshe Levi,
| |
Collapse
|
508
|
miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 2010; 5:e13614. [PMID: 21049046 PMCID: PMC2963611 DOI: 10.1371/journal.pone.0013614] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 09/07/2010] [Indexed: 12/15/2022] Open
Abstract
Members of the miR-200 family of micro RNAs (miRNAs) have been shown to inhibit epithelial-mesenchymal transition (EMT). EMT of tubular epithelial cells is the mechanism by which renal fibroblasts are generated. Here we show that miR-200 family members inhibit transforming growth factor-beta (TGF-beta)-induced EMT of tubular cells. Unilateral ureter obstruction (UUO) is a common model of EMT of tubular cells and subsequent tubulointerstitial fibrosis. In order to examine the role of miR-200 family members in tubulointerstitial fibrosis, their expression was investigated in the kidneys of UUO mice. The expression of miR-200 family miRNAs was increased in a time-dependent manner, with induction of miR-200b most pronounced. To clarify the effect of miR-200b on tubulointerstitial fibrosis, we injected miR-200b precursor intravenously. A single injection of 0.5 nM miR-200b precursor was sufficient to inhibit the increase of collagen types I, III and fibronectin in obstructed kidneys, and amelioration of fibrosis was confirmed by observation of the kidneys with Azan staining. miR-200 family members have been previously shown to inhibit EMT by reducing the expression of ZEB-1 and ZEB-2 which are known repressors of E-cadherin. We demonstrated that expression of ZEB-1 and ZEB-2 was increased after ureter obstruction and that administration of the miR-200b precursor reversed this effect. In summary, these results indicate that miR-200 family is up-regulated after ureter obstruction, miR-200b being strongly induced, and that miR-200b ameliorates tubulointerstitial fibrosis in obstructed kidneys. We suggest that members of the miR-200 family, and miR-200b specifically, might constitute novel therapeutic targets in kidney disease.
Collapse
|
509
|
Abstract
MicroRNAs (miRNAs) are small endogenous RNA molecules ∼22 nt in length. miRNAs are capable of posttranscriptional gene regulation by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
510
|
Gonsalves C, Kalra VK. Endothelin-1–Induced Macrophage Inflammatory Protein-1β Expression in Monocytic Cells Involves Hypoxia-Inducible Factor-1α and AP-1 and Is Negatively Regulated by microRNA-195. THE JOURNAL OF IMMUNOLOGY 2010; 185:6253-64. [DOI: 10.4049/jimmunol.1000660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
511
|
Abstract
The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
512
|
Cheng J, Yu H, Deng S, Shen G. MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. TOHOKU J EXP MED 2010; 221:203-9. [PMID: 20543536 DOI: 10.1620/tjem.221.203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mid-gestational mammalian skin has unique capacity to heal without scar. Fetal skin undergoes phenotypic transition from scarless healing to scar repairing during embryonic development. However, the molecular mechanisms underlying the scarless phenotype and phenotypic transition remain largely unknown. MicroRNAs (miRNAs) are a novel class of small regulatory RNAs emerged as post-transcriptional gene repressors and play essential roles in diverse pathophysiological processes including skin morphogenesis and pathogenesis. Here, we performed a genome-wide miRNA profiling to identify the differentially expressed miRNAs between mid-gestational (E16 day) and late-gestational (E19 day) mouse skin, corresponding to scarless and scarring phenotype, respectively. Two miRNAs (miR-29b and miR-29c) with highest fold changes were further validated independently by real-time RT-PCR. Functional annotations of putative targets of differentially expressed miRNAs via bioinformatics approaches revealed that these predicted targets, including Smads, beta-catenin and Ras, were significantly enriched and involved in several signaling pathways important for scarless wound healing. In addition, Dicer, one of the key RNase III responsible for miRNA biogenesis and functions, was found to be up-regulated in the E19 fetal skin as compared with the E16 counterpart. Taken together, our results identified differentially expressed miRNAs between mid-and late-gestational fetal skin that correlated with phenotypic transition from scarless to scarring repair during skin development. Our bioinformatics' analysis suggests that miRNAs might contribute to this phenotypic transition probably by affecting multiple target genes and signaling pathways.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology
| | | | | | | |
Collapse
|
513
|
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010; 6:643-56. [PMID: 20838416 DOI: 10.1038/nrneph.2010.120] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
514
|
Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 2010; 148:381-92. [PMID: 20833630 DOI: 10.1093/jb/mvq096] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of ∼22 nt non-coding RNAs that control diverse biological functions in animals, plants and unicellular eukaryotes by promoting degradation or inhibition of translation of target mRNAs. miRNA expression is often tissue specific and developmentally regulated. Aberrant expression of miRNAs has been linked to developmental abnormalities and human diseases, including cancer and cardiovascular disorders. The recent identification of mechanisms of miRNA biogenesis regulation uncovers that various factors or growth factor signalling pathways control every step of the miRNA biogenesis pathway. Here, we review the mechanisms that control the regulation of miRNA biogenesis discovered in human cells. Further understanding of the mechanisms that control of miRNA biogenesis may allow the development of tools to modulate the expression of specific miRNAs, which is crucial for the development of novel therapies for human disorders derived from aberrant expression of miRNAs.
Collapse
|
515
|
Elvira-Matelot E, Zhou XO, Farman N, Beaurain G, Henrion-Caude A, Hadchouel J, Jeunemaitre X. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol 2010; 21:1724-31. [PMID: 20813867 DOI: 10.1681/asn.2009111186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
WNK1 and WNK4 encode two members of the WNK serine-threonine kinase subfamily. Greater WNK1 expression associates with higher BP. A combination of promoters, enhancers, repressors, and insulators regulate WNK1 expression, but whether microRNAs also modulate WNK1 expression is unknown. Here, computational analysis revealed the presence of a target sequence for miR-192 and miR-215 at the same site in the 3' untranslated region of the ubiquitous L- and the kidney-specific KS-WNK1. We functionally validated this target sequence by transient transfection and reporter assays. Although we observed expression of both miRs along the distal nephron, only miR-192 regulated endogenous WNK1 ex vivo. Furthermore, a potassium load, sodium depletion, and aldosterone infusion each significantly reduced miR-192 expression in the kidney. Taken together, these results suggest a miR-driven mechanism of gene regulation by aldosterone and a role for miR-192 in the regulation of sodium and potassium balance in the kidney.
Collapse
|
516
|
Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, Lanting L, Todorov I, Rossi JJ, Natarajan R. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem 2010; 285:34004-15. [PMID: 20713358 DOI: 10.1074/jbc.m110.165027] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increased accumulation of extracellular matrix proteins and hypertrophy induced by transforming growth factor-β1 (TGF-β) in renal mesangial cells (MC) are hallmark features of diabetic nephropathy. Although the post-transcriptional regulation of key genes has been implicated in these events, details are not fully understood. Here we show that TGF-β increased microRNA-216a (miR-216a) levels in mouse MC, with parallel down-regulation of Ybx1, a miR-216a target and RNA-binding protein. TGF-β also enhanced protein levels of Tsc-22 (TGF-β-stimulated clone 22) and collagen type I α-2 (Col1a2) expression in MC through far upstream enhancer E-boxes by interaction of Tsc-22 with an E-box regulator, Tfe3. Ybx1 colocalized with processing bodies in MC and formed a ribonucleoprotein complex with Tsc-22 mRNA, and this complex formation was reduced by TGF-β, miR-216a mimics, or Ybx1 shRNA to increase Tsc-22 protein levels but enhanced by miR-216a inhibitor oligonucleotides. Chromatin immunoprecipitation (ChIP) assays revealed that TGF-β could increase the occupancies of Tsc-22 and Tfe3 on enhancer E-boxes of Col1a2. Co-immunoprecipitation assays revealed that TGF-β promoted the interaction of Tsc-22 with Tfe3. These results demonstrate that post-transcriptional regulation of Tsc-22 mediated through Ybx1, a miR-216a target, plays a key role in TGF-β-induced Col1a2 in MC related to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
517
|
Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR, Ding X, Greene AS, Liang M. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 2010; 38:8338-47. [PMID: 20716515 PMCID: PMC3001085 DOI: 10.1093/nar/gkq718] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reported previously an approach for identifying microRNA (miRNA)-target pairs by combining miRNA and proteomic analyses. The approach was applied in the present study to examine human renal epithelial cells treated with transforming growth factor β1 (TGFβ1), a model of epithelial-mesenchymal transition important for the development of renal interstitial fibrosis. Treatment of human renal epithelial cells with TGFβ1 resulted in upregulation of 16 miRNAs and 18 proteins and downregulation of 17 miRNAs and 16 proteins. Of the miRNAs and proteins that exhibited reciprocal changes in expression, 77 pairs met the sequence criteria for miRNA-target interactions. Knockdown of miR-382, which was up-regulated by TGFβ1, attenuated TGFβ1-induced loss of the epithelial marker E-cadherin. miR-382 was confirmed by 3'-untranslated region reporter assay to target five genes that were downregulated at the protein level by TGFβ1, including superoxide dismutase 2 (SOD2). Knockdown of miR-382 attenuated TGFβ1-induced downregulation of SOD2. Overexpression of SOD2 ameliorated TGFβ1-induced loss of the epithelial marker. The study provided experimental evidence in the form of reciprocal expression at the protein level for a large number of predicted miRNA-target pairs and discovered a novel role of miR-382 and SOD2 in the loss of epithelial characteristics induced by TGFβ1.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small ( approximately 20-25 nucleotides), single-stranded molecules that suppress the expression of protein-coding genes by translational repression, messenger RNA degradation, or both. More than 700 miRNAs have been identified in the human genome. Amazingly, a single miRNA can regulate the expression of hundreds of mRNAs or proteins within a cell. The small RNAs are fast emerging as master regulators of innate and adaptive immunity and likely to play a pivotal role in transplantation. The clinical application of RNA sequencing ("next-generation sequencing") should facilitate transcriptome profiling at an unprecedented resolution. We provide an overview of miRNA biology and their hypothesized roles in transplantation.
Collapse
Affiliation(s)
- Dany Anglicheau
- Division of Nephrology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
519
|
Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 2010; 107:14339-44. [PMID: 20651252 DOI: 10.1073/pnas.0912701107] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with significant morbidity and mortality. Given the importance of microRNAs (miRNAs) in regulating gene expression, we examined expression profiles of miRNAs following renal IRI. Global miRNA expression profiling on samples prepared from the kidneys of C57BL/6 mice that underwent unilateral warm ischemia revealed nine miRNAs (miR-21, miR-20a, miR-146a, miR-199a-3p, miR-214, miR-192, miR-187, miR-805, and miR-194) that are differentially expressed following IRI when compared with sham controls. These miRNAs were also differently expressed following IRI in immunodeficient RAG-2/common gamma-chain double-knockout mice, suggesting that the changes in expression observed are not significantly influenced by lymphocyte infiltration and therefore define a lymphocyte-independent signature of renal IRI. In vitro studies revealed that miR-21 is expressed in proliferating tubular epithelial cells (TEC) and up-regulated by both cell-intrinsic and -extrinsic mechanisms resulting from ischemia and TGF-beta signaling, respectively. In vitro, knockdown of miR-21 in TEC resulted in increased cell death, whereas overexpression prevented cell death. However, overexpression of miR-21 alone was not sufficient to prevent TEC death following ischemia. Our findings therefore define a molecular fingerprint of renal injury and suggest miR-21 may play a role in protecting TEC from death.
Collapse
|
520
|
Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME, Kantharidis P. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010; 59:1794-802. [PMID: 20393144 PMCID: PMC2889781 DOI: 10.2337/db09-1736] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Increased deposition of extracellular matrix (ECM) within the kidney is driven by profibrotic mediators including transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF). We investigated whether some of their effects may be mediated through changes in expression of certain microRNAs (miRNAs). RESEARCH DESIGN AND METHODS Proximal tubular cells, primary rat mesangial cells, and human podocytes were analyzed for changes in the expression of key genes, ECM proteins, and miRNA after exposure to TGF-beta (1-10 ng/microl). Tubular cells were also infected with CTGF-adenovirus. Kidneys from diabetic apoE mice were also analyzed for changes in gene expression and miRNA levels. RESULTS TGF-beta treatment was associated with morphologic and phenotypic changes typical of epithelial-mesenchymal transition (EMT) including increased fibrogenesis in all renal cell types and decreased E-cadherin expression in tubular cells. TGF-beta treatment also modulated the expression of certain miRNAs, including decreased expression of miR-192/215 in tubular cells, mesangial cells, which are also decreased in diabetic kidney. Ectopic expression of miR-192/215 increased E-cadherin levels via repressed translation of ZEB2 mRNA, in the presence and absence of TGF-beta, as demonstrated by a ZEB2 3'-untranslated region luciferase reporter assay. However, ectopic expression of miR-192/215 did not affect the expression of matrix proteins or their induction by TGF-beta. In contrast, CTGF increased miR-192/215 levels, causing a decrease in ZEB2, and consequently increased E-cadherin mRNA. CONCLUSIONS These data demonstrate the linking role of miRNA-192/215 and ZEB2 in TGF-beta/CTGF-mediated changes in E-cadherin expression. These changes appear to occur independently of augmentation of matrix protein synthesis, suggesting that a multistep EMT program is not necessary for fibrogenesis to occur.
Collapse
Affiliation(s)
- Bo Wang
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Michal Herman-Edelstein
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Philip Koh
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Wendy Burns
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Anna Watson
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Moin Saleem
- Academic and Children's Renal Unit, University of Bristol, Bristol, U.K
| | - Gregory J. Goodall
- Centre for Cancer Biology, SA Pathology, and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen M. Twigg
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Mark E. Cooper
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Phillip Kantharidis
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Victoria, Australia
- Corresponding author: Phillip Kantharidis,
| |
Collapse
|
521
|
The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Mol Med 2010; 12:e17. [PMID: 20504380 DOI: 10.1017/s1462399410001481] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Common to all forms of chronic kidney disease is the progressive scarring of the tubulo-interstitial space, associated with the acquisition and accumulation of activated myofibroblasts. Many of these myofibroblasts are generated when tubular epithelial cells progressively lose their epithelial characteristics (cell-cell contact, microvilli, tight-junction proteins, apical-basal polarity) and acquire features of a mesenchymal lineage, including stress fibres, filopodia and augmented matrix synthesis. This process, known as epithelial to mesenchymal transition (EMT), plays an important role in progressive kidney disease. For EMT to occur in tubular cells, the transcriptional activation (and derepression) of genes required to sustain mesenchymal-type structures and functions (e.g. vimentin, alpha-smooth muscle actin) must occur alongside repression (or deactivation) of genes that act to maintain the epithelial phenotype (e.g. E-cadherin, bone morphogenic protein 7). Several factors have been suggested as potential initiators of EMT. With a few key exceptions, these triggers require the induction of transforming growth factor beta (TGF-beta) and downstream mediators, including SMADs, CTGF, ILK and SNAI1. Activation of TGF-beta receptors is also able to stimulate a range of additional pathways (so-called non-SMAD activation), including RhoA, mitogen-activated protein kinase and phosphoinositide 3-kinase signalling cascades, that also contribute to EMT and renal fibrogenesis. This review examines in detail the molecular mediators of EMT in tubular cells and its potential role as a long-lasting mediator of metabolic stress.
Collapse
|
522
|
Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 2010; 285:23457-65. [PMID: 20501654 DOI: 10.1074/jbc.m110.136168] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein that plays a crucial role in microvascular complications of diabetes, including diabetic nephropathy. However, the precise regulatory mechanisms governing VEGF expression in the diabetic milieu are still poorly understood. Here, we provide evidence that microRNA-93 (miR-93) regulates VEGF expression in experimental models of diabetes both in vitro and in vivo. Comparative microRNA expression profile arrays identified miR-93 as a signature microRNA in hyperglycemic conditions. We identified VEGF-A as a putative target of miR-93 in the kidney with a perfect complementarity between miR-93 and the 3'-untranslated region of vegfa in several species. When cotransfected with a luciferase reporter construct containing the mouse vegfa 3'-untranslated region, expression of miR-93 markedly decreased the luciferase activity. We showed that forced expression of miR-93 in cells abrogated VEGF protein secretion. Conversely, anti-miR-93 inhibitors increased VEGF release. Transfection of miR-93 also prevented the effect of high glucose on VEGF downstream targets. Using transgenic mice containing VEGF-LacZ bicistronic transcripts, we found that inhibition of glomerular miR-93 by peptide-conjugated morpholino oligomers elicited increased expression of VEGF. Our findings also indicate that high glucose decreases miR-93 expression by down-regulating the promoter of the host MCM7 gene. Taken together, our findings provide new insights into the role of miR-93 in VEGF signaling pathway and offer a potentially novel target in preventing the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jianyin Long
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
523
|
Chung ACK, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 2010; 21:1317-25. [PMID: 20488955 DOI: 10.1681/asn.2010020134] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TGF-beta/Smad3 promotes renal fibrosis, but the mechanisms that regulate profibrotic genes remain unclear. We hypothesized that miR-192, a microRNA expressed in the kidney may mediate renal fibrosis in a Smad3-dependent manner. Microarray and real-time PCR demonstrated a tight association between upregulation of miR-192 in the fibrotic kidney and activation of TGF-beta/Smad signaling. Deletion of Smad7 promoted miR-192 expression and enhanced Smad signaling and fibrosis in obstructive kidney disease. In contrast, overexpression of Smad7 to block TGF-beta/Smad signaling inhibited miR-192 expression and renal fibrosis in the rat 5/6 nephrectomy model; in vitro, overexpression of Smad7 in tubular epithelial cells abolished TGF-beta1-induced miR-192 expression. Furthermore, Smad3 but not Smad2 mediated TGF-beta1-induced miR-192 expression by binding to the miR-192 promoter. Last, overexpression of a miR-192 mimic promoted and addition of a miR-192 inhibitor blocked TGF-beta1-induced collagen matrix expression. Taken together, miR-192 may be a critical downstream mediator of TGF-beta/Smad3 signaling in the development of renal fibrosis.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
524
|
Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol 2010; 299:F14-25. [PMID: 20462972 DOI: 10.1152/ajprenal.00200.2010] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes is associated with significantly accelerated rates of several debilitating microvascular complications such as nephropathy, retinopathy, and neuropathy, and macrovascular complications such as atherosclerosis and stroke. While several studies have been devoted to the evaluation of genetic factors related to type 1 and type 2 diabetes and associated complications, much less is known about epigenetic changes that occur without alterations in the DNA sequence. Environmental factors and nutrition have been implicated in diabetes and can also affect epigenetic states. Exciting research has shown that epigenetic changes in chromatin can affect gene transcription in response to environmental stimuli, and changes in key chromatin histone methylation patterns have been noted under diabetic conditions. Reports also suggest that epigenetics may be involved in the phenomenon of metabolic memory observed in clinic trials and animal studies. Further exploration into epigenetic mechanisms can yield new insights into the pathogenesis of diabetes and its complications and uncover potential therapeutic targets and treatment options to prevent the continued development of diabetic complications even after glucose control has been achieved.
Collapse
Affiliation(s)
- Louisa M Villeneuve
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
525
|
Abstract
Kidney development is a paradigm of how multiple cell types are integrated into highly specialized epithelial structures via various inductive events. A network of transcription factors and signaling pathways have been identified as crucial regulators. The recent discovery of a group of small, non-coding RNAs, microRNAs (miRNAs), has added a new layer of complexity. Studies using the pronephric kidney of Xenopus and the metanephric kidney of mouse have demonstrated that a tight regulation of mRNA stability and translation efficiency by miRNAs is very important as well. The interplay between miRNAs and the transcriptional network provides plasticity and robustness to the system. Importantly, miRNAs are not only necessary for early aspects of kidney development, but also later in life. As such they may provide a mean to maintain/modulate kidney function during homeostasis and injury.
Collapse
Affiliation(s)
- Oliver Wessely
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA, USA.
| | | | | |
Collapse
|
526
|
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of 18-25 nucleotides that are generally believed to either block the translation or induce the degradation of target mRNA. miRNAs have been shown to play fundamental roles in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis and carcinogenesis. Fibrosis results from an imbalance in the turnover of extracellular matrix molecules and is a highly debilitating process that can eventually lead to organ dysfunction. A growing body of evidence suggests that miRNAs participate in the fibrotic process in a number of organs including the heart, kidney, liver and lung. In this review, we summarize our current understanding of the role of miRNAs in the development of tissue fibrosis and their potential as novel drug targets.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University, Shaanxi, China. <>
| | | | | | | |
Collapse
|
527
|
Abstract
Obesity and the metabolic syndrome are major public health concerns, and present a formidable therapeutic challenge. Many patients remain recalcitrant to conventional lifestyle changes and medical therapies. Bariatric surgery has made laudable progress in the treatment of obesity and its related metabolic disorders, yet carries inherent risks. Unravelling the molecular mechanisms of metabolic disorders is essential in order to develop novel, valid therapeutic strategies. Mi(cro)RNAs play important regulatory roles in a variety of biological processes including adipocyte differentiation, metabolic integration, insulin resistance and appetite regulation. Investigation of these molecules and their genetic targets may potentially identify new pathways involved in complex metabolic disease processes, improving our understanding of metabolic disorders and influence future approaches to the treatment of obesity. This review discusses the role of miRNAs in obesity and related components of the metabolic syndrome, and highlights the potential of using miRNAs as novel biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- H M Heneghan
- Department of Surgery, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
528
|
Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010; 396:457-62. [DOI: 10.1016/j.bbrc.2010.04.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 12/19/2022]
|
529
|
Earle JSL, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010; 12:433-40. [PMID: 20413677 DOI: 10.2353/jmoldx.2010.090154] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNA), small noncoding RNAs, are potential diagnostic and prognostic markers, as well as therapeutic targets. miRNA profiles of colorectal carcinomas have not been studied extensively in the context of microsatellite instability (MSI) status. We therefore evaluated 55 paired colorectal adenocarcinomas (CRC) and non-neoplastic mucosa samples using a panel of 24 miRNAs selected by literature review and prior studies in our laboratory. Stem-loop reverse transcriptase quantitative (real-time) polymerase chain reaction assays were done on RNA extracted from formalin-fixed, paraffin-embedded tissue of resection specimens. When miRNA expression was compared with clinicopathologic features and MSI status, eleven miRNAs (miR-183, -31, -20, -25, -92, -93, -17, -135a, -203, -133b, and -223) were over-expressed in CRC relative to mucosa, and nine (miR-192, -215, -26b, -143, -145, -191, -196a, -16, and let-7a) were under-expressed in CRC. Relative expression of miR-92, -223, -155, -196a, -31, and -26b were significantly different among MSI subgroups, and miR-31 and miR-223 were overexpressed in CRC of patients with hereditary non-polyposis colorectal cancer syndrome (Lynch syndrome). Our findings indicate that miRNA expression in CRC is associated with MSI subgroups, including low MSI and HNPCC-associated cancers, and that miRNAs may have posttranscriptional gene regulatory roles in these MSI subgroups and possible effects on the clinicopathologic and biomarker characteristics.
Collapse
Affiliation(s)
- Jonathan S L Earle
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 8515 Fannin St, NAO1.061a, Houston, Texas 77054, USA
| | | | | | | | | | | | | |
Collapse
|
530
|
Bhatt K, Zhou L, Mi QS, Huang S, She JX, Dong Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 2010. [PMID: 20386864 DOI: 10.2119/molmed.2010-00002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that are produced endogenously and have emerged as important regulators in pathophysiological conditions such as development and tumorigenesis. Very little is known about the regulation of microRNAs in renal diseases, including acute kidney injury (AKI). In this study, we examined the regulation of microRNA-34a (miR-34a) in experimental models of cisplatin-induced AKI and nephrotoxicity. By Northern blot and real-time polymerase chain reaction analyses, we detected an induction of miR-34a in vitro during cisplatin treatment of mouse proximal tubular cells and also in vivo during cisplatin nephrotoxicity in C57BL/6 mice. In cultured cells, miR-34a was induced within a few hours. In mice, miR-34a induction was detectable in renal tissues after 1 d of cisplatin treatment and increased to approximately four-fold of control at d 3. During cisplatin treatment, p53 was activated. Inhibition of p53 with pifithrin-α abrogated the induction of miR-34a during cisplatin treatment of proximal tubular cells. In vivo, miR-34a induction by cisplatin was abrogated in p53-deficient mice, a result that further confirms a role for p53 in miR-34a induction during cisplatin nephrotoxicity. Functionally, antagonism of miR-34a with specific antisense oligonucleotides increased cell death during cisplatin treatment. Collectively, the results suggest that miR-34a is induced via p53 during cisplatin nephrotoxicity and may play a cytoprotective role for cell survival.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Cellular Biology and Anatomy,Medical College of Georgia and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
531
|
Bhatt K, Zhou L, Mi QS, Huang S, She JX, Dong Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 2010; 16:409-16. [PMID: 20386864 DOI: 10.2119/molmed.2010.00002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 04/08/2010] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that are produced endogenously and have emerged as important regulators in pathophysiological conditions such as development and tumorigenesis. Very little is known about the regulation of microRNAs in renal diseases, including acute kidney injury (AKI). In this study, we examined the regulation of microRNA-34a (miR-34a) in experimental models of cisplatin-induced AKI and nephrotoxicity. By Northern blot and real-time polymerase chain reaction analyses, we detected an induction of miR-34a in vitro during cisplatin treatment of mouse proximal tubular cells and also in vivo during cisplatin nephrotoxicity in C57BL/6 mice. In cultured cells, miR-34a was induced within a few hours. In mice, miR-34a induction was detectable in renal tissues after 1 d of cisplatin treatment and increased to approximately four-fold of control at d 3. During cisplatin treatment, p53 was activated. Inhibition of p53 with pifithrin-α abrogated the induction of miR-34a during cisplatin treatment of proximal tubular cells. In vivo, miR-34a induction by cisplatin was abrogated in p53-deficient mice, a result that further confirms a role for p53 in miR-34a induction during cisplatin nephrotoxicity. Functionally, antagonism of miR-34a with specific antisense oligonucleotides increased cell death during cisplatin treatment. Collectively, the results suggest that miR-34a is induced via p53 during cisplatin nephrotoxicity and may play a cytoprotective role for cell survival.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Cellular Biology and Anatomy,Medical College of Georgia and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
532
|
Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 2010; 21:756-61. [PMID: 20360310 DOI: 10.1681/asn.2009070718] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are endogenous, noncoding, small RNAs that regulate expression and function of genes, but little is known about regulation of microRNA in the kidneys under normal or pathologic states. Here, we generated a mouse model in which the proximal tubular cells lack Dicer, a key enzyme for microRNA production. These mice had normal renal function and histology under control conditions despite a global downregulation of microRNAs in the renal cortex; however, these animals were remarkably resistant to renal ischemia-reperfusion injury (IRI), showing significantly better renal function, less tissue damage, lower tubular apoptosis, and improved survival compared with their wild-type littermates. Microarray analysis showed altered expression of specific microRNAs during renal IRI. Taken together, these results demonstrate evidence for a pathogenic role of Dicer and associated microRNAs in renal IRI.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
533
|
Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Ferreri NR, Yeo NC, Liang M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 2010; 55:974-82. [PMID: 20194304 PMCID: PMC2862728 DOI: 10.1161/hypertensionaha.109.144428] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/29/2010] [Indexed: 01/10/2023]
Abstract
MicroRNAs are endogenous repressors of gene expression. We examined microRNAs in the renal medulla of Dahl salt-sensitive rats and consomic SS-13(BN) rats. Salt-induced hypertension and renal injury in Dahl salt-sensitive rats, particularly medullary interstitial fibrosis, have been shown previously to be substantially attenuated in SS-13(BN) rats. Of 377 microRNAs examined, 5 were found to be differentially expressed between Dahl salt-sensitive rats and consomic SS-13(BN) rats receiving a high-salt diet. Real-time PCR analysis demonstrated that high-salt diets induced substantial upregulation of miR-29b in the renal medulla of SS-13(BN) rats but not in SS rats. miR-29b was predicted to regulate 20 collagen genes, matrix metalloproteinase 2 (Mmp2), integrin beta1 (Itgb1), and other genes related to the extracellular matrix. Expression of 9 collagen genes and Mmp2 was upregulated by a high-salt diet in the renal medulla of SS rats, but not in SS-13(BN) rats, an expression pattern opposite to miR-29b. Knockdown of miR-29b in the kidneys of SS-13(BN) rats resulted in upregulation of several collagen genes. miR-29b reduced expression levels of several collagen genes and Itgb1 in cultured rat renal medullary epithelial cells. Moreover, miR-29b suppressed the activity of luciferase when the reporter gene was linked to a 3'-untranslated segment of collagen genes Col1a1, Col3a1, Col4a1, Col5a1, Col5a2, Col5a3, Col7a1, Col8a1, Mmp2, or Itgb1 but not Col12a1. The result demonstrated broad effects of miR-29b on a large number of collagens and genes related to the extracellular matrix and suggested involvement of miR-29b in the protection from renal medullary injury in SS-13(BN) rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Norman E. Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Limin Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Kristie Usa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Allen W. Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicholas R. Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Nan Cher Yeo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
534
|
Kato M, Natarajan R. microRNA cascade in diabetic kidney disease: Big impact initiated by a small RNA. Cell Cycle 2010; 8:3613-4. [PMID: 19884793 DOI: 10.4161/cc.8.22.9816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
535
|
Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, Chen YQ, Qu LH. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 2010; 584:811-6. [DOI: 10.1016/j.febslet.2009.12.053] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 12/19/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
|
536
|
Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010; 21:438-47. [PMID: 20056746 DOI: 10.1681/asn.2009050530] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of microRNAs (miRs), which are endogenous RNA oligonucleotides that regulate gene expression, in diabetic nephropathy is unknown. Here, we performed expression profiling of cultured proximal tubular cells (PTCs) under high-glucose and control conditions. We identified expression of 103 of 328 microRNAs but did not observe glucose-induced changes in expression. Next, we performed miR expression profiling in pooled RNA from formalin-fixed, paraffin-embedded tissue from renal biopsies. We studied three groups of patients with established diabetic nephropathy and detected 103 of 365 miRs. Two miRs differed by more than two-fold between progressors and nonprogressors, and 12 miRs differed between late presenters and other biopsies. We noted the greatest change in miR-192 expression, which was significantly lower in late presenters. Furthermore, in individual biopsies, low expression of miR-192 correlated with tubulointerstitial fibrosis and low estimated GFR. In vitro, treatment of PTCs with TGF-beta1 decreased miR-192 expression. Overexpression of miR-192 suppressed expression of the E-Box repressors ZEB1 and ZEB2, thereby opposing TGF-beta-mediated downregulation of E-cadherin. In summary, loss of miR-192 expression associates with increased fibrosis and decreased estimated GFR in diabetic nephropathy in vivo, perhaps by enhancing TGF-beta-mediated downregulation of E-cadherin in PTCs.
Collapse
Affiliation(s)
- Aleksandra Krupa
- Institute of Nephrology, Cardiff University, Heath Park Campus, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
537
|
Abstract
Diabetic nephropathy (DN) is characterized by a plethora of signaling abnormalities that together ultimately result in the clinical and pathologic hallmarks of DN, namely progressive albuminuria followed by a gradual decline in glomerular filtration rate leading to kidney failure, and accompanied by podocyte loss, progressive glomerular sclerosis and, ultimately, progressive tubulointerstitial fibrosis. Over the past few years, the general understanding of the abnormalities in signaling pathways that lead to DN has expanded considerably. In this review, some of the important pathways that appear to be involved in driving this process are discussed, with special emphasis on newer findings and insights. Newer concepts regarding signaling changes in bradykinin, mTOR, JAK/STAT, MCP-1, VEGF, endothelial nitric oxide synthase, activated protein C and other pathways are discussed.
Collapse
Affiliation(s)
- Frank C Brosius
- Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan Medical School, 5520 MSRB1, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0680, USA, Tel.: +1 734 764 3157, ,
| | | | | | | |
Collapse
|
538
|
Abstract
MicroRNAs (miRNAs) are noncoding, single-stranded RNA molecules that have important roles in a number of physiological and pathological processes. Previous studies have proved that miRNAs targeting ZEB1 and ZEB2 may repress epithelial-to-mesenchymal transition. In this work, we studied the intrarenal expression of miR-200 family, miR-205 and miR-192 in patients with immunoglobulin A (IgA) nephropathy. We studied 43 patients with biopsy-proven IgA nephropathy (IgA group). The intrarenal expression of miRNAs was quantified and compared with that of 15 patients with noninflammatory glomerulosclerosis (GS group) and 20 patients with nephrectomy for kidney cancer as controls (CTL group). The level of intrarenal miR-200c was downregulated, whereas the levels of intrarenal miR-141, miR-205 and miR-192 were upregulated in IgA but not GS group. Proteinuria significantly correlated with the intrarenal expression of miR-200c (r=-0.324, P=0.011) and glomerular filtration rate (GFR) significantly correlated with the intrarenal expression of miR-205 (r=-0.280, P=0.030). The degree of tubulointerstitial scarring correlated with miR-205 expression (r=0.389, P=0.021), whereas glomerulosclerosis correlated with miR-192 expression (r=-0.311, P=0.045). The rate of GFR decline significantly correlated with the intrarenal expression of miR-192 (r=0.373, P=0.015). The intrarenal expression of E-cadherin significantly correlated with the intrarenal expression of miR-200c (r=0.392, P=0.002). The results show that intrarenal expression of miR-200c, miR-141, miR-205 and miR-192 was diversely regulated and correlated with disease severity and progression in patients with IgA nephropathy. These miRNA species may be important in the pathogenesis and progression of IgA nephropathy.
Collapse
|
539
|
Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 2010; 23:78-84. [PMID: 19910931 DOI: 10.1038/ajh.2009.208] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, single-stranded RNA molecules that play important roles in a number of physiological and pathological processes. Previous studies showed that miRNAs targeting transcription factors ZEB1 and ZEB2 may repress epithelial-mesenchymal transition (EMT). METHODS We studied 34 consecutive patients with biopsy-proven hypertensive nephrosclerosis. Intrarenal expression of miR-200 family, miR-205, and miR-192 were determined. We also studied normal renal tissue from 20 patients with nephrectomy for kidney cancer as controls. RESULTS The level of intrarenal of miR-200a, miR-200b, miR-141, miR-429, miR-205, and miR-192 were significantly higher in patients with hypertensive nephrosclerosis than controls. Proteinuria correlated with intrarenal expression of miR-200a (r = 0.594, P < 0.001), miR-200b (r = 0.395, P = 0.004), miR-141 (r = 0.377, P = 0.007), miR-429 (r = 0.346, P = 0.013), miR-205 (r = 0.636, P < 0.001), and miR-192 (r = 0.306, P = 0.029). Estimated glomerular filtration rate (GFR) correlated with intrarenal expression of miR-200a (r = -0.374, P = 0.007) and miR-205 (r = -0.400, P = 0.005). Intrarenal expression of ZEB1 inversely correlated with intrarenal expression of miR-429, whereas expression of ZEB2 inversely correlated with miR-200a, miR-200b, and miR-429. CONCLUSIONS The results show that intrarenal expression of miR-200a, miR-200b, miR-141, miR-429, miR-205, and miR-192 were increased in hypertensive nephrosclerosis, and the degree of upregulation correlated with disease severity. The results suggested that these miRNA species may play important roles in the pathogenesis of hypertensive nephrosclerosis.
Collapse
|
540
|
Agrawal R, Tran U, Wessely O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 2009; 136:3927-36. [PMID: 19906860 DOI: 10.1242/dev.037432] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They are involved in diverse biological processes, such as development, differentiation, cell proliferation and apoptosis. To study the role of miRNAs during pronephric kidney development of Xenopus, global miRNA biogenesis was eliminated by knockdown of two key components: Dicer and Dgcr8. These embryos developed a range of kidney defects, including edema formation, delayed renal epithelial differentiation and abnormal patterning. To identify a causative miRNA, mouse and frog kidneys were screened for putative candidates. Among these, the miR-30 family showed the most prominent kidney-restricted expression. Moreover, knockdown of miR-30a-5p phenocopied most of the pronephric defects observed upon global inhibition of miRNA biogenesis. Molecular analyses revealed that miR-30 regulates the LIM-class homeobox factor Xlim1/Lhx1, a major transcriptional regulator of kidney development. miR-30 targeted Xlim1/Lhx1 via two previously unrecognized binding sites in its 3'UTR and thereby restricted its activity. During kidney development, Xlim1/Lhx1 is required in the early stages, but is downregulated subsequently. However, in the absence of miR-30 activity, Xlim1/Lhx1 is maintained at high levels and, therefore, may contribute to the delayed terminal differentiation of the amphibian pronephros.
Collapse
Affiliation(s)
- Raman Agrawal
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
541
|
Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun 2009; 391:316-21. [PMID: 19913496 DOI: 10.1016/j.bbrc.2009.11.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 11/07/2009] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through imperfect base pairing with the 3' untranslated region (3'UTR) of target mRNA. We studied the regulation of alpha 1 (I) collagen (Col1A1) expression by miRNAs in human stellate cells, which are involved in liver fibrogenesis. Among miR-29b, -143, and -218, whose expressions were altered in response to transforming growth factor-beta1 or interferon-alpha stimulation, miR-29b was the most effective suppressor of type I collagen at the mRNA and protein level via its direct binding to Col1A1 3'UTR. miR-29b also had an effect on SP1 expression. These results suggested that miR-29b is involved in the regulation of type I collagen expression by interferon-alpha in hepatic stellate cells. It is anticipated that miR-29b will be used for the regulation of stellate cell activation and lead to antifibrotic therapy.
Collapse
|
542
|
Abstract
The discovery in mammalian cells of hundreds of small RNA molecules, called microRNAs, with the potential to modulate the expression of the majority of the protein-coding genes has revolutionized many areas of biomedical research, including the diabetes field. MicroRNAs function as translational repressors and are emerging as key regulators of most, if not all, physiological processes. Moreover, alterations in the level or function of microRNAs are associated with an increasing number of diseases. Here, we describe the mechanisms governing the biogenesis and activities of microRNAs. We present evidence for the involvement of microRNAs in diabetes mellitus, by outlining the contribution of these small RNA molecules in the control of pancreatic beta-cell functions and by reviewing recent studies reporting changes in microRNA expression in tissues isolated from diabetes animal models. MicroRNAs hold great potential as therapeutic targets. We describe the strategies developed for the delivery of molecules mimicking or blocking the function of these tiny regulators of gene expression in living animals. In addition, because changes in serum microRNA profiles have been shown to occur in association with different human diseases, we also discuss the potential use of microRNAs as blood biomarkers for prevention and management of diabetes.
Collapse
Affiliation(s)
- I G M Kolfschoten
- Department of Cellular Biology and Morphology, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
543
|
Wang H, Li Y, Liu H, Liu S, Liu Q, Wang XM, Shi Y, Duan H. Peroxynitrite mediates glomerular lesion of diabetic rat via JAK/STAT signaling pathway. J Endocrinol Invest 2009; 32:844-51. [PMID: 19636222 DOI: 10.1007/bf03345756] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Peroxynitrite, a highly reactive oxidant produced by the reaction of nitric oxide with free radicals superoxide, has been indicated to be involved in many diseases. However, the contributions of peroxynitrite to diabetic nephropathy and the underlying mechanism have not been fully explored. AIM The present study was designed to evaluate the role and the underlying mechanism of peroxynitrite in glomerular lesion of diabetic rat. METHODS Diabetes was induced in male Wistar rats by i.p. injection of streptozotocin, and urate was used as a specific scavenger of peroxynitrite; the pathological changes of rat glomerulus were evaluated by hematoxylin and eosin, periodic acid-Schiff staining and transmission electron microscopy observation; immunohistochemistry and Western blot were used to detect the content of nitrotyrosine (the marker of peroxynitrite) in renal cortex; the expression levels of tyrosine phosphorylation of JAK2, STAT1, and STAT3 were assessed by Western blot assay; RT-PCR and Western blot were used to assay expression levels of transforming growth factor (TGF)-beta1 and fibronectin; biochemical indicators of renal function were also detected. RESULTS The content of nitrotyrosine was increased, consistent with the pathological changes of glomerulus and renal dysfunction in the diabetes group. Urate prevented the formation of nitrotyrosine in rat glomerulus and attenuated the pathological alterations. Furthermore, urate inhibited the activation of JAK2, STAT1, and STAT3. Finally, homogenates from renal cortices demonstrated reduced expression of TGF- beta1 and fibronectin under urate treatment. CONCLUSIONS Our findings thus provides in vivo evidence that exaggerated peroxynitrite formation mediates the glomerular lesion in, at least, Type 1 diabetes, which may function through JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- H Wang
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
544
|
Schaeffer V, Hansen KM, Morris DR, Abrass CK. Reductions in laminin beta2 mRNA translation are responsible for impaired IGFBP-5-mediated mesangial cell migration in the presence of high glucose. Am J Physiol Renal Physiol 2009; 298:F314-22. [PMID: 19864299 DOI: 10.1152/ajprenal.00483.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor binding protein-5 (IGFBP-5) mediates mesangial cell migration through activation of cdc42, and laminin421 binding to alpha(6)beta(1)-integrin (Berfield AK, Hansen KM, Abrass CK. Am J Physiol Cell Physiol 291: C589-C599, 2006). Because glomerular expression of laminin beta(2) is reduced in diabetic rats (Abrass CK, Spicer D, Berfield AK, St. John PL, Abrahamson DR. Am J Pathol 151: 1131-1140, 1997), we directly examined the effect of hyperglycemia on mesangial cell migration and laminin beta2 expression. Migration mediated by IGFBP-5 is impaired in the presence of 25 mM glucose. This reduction in migration was found to result from a loss in mesangial cell synthesis of laminin421, and IGFBP-5-induced migration could be restored by replacing laminin421. Additional studies showed that there was selective reduction in mRNA translation of laminin beta2 in the presence of high glucose. Preserved synthesis of laminin beta1 indicates that not all proteins are reduced by high glucose and confirms prior data showing that laminin411 cannot substitute for laminin421 in IGFBP-5-mediated migration. Given the importance of mesangial migration in the reparative response to diabetes-associated mesangiolysis, these findings provide new insights into abnormalities associated with diabetic nephropathy and the potential importance of differential control of protein translation in determination of alterations of protein expression.
Collapse
Affiliation(s)
- Valerie Schaeffer
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
545
|
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 2009; 4:1255-66. [PMID: 19581401 DOI: 10.2215/cjn.00520109] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) are a family of short non-coding RNAs. These endogenously produced factors have been shown to play important roles in gene regulation. The discovery of miRs has greatly expanded our knowledge of gene regulation at the posttranscriptional level. miRs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiologic and pathologic processes. The imperative need to determine their cellular targets and disease relevance has sparked an unprecedented explosion of research in the miR field. Recent findings have revealed critical functions for specific miRs in cellular events such as proliferation, differentiation, development, and immune responses and in the regulation of genes relevant to human diseases. Of particular interest to renal researchers are recent reports that key miRs are highly expressed in the kidney and can act as effectors of TGF-beta actions and high glucose in diabetic kidney disease. Moreover, podocyte-specific deletion of Dicer, a key enzyme involved in miR biogenesis, led to proteinuria and severe renal dysfunction in mice. Hence, studies aimed at determining the in vitro and in vivo functions of miRs in the kidney could determine their value as therapeutic targets for progressive renal glomerular and tubular diseases. Translational approaches could be facilitated by the development of effective inhibitors of specific miRs and methods for optimal delivery of anti-miRs to the kidney. The major goal of this review is to highlight key functions of these miRs and their relationships to human diseases, with special emphasis on diabetic kidney disease.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
546
|
Davis BN, Hata A. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal 2009; 7:18. [PMID: 19664273 PMCID: PMC3224893 DOI: 10.1186/1478-811x-7-18] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/10/2009] [Indexed: 01/08/2023] Open
Abstract
microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Brandi N Davis
- Department of Biochemistry, Tufts University School of Medicine, Boston MA 02111, USA.
| | | |
Collapse
|
547
|
Abstract
MicroRNAs (miRs) are small non-coding RNAs regulating gene expression at the post-transcriptional and/or translational levels. miRs play important roles in diverse biological processes, including development, cell differentiation, proliferation and apoptosis. Recent evidence has shown that miR loci frequently map to cancer-associated genomic regions and deregulated miR expression profiles are associated with many cancer types, implicating miRs in crucial processes that lead to tumourigenesis. Here, we review the current findings about miRs and tumourigenesis, focusing on their involvement in the apoptosis pathway. A significant observation is that greater than one-quarter of all known human miRs were reported to be deregulated in at least one cancer type. The expression of a subset of miRs (e.g. miR-21 and miR-155) was found to be consistently up-regulated, whereas another subset of miRs (e.g.miR-143 and miR-145) was consistently down-regulated across different cancer types suggesting their involvement in regulating common cellular processes whose deregulation may lead to tumourigenesis. Several miRs were implicated to play roles in cell proliferation and apoptosis. Some miRs, such as miR-29b and miR-15–16, influence only the apoptotic pathway, whereas others including let-7/miR-98 and miR-17–92 may play roles in both the apoptotic and cell-proliferation pathways. In conclusion, although our current understanding of the functions of miRs is still fragmentary, taken together, this review highlights the complex and intricate roles that miRs play in the regulation of cellular processes. Perturbation of the expression of miRs may thus lead to tumourigenesis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry, National University of Singapore, Singapore
| | | |
Collapse
|
548
|
|
549
|
Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009; 11:881-9. [PMID: 19543271 PMCID: PMC2744130 DOI: 10.1038/ncb1897] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/20/2009] [Indexed: 01/20/2023]
Abstract
Akt kinase is activated by transforming growth factor-beta1 (TGF-beta) in diabetic kidneys, and has important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells. However, the mechanisms of Akt activation by TGF-beta are not fully understood. Here we show that TGF-beta activates Akt in glomerular mesangial cells by inducing the microRNAs (miRNAs) miR-216a and miR-217, both of which target PTEN (phosphatase and tensin homologue), an inhibitor of Akt activation. These miRNAs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-beta and miR-192 through E-box-regulated mechanisms, as shown previously. Akt activation by these miRs led to glomerular mesangial cell survival and hypertrophy, which were similar to the effects of activation by TGF-beta. These studies reveal a mechanism of Akt activation through PTEN downregulation by two miRs, which are regulated by upstream miR-192 and TGF-beta. Due to the diversity of PTEN function, this miR-amplifying circuit may have key roles, not only in kidney disorders, but also in other diseases.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Sumanth Putta
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Mei Wang
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Hang Yuan
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Linda Lanting
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Indu Nair
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Amanda Gunn
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Yoshimi Nakagawa
- Department of Internal Medicine, Metabolism and Endocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Shimano
- Department of Internal Medicine, Metabolism and Endocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan, 305-8575
| | - Ivan Todorov
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - John J. Rossi
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Rama Natarajan
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| |
Collapse
|
550
|
Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T, Saura R, Kurosaka M, Kumagai S. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:1294-304. [PMID: 19404929 DOI: 10.1002/art.24475] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To elucidate the role of microRNA (miRNA) in the pathogenesis of rheumatoid arthritis (RA), we analyzed synoviocytes from RA patients for their miRNA expression. METHODS Synoviocytes derived from surgical specimens obtained from RA patients were compared with those obtained from osteoarthritis (OA) patients for their expression of a panel of 156 miRNA with quantitative stem-loop reverse transcription-polymerase chain reaction. The miRNA whose expression decreased or increased in RA synoviocytes as compared with OA synoviocytes were identified, and their target genes were predicted by computer analysis. We used an in vitro system of enhancing the expression of specific miRNA by transfection of precursors into synoviocytes, and then we performed proliferation, cell cycle, and apoptosis assays, as well as enzyme-linked immunosorbent assays for cytokine production. The effects of transfection on predicted target protein and messenger RNA (mRNA) were then examined by Western blot analysis and luciferase reporter assay. RESULTS We found that miR-124a levels significantly decreased in RA synoviocytes as compared with OA synoviocytes. Transfection of precursor miR-124a into RA synoviocytes significantly suppressed their proliferation and arrested the cell cycle at the G1 phase. We identified a putative consensus site for miR-124a binding in the 3'-untranslated region of cyclin-dependent kinase 2 (CDK-2) and monocyte chemoattractant protein 1 (MCP-1) mRNA. Induction of miR-124a in RA synoviocytes significantly suppressed the production of the CDK-2 and MCP-1 proteins. Luciferase reporter assay demonstrated that miR-124a specifically suppressed the reporter activity driven by the 3'-untranslated regions of CDK-2 and MCP-1 mRNA. CONCLUSION The results of this study suggest that miR-124a is a key miRNA in the posttranscriptional regulatory mechanisms of RA synoviocytes.
Collapse
Affiliation(s)
- Yuji Nakamachi
- Department of Clinical Laboratory, Kobe University Hospital, and Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|