501
|
Abstract
Bacterial genes are often differentially expressed in response to specific environmental conditions. We have devised a method to identify regulated bacterial promoters, such that transient promoter expression leads to a permanent and selectable change in bacterial phenotype. This system consists of a promoterless derivative of cre, the phage P1 recombinase, carried on a plasmid, and two chromosomal loxP sites, the targets of the Cre recombinase. The loxP sites flank npt, conferring kanamycin resistance, and sacB, which confers sensitivity to sucrose, allowing positive selection for both the presence and absence of this chromosomal cassette. Fusion of active promoters to cre induces recombination of the loxP sites and deletion of intervening DNA, allowing selection on media containing sucrose, while inactive promoters fail to induce recombination and so remain resistant to kanamycin. We tested the system in Salmonella typhimurium using a known regulated promoter, that from the araBAD operon, and found it to be a sensitive indicator of gene expression over a wide range of promoter induction. We then used this system to identify S. typhimurium genes that are specifically expressed when bacteria interact with cultured epithelial cells and identified a novel DNA fragment, not found in E. coli, which might represent part of a new pathogenicity island.
Collapse
Affiliation(s)
- C Altier
- Department of Microbiology, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, NC, USA.
| | | |
Collapse
|
502
|
Abstract
In vitro assays contribute greatly to our understanding of bacterial pathogenesis, but they frequently cannot replicate the complex environment encountered by pathogens during infection. The information gained from such studies is therefore limited. In vivo models, on the other hand, can be difficult to use, and this has to some extent diminished the incentive to perform studies in living animals. However, several recently developed techniques permit in vivo examination of many genes simultaneously. Most of these methods fall into two broad classes: in vivo expression technology and signature-tagged mutagenesis. In vivo expression technology is a promoter-trap strategy designed to identify genes whose expression is induced in a specific environment, typically that encountered in a host. Signature-tagged mutagenesis uses comparative hybridization to isolate mutants unable to survive specified environmental conditions and has been used to identify genes critical for survival in the host. Both approaches have so far been used exclusively for investigating pathogen-host interactions, but they should be easily adaptable to the study of other processes.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
503
|
Knowles DJ, King F. The impact of bacterial genomics on antibacterial discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 456:183-95. [PMID: 10549369 DOI: 10.1007/978-1-4615-4897-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- D J Knowles
- SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK
| | | |
Collapse
|
504
|
Sawada K, Kokeguchi S, Hongyo H, Sawada S, Miyamoto M, Maeda H, Nishimura F, Takashiba S, Murayama Y. Identification by subtractive hybridization of a novel insertion sequence specific for virulent strains of Porphyromonas gingivalis. Infect Immun 1999; 67:5621-5. [PMID: 10531208 PMCID: PMC96934 DOI: 10.1128/iai.67.11.5621-5625.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtractive hybridization was employed to isolate specific genes from virulent Porphyromonas gingivalis strains that are possibly related to abscess formation. The genomic DNA from the virulent strain P. gingivalis W83 was subtracted with DNA from the avirulent strain ATCC 33277. Three clones unique to strain W83 were isolated and sequenced. The cloned DNA fragments were 885, 369, and 132 bp and had slight homology with only Bacillus stearothermophilus IS5377, which is a putative transposase. The regions flanking the cloned DNA fragments were isolated and sequenced, and the gene structure around the clones was revealed. These three clones were located side-by-side in a gene reported as an outer membrane protein. The three clones interrupt the open reading frame of the outer membrane protein gene. This inserted DNA, consisting of three isolated clones, was designated IS1598, which was 1,396 bp (i.e., a 1,158-bp open reading frame) in length and was flanked by 16-bp terminal inverted repeats and a 9-bp duplicated target sequence. IS1598 was detected in P. gingivalis W83, W50, and FDC 381 by Southern hybridization. All three P. gingivalis strains have been shown to possess abscess-forming ability in animal models. However, IS1598 was not detected in avirulent strains of P. gingivalis, including ATCC 33277. The IS1598 may interrupt the synthesis of the outer membrane protein, resulting in changes in the structure of the bacterial outer membrane. The IS1598 isolated in this study is a novel insertion element which might be a specific marker for virulent P. gingivalis strains.
Collapse
Affiliation(s)
- K Sawada
- Department of Periodontology, Okayama University Dental School, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Méresse S, Steele-Mortimer O, Moreno E, Desjardins M, Finlay B, Gorvel JP. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol 1999; 1:E183-8. [PMID: 10560000 DOI: 10.1038/15620] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Once considered to be contained, infectious diseases of bacterial origin are now making a comeback. A lack of innovative therapies and the appearance of drug-resistant pathogens are becoming increasingly serious problems. A better understanding of pathogen-host interactions at the cellular and molecular levels is necessary to define new targets in our fight against microorganisms. In the past few years, the merging of cell biology and microbiology has started to yield critical and often surprising new information on the interactions that occur between various pathogens and their mammalian host cells. Here we focus on the intracellular routing of vacuoles containing microorganisms, as well as on the bacterial effectors and their host-cell targets that control vacuole maturation. We also describe new approaches for isolating microorganism-containing vacuoles and analysing their molecular composition, which will help researchers to define the molecules and mechanisms governing vacuole biogenesis.
Collapse
Affiliation(s)
- S Méresse
- Centre d'Immunologie de Marseille Luminy, Parc scientifique de Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
506
|
Franco AA, Cheng RK, Chung GT, Wu S, Oh HB, Sears CL. Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains. J Bacteriol 1999; 181:6623-33. [PMID: 10542162 PMCID: PMC94125 DOI: 10.1128/jb.181.21.6623-6633.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) strains, which produce a 20-kDa zinc metalloprotease toxin (BFT), have been associated with diarrheal disease in animals and young children. Studying a collection of ETBF and nontoxigenic B. fragilis (NTBF) strains, we found that bft and a second metalloprotease gene (mpII) are contained in an approximately 6-kb pathogenicity island (termed B. fragilis pathogenicity island or BfPAI) which is present exclusively in all 113 ETBF strains tested (pattern I). Of 191 NTBF strains, 100 (52%) lack both the BfPAI and at least a 12-kb region flanking BfPAI (pattern II), and 82 of 191 NTBF strains (43%) lack the BfPAI but contain the flanking region (pattern III). The nucleotide sequence flanking the left end of the BfPAI revealed a region with the same organization as the mobilization region of the 5-nitroimidazole resistance plasmid pIP417 and the clindamycin resistance plasmid pBFTM10, that is, two mobilization genes (bfmA and bfmB) organized in one operon and a putative origin of transfer (oriT) located in a small, compact region. The region flanking the right end of the BfPAI contains a gene (bfmC) whose predicted protein shares significant identity to the TraD mobilization proteins encoded by plasmids F and R100 from Escherichia coli. Nucleotide sequence analysis of one NTBF pattern III strain (strain I-1345) revealed that bfmB and bfmC are adjacent to each other and separated by a 16-bp GC-rich sequence. Comparison of this sequence with the appropriate sequence of ETBF strain 86-5443-2-2 showed that in this ETBF strain the 16-bp sequence is replaced by the BfPAI. This result defined the BfPAI as being 6,036 bp in length and its precise integration site as being between the bfmB and bfmC stop codons. The G+C content of the BfPAI (35%) and the flanking DNA (47 to 50%) differ greatly from that reported for the B. fragilis chromosome (42%), suggesting that the BfPAI and its flanking region are two distinct genetic elements originating from very different organisms. ETBF strains may have evolved by horizontal transfer of these two genetic elements into a pattern II NTBF strain.
Collapse
Affiliation(s)
- A A Franco
- Divisions of Infectious Diseases, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | | | |
Collapse
|
507
|
Schubert S, Rakin A, Fischer D, Sorsa J, Heesemann J. Characterization of the integration site of Yersinia high-pathogenicity island in Escherichia coli. FEMS Microbiol Lett 1999; 179:409-14. [PMID: 10518744 DOI: 10.1111/j.1574-6968.1999.tb08756.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The high-pathogenicity island (HPI) of virulent Yersiniae consists of (i) a functional core encoding for biosynthesis and uptake of the siderophore yersiniabactin and (ii) a 5- to 13-kb AT-rich region of unknown function. This Yersinia HPI has been shown to be widely distributed among different pathotypes of Escherichia coli. In this study, the insertion site of the HPI was defined in three different E. coli strains: The enteroaggregative E. coli (EAggEC) strain 17-2, the uropathogenic (UPEC) E. coli strain 536, and the probiotic E. coli DSM6601. We demonstrated that in all three E. coli isolates the HPI is associated with the asnT tRNA (5'-extremity) and truncated in the AT-rich region (3'-extremity) since the 17-bp direct repeat (DR) of the asn tRNA that flanks the HPI in Yersinia is missing in E. coli. Moreover, in comparison to the HPI-negative E. coli K-12 strain, a uniform deletion must have taken place in the E. coli chromosome adjacent to the 3'-border of the HPI.
Collapse
Affiliation(s)
- S Schubert
- Max von Pettenkofer-Institut, Pettenkoferstr. 9a, 80336, München, Germany
| | | | | | | | | |
Collapse
|
508
|
Wada A, Mori N, Oishi K, Hojo H, Nakahara Y, Hamanaka Y, Nagashima M, Sekine I, Ogushi K, Niidome T, Nagatake T, Moss J, Hirayama T. Induction of human beta-defensin-2 mRNA expression by Helicobacter pylori in human gastric cell line MKN45 cells on cag pathogenicity island. Biochem Biophys Res Commun 1999; 263:770-4. [PMID: 10512755 DOI: 10.1006/bbrc.1999.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Helicobacter pylori is an etiological agent of gastritis, peptic ulcer, and gastric cancer. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide which belongs to one of the most important host defense systems against bacterial infection in several epithelial tissues. We studied the effect of H. pylori on the expression of hBD-2 mRNA in MKN45 gastric mucosal cells. H. pylori, but not culture filtrate, increased the hBD-2 mRNA level in MKN45 cells; the inductive effect of H. pylori was not detected with Intestine 407 cells. Among H. pylori strains, strain OHPC0002, which lacks a cag Pathogenicity Island (PAI), did not induce hBD-2 mRNA in MKN45 cells. These results suggested that H. pylori cag PAI is critical for the induction of hBD-2 mRNA in MKN45 cells. Exposure of MKN45 cells to Salmonella typhimurium, S. enteritidis, S. typhi, and S. dublin, but not Escherichia coli ML35, also resulted in induction of hBD-2 mRNA.
Collapse
Affiliation(s)
- A Wada
- Department of Bacteriology, Nagasaki University, Sakamoto, Nagasaki, 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Affiliation(s)
- R D Perry
- Dept of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0084, USA.
| |
Collapse
|
510
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
511
|
Jackson RW, Athanassopoulos E, Tsiamis G, Mansfield JW, Sesma A, Arnold DL, Gibbon MJ, Murillo J, Taylor JD, Vivian A. Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A 1999; 96:10875-80. [PMID: 10485919 PMCID: PMC17976 DOI: 10.1073/pnas.96.19.10875] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1999] [Accepted: 07/07/1999] [Indexed: 12/29/2022] Open
Abstract
The 154-kb plasmid was cured from race 7 strain 1449B of the phytopathogen Pseudomonas syringae pv. phaseolicola (Pph). Cured strains lost virulence toward bean, causing the hypersensitive reaction in previously susceptible cultivars. Restoration of virulence was achieved by complementation with cosmid clones spanning a 30-kb region of the plasmid that contained previously identified avirulence (avr) genes avrD, avrPphC, and avrPphF. Single transposon insertions at multiple sites (including one located in avrPphF) abolished restoration of virulence by genomic clones. Sequencing 11 kb of the complementing region identified three potential virulence (vir) genes that were predicted to encode hydrophilic proteins and shared the hrp-box promoter motif indicating regulation by HrpL. One gene achieved partial restoration of virulence when cloned on its own and therefore was designated virPphA as the first (A) gene from Pph to be identified for virulence function. In soybean, virPphA acted as an avr gene controlling expression of a rapid cultivar-specific hypersensitive reaction. Sequencing also revealed the presence of homologs of the insertion sequence IS100 from Yersinia and transposase Tn501 from P. aeruginosa. The proximity of several avr and vir genes together with mobile elements, as well as G+C content significantly lower than that expected for P. syringae, indicates that we have located a plasmid-borne pathogenicity island equivalent to those found in mammalian pathogens.
Collapse
Affiliation(s)
- R W Jackson
- Department of Biological and Biomedical Sciences, University of the West of England, Coldharbor Lane, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Tsolis RM, Adams LG, Ficht TA, Bäumler AJ. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 1999; 67:4879-85. [PMID: 10456944 PMCID: PMC96822 DOI: 10.1128/iai.67.9.4879-4885.1999] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1999] [Accepted: 06/16/1999] [Indexed: 11/20/2022] Open
Abstract
Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by Salmonella typhimurium. To assess the contribution to diarrheal disease of virulence determinants identified in models of infection, we tested a collection of S. typhimurium mutants for their ability to cause enteritis in calves. S. typhimurium strains carrying mutations in the virulence plasmid (spvR), Salmonella pathogenicity island 2 (SPI-2) (spiB), or SPI-5 (sopB) caused mortality and acute diarrhea in calves. An S. typhimurium rfaJ mutant, which is defective for lipopolysaccharide outer core biosynthesis, was of intermediate virulence. Mutations in SPI-1 (hilA and prgH) or aroA markedly reduced virulence and the severity of diarrhea. Furthermore, histopathological examination of calves infected with SPI-1 or aroA mutants revealed a marked reduction or absence of intestinal lesions. These data suggest that virulence factors, such as SPI-1, which are required during intestinal colonization are more important for pathogenicity in calves than are genes required during the systemic phase of S. typhimurium infection, including SPI-2 or the spv operon. This is in contrast to the degree of attenuation caused by these mutations in the mouse.
Collapse
Affiliation(s)
- R M Tsolis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
513
|
Emmerth M, Goebel W, Miller SI, Hueck CJ. Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol 1999; 181:5652-61. [PMID: 10482505 PMCID: PMC94084 DOI: 10.1128/jb.181.18.5652-5661.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhimurium causes systemic and fatal infection in inbred mice, while the related serotype Salmonella typhi is avirulent for mammals other than humans. In order to identify genes from the virulent strain S. typhimurium ATCC 14028 that are absent in S. typhi Ty2, and therefore might be involved in S. typhimurium mouse virulence, a PCR-supported genomic subtractive hybridization procedure was employed. We have identified a novel putative fimbrial operon, stfACDEFG, located at centisome 5 of the S. typhimurium chromosome, which is absent in S. typhi, Salmonella arizonae, and Salmonella bongori but was detected in several other Salmonella serotypes. The fimbrial genes represent a genomic insertion in S. typhimurium compared to the respective region between fhuB and hemL in Escherichia coli K-12. In addition, the subtraction procedure yielded F plasmid-related sequences from the S. typhimurium virulence plasmid, a number of DNA fragments representing parts of lambdoid prophages and putative sugar transporters, and several fragments with unknown sequences. The majority of subtracted chromosomal sequences map to three distinct locations, around centisomes 5, 27, and 57.
Collapse
Affiliation(s)
- M Emmerth
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
514
|
Abstract
The tRNAs are central components in translation. In addition, they are essential for replication of retroviruses: tRNAs bind to viral genomes through their 3'-end sequences and act as primers for initiation of viral replication. Here, I discuss the possibility that tRNAs also play a role in the horizontal transfer of bacterial pathogenicity islands between different pathogens. Such a role would implicate tRNAs in DNA recombination.
Collapse
Affiliation(s)
- Y M Hou
- Dept of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
515
|
Pattery T, Hernalsteens JP, De Greve H. Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 1999; 33:791-805. [PMID: 10447888 DOI: 10.1046/j.1365-2958.1999.01526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a newly constructed minitransposon with a phoA reporter gene in a Salmonella enteritidis phoN mutant, we have identified an iron- and pH-inducible lipoprotein gene sfbA, which is a component of a novel ABC-type transporter system required for virulence. This gene is located on a 4 kb Salmonella-specific chromosomal segment, which constitutes a new pathogenicity islet. This islet encodes an outer membrane protein, OmpX, and contains the operon designated sfbABC (Salmonella ferric binding) encoding a putative periplasmic iron-binding lipoprotein SfbA, a nucleotide-binding ATPase SfbB and a cytoplasmic permease SfbC, as predicted by their characteristic signature sequences. Inactivation of the sfbA gene resulted in a mutant that is avirulent and induces protective immunity in BALB/c mice. The wild-type phenotype could be restored by in vivo complementation with the sfbABC operon. This novel transporter might be involved in iron uptake in Salmonella.
Collapse
Affiliation(s)
- T Pattery
- Laboratorium voor Genetische Virologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium
| | | | | |
Collapse
|
516
|
Beuzón CR, Banks G, Deiwick J, Hensel M, Holden DW. pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol Microbiol 1999; 33:806-16. [PMID: 10447889 DOI: 10.1046/j.1365-2958.1999.01527.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.
Collapse
Affiliation(s)
- C R Beuzón
- Department of Infectious Diseases, Imperial College School of Medicine, Du Cane Road, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
517
|
Everest P, Ketley J, Hardy S, Douce G, Khan S, Shea J, Holden D, Maskell D, Dougan G. Evaluation of Salmonella typhimurium mutants in a model of experimental gastroenteritis. Infect Immun 1999; 67:2815-21. [PMID: 10338486 PMCID: PMC96587 DOI: 10.1128/iai.67.6.2815-2821.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhimurium strains harboring independent, defined mutations in aroA, invA, ssrA, or msbB were assessed for their ability to induce fluid accumulation, tissue damage, and local inflammation in rabbit ileal loops. Three wild-type strains of S. typhimurium, TML, HWSH, and SL1344, and two mutant strains, S. typhimurium SL1344 ssrA and S. typhimurium SL1344 msbB, consistently induced fluid accumulation in the lumen of loops and inflammation of loop-associated tissues. In contrast, three different S. typhimurium aroA strains and an invA mutant of SL1344 did not induce significant fluid accumulation in the rabbit ileal loops. However, the S. typhimurium aroA strains did induce an inflammatory infiltrate and some local villus-associated damage, but the invA mutant did not. Histologically, wild-type S. typhimurium, S. typhimurium SL1344 ssrA, and S. typhimurium SL1344 msbB demonstrated more severe effects on villus architecture than S. typhimurium aroA strains, whereas S. typhimurium invA-infected loops showed no detectable damage. This suggests that villus damage most likely contributes to fluid accumulation within the loop.
Collapse
Affiliation(s)
- P Everest
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Sansonetti PJ, Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin Immunol 1999; 11:193-203. [PMID: 10381865 DOI: 10.1006/smim.1999.0175] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
M cells are key sites of antigen sampling for the mucosal-associated lymphoid system (MALT) and consequently are essential components of the structures serving as inductive sites for mucosal immunity. In addition, they have recently been recognized as major sites of adherence and major ports of entry for enteric pathogens. In the case of enteroinvasive pathogens, such as Salmonella, Yersinia and Shigella, few clinical evidences, but lots of experimental data indicate that, at least at the early stage of infection, M cells of the follicular associated epithelium transport the pathogens. This has significantly altered our view on the pathogenesis of enteroinvasive infections. Crossing the epithelial barrier seems an achievable task for these bacteria which express adherence and invasion mechanisms which have often been well characterized in epithelial cell lines. These systems seem to be also used for entering and crossing M cells, although reproducible in vitro assays for M cell infection are now required. Having crossed the epithelial lining, the bacteria face phagocytic cells, particularly the macrophages that are present in the follicle dome. Depending on the capacity to survive in the presence of macrophages, and how this survival is achieved by a given invasive species, the outcome of infection can be dramatically affected. In consequence, M cells can be considered as pathogen translocators toward immunocompetent areas of the gut, thus opening the possibility to harness this property in order to design new mucosal vaccines or vaccine vectors.
Collapse
Affiliation(s)
- P J Sansonetti
- Uniteé de Pathogeénie Microbienne Moleéculaire, INSERM U 389, Institut Pasteur, 28 Rue du Docteur Roux, Paris, Cedex 15, 75724, France
| | | |
Collapse
|
519
|
Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 1999; 32:275-87. [PMID: 10231485 DOI: 10.1046/j.1365-2958.1999.01345.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A range of bacteria are able to use tetrathionate as a terminal respiratory electron acceptor. Here we report the identification and characterization of the ttrRSBCA locus required for tetrathionate respiration in Salmonella typhimurium LT2a. The ttr genes are located within Salmonella pathogenicity island 2 at centisome 30.5. ttrA, ttrB and ttrC are the tetrathionate reductase structural genes. Sequence analysis suggests that TtrA contains a molybdopterin guanine dinucleotide cofactor and a [4Fe-4S] cluster, that TtrB binds four [4Fe-4S] clusters, and that TtrC is an integral membrane protein containing a quinol oxidation site. TtrA and TtrB are predicted to be anchored by TtrC to the periplasmic face of the cytoplasmic membrane implying a periplasmic site for tetrathionate reduction. It is inferred that the tetrathionate reductase, together with thiosulphate and polysulphide reductases, make up a previously unrecognized class of molybdopterin-dependent enzymes that carry out the reductive cleavage of sulphur-sulphur bonds. Cys-256 in TtrA is proposed to be the amino acid ligand to the molybdopterin cofactor. TtrS and TtrR are the sensor and response regulator components of a two-component regulatory system that is absolutely required for transcription of the ttrBCA operon. Expression of an active tetrathionate reduction system also requires the anoxia-responsive global transcriptional regulator Fnr. The ttrRSBCA gene cluster confers on Escherichia coli the ability to respire with tetrathionate as electron acceptor.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
520
|
Lee VT, Schneewind O. Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol Rev 1999; 168:241-55. [PMID: 10399078 DOI: 10.1111/j.1600-065x.1999.tb01296.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Salmonella and Yersinia spp. infect the intestinal tract of humans. Although these organisms cause fundamentally different diseases, each pathogen relies on type III secretion machines to either inject virulence factors into the cytosol of eukaryotic cells or release toxins into the extracellular milieu. Type III secretion machines are composed of many different subunits and export several polypeptides with unique substrate requirements. During Salmonella pathogenesis, the type III machine encoded by the Salmonella pathogenicity island (SPI)-1 genetic element functions to cause invasion of the intestinal epithelium, whereas another type III machine (SPI-2) is required for survival in macrophages. Yersinia enterocolitica and Yersinia pseudotuberculosis employ type III machines to resist macrophage phagocytosis and to manipulate the host's immune response, thereby colonizing intestinal lymphoid tissues. We describe what is known about the pathogenic functions of virulence factors secreted by type III machines. Furthermore, type III secretion machines may be exploited for the injection of recombinant proteins, a strategy that has already been successfully employed to elicit a cell-mediated immune response.
Collapse
Affiliation(s)
- V T Lee
- Department of Microbiology & Immunology, UCLA School of Medicine, USA
| | | |
Collapse
|
521
|
Abstract
Sensing and responding to environmental signals is a crucial element of bacterial pathogenicity. For a successful progression of infection, virulence gene expression is coordinated in response to habitat-specific environmental signals from the host organism. We are interested in identifying environmental cues affecting the expression of genes within Salmonella Pathogenicity Island 2 (SPI2), a virulence locus important for systemic infections by S. typhimurium. We describe our approach starting with the identification of new virulence genes, and analysis of the regulation of these genes by environmental signals leading to the proteome analysis in order to define the SPI2 regulon.
Collapse
Affiliation(s)
- J Deiwick
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie der Ludwig-Maximillians-Universität München, Munich, Germany.
| | | |
Collapse
|
522
|
Kingsley RA, Reissbrodt R, Rabsch W, Ketley JM, Tsolis RM, Everest P, Dougan G, Bäumler AJ, Roberts M, Williams PH. Ferrioxamine-mediated Iron(III) utilization by Salmonella enterica. Appl Environ Microbiol 1999; 65:1610-8. [PMID: 10103258 PMCID: PMC91228 DOI: 10.1128/aem.65.4.1610-1618.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1998] [Accepted: 01/21/1999] [Indexed: 11/20/2022] Open
Abstract
Utilization of ferrioxamines as sole sources of iron distinguishes Salmonella enterica serotypes Typhimurium and Enteritidis from a number of related species, including Escherichia coli. Ferrioxamine supplements have therefore been used in preenrichment and selection media to increase the bacterial growth rate while selectivity is maintained. We characterized the determinants involved in utilization of ferrioxamines B, E, and G by S. enterica serotype Typhimurium by performing siderophore cross-feeding bioassays. Transport of all three ferric siderophores across the outer membrane was dependent on the FoxA receptor encoded by the Fur-repressible foxA gene. However, only the transport of ferrioxamine G was dependent on the energy-transducing protein TonB, since growth stimulation of a tonB strain by ferrioxamines B and E was observed, albeit at lower efficiencies than in the parental strain. Transport across the inner membrane was dependent on the periplasmic binding protein-dependent ABC transporter complex comprising FhuBCD, as has been reported for other hydroxamate siderophores of enteric bacteria. The distribution of the foxA gene in the genus Salmonella, as indicated by DNA hybridization studies and correlated with the ability to utilize ferrioxamine E, was restricted to subspecies I, II, and IIIb, and this gene was absent from subspecies IIIa, IV, VI, and VII (formerly subspecies IV) and Salmonella bongori (formerly subspecies V). S. enterica serotype Typhimurium mutants with either a transposon insertion or a defined nonpolar frameshift (+2) mutation in the foxA gene were not able to utilize any of the three ferrioxamines tested. A strain carrying the nonpolar foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops compared to the foxA+ parent. In addition, a foxA mutant was markedly attenuated in mice inoculated by either the intragastric or intravenous route. Mice inoculated with the foxA mutant were protected against subsequent challenge by the foxA+ parent strain.
Collapse
Affiliation(s)
- R A Kingsley
- Department of Microbiology and Immunology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Deiwick J, Nikolaus T, Erdogan S, Hensel M. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 1999; 31:1759-73. [PMID: 10209748 DOI: 10.1046/j.1365-2958.1999.01312.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enteric pathogen Salmonella typhimurium co-ordinates the expression of virulence determinants in response to environmental cues from the host organism. S. typhimurium possesses Salmonella pathogenicity island 2 (SPI2), a large virulence locus encoding a type III secretion system for virulence determinants required for systemic infections and accumulation inside host cells. We have generated transcriptional fusions to SPI2 genes to analyse expression and used antibodies against recombinant SPI2 proteins to monitor levels of SPI2 proteins under various conditions. Here, we demonstrate that SPI2 gene expression is induced by Mg2+ deprivation and phosphate starvation. These conditions are likely to represent the environmental cues encountered by S. typhimurium inside the phagosome of infected host cells. The induction of SPI2 gene expression is modulated by the global regulatory system PhoPQ and is dependent on SsrAB, a two-component regulatory system encoded by SPI2.
Collapse
Affiliation(s)
- J Deiwick
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| | | | | | | |
Collapse
|
524
|
Medina E, Paglia P, Nikolaus T, Müller A, Hensel M, Guzmán CA. Pathogenicity island 2 mutants of Salmonella typhimurium are efficient carriers for heterologous antigens and enable modulation of immune responses. Infect Immun 1999; 67:1093-9. [PMID: 10024548 PMCID: PMC96434 DOI: 10.1128/iai.67.3.1093-1099.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential use as vaccine delivery system of Salmonella typhimurium strains harboring defined mutations in the sseC (HH104) and sseD (MvP101) genes, which encode putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2, was evaluated and compared with that of the well-characterized aroA mutant strain SL7207 by using beta-galactosidase (beta-Gal) as a model antigen. When orally administered to immune-competent or gamma interferon-deficient (IFN-gamma-/-) BALB/c mice, both mutants were found to be highly attenuated (50% lethal dose, >10(9) bacteria). Both strains were also able to efficiently colonize and persist in Peyer's patches. Immunization with HH104 and MvP101 triggered beta-Gal-specific serum and mucosal antibody responses equivalent to or stronger than those observed in SL7207-immunized mice. Although immunoglobulin G2 (IgG2) serum antibodies were dominant in all groups, IgG1 was also significantly increased in mice vaccinated with MvP101 and SL7207. Comparable beta-Gal-specific IgA and IgG antibodies were detected in intestinal lavages from mice immunized with the different strains. Antigen-specific CD4(+) T-helper cells were generated after vaccination with all vaccine prototypes; however, responses were significantly more efficient when HH104 and MvP101 were used (P < 0.05). Significantly higher levels of IFN-gamma were produced by restimulated spleen cells from mice immunized with HH104 than from those vaccinated with the MvP101 or SL7207 derivatives (P </= 0.05). Interestingly, the three strains induced major histocompatibility complex class I-restricted CD8(+) cytotoxic T cells against beta-Gal; however, cytotoxic T-lymphocyte responses were significantly stronger after immunization with HH104 (P < 0.05). These novel S. typhimurium attenuated strains constitute promising delivery systems for vaccine antigens. The qualitative differences observed in the obtained responses with different carriers may be useful for those applications in which a targeted immunomodulation is required.
Collapse
Affiliation(s)
- E Medina
- Department of Microbial Pathogenicity and Vaccine Research, Division of Microbiology, GBF-National Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
525
|
Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F. Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 1999; 31:971-82. [PMID: 10048039 DOI: 10.1046/j.1365-2958.1999.01244.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SirA of Salmonella typhimurium is known to regulate the hilA and prgH genes within Salmonella pathogenicity island 1 (SPI1). To identify more members of the SirA regulon, we screened 10,000 random lacZY fusions (chromosomal MudJ insertions) for regulation by SirA and identified 10 positively regulated fusions. Three fusions were within the SPI1 genes hilA (an SPI1 transcriptional regulator), spaS (a component of the SPI1 type III export apparatus) and sipB (a substrate of the SPI1 export apparatus). Two fusions were within the sopB gene (also known as sigD). sopB is located within SPI5, but encodes a protein that is exported via the SPI1 export apparatus. In addition, five fusions were within genes of unknown function that are located in SPI4. As spaS and sipB were likely to be hilA dependent, we tested all of the fusions (except hilA) for hilA dependence. Surprisingly, we found that all of the fusions require hilA for expression and that plasmid-encoded SirA cannot bypass this requirement. Therefore, SirA regulates hilA, the product of which regulates genes within SPI1, SPI4 and SPI5. Both sirA and hilA mutants are dramatically attenuated in a bovine model of gastroenteritis, but have little or no effect in the mouse model of typhoid fever. This study establishes the SirA/HilA regulatory cascade as the primary regulon controlling enteropathogenic virulence functions in S. typhimurium. Because S. typhimurium causes gastroenteritis in both cattle and humans, we believe that this information may be directly applicable to the human disease.
Collapse
Affiliation(s)
- B M Ahmer
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | | | | | | | |
Collapse
|
526
|
Galán JE. Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 1999; 2:46-50. [PMID: 10047557 DOI: 10.1016/s1369-5274(99)80008-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Salmonella enterica engages host cells in a complex two-way biochemical interaction that results in a variety of responses from both the bacteria and the host cell. Central to this interaction is the function of a type III protein secretion system that delivers effector proteins into the host cell. During the past year we have seen major advances in our knowledge of both the bacterial determinants and the host-signal transduction pathways involved in these interactions. A coherent picture of the mechanisms by which Salmonella engages the host cell is now beginning to emerge.
Collapse
Affiliation(s)
- J E Galán
- Section of Microbial Pathogenesis Boyer Center for Molecular Medicine Yale School of Medicine New Haven CT 06536-0812 USA.
| |
Collapse
|
527
|
Blanc-Potard AB, Solomon F, Kayser J, Groisman EA. The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 1999; 181:998-1004. [PMID: 9922266 PMCID: PMC93469 DOI: 10.1128/jb.181.3.998-1004.1999] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenicity islands are chromosomal clusters of pathogen-specific virulence genes often found at tRNA loci. We have determined the molecular genetic structure of SPI-3, a 17-kb pathogenicity island located at the selC tRNA locus of Salmonella enterica serovar Typhimurium. The G+C content of SPI-3 (47.5%) differs from that of the Salmonella genome (52%), consistent with the notion that these sequences have been horizontally acquired. SPI-3 harbors 10 open reading frames organized in six transcriptional units, which include the previously described mgtCB operon encoding the macrophage survival protein MgtC and the Mg2+ transporter MgtB. Among the newly identified open reading frames, one exhibits sequence similarity to the ToxR regulatory protein of Vibrio cholerae and one is similar to the AIDA-I adhesin of enteropathogenic Escherichia coli. The distribution of SPI-3 sequences varies among the salmonellae: the right end of the island, which harbors the virulence gene mgtC, is present in all eight subspecies of Salmonella; however, a four-gene cluster at the center of SPI-3 is found in only some of the subspecies and is bracketed by remnants of insertion sequences, suggesting a multistep process in the evolution of SPI-3 sequences.
Collapse
Affiliation(s)
- A B Blanc-Potard
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
528
|
Shea JE, Beuzon CR, Gleeson C, Mundy R, Holden DW. Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun 1999; 67:213-9. [PMID: 9864218 PMCID: PMC96299 DOI: 10.1128/iai.67.1.213-219.1999] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have investigated the in vivo growth kinetics of a Salmonella typhimurium strain (P11D10) carrying a mutation in ssaJ, a Salmonella pathogenicity island 2 (SPI2) gene encoding a component of a type III secretion system required for systemic growth in mice. Similar numbers of mutant and wild-type cells were recovered from the spleens and livers of BALB/c mice up to 8 h after inoculation by the intraperitoneal route. Thereafter, the numbers of wild-type cells continued to increase logarithmically in these organs, whereas those of P11D10 remained relatively static for several days before being cleared. Gentamicin protection experiments on spleen cell suspensions recovered from infected mice showed that viable intracellular wild-type bacteria accumulated over time but that intracellular P11D10 cells did not. Infection experiments were also performed with wild-type and P11D10 cells carrying the temperature-sensitive plasmid pHSG422 to distinguish between bacterial growth rates and killing in vivo. At 16 h postinoculation there were 10-fold more wild-type cells than mutant cells in the spleens of infected mice, but the numbers of cells of both strains carrying the nonreplicating plasmid were very similar, showing that there was little difference in the degree of killing sustained by the two strains and that the SPI2 secretion system must be required for bacterial replication, rather than survival, in vivo. The SPI2 mutant phenotype in mice is similar to that of strains carrying mutations in the Salmonella virulence plasmid spv genes. To determine if these two sets of genes interact together, a double mutant strain carrying SPI2 and spv mutations was constructed and compared with strains carrying single mutations in terms of virulence attenuation. These experiments failed to provide any evidence showing that the SPI2 and spv gene products interact together as part of the same virulence mechanism.
Collapse
Affiliation(s)
- J E Shea
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
529
|
Hensel M, Nikolaus T, Egelseer C. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol 1999; 31:489-98. [PMID: 10027966 DOI: 10.1046/j.1365-2958.1999.01190.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two large virulence loci encoding type III secretion systems are present on the chromosome of Salmonella typhimurium. Salmonella pathogenicity island 2 (SPI2) is important for the survival of S. typhimurium in host organs and forms an insertion of about 40 kb at the tRNA(Val) gene. However, several indications suggested that SPI2 was not the result of a single event of horizontal gene transfer. We characterized the portion of SPI2 towards the 30 cs boundary and performed mutational analysis to investigate the contribution of this region to S. enterica virulence. This analysis indicates that SPI2 may be composed of at least two different genetic elements. About 15 kb of the 40 kb of SPI2 contain genes without a significant contribution to systemic infections in the model of murine salmonellosis. Our study allowed us to define genes in SPI2 important for virulence further and indicated that this locus has a complex mosaic structure.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany.
| | | | | |
Collapse
|
530
|
|
531
|
Saunders NJ, Moxon ER. Implications of sequencing bacterial genomes for pathogenesis and vaccine development. Curr Opin Biotechnol 1998; 9:618-23. [PMID: 9889135 DOI: 10.1016/s0958-1669(98)80140-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Improvements in homology search methodology and functional predictions are being complemented by the increase in the volume of sequence data with which comparative analyses can be performed. The experimental methods needed for investigation of gene function and expression in a variety of model systems of infection continue to develop. The identification of surface-exposed microbial structures and their conservation in natural populations of pathogenic species offers prospects for developing novel vaccines. A major challenge is the development of efficient screening methods to select the most promising candidates, such as immunisation with DNA.
Collapse
Affiliation(s)
- N J Saunders
- Molecular Infectious Diseases Group Institute of Molecular Medicine University of Oxford Headington Oxford OX3 9DS UK.
| | | |
Collapse
|
532
|
Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 1998; 62:1315-52. [PMID: 9841674 PMCID: PMC98948 DOI: 10.1128/mmbr.62.4.1315-1352.1998] [Citation(s) in RCA: 605] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The 70-kb virulence plasmid enables Yersinia spp. (Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica) to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, an integrated system allowing extracellular bacteria to disarm the cells involved in the immune response, to disrupt their communications, or even to induce their apoptosis by the injection of bacterial effector proteins. This system consists of the Yop proteins and their dedicated type III secretion apparatus, called Ysc. The Ysc apparatus is composed of some 25 proteins including a secretin. Most of the Yops fall into two groups. Some of them are the intracellular effectors (YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT), while the others (YopB, YopD, and LcrV) form the translocation apparatus that is deployed at the bacterial surface to deliver the effectors into the eukaryotic cells, across their plasma membrane. Yop secretion is triggered by contact with eukaryotic cells and controlled by proteins of the virulon including YopN, TyeA, and LcrG, which are thought to form a plug complex closing the bacterial secretion channel. The proper operation of the system also requires small individual chaperones, called the Syc proteins, in the bacterial cytosol. Transcription of the genes is controlled both by temperature and by the activity of the secretion apparatus. The virulence plasmid of Y. enterocolitica and Y. pseudotuberculosis also encodes the adhesin YadA. The virulence plasmid contains some evolutionary remnants including, in Y. enterocolitica, an operon encoding resistance to arsenic compounds.
Collapse
Affiliation(s)
- G R Cornelis
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology and Faculté de Médecine, Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
533
|
Carlson SA, Jones BD. Inhibition of Salmonella typhimurium invasion by host cell expression of secreted bacterial invasion proteins. Infect Immun 1998; 66:5295-300. [PMID: 9784535 PMCID: PMC108661 DOI: 10.1128/iai.66.11.5295-5300.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Salmonella species initiate infection of a host by inducing their own uptake into intestinal epithelial cells. An invasive phenotype is conferred to this pathogen by a number of proteins that are components of a type III secretion system. During the invasion process, the bacteria utilize this secretion system to release proteins that enter the host cell and apparently interact with unknown host cell components that induce alterations in the actin cytoskeleton. To investigate the role of secreted proteins as direct modulators of invasion, we have evaluated the ability of Salmonella typhimurium to enter mammalian cells that express portions of the Salmonella invasion proteins SipB and SipC. Plasma membrane localization of SipB and SipC was achieved by fusing carboxyl- and amino-terminal portions of each invasion protein to the intracellular carboxyl-terminal tail of a membrane-bound eukaryotic receptor. Expression of receptor chimeras possessing the carboxyl terminus of SipB or the amino terminus of SipC blocked Salmonella invasion, whereas expression of their chimeric counterparts had no effect on invasion. The effect on invasion was specific for Salmonella since the perturbation of uptake was not extended to other invasive bacterial species. These results suggest that Salmonella invasion can be competitively inhibited by preventing the intracellular effects of SipB or SipC. In addition, these experiments provide a model for examining interactions between bacterial invasion proteins and their host cell targets.
Collapse
Affiliation(s)
- S A Carlson
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
534
|
Abstract
Although several types of large-scale alterations potentially affect the structure and organization of bacterial genomes, recent analyses of physical maps and complete genomic sequences reveal that chromosome heterogeneity in enteric bacteria has resulted from the acquisition and deletion of large segments of DNA. These acquired sequences can provide novel functions immediately upon their introduction and play a significant role in the diversification of bacterial species.
Collapse
Affiliation(s)
- H Ochman
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
535
|
Preston GM, Haubold B, Rainey PB. Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr Opin Microbiol 1998; 1:589-97. [PMID: 10066526 DOI: 10.1016/s1369-5274(98)80094-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many bacteria form intimate associations with plants. Despite the agricultural and biotechnological significance of these bacteria, no whole genome sequences have yet been described. Plant-associated bacteria form a phylogenetically diverse group, with representative species from many major taxons. Sequence information from genomes of closely related bacteria, in combination with technological developments in the field of functional genomics, provides new opportunities for determining the origin and evolution of traits that contribute to bacterial fitness and interactions with plant hosts.
Collapse
Affiliation(s)
- G M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | |
Collapse
|
536
|
Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, Vazquez-Torres A, Gleeson C, Fang FC, Holden DW. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 1998; 30:163-74. [PMID: 9786193 DOI: 10.1046/j.1365-2958.1998.01047.x] [Citation(s) in RCA: 480] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Affiliation(s)
- A J Bäumler
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University, College Station, Texas 77843-4467,
| | | | | | | |
Collapse
|
538
|
Cirillo DM, Valdivia RH, Monack DM, Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 1998; 30:175-88. [PMID: 9786194 DOI: 10.1046/j.1365-2958.1998.01048.x] [Citation(s) in RCA: 476] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salmonella pathogenicity island 2 (SPI-2) encodes a putative type III secretion system necessary for systemic infection in animals. We have investigated the transcriptional organization and regulation of SPI-2 by creating gfp fusions throughout the entire gene cluster. These gfp fusions demonstrated that SPI-2 genes encoding structural, regulatory and previously uncharacterized putative secreted proteins are preferentially expressed in the intracellular environment of the host macrophage. Furthermore, the transcription of these genes within host cells was dependent on the two-component regulatory system SsrA/SsrB and an acidic phagosomal environment. Most SPI-2 mutants failed to replicate to the same level as wild-type strains in murine macrophages and human epithelial cells. In orally infected mice, SPI-2 mutants colonized the Peyer's patches but did not progress to the mesenteric lymph nodes. We conclude that SPI-2 genes are specifically expressed upon entry into mammalian cells and are required for intracellular growth in host cells in vivo and in vitro.
Collapse
Affiliation(s)
- D M Cirillo
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA
| | | | | | | |
Collapse
|
539
|
Deiwick J, Nikolaus T, Shea JE, Gleeson C, Holden DW, Hensel M. Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J Bacteriol 1998; 180:4775-80. [PMID: 9733677 PMCID: PMC107499 DOI: 10.1128/jb.180.18.4775-4780.1998] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Salmonella typhimurium genome contains two pathogenicity islands (SPI) with genes encoding type III secretion systems for virulence proteins. SPI1 is required for the penetration of the epithelial layer of the intestine. SPI2 is important for the subsequent proliferation of bacteria in the spleens of infected hosts. Although most mutations in SPI2 lead to a strong reduction of virulence, they have different effects in vitro, with some mutants having significantly increased sensitivity to gentamicin and the antibacterial peptide polymyxin B. Previously we showed that certain mutations in SPI2 affect the ability of S. typhimurium to secrete SPI1 effector proteins and to invade cultured eukaryotic cells. In this study, we show that these SPI2 mutations affect the expression of the SPI1 invasion genes. Analysis of reporter fusions to various SPI1 genes reveals highly reduced expression of sipC, prgK, and hilA, the transcriptional activator of SPI1 genes. These observations indicate that the expression of one type III secretion system can be influenced dramatically by mutations in genes encoding a second type III secretion system in the same cell.
Collapse
Affiliation(s)
- J Deiwick
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie der Ludwig-Maximillians-Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
540
|
Arricau N, Hermant D, Waxin H, Ecobichon C, Duffey PS, Popoff MY. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 1998; 29:835-50. [PMID: 9723922 DOI: 10.1046/j.1365-2958.1998.00976.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entry into intestinal epithelial cells is an essential feature in the pathogenicity of Salmonella typhi, which causes typhoid fever in humans. This process requires intact motility and secretion of the invasion-promoting Sip proteins, which are targets of the type III secretion machinery encoded by the inv, spa and prg loci. During our investigations into the entry of S. typhi into cultured epithelial cells, we observed that the secretion of Sip proteins and flagellin was impaired in Vi-expressing strains. We report here that the production of Sip proteins, flagellin and Vi antigen is differentially modulated by the RcsB-RcsC regulatory system and osmolarity. This regulation occurs at both transcriptional and post-translational levels. Under low-osmolarity conditions, the transcription of iagA, invF and sipB genes is negatively controlled by the RcsB regulator, which probably acts in association with the viaB locus-encoded TviA protein. The cell surface-associated Vi polysaccharide, which was maximally produced under these growth conditions, prevented the secretion of Sip proteins and flagellin. As the NaCl concentration in the growth medium was increased, transcription of iagA, invF and sipB was found to be markedly increased, whereas transcription of genes involved in Vi antigen biosynthesis was greatly reduced. The expression of iagA, whose product is involved in invF and sipB transcription, occurred selectively during the exponential growth phase and was maximal in the presence of 300mM NaCl. At this osmolarity, large amounts of Sips and flagellin were secreted in culture supernatants. As expected from these results, and given the essential role of Sip proteins and motility in entry, RcsB and osmolarity modulated the invasive capacity of S. typhi. Together, these findings might reflect the adaptive response of S. typhi to the environments encountered during the different stages of pathogenesis.
Collapse
Affiliation(s)
- N Arricau
- Unité de Génétique des Bactéries Intracellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
541
|
Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 1998; 29:883-91. [PMID: 9723926 DOI: 10.1046/j.1365-2958.1998.00984.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella spp. interact with ileal mucosa and disrupt normal intestinal function, which results in an acute inflammatory cell influx, fluid secretion and enteritis. We have recently characterized SopB, a novel secreted effector protein of Salmonella dublin, and presented evidence that SopB is translocated into eukaryotic cells via a sip-dependent pathway to promote fluid secretion and inflammatory responses. Here, we show that sopB is located on a large DNA fragment unique to the Salmonella chromosome. This locus is conserved in Salmonella and maps at approximately 20 centisome of the S. typhimurium chromosome. Sequence analysis revealed that this Salmonella-specific DNA fragment is flanked by DNA sequences with significant sequence similarity to the Escherichia coli K-12 genes, tRNA1ser (serT) on one side and copS/copR on the other. Thus, this Salmonella-specific DNA fragment has features characteristic of 'pathogenicity islands' and, therefore, it was denoted SPI-5 (Salmonella pathogenicity island-5). SPI-5 was sequenced and was found to contain five novel genes, pipA, pipB, pipC, pipD (pathogenicity island-encoded proteins) and orf, in addition to sopB. The effect of mutations in pipA, pipB and pipD on the induction of fluid secretion and an acute inflammatory cell influx was assessed in bovine ligated ileal loops. The effect of mutations in SPI-5-encoded genes on systemic salmonellosis was assessed in mice. The results of these experiments suggest that SPI-5-encoded genes contribute to enteric but not to systemic salmonellosis.
Collapse
Affiliation(s)
- M W Wood
- Institute for Animal Health, Berkshire, UK
| | | | | | | | | | | |
Collapse
|
542
|
Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 1998; 29:527-43. [PMID: 9720870 DOI: 10.1046/j.1365-2958.1998.00947.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tst, the gene for toxic shock syndrome toxin-1 (TSST-1), is part of a 15.2 kb genetic element in Staphylococcus aureus that is absent in TSST-1-negative strains. The prototype, in RN4282, is flanked by a 17 nucleotide direct repeat and contains genes for a second possible superantigen toxin, a Dichelobacter nodosus VapE homologue and a putative integrase. It is readily transferred to a recA recipient, and it always inserts into a unique chromosomal copy of the 17 nucleotide sequence in the same orientation. It is excised and circularized by staphylococcal phages phi13 and 80alpha and replicates during the growth of the latter, which transduces it at very high frequency. Because of its site and orientation specificity and because it lacks other identifiable phage-like genes, we consider it to be a pathogenicity island (PI) rather than a transposon or a defective phage. The tst element in RN4282, near tyrB, is designated SaPI1. That in RN3984 in the trp region is only partially homologous to SaPI1 and is excised by phage 80 but not by 80alpha. It is designated SaPI2. These PIs are the first in any gram-positive species and the first for which mobility has been demonstrated. Their mobility may be responsible for the spread of TSST-1 production among S. aureus strains.
Collapse
Affiliation(s)
- J A Lindsay
- Skirball Institute of Biomolecular Medicine, New York University Medical Centre, New York 10016, USA
| | | | | | | | | |
Collapse
|
543
|
Vassiloyanakopoulos AP, Okamoto S, Fierer J. The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci U S A 1998; 95:7676-81. [PMID: 9636209 PMCID: PMC22720 DOI: 10.1073/pnas.95.13.7676] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6-8C5 and infected them i.v. with approximately 10(3) Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.
Collapse
Affiliation(s)
- A P Vassiloyanakopoulos
- Research Service, Veterans Affairs of San Diego Healthcare System, San Diego, CA 92161, and Department of Medicine, University of California at San Diego School of Medicine, San Diego, CA, USA
| | | | | |
Collapse
|
544
|
Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998; 62:379-433. [PMID: 9618447 PMCID: PMC98920 DOI: 10.1128/mmbr.62.2.379-433.1998] [Citation(s) in RCA: 1735] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.
Collapse
Affiliation(s)
- C J Hueck
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
545
|
Abstract
Most of our current knowledge about the molecular determinants of bacterial pathogenicity comes from studies with cultures in vitro. However, interest is increasing in bacterial behaviour in the complex and ever-changing environment of the infected host. New methods are revealing how bacteria behave in their hosts, providing many surprises and indicating how much of the subject remains unexplored.
Collapse
Affiliation(s)
- H Smith
- Medical School, University of Birmingham, Edgbaston, UK
| |
Collapse
|
546
|
Reed KA, Clark MA, Booth TA, Hueck CJ, Miller SI, Hirst BH, Jepson MA. Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1. Infect Immun 1998; 66:2007-17. [PMID: 9573083 PMCID: PMC108157 DOI: 10.1128/iai.66.5.2007-2017.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation of filamentous appendages on Salmonella typhimurium has been implicated in the triggering of bacterial entry into host cells (C. C. Ginocchio, S. B. Olmsted, C. L. Wells, and J. E. Galán, Cell 76:717-724, 1994). We have examined the roles of cell contact and Salmonella pathogenicity island 1 (SPI1) in appendage formation by comparing the surface morphologies of a panel of S. typhimurium strains adherent to tissue culture inserts, to cultured epithelial cell lines, and to murine intestine. Scanning electron microscopy revealed short filamentous appendages 30 to 50 nm in diameter and up to 300 nm in length on many wild-type S. typhimurium bacteria adhering to both cultured epithelial cells and to murine Peyer's patch follicle-associated epithelia. Wild-type S. typhimurium adhering to cell-free culture inserts lacked these filamentous appendages but sometimes exhibited very short appendages which might represent a rudimentary form of the cell contact-stimulated filamentous appendages. Invasion-deficient S. typhimurium strains carrying mutations in components of SPI1 (invA, invG, sspC, and prgH) exhibited filamentous appendages similar to those on wild-type S. typhimurium when adhering to epithelial cells, demonstrating that formation of these appendages is not itself sufficient to trigger bacterial invasion. When adhering to cell-free culture inserts, an S. typhimurium invG mutant differed from its parent strain in that it lacked even the shorter surface appendages, suggesting that SPI1 may be involved in appendage formation in the absence of epithelia. Our data on S. typhimurium strains in the presence of cells provide compelling evidence that SPI1 is not an absolute requirement for the formation of the described filamentous appendages. However, appendage formation is controlled by PhoP/PhoQ since a PhoP-constitutive mutant very rarely possessed such appendages when adhering to any of the cell types examined.
Collapse
Affiliation(s)
- K A Reed
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
547
|
Pelicic V, Reyrat JM, Gicquel B. Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol Microbiol 1998; 28:413-20. [PMID: 9632247 DOI: 10.1046/j.1365-2958.1998.00807.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tuberculosis remains the greatest cause of death worldwide because of a single pathogen. Despite its importance, the genetic basis of the pathogenicity of Mycobacterium tuberculosis remains poorly understood, mainly because the most productive investigative approach, molecular genetic analysis, has been severely hampered by a lack of efficient tools. However, significant advances, including the development of methods for inactivating genes and studying their expression with reporter genes, have been recently made. This progress may lead to opportunities for developing new vaccines and antituberculous drugs. The aim of this review is to examine the present state of the art in mycobacterial molecular genetics and pinpoint some expected or promising areas for future research.
Collapse
Affiliation(s)
- V Pelicic
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
548
|
Dinjus U, Hänel I, Rabsch W, Helmuth R. Studies of the Presence of the Virulence Factors, Adhesion, Invasion, Intracellular Multiplication and Toxin Formation in Salmonellas of Different Origin. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0934-8840(98)80175-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
549
|
Buchrieser C, Prentice M, Carniel E. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 1998; 180:2321-9. [PMID: 9573181 PMCID: PMC107171 DOI: 10.1128/jb.180.9.2321-2329.1998] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several pathogenicity islands have recently been identified in different bacterial species, including a high-pathogenicity island (HPI) in Yersinia enterocolitica 1B. In Y. pestis, a 102-kb chromosomal fragment (pgm locus) that carries genes involved in iron acquisition and colony pigmentation can be deleted en bloc. In this study, characterization and mapping of the 102-kb region of Y. pestis 6/69 were performed to determine if this unstable region is a pathogenicity island. We found that the 102-kb region of Y. pestis is composed of two clearly distinct regions: an approximately 35-kb iron acquisition segment, which is an HPI per se, linked to an approximately 68-kb pigmentation segment. This linkage was preserved in all of the Y. pestis strains studied. However, several nonpigmented Y. pestis strains harboring an irp2 gene have been previously identified, suggesting that the pigmentation segment is independently mobile. Comparison of the physical map of the 102-kb region of these strains with that of strain 6/69 and complementation experiments were carried out to determine the genetic basis of this phenomenon. We demonstrate that several different mechanisms involving mutations and various-size deletions are responsible for the nonpigmented phenotype in the nine strains studied. However, no deletion corresponded exactly to the pigmentation segment. The 102-kb region of Y. pestis is an evolutionarily stable linkage of an HPI with a pigmentation segment in a region of the chromosome prone to rearrangement in vitro.
Collapse
Affiliation(s)
- C Buchrieser
- Unité de Bactériologie Moléculaire et Médicale, Laboratoire des Yersinia, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
550
|
Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998; 280:602-5. [PMID: 9554854 DOI: 10.1126/science.280.5363.602] [Citation(s) in RCA: 652] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The type III secretion system of Salmonella typhimurium directs the translocation of proteins into host cells. Evolutionarily related to the flagellar assembly machinery, this system is also present in other pathogenic bacteria, but its organization is unknown. Electron microscopy revealed supramolecular structures spanning the inner and outer membranes of flagellated and nonflagellated strains; such structures were not detected in strains carrying null mutations in components of the type III apparatus. Isolated structures were found to contain at least three proteins of this secretion system. Thus, the type III apparatus of S. typhimurium, and presumably other bacteria, exists as a supramolecular structure in the bacterial envelope.
Collapse
Affiliation(s)
- T Kubori
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320, Japan
| | | | | | | | | | | | | | | |
Collapse
|