501
|
Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, Peterson DA, Osterman AL, Peterson SN. B-Vitamin Sharing Promotes Stability of Gut Microbial Communities. Front Microbiol 2019; 10:1485. [PMID: 31333610 PMCID: PMC6615432 DOI: 10.3389/fmicb.2019.01485] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
Cross-feeding on intermediary and end-point metabolites plays an important role in the dynamic interactions of host-associated microbial communities. While gut microbiota possess inherent resilience to perturbation, variations in the intake of certain nutrients may lead to changes in the community composition with potential consequences on host physiology. Syntrophic relationships and mutualism at the level of major carbon and energy sources have been documented, however, relatively little is known about metabolic interactions involving micronutrients, such as B-vitamins, biosynthetic precursors of essential cofactors in the mammalian host and numerous members of the gut microbiota alike. In silico genomic reconstruction and prediction of community-wide metabolic phenotypes for eight major B-vitamins (B1, B2, B3, B5, B6, B7, B9, and B12), suggests that a significant fraction of microbial gut communities (>20% by abundance) are represented by auxotrophic species whose viability is strictly dependent on acquiring one or more B-vitamins from diet and/or prototrophic microbes via committed salvage pathways. Here, we report the stability of gut microbiota using humanized gnotobiotic mice and in vitro anaerobic fecal culture in the context of extreme variations of dietary B-vitamin supply as revealed by phylotype-to-phenotype prediction from 16S rRNA profiling and metabolomic measurements. The observed nearly unaltered relative abundance of auxotrophic species in gut communities in the face of diet or media lacking B-vitamins or containing them in great excess (∼30-fold above normal) points to a strong contribution of metabolic cooperation (B-vitamin exchange and sharing) to the stability of gut bacterial populations.
Collapse
Affiliation(s)
- Vandana Sharma
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Semen A. Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - David Tran
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Hua Ding
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel A. Peterson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Scott N. Peterson
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
502
|
García-López R, Pérez-Brocal V, Moya A. Beyond cells - The virome in the human holobiont. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:373-396. [PMID: 31528630 PMCID: PMC6717880 DOI: 10.15698/mic2019.09.689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Viromics, or viral metagenomics, is a relatively new and burgeoning field of research that studies the complete collection of viruses forming part of the microbiota in any given niche. It has strong foundations rooted in over a century of discoveries in the field of virology and recent advances in molecular biology and sequencing technologies. Historically, most studies have deconstructed the concept of viruses into a simplified perception of viral agents as mere pathogens, which demerits the scope of large-scale viromic analyses. Viruses are, in fact, much more than regular parasites. They are by far the most dynamic and abundant entity and the greatest killers on the planet, as well as the most effective geo-transforming genetic engineers and resource recyclers, acting on all life strata in any habitat. Yet, most of this uncanny viral world remains vastly unexplored to date, greatly hindered by the bewildering complexity inherent to such studies and the methodological and conceptual limitations. Viromic studies are just starting to address some of these issues but they still lag behind microbial metagenomics. In recent years, however, higher-throughput analysis and resequencing have rekindled interest in a field that is just starting to show its true potential. In this review, we take a look at the scientific and technological developments that led to the advent of viral and bacterial metagenomics with a particular, but not exclusive, focus on human viromics from an ecological perspective. We also address some of the most relevant challenges that current viral studies face and ponder on the future directions of the field.
Collapse
Affiliation(s)
- Rodrigo García-López
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| | - Vicente Pérez-Brocal
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| | - Andrés Moya
- Institute of Evolutionary Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), València, Spain
| |
Collapse
|
503
|
Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat Med 2019; 25:1164-1174. [PMID: 31235962 PMCID: PMC6677395 DOI: 10.1038/s41591-019-0461-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Abstract
The role of dysbiosis in food allergy (FA) remains unclear. We found that dysbiotic fecal microbiota in FA infants evolved compositionally over time and failed to protect against FA in mice. Infants and mice with FA had decreased IgA and increased IgE binding to fecal bacteria, indicative of a broader breakdown of oral tolerance than hitherto appreciated. Therapy with Clostridiales species impacted by dysbiosis, either as a consortium or as monotherapy with Subdoligranulum variabile, suppressed FA in mice, as did a separate immunomodulatory Bacteroidales consortium. Bacteriotherapy induced regulatory T (Treg) cells expressing the transcription factor ROR-γt in a MyD88-dependent manner, which were deficient in FA infants and mice and ineffectively induced by their microbiota. Deletion of Myd88 or Rorc in Treg cells abrogated protection by bacteriotherapy. Thus, commensals activate a MyD88/ROR-γt pathway in nascent Treg cells to protect against FA, while dysbiosis impairs this regulatory response to promote disease.
Collapse
|
504
|
Sargautiene V, Nakurte I, Nikolajeva V. Broad Prebiotic Potential of Non-starch Polysaccharides from Oats ( Avena sativa L.): an in vitro Study. Pol J Microbiol 2019; 67:307-313. [PMID: 30451447 PMCID: PMC7256768 DOI: 10.21307/pjm-2018-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Prebiotics inducing the growth or activity of beneficial intestinal bacteria – probiotics producing short-chain fatty acids (SCFA) have lately received wide recognition for their beneficial influence on host intestinal microbiota and metabolic health. Some non-starch polysaccharides (NSP) are defined as prebiotics and oats being one of richest sources of NSP in grains are considered as potentially having prebiotic effect. However, information on fermentation of specific NSP of oats is limited. Moreover, bacterial cross-feeding interactions in which fermentation of prebiotics is involved is poorly characterized. Here, we report the exploration of new candidates for the syntrophic bacterial interactions and fermentability of oat non-starch polysaccharides (NSP). The results obtained by differentiating composition, viscosity and concentration of oats NSP in fermentation medium showed that Bacillus licheniformis pre-digests oat NSP, degrades high viscosity of oat β-glucan and makes hemicellulose easier to access for other bacteria. Because of fermentation, B. licheniformis produces lactic and succinic acids, which further can be used by other bacteria for cross-feeding and SCFA production.
Collapse
Affiliation(s)
| | - Ilva Nakurte
- Department of Physical Chemistry, University of Latvia, Riga, Latvia
| | - Vizma Nikolajeva
- Department of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
505
|
Rodionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, Novichkov PS, Osterman AL. Micronutrient Requirements and Sharing Capabilities of the Human Gut Microbiome. Front Microbiol 2019; 10:1316. [PMID: 31275260 PMCID: PMC6593275 DOI: 10.3389/fmicb.2019.01316] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
The human gut microbiome harbors a diverse array of metabolic pathways contributing to its development and homeostasis via a complex web of diet-dependent metabolic interactions within the microbial community and host. Genomics-based reconstruction and predictive modeling of these interactions would provide a framework for diagnostics and treatment of dysbiosis-related syndromes via rational selection of therapeutic prebiotics and dietary nutrients. Of particular interest are micronutrients, such as B-group vitamins, precursors of indispensable metabolic cofactors, that are produced de novo by some gut bacteria (prototrophs) but must be provided exogenously in the diet for many other bacterial species (auxotrophs) as well as for the mammalian host. Cross-feeding of B vitamins between prototrophic and auxotrophic species is expected to strongly contribute to the homeostasis of microbial communities in the distal gut given the efficient absorption of dietary vitamins in the upper gastrointestinal tract. To confidently estimate the balance of microbiome micronutrient biosynthetic capabilities and requirements using available genomic data, we have performed a subsystems-based reconstruction of biogenesis, salvage and uptake for eight B vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) and queuosine (essential factor in tRNA modification) over a reference set of 2,228 bacterial genomes representing 690 cultured species of the human gastrointestinal microbiota. This allowed us to classify the studied organisms with respect to their pathway variants and infer their prototrophic vs. auxotrophic phenotypes. In addition to canonical vitamin pathways, several conserved partial pathways were identified pointing to alternative routes of syntrophic metabolism and expanding a microbial vitamin "menu" by several pathway intermediates (vitamers) such as thiazole, quinolinate, dethiobiotin, pantoate. A cross-species comparison was applied to assess the extent of conservation of vitamin phenotypes at distinct taxonomic levels (from strains to families). The obtained reference collection combined with 16S rRNA gene-based phylogenetic profiles was used to deduce phenotype profiles of the human gut microbiota across in two large cohorts. This analysis provided the first estimate of B-vitamin requirements, production and sharing capabilities in the human gut microbiome establishing predictive phenotype profiling as a new approach to classification of microbiome samples. Future expansion of our reference genomic collection of metabolic phenotypes will allow further improvement in coverage and accuracy of predictive phenotype profiling of the human microbiome.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Matvei S. Khoroshkin
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Department of Physics, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
506
|
Shahi F, Redeker K, Chong J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob Resist 2019; 1:dlz015. [PMID: 34222889 PMCID: PMC8210077 DOI: 10.1093/jacamr/dlz015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ongoing concerns over the presence and persistence of antimicrobial resistance (AMR), particularly in Gram-negative bacteria, continue to have significant global health impacts. The gastrointestinal tract, or 'gut', environment amplifies AMR in the human gut microbiome, even in the absence of antibiotics. It constitutes a complex and diverse community of organisms, and patterns and alterations within it are increasingly being found to be associated with states of health and disease. Our understanding of the effects of routes of administration of antimicrobials on the gut microbiome is still lacking despite recent advances in metagenomics. In this article we review current evidence for antibiotic effects on gut microbiota and explore possible prescribing and stewardship approaches that would seek to minimize these effects. If we are to preserve existing and new antimicrobials, we need to consider their use in the context of their effect on gut ecology, and the human microbiome in general.
Collapse
Affiliation(s)
- Farah Shahi
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Cottingham, HU16 5JQ, UK
| | - Kelly Redeker
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK
| | - James Chong
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK
| |
Collapse
|
507
|
Bussolo de Souza C, Jonathan M, Isay Saad SM, Schols HA, Venema K. Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
508
|
Untersmayr E, Bax HJ, Bergmann C, Bianchini R, Cozen W, Gould HJ, Hartmann K, Josephs DH, Levi‐Schaffer F, Penichet ML, O'Mahony L, Poli A, Redegeld FA, Roth‐Walter F, Turner MC, Vangelista L, Karagiannis SN, Jensen‐Jarolim E. AllergoOncology: Microbiota in allergy and cancer-A European Academy for Allergy and Clinical Immunology position paper. Allergy 2019; 74:1037-1051. [PMID: 30636005 PMCID: PMC6563061 DOI: 10.1111/all.13718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
The microbiota can play important roles in the development of human immunity and the establishment of immune homeostasis. Lifestyle factors including diet, hygiene, and exposure to viruses or bacteria, and medical interventions with antibiotics or anti-ulcer medications, regulate phylogenetic variability and the quality of cross talk between innate and adaptive immune cells via mucosal and skin epithelia. More recently, microbiota and their composition have been linked to protective effects for health. Imbalance, however, has been linked to immune-related diseases such as allergy and cancer, characterized by impaired, or exaggerated immune tolerance, respectively. In this AllergoOncology position paper, we focus on the increasing evidence defining the microbiota composition as a key determinant of immunity and immune tolerance, linked to the risk for the development of allergic and malignant diseases. We discuss novel insights into the role of microbiota in disease and patient responses to treatments in cancer and in allergy. These may highlight opportunities to improve patient outcomes with medical interventions supported through a restored microbiome.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University ViennaViennaAustria
| | - Heather J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonGuy's HospitalLondonUK
- School of Cancer and Pharmaceutical SciencesKing's College LondonGuy's HospitalLondonUK
| | | | - Rodolfo Bianchini
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University ViennaUniversity ViennaViennaAustria
| | - Wendy Cozen
- Center for Genetic EpidemiologyDepartment of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PathologyKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterKeck School of Medicine of Los AngelesLos AngelesCaliforniaUSA
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular BiophysicsSchool of Basic & Medical BiosciencesKing's College LondonNew Hunt's HouseLondonUK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Karin Hartmann
- Department of DermatologyUniversity of LuebeckLuebeckGermany
| | - Debra H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonGuy's HospitalLondonUK
- School of Cancer and Pharmaceutical SciencesKing's College LondonGuy's HospitalLondonUK
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitSchool of PharmacyFaculty of MedicineThe Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - Manuel L. Penichet
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of MedicineUniversity of California, Los AngelesCaliforniaUSA
- Department of Microbiology, Immunology and Molecular GeneticsDavid Geffen School of MedicineUniversity of California, Los AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCaliforniaUSA
- The Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA AIDS InstituteLos AngelesCaliforniaUSA
| | - Liam O'Mahony
- Departments of Medicine and MicrobiologyAPC Microbiome IrelandNational University of IrelandCorkIreland
| | - Aurelie Poli
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Frank A. Redegeld
- Division of PharmacologyFaculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Franziska Roth‐Walter
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University ViennaUniversity ViennaViennaAustria
| | - Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaOntarioCanada
| | - Luca Vangelista
- Department of Biomedical SciencesNazarbayev University School of MedicineAstanaKazakhstan
| | - Sophia N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonGuy's HospitalLondonUK
| | - Erika Jensen‐Jarolim
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University ViennaViennaAustria
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University ViennaUniversity ViennaViennaAustria
| |
Collapse
|
509
|
Yang WY, Lee Y, Lu H, Chou CH, Wang C. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One 2019; 14:e0205784. [PMID: 31150394 PMCID: PMC6544216 DOI: 10.1371/journal.pone.0205784] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Gut microbiota has been demonstrated to be involved in intestinal nutrition, defense, and immunity, as well as participating in disease progression. This study was to investigate gut microbiota changes in chickens challenged with netB-positive Clostridium perfringens strain (CP1) and/or the predisposing Eimeria species (Eimeria) and fed diets with fishmeal supplementation. In addition, the effects of lauric acid, a medium-chain fatty acid (MCFA), on necrotic enteritis (NE) reduction and modulation of microbiota were evaluated. The results demonstrated that microbial communities in the jejunum were distinct from those in the cecum, and the microbial community change was more significant in jejunum. Challenge of CP1 in conjunction with Eimeria significantly reduced species diversity in jejunal microbiota, but cecal microbiota remained stable. In the jejunum, CP1 challenge increased the abundance of the genera of Clostridium sensu stricto 1, Escherichia Shigella, and Weissella, but significantly decreased the population of Lactobacillus. Eimeria infection on its own was unable to promote NE, demonstrating decrements of Clostridium sensu stricto 1 and Lactobacillus. Co-infection with CP1 and Eimeria reproduced the majority of NE lesions with significant increment of Clostridium sensu stricto 1 and reduction in Lactobacillus. The advance of changes on these two taxa increased the severity of NE lesions. Further analyses of metagenomeSeq, STAMP, and LEfSe consistently showed significant overgrowth of Clostridium sensu stricto 1 was associated with NE. The supplementation of lauric acid did not reduce NE incidence and severity but decreased the relative abundance of Escherichia Shigella. In conclusion, significant overgrowth of C. perfringens as well as other Clostridium species in Clostridium sensu stricto 1 with the decrement of Lactobacillus in the jejunum is the featured microbiota correlated with NE. Controlling proliferation of Clostridium sensu stricto 1 and manipulation of Lactobacillus in the jejunum should be the strategy to prevent NE.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Yuejia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Hsinyi Lu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
510
|
Peters A, Krumbholz P, Jäger E, Heintz-Buschart A, Çakir MV, Rothemund S, Gaudl A, Ceglarek U, Schöneberg T, Stäubert C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet 2019; 15:e1008145. [PMID: 31120900 PMCID: PMC6532841 DOI: 10.1371/journal.pgen.1008145] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
The interplay of microbiota and the human host is physiologically crucial in health and diseases. The beneficial effects of lactic acid bacteria (LAB), permanently colonizing the human intestine or transiently obtained from food, have been extensively reported. However, the molecular understanding of how LAB modulate human physiology is still limited. G protein-coupled receptors for hydroxycarboxylic acids (HCAR) are regulators of immune functions and energy homeostasis under changing metabolic and dietary conditions. Most mammals have two HCAR (HCA1, HCA2) but humans and other hominids contain a third member (HCA3) in their genomes. A plausible hypothesis why HCA3 function was advantageous in hominid evolution was lacking. Here, we used a combination of evolutionary, analytical and functional methods to unravel the role of HCA3in vitro and in vivo. The functional studies included different pharmacological assays, analyses of human monocytes and pharmacokinetic measurements in human. We report the discovery of the interaction of D-phenyllactic acid (D-PLA) and the human host through highly potent activation of HCA3. D-PLA is an anti-bacterial metabolite found in high concentrations in LAB-fermented food such as Sauerkraut. We demonstrate that D-PLA from such alimentary sources is well absorbed from the human gut leading to high plasma and urine levels and triggers pertussis toxin-sensitive migration of primary human monocytes in an HCA3-dependent manner. We provide evolutionary, analytical and functional evidence supporting the hypothesis that HCA3 was consolidated in hominids as a new signaling system for LAB-derived metabolites. Although it has been known for 15 years that HCA3 is present in humans and other hominids but absent in all other mammals, no study so far aimed to understand why HCA3 was functionally preserved during evolution. Here, we take advantage of evolutionary analyses which we combine with functional assays of hominid HCA3 orthologs. In search for a reasonable scenario explaining the accumulated amino acid changes in HCA3 of hominids we discovered D-phenyllactic acid (D-PLA), a metabolite produced by lactic acid bacteria (LAB), as the so far most potent agonist specifically activating HCA3. Further, oral ingestion of Sauerkraut, known to contain high levels of D-PLA, caused subsequent plasma concentrations sufficient to activate HCA3. Our data interpreted in an evolutionary context suggests that the availability of a new food repertoire under changed ecological conditions triggered the fixation of HCA3 which took over new functions in hominids. These findings are particularly important because they unveiled HCA3, which is not only expressed in various immune cells but also adipocytes, lung and skin, as a player that transfers signals of LAB-derived metabolites into a physiological response in humans. This opens up new directions towards the understanding of the versatile beneficial effects of LAB and their metabolites for humans.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Elisabeth Jäger
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Leipzig, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Mehmet Volkan Çakir
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide-Technologies, Leipzig University, Leipzig, Germany
| | - Alexander Gaudl
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
511
|
Implications of the Westernized Diet in the Onset and Progression of IBD. Nutrients 2019; 11:nu11051033. [PMID: 31072001 PMCID: PMC6566788 DOI: 10.3390/nu11051033] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are currently considered multifactorial pathologies in which various combined environmental factors act on a genetic background, giving rise to a chronic inflammation of the gastrointestinal tract. Among the various environmental factors, it now seems clear that the diet plays the major role in IBD onset and progression. Several clinical studies have attempted to understand the impact of diet in the development and progression of these diseases in order to establish useful guidelines for their management. However, the modest and sometimes contradictory results did not lead to the definition of shared dietary suggestions. On the other hand, food fads and recommendations based on anecdotal episodes are often followed by IBD patients to improve their diet. This review provides a critical overview of existing data on the role of diet as a risk factor for IBD. The methodology used was that of analyzing the results of clinical studies conducted on diet and IBD over the last 12 years through PubMed, as well as analyzing the most relevant studies on nutrients and their possible roles in IBD through the knowledge of the mechanisms by which they can modulate the microbiota or the intestinal physiology.
Collapse
|
512
|
Buelow E, Bayjanov JR, Majoor E, Willems RJ, Bonten MJ, Schmitt H, van Schaik W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol Ecol 2019; 94:4995906. [PMID: 29767712 DOI: 10.1093/femsec/fiy087] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system.
Collapse
Affiliation(s)
- Elena Buelow
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline Majoor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob Jl Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Jm Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, University of Birmingham, UK
| |
Collapse
|
513
|
Shigeno Y, Kitahara M, Shime M, Benno Y. Phascolarctobacterium wakonense sp. nov., isolated from common marmoset (Callithrix jacchus) faeces. Int J Syst Evol Microbiol 2019; 69:1941-1946. [PMID: 31038451 DOI: 10.1099/ijsem.0.003407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Two strictly anaerobic strains (MB11T and MB56) were isolated from common marmoset (Callithrixjacchus) faeces. Cells of the two strains were Gram-stain-negative, pleomorphic short (strain MB11T) or long (strain MB56) rods. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both isolates were related to the genus Phascolarctobacterium. They had 16S rRNA gene sequences similarities lower than 93 % to previously described species, Phascolarctobacterium faecium ACM 3679T and Phascolarctobacterium succinatutens YIT 12067T, and 98.7 % between themselves. DNA-DNA hybridization values showed that strains MB11T and MB56 were the same species. The genomic DNA G+C content of strains MB11T and MB56 were 47.3-47.4 mol% and 47.7-48.0 mol%. The isolates had different enzymatic activities compared with P. succinatutens JCM 16074T and different major cellular fatty acids compared with P. faecium ACM 3679T. Substrate availability revealed that they utilized not only succinate, but also pyruvate. With pyruvate supplementation, they produced both propionate and acetate, while only propionate production occured with succinate. As suggested by the phylogenic and physiological properties of strains MB11T and MB56, we propose the name Phascolarctobacteriumwakonense sp. nov. with the type strain MB11T (=JCM 32899T=DSM 107697T).
Collapse
Affiliation(s)
- Yuko Shigeno
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Maki Kitahara
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Mari Shime
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| | - Yoshimi Benno
- Benno Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hab, Wako, Saitama 351-0198, Japan
| |
Collapse
|
514
|
Occurrence and Function of the Na +-Translocating NADH:Quinone Oxidoreductase in Prevotella spp. Microorganisms 2019; 7:microorganisms7050117. [PMID: 31035603 PMCID: PMC6560451 DOI: 10.3390/microorganisms7050117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Strictly anaerobic Prevotella spp. are characterized by their vast metabolic potential. As members of the Prevotellaceae family, they represent the most abundant organisms in the rumen and are typically found in monogastrics such as pigs and humans. Within their largely anoxic habitats, these bacteria are considered to rely primarily on fermentation for energy conservation. A recent study of the rumen microbiome identified multiple subunits of the Na+-translocating NADH:quinone oxidoreductase (NQR) belonging to different Prevotella spp. Commonly, the NQR is associated with biochemical energy generation by respiration. The existence of this Na+ pump in Prevotella spp. may indicate an important role for electrochemical Na+ gradients in their anaerobic metabolism. However, detailed information about the potential activity of the NQR in Prevotella spp. is not available. Here, the presence of a functioning NQR in the strictly anaerobic model organism P. bryantii B14 was verified by conducting mass spectrometric, biochemical, and kinetic experiments. Our findings propose that P. bryantii B14 and other Prevotella spp. retrieved from the rumen operate a respiratory NQR together with a fumarate reductase which suggests that these ruminal bacteria utilize a sodium motive force generated during respiratory NADH:fumarate oxidoreduction.
Collapse
|
515
|
Differential Effects of Breed and Nursing on Early-Life Colonic Microbiota and Immune Status as Revealed in a Cross-Fostering Piglet Model. Appl Environ Microbiol 2019; 85:AEM.02510-18. [PMID: 30824438 DOI: 10.1128/aem.02510-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Nursing mother and breed can differently regulate early-life microbiota succession in pigs. However, it remains unclear whether they affect gastrointestinal microbiota and immune status, which are critical for early-life gut health. Here, an interspecific cross-fostering piglet model was employed by fostering neonatal Yorkshire and Meishan piglets to the same or another breed of sows. Jejunal and colonic microbiotas and mucosal immune parameters were analyzed at postnatal days 14 (preweaning) and 49 (postweaning). Nursing mother affected 10 genera in the colon and 3 minor genera in the jejunum. At day 14, Meishan sow-nursed piglets had lower Streptococcus suis and higher Cloacibacillus counts in the colonic digesta and larger amounts of interleukin 10 and Foxp3-positive cells in the colonic mucosa than did Yorkshire sow-nursed piglets. At day 49, nursing mother had no significant effects on cytokine expression. Breed effects were observed; Meishan piglets had lower relative abundances of Prevotella and lower gene expression of tumor necrosis factor alpha (TNF-α) than those of Yorkshire piglets at days 14 and 49. Collectively, nursing mother mainly affected preweaning colonic microbiota and immune status, while breed effects persisted after weaning. Piglets nursed by Meishan sows had different microbiota compositions and inflammatory cytokine profiles in the colon compared with those of piglets nursed by Yorkshire sows. These results highlight the different role of nursing mother and breed in affecting early gut microenvironment.IMPORTANCE Early-life gut microbiota and immune status are pivotal for postnatal growth. By using an interspecific cross-fostering piglet model, we find that change in nursing mother transiently reshapes preweaning colon microbiota and immune status, while breed shows persistent effects both pre- and postweaning. Piglets nursed by Meishan sows had lower Streptococcus suis counts and higher anti-inflammatory cytokine expression. These results highlight the significance of nursing mother in regulating early-life gut health.
Collapse
|
516
|
Luca M, Di Mauro M, Di Mauro M, Luca A. Gut Microbiota in Alzheimer's Disease, Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4730539. [PMID: 31178961 PMCID: PMC6501164 DOI: 10.1155/2019/4730539] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Gut microbiota consists of over 100 trillion microorganisms including at least 1000 different species of bacteria and is crucially involved in physiological and pathophysiological processes occurring in the host. An imbalanced gastrointestinal ecosystem (dysbiosis) seems to be a contributor to the development and maintenance of several diseases, such as Alzheimer's disease, depression, and type 2 diabetes mellitus. Interestingly, the three disorders are frequently associated as demonstrated by the high comorbidity rates. In this review, we introduce gut microbiota and its role in both normal and pathological processes; then, we discuss the importance of the gut-brain axis as well as the role of oxidative stress and inflammation as mediators of the pathological processes in which dysbiosis is involved. Specific sections pertain the role of the altered gut microbiota in the pathogenesis of Alzheimer's disease, depression, and type 2 diabetes mellitus. The therapeutic implications of microbiota manipulation are briefly discussed. Finally, a conclusion comments on the possible role of dysbiosis as a common pathogenetic contributor (via oxidative stress and inflammation) shared by the three disorders.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| | - Maurizio Di Mauro
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Marco Di Mauro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Italy
| |
Collapse
|
517
|
Reconstructing functional networks in the human intestinal tract using synthetic microbiomes. Curr Opin Biotechnol 2019; 58:146-154. [PMID: 30959425 DOI: 10.1016/j.copbio.2019.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
The human intestinal tract harbors one of the most densely populated and open microbial ecosystems. The application of multi-omics approaches has provided insight into a wide array of complex interactions between the various groups of mainly anaerobic colonic microbes as well as the host-microbe dialogue. Integration of multi-omics techniques in cultivation based experiments that vary in complexity from monocultures to synthetic microbial communities identified key metabolic players in the trophic interactions as well as their ecological dynamics. A synergy between these approaches will be of utmost importance to reconstruct the functional interaction networks at the ecosystem level within the human intestinal microbiome. The improved understanding of microbiome functioning at ecosystem level will further aid in developing better predictive models and design of effective microbiome modulation strategies for health benefits.
Collapse
|
518
|
Li Z, Rasmussen TS, Rasmussen ML, Li J, Henríquez Olguín C, Kot W, Nielsen DS, Jensen TE. The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Front Microbiol 2019; 10:709. [PMID: 31019501 PMCID: PMC6458274 DOI: 10.3389/fmicb.2019.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
A periodized (14 days on/14 days off) 5% low protein-high carbohydrate (pLPHC) diet protects against weight gain, improves glucose tolerance in mice and interacts with concurrent voluntary activity wheel training on several parameters including weight maintenance and liver FGF21 secretion. The gut microbiome (GM) responds to both diet and exercise and may influence host metabolism. This study compared the cecal GM after a 13.5-week intervention study in mice on a variety of dietary interventions ± concurrent voluntary exercise training in activity wheels. The diets included chronic chow diet, LPHC diet, 40 E% high protein-low carbohydrate (HPLC) diet, an obesigenic chronic high-fat diet (HFD) and the pLPHC diet. Our hypothesis was that the GM changes with pLPHC diet would generally reflect the improved metabolic health of the host and interact with concurrent exercise training. The GM analyses revealed greater abundance phylum Bacteroidetes and the genus Akkermansia on chronic and periodized LPHC and higher abundance of Oscillospira and Oscillibacter on HFD. The differences in diet-induced GM correlated strongly with the differences in a range of host metabolic health-measures. In contrast, no significant effect of concurrent exercise training was observed. In conclusion, pLPHC diet elicits substantial changes in the GM. In contrast, only subtle and non-significant effects of concurrent activity wheel exercise were observed. The pLPHC-associated microbiome may contribute to the healthier host phenotype observed in these mice.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Torben Sølbeck Rasmussen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Line Rasmussen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Sciences, Aarhus University, Roskilde, Denmark
| | - Dennis Sandris Nielsen
- Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
519
|
Tuikhar N, Keisam S, Labala RK, Imrat, Ramakrishnan P, Arunkumar MC, Ahmed G, Biagi E, Jeyaram K. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech Ageing Dev 2019; 179:23-35. [DOI: 10.1016/j.mad.2019.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
520
|
Wang H, Ren P, Mang L, Shen N, Chen J, Zhang Y. In vitro fermentation of novel microwave-synthesized non-digestible oligosaccharides and their impact on the composition and metabolites of human gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
521
|
Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, Fiocchi A, Rossi P, Putignani L, El Hachem M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci Rep 2019; 9:4996. [PMID: 30899033 PMCID: PMC6428866 DOI: 10.1038/s41598-019-41149-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) has been hypothesised to be associated with gut microbiota (GM) composition. We performed a comparative study of the GM profile of 19 AD children and 18 healthy individuals aimed at identifying bacterial biomarkers associated with the disease. The effect of probiotic intake (Bifidobacterium breve plus Lactobacillus salivarius) on the modulation of GM and the probiotic persistence in the GM were also evaluated. Faecal samples were analysed by real-time PCR and 16S rRNA targeted metagenomics. Although the probiotics, chosen for this study, did not shape the entire GM profile, we observed the ability of these species to pass through the gastrointestinal tract and to persist (only B. breve) in the GM. Moreover, the GM of patients compared to CTRLs showed a dysbiotic status characterised by an increase of Faecalibacterium, Oscillospira, Bacteroides, Parabacteroides and Sutterella and a reduction of short-chain fatty acid (SCFA)-producing bacteria (i.e., Bifidobacterium, Blautia, Coprococcus, Eubacterium and Propionibacterium). Taken togheter these results show an alteration in AD microbiota composition with the depletion or absence of some species, opening the way to future probiotic intervention studies.
Collapse
Affiliation(s)
- Sofia Reddel
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | | | | - Pamela Vernocchi
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Russo
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Unit of Allergology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
522
|
Characterization a Novel Butyric Acid-Producing Bacterium Collinsella aerofaciens Subsp. Shenzhenensis Subsp. Nov. Microorganisms 2019; 7:microorganisms7030078. [PMID: 30871249 PMCID: PMC6463082 DOI: 10.3390/microorganisms7030078] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Butyrate-producing bacteria can biosynthesize butyrate and alleviate inflammatory diseases. However, few studies have reported that the genus Collinsella has the ability to produce butyric acid. Here, our study depicts a Collinsella strain, which is a rod-shaped obligate anaerobe that is able to produce butyric acid. This microorganism was isolated from a human gut, and the optimal growth conditions were found to be 37 °C on PYG medium with pH 6.5. The 16S rRNA gene sequence demonstrated that this microorganism shared 99.93% similarity with C. aerofaciens ATCC 25986T, which was higher than the threshold (98.65%) for differentiating two species. Digital DNA⁻DNA hybridization and average nucleotide identity values also supported that this microorganism belonged to the species C. aerofaciens. Distinct phenotypic characteristics between TF06-26 and the type strain of C. aerofaciens, such as the fermentation of D-lactose, D-fructose and D-maltose, positive growth under pH 5 and 0.2% (w/v) cholate, suggested this strain was a novel subspecies. Comparative genome analysis revealed that butyric acid kinase and phosphate butyryltransferase enzymes were coded exclusively by this strain, indicating a specific butyric acid-producing function of this C. aerofaciens subspecies within the genus Collinsella. Thus, Collinsella aerofaciens subsp. shenzhenensis subsp. nov. was proposed, with set strain TF06-26T (=CGMCC 1.5216T = DSM 105138T) as the type strain.
Collapse
|
523
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|
524
|
Douillard FP, de Vos WM. Biotechnology of health-promoting bacteria. Biotechnol Adv 2019; 37:107369. [PMID: 30876799 DOI: 10.1016/j.biotechadv.2019.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Over the last decade, there has been an increasing scientific and public interest in bacteria that may positively contribute to human gut health and well-being. This interest is reflected by the ever-increasing number of developed functional food products containing health-promoting bacteria and reaching the market place as well as by the growing revenue and profits of notably bacterial supplements worldwide. Traditionally, the origin of probiotic-marketed bacteria was limited to a rather small number of bacterial species that mostly belong to lactic acid bacteria and bifidobacteria. Intensifying research efforts on the human gut microbiome offered novel insights into the role of human gut microbiota in health and disease, while also providing a deep and increasingly comprehensive understanding of the bacterial communities present in this complex ecosystem and their interactions with the gut-liver-brain axis. This resulted in rational and systematic approaches to select novel health-promoting bacteria or to engineer existing bacteria with enhanced probiotic properties. In parallel, the field of gut microbiomics developed into a fertile framework for the identification, isolation and characterization of a phylogenetically diverse array of health-promoting bacterial species, also called next-generation therapeutic bacteria. The present review will address these developments with specific attention for the selection and improvement of a selected number of health-promoting bacterial species and strains that are extensively studied or hold promise for future food or pharma product development.
Collapse
Affiliation(s)
- François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
525
|
Rettedal EA, Altermann E, Roy NC, Dalziel JE. The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota. Front Microbiol 2019; 10:458. [PMID: 30930871 PMCID: PMC6423907 DOI: 10.3389/fmicb.2019.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
A variety of fermented foods have been linked to improved human health, but their impacts on the gut microbiome have not been well characterized. Dairy products are one of the most popular fermented foods and are commonly consumed worldwide. One area we currently lack data on is how the process of fermentation changes the gut microbiota upon digestion. What is even less well characterized are the possible differences between cow and other mammals' milks. Our aim was to compare the impact of unfermented skim milk and fermented skim milk products (milk/yogurt) originating from two species (cow/sheep) on the gut microbiome using a rat model. Male Sprague-Dawley rats were fed a dairy-free diet supplemented with one of four treatment dairy drinks (cow milk, cow yogurt, sheep milk, sheep yogurt) for 2 weeks. The viable starter culture bacteria in the yogurts were depleted in this study to reduce their potential influence on gut bacterial communities. At the end of the study, cecal samples were collected and the bacterial community profiles determined via 16S rRNA high-throughput sequencing. Fermentation status drove the composition of the bacterial communities to a greater extent than their animal origin. While overall community alpha diversity did not change among treatment groups, the abundance of a number of taxa differed. The cow milk supplemented treatment group was distinct, with a higher intragroup variability and a distinctive taxonomic composition. Collinsella aerofaciens was of particularly high abundance (9%) for this group. Taxa such as Firmicutes and Lactobacillus were found in higher abundance in communities of rats fed with milk, while Proteobacteria, Bacteroidetes, and Parabacteroides were higher in yogurt fed rats. Collinsella was also found to be of higher abundance in both milk (vs. yogurt) and cows (vs. sheep). This research provides new insight into the effects of unfermented vs. fermented milk (yogurt) and animal origin on gut microbial composition in a healthy host. A number of differences in taxonomic abundance between treatment groups were observed. Most were associated with the effects of fermentation, but others the origin species, or in the case of cow milk, unique to the treatment group. Future studies focusing on understanding microbial metabolism and interactions, should help unravel what drives these differences.
Collapse
Affiliation(s)
- Elizabeth A. Rettedal
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Eric Altermann
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Palmerston North, New Zealand
| | - Julie E. Dalziel
- Food Nutrition & Health Team, AgResearch (Grasslands Research Centre), Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
526
|
Chen X, Wang J, Liu M, Yang W, Wang Y, Tang R, Zhang M. Crystallographic evidence for substrate-assisted catalysis of β-N-acetylhexosaminidas from Akkermansia muciniphila. Biochem Biophys Res Commun 2019; 511:833-839. [PMID: 30846208 DOI: 10.1016/j.bbrc.2019.02.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
β-N-acetylhexosaminidases from Akkermansia muciniphila was reported to perform the crystal structure with GlcNAc complex, which proved to be the substrate of Am2301. Domain II of Am2301 is consisted of amino acid residues 111-489 and is folded as a (β/α)8 barrel with the active site combined of the glycosyl hydrolases. Crystallographic evidence showed that Asp-278 and Glu-279 could be the catalytic site and Tyr-373 may plays a role on binding the substrate. Moreover, Am2301 prefers to bind Zn ion, which similar to other GH 20 family. Enzyme activity and kinetic parameters of wild-type Am2301 and mutants proved that Asp-278 and Glu-279 are the catalytic sites and they play a critical role on the catalytic process. Overall, our results demonstrate that Am2301 and its complex with GlcNAC provide obvious structural evidence for substrate-assisted catalysis. Obviously, this expands our understanding on the mode of substrate-assisted reaction for this enzyme family in Akkermansia muciniphila.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Department of Biological and Food Engineering, Bozhou University, 2266 Tangwang Road, Bozhou, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Mingjie Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Wenyi Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Rupei Tang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
527
|
Klimina KM, Kasianov AS, Poluektova EU, Emelyanov KV, Voroshilova VN, Zakharevich NV, Kudryavtseva AV, Makeev VJ, Danilenko VN. Employing toxin-antitoxin genome markers for identification of Bifidobacterium and Lactobacillus strains in human metagenomes. PeerJ 2019; 7:e6554. [PMID: 30863681 PMCID: PMC6404652 DOI: 10.7717/peerj.6554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 01/22/2023] Open
Abstract
Recent research has indicated that in addition to the unique genotype each individual may also have a unique microbiota composition. Difference in microbiota composition may emerge from both its species and strain constituents. It is important to know the precise composition especially for the gut microbiota (GM), since it can contribute to the health assessment, personalized treatment, and disease prevention for individuals and groups (cohorts). The existing methods for species and strain composition in microbiota are not always precise and usually not so easy to use. Probiotic bacteria of the genus Bifidobacterium and Lactobacillus make an essential component of human GM. Previously we have shown that in certain Bifidobacterium and Lactobacillus species the RelBE and MazEF superfamily of toxin-antitoxin (TA) systems may be used as functional biomarkers to differentiate these groups of bacteria at the species and strain levels. We have composed a database of TA genes of these superfamily specific for all lactobacilli and bifidobacteria species with complete genome sequence and confirmed that in all Lactobacillus and Bifidobacterium species TA gene composition is species and strain specific. To analyze composition of species and strains of two bacteria genera, Bifidobacterium and Lactobacillus, in human GM we developed TAGMA (toxin antitoxin genes for metagenomes analyses) software based on polymorphism in TA genes. TAGMA was tested on gut metagenomic samples. The results of our analysis have shown that TAGMA can be used to characterize species and strains of Lactobacillus and Bifidobacterium in metagenomes.
Collapse
Affiliation(s)
- Ksenia M Klimina
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Artem S Kasianov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena U Poluektova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
528
|
Zeitz JO, Neufeld K, Potthast C, Kroismayr A, Most E, Eder K. Effects of dietary supplementation of the lignocelluloses FibreCell and OptiCell on performance, expression of inflammation-related genes and the gut microbiome of broilers. Poult Sci 2019; 98:287-297. [PMID: 30124970 DOI: 10.3382/ps/pey345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/16/2018] [Indexed: 01/21/2023] Open
Abstract
This study investigated the hypothesis that dietary supplementation of lignocellulose in broilers influences the gut bacterial population and bacterial fermentation, has anti-inflammatory effects, and increases mucin synthesis in the intestine, and, through these changes, influences broiler performance positively. Day-old male Cobb 500 broilers (n = 96) were allotted to 3 experimental groups and fed 3 different maize-wheat-soybean meal-based basal diets during days 1 to 10, 11 to 21, and 22 to 35. The basal diets were fed to the control group, and were supplemented with 0.8% of a standard lignocellulose (LCS) or a fermentable lignocellulose (LCF). Body weight and feed consumption were determined, and at slaughter (day 35), carcass and gizzard weights and gizzard content pH were recorded, and samples of jejunum, cecum, and colon mucosa and of cecum digesta were collected from 15 birds/group. Growth performance and feed intake were not influenced, but dressing percentage was higher in group LCF compared to the other groups. In group LCS and the control group, performance, gizzard weight and gizzard content pH, intestinal gene expression of pro-inflammatory cytokines and of the mucins 2, 5ac and 13, the cecal short-chain fatty acid (SCFA) profile, and bacterial diversity were similar, and relative abundance of bacterial groups (16S DNA sequencing) differed. Supplementation of LCF decreased the expression of the pro-inflammatory genes encoding interleukins 1ß and 17 (P < 0.05) and those of 2 and 8 (P < 0.10) in the jejunum only. The bacterial population differed, and the SCFA profile shifted toward acetate at the expense of butyrate in group LCF compared to the control group. For example, the abundance of Firmicutes and of Ruminococcaceae and Lactobacillaceae decreased, whereas those of Peptostreptococcaceae, Erysipelotrichaceae, and Enterobacteriaceae and that of members of the phylum Proteobacteria increased in group LCF compared to the control group. These data indicate that the susceptibility of lignocellulose to fermentation is crucial for mediating its effects on intestinal gene expression and the bacterial population in the cecum, which may also affect dressing percentage.
Collapse
Affiliation(s)
- J O Zeitz
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, D-35392 Giessen, Germany
| | - K Neufeld
- Animal Nutrition Research Center, A-2532 Heiligenkreuz, Austria
| | - C Potthast
- Agromed Austria GmbH, A-4550 Kremsmünster, Austria
| | - A Kroismayr
- Agromed Austria GmbH, A-4550 Kremsmünster, Austria
| | - E Most
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, D-35392 Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutritional Physiology, University of Giessen, D-35392 Giessen, Germany
| |
Collapse
|
529
|
Ocejo M, Oporto B, Hurtado A. 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow-growing chickens throughout their productive lifespan. Sci Rep 2019; 9:2506. [PMID: 30792439 PMCID: PMC6385345 DOI: 10.1038/s41598-019-39323-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 01/27/2023] Open
Abstract
Gut microbiota affects health, metabolism and immunity of the host, and in the case of livestock, also food-safety. Here, 16S rRNA gene high-throughput Illumina sequencing was used to describe the microbiome of chicken caeca in two different breeds and management systems throughout their whole productive lifespan. Broilers (Ross-308), as a fast-growing breed reared in an intensive system for 42-days, and a slow-growing breed of chicken (Sasso-T451A) reared in an extensive farming system with outdoor access for 86-days, were compared. The core microbiome and differentially abundant taxa, as well as taxa associated with age were identified. Age was identified as the strongest influencing factor in caecal microbiota composition, and, in general, each age-group showed an age-associated community profile, with a transition period at the middle of their lifespan. However, substantial differences were observed in the composition of caecal microbiota of both chicken breeds, microbiota being richer and more complex in free-range chicken than in broilers. Several taxa positively/negatively correlated with Campylobacter relative abundance were also identified. Especially noteworthy was the identification by microbial community comparison of microbiota profiles suggestive of dysbiosis in several free-range chickens, probably associated to the typhlitis observed in the lumen of their caeca.
Collapse
Affiliation(s)
- Medelin Ocejo
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Derio, 48160, Spain
| | - Beatriz Oporto
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Derio, 48160, Spain
| | - Ana Hurtado
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Derio, 48160, Spain.
| |
Collapse
|
530
|
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD. A new genomic blueprint of the human gut microbiota. Nature 2019; 568:499-504. [PMID: 30745586 PMCID: PMC6784870 DOI: 10.1038/s41586-019-0965-1] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
The composition of the human gut microbiota is linked to health and disease, but knowledge of individual microbial species is needed to decipher their biological roles. Despite extensive culturing and sequencing efforts, the complete bacterial repertoire of the human gut microbiota remains undefined. Here we identify 1,952 uncultured candidate bacterial species by reconstructing 92,143 metagenome-assembled genomes from 11,850 human gut microbiomes. These uncultured genomes substantially expand the known species repertoire of the collective human gut microbiota, with a 281% increase in phylogenetic diversity. Although the newly identified species are less prevalent in well-studied populations compared to reference isolate genomes, they improve classification of understudied African and South American samples by more than 200%. These candidate species encode hundreds of newly identified biosynthetic gene clusters and possess a distinctive functional capacity that might explain their elusive nature. Our work expands the known diversity of uncultured gut bacteria, which provides unprecedented resolution for taxonomic and functional characterization of the intestinal microbiota. The known species repertoire of the collective human gut microbiota is substantially expanded with the discovery of 1,952 uncultured bacterial species that greatly improve classification of understudied African and South American samples.
Collapse
Affiliation(s)
- Alexandre Almeida
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK. .,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Alex L Mitchell
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Miguel Boland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Samuel C Forster
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Aleksandra Tarkowska
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Trevor D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Robert D Finn
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
531
|
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 2019; 37:179-185. [PMID: 30718868 PMCID: PMC6784896 DOI: 10.1038/s41587-018-0008-8] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Reference genomes are essential for metagenomic analyses and functional characterization of the human gut microbiota. We present the Culturable Genome Reference (CGR), a collection of 1,520 nonredundant, high-quality draft genomes generated from >6,000 bacteria cultivated from fecal samples of healthy humans. Of the 1,520 genomes, which were chosen to cover all major bacterial phyla and genera in the human gut, 264 are not represented in existing reference genome catalogs. We show that this increase in the number of reference bacterial genomes improves the rate of mapping metagenomic sequencing reads from 50% to >70%, enabling higher-resolution descriptions of the human gut microbiome. We use the CGR genomes to annotate functions of 338 bacterial species, showing the utility of this resource for functional studies. We also carry out a pan-genome analysis of 38 important human gut species, which reveals the diversity and specificity of functional enrichment between their core and dispensable genomes. A resource of >1,500 bacterial reference genomes sheds light on the human gut microbiome.
Collapse
Affiliation(s)
- Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenbin Xue
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guangwen Luo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Panpan Qin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruijin Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Haipeng Sun
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yan Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Suisha Liang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Ying Dai
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Daiwei Wan
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Rongrong Jiang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Lili Su
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Tongkun Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhongkui Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Jinghong Yu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yuxiang Lin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China.
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China. .,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China. .,Department of Digestive Diseases, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
532
|
Lee JR, Magruder M, Zhang L, Westblade LF, Satlin MJ, Robertson A, Edusei E, Crawford C, Ling L, Taur Y, Schluter J, Lubetzky M, Dadhania D, Pamer E, Suthanthiran M. Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. Am J Transplant 2019; 19:488-500. [PMID: 29920927 PMCID: PMC6301138 DOI: 10.1111/ajt.14974] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/25/2023]
Abstract
Posttransplant diarrhea is associated with kidney allograft failure and death, but its etiology remains unknown in the majority of cases. Because altered gut microbial ecology is a potential basis for diarrhea, we investigated whether posttransplant diarrhea is associated with gut dysbiosis. We enrolled 71 kidney allograft recipients for serial fecal specimen collections in the first 3 months of transplantation and profiled the gut microbiota using 16S ribosomal RNA (rRNA) gene V4-V5 deep sequencing. The Shannon diversity index was significantly lower in 28 diarrheal fecal specimens from 25 recipients with posttransplant diarrhea than in 112 fecal specimens from 46 recipients without posttransplant diarrhea. We found a lower relative abundance of 13 commensal genera (Benjamini-Hochberg adjusted P ≤ .15) in the diarrheal fecal specimens including the same 4 genera identified in our prior study. The 28 diarrheal fecal specimens were also evaluated by a multiplexed polymerase chain reaction (PCR) assay for 22 bacterial, viral, and protozoan gastrointestinal pathogens, and 26 specimens were negative for infectious etiologies. Using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) to predict metagenomic functions, we found that diarrheal fecal specimens had a lower abundance of metabolic genes. Our findings suggest that posttransplant diarrhea is not associated with common infectious diarrheal pathogens but with a gut dysbiosis.
Collapse
Affiliation(s)
- John Richard Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY,Department of Transplantation Medicine, New York Presbyterian Hospital – Weill Cornell Medical Center, New York, NY,Address correspondence to: Dr. John R. Lee, or Dr. Manikkam Suthanthiran,
| | - Matthew Magruder
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Lisa Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Michael J. Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Amy Robertson
- New York Presbyterian Hospital – Weill Cornell Medical Center
| | - Emmanuel Edusei
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Carl Crawford
- Division of Gastroenterology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Lilan Ling
- Infectious Disease Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Taur
- Infectious Disease Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonas Schluter
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY,Department of Transplantation Medicine, New York Presbyterian Hospital – Weill Cornell Medical Center, New York, NY
| | - Darshana Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY,Department of Transplantation Medicine, New York Presbyterian Hospital – Weill Cornell Medical Center, New York, NY
| | - Eric Pamer
- Infectious Disease Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY,Department of Transplantation Medicine, New York Presbyterian Hospital – Weill Cornell Medical Center, New York, NY,Address correspondence to: Dr. John R. Lee, or Dr. Manikkam Suthanthiran,
| |
Collapse
|
533
|
Caesar R. Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Can J Diabetes 2019; 43:224-231. [PMID: 30929665 DOI: 10.1016/j.jcjd.2019.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiota is an important regulator of host metabolism. Metagenome analyses have demonstrated that the gut microbiota differs between patients with type 2 diabetes and healthy subjects, and several studies have shown that impaired glucose metabolism is associated with decreased levels of butyrate-producing bacteria. Gut microbiota-produced metabolites, such as short-chain fatty acids, amino acid derivatives and secondary bile acids, participate in metabolic and immunologic processes and, hence, pose putative links between the gut microbiota and glucose homeostasis. Strategies to prevent and treat type 2 diabetes through manipulation of the gut microbiota are being developed. These include replacement of the gut microbiota by fecal transplantation, consumption of fibres to promote the function and growth of beneficial bacteria and treatment with probiotic bacterial strains. Furthermore, it has been shown that many drugs, including drugs used for treatment of diabetes, have major impacts on gut microbiota and, thereby, potentially on glucose metabolism. In particular, the commonly used drug metformin has been shown to influence the functional capacity of the gut microbiota, and recent evidence indicates that this may contribute to the antidiabetes effect of metformin.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
534
|
Liu T, Xiong Q, Li L, Hu Y. Intestinal microbiota predicts lung cancer patients at risk of immune-related diarrhea. Immunotherapy 2019; 11:385-396. [PMID: 30693820 DOI: 10.2217/imt-2018-0144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Previous studies showed that some patients after the treatment of anti-programmed cell death protein-1 (anti-PD-1) antibodies experienced immune-related diarrhea. In this study, we aim to explore the association between intestinal microbiota and immune-related diarrhea. METHODS We obtained the fecal samples of 26 advanced lung cancer patients before the first dose of anti-PD-1 antibodies. RESULTS Eight of 26 patients experienced diarrhea after the treatment of anti-PD-1 antibodies. At the phylum level, our study demonstrated that Bacteroidetes were higher in diarrhea-free (D-F) patients, while Firmicutes were lower. Bacteroides and Parabacteroides belonging to Bacteroidetes phylum and Phascolarctobacterium of Firmicutes phylum were more abundant in D-F patients. Whereas, Veillonella of Proteobacteria phylum was lower in D-F patients. CONCLUSION Our study highlights that intestinal microbiota variation is correlated with the subsequent development of immune-related diarrhea.
Collapse
Affiliation(s)
- Tian Liu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China, 100853
| | - Qi Xiong
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China, 100853
| | - Lingling Li
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China, 100853
| | - Yi Hu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China, 100853
| |
Collapse
|
535
|
Microbiota and gastrointestinal cancer. J Formos Med Assoc 2019; 118 Suppl 1:S32-S41. [PMID: 30655033 DOI: 10.1016/j.jfma.2019.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays important roles in many diseases, including cancer. It may promote carcinogenesis by inducing oxidative stress, genotoxicity, host immune response disturbance, and chronic inflammation. Colorectal cancer, hepatocellular carcinoma, and gastric cancer are the major gastrointestinal tract cancers in Taiwan. The microbiota detected in patients with tubular adenoma and villous/tubulovillous polyps is different from that in healthy controls and patients with hyperplastic polyps. Normalization of the microbiota is observed in patients after colorectal cancer treatment. Furthermore, the liver is exposed to microbiota-associated molecular patterns (MAMPs), bacterial metabolites, and toxins, as it is anatomically connected to the gut via the portal vein. Patients with cirrhosis have significantly higher plasma endotoxin levels than healthy controls. Helicobacter pylori is a well-established risk factor for gastric cancer. Some nitrosating bacteria convert nitrogen compounds in gastric fluid to potentially carcinogenic N-nitroso compounds, which also contribute to gastric cancer development. Growing evidence demonstrates that gut microbiota promotes carcinogenesis. In this review, we discuss the mechanisms and types of microbiota changes involved in these gastrointestinal cancers and the future treatment choices.
Collapse
|
536
|
Jenkins T, Brindley P, Gasser R, Cantacessi C. Helminth Microbiomes – A Hidden Treasure Trove? Trends Parasitol 2019; 35:13-22. [DOI: 10.1016/j.pt.2018.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
|
537
|
Farup PG, Lydersen S, Valeur J. Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. J Obes 2019; 2019:4608315. [PMID: 31662903 PMCID: PMC6791210 DOI: 10.1155/2019/4608315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 08/31/2019] [Indexed: 01/16/2023] Open
Abstract
Obesity has been associated with changes in the gut microbiota and its metabolites. The study explored changes in the faecal microbiota and short-chain fatty acids (SCFA) associated with the diet (including nonnutritive sweeteners (NNSs)) and evaluated metabolic consequences in subjects with morbid obesity. The diet was assessed with a validated food frequency questionnaire. One unit of NNSs was 100 mL beverage with NNSs or 2 tablets/teaspoons of NNSs. The faecal microbiota was assessed with GA-map® dysbiosis test and SCFA with gas chromatography and flame ionisation detection. Fourteen men and 75 women with a mean age of 44.6 (SD 8.7) years, BMI 41.8 (SD 3.6) kg/m2, and intake of NNSs 7.5 units/day (SD 3.2; range 0-43) were included. Faecal butyric acid was positively and negatively associated with the intake of starch (partial correlation = 0.264; p=0.015) and NNSs (partial correlation = -0.274; p=0.011), respectively. NNSs were associated with changes in four out of 39 bacterial groups. Butyric acid has antiobesogenic effects, reduces insulin resistance, and improves dyslipidaemia. Since the weight-reducing effect of NNSs on obese adults trying to lose weight is dubious, it seems imprudent to use NNSs that might counteract the favourable effects of butyric acid.
Collapse
Affiliation(s)
- Per G. Farup
- Department of Research, Innlandet Hospital Trust, PB 104, N-2381 Brumunddal, Norway
- Unit for Applied Clinical Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, N-0440 Oslo, Norway
| |
Collapse
|
538
|
De Paepe K, Verspreet J, Rezaei MN, Martinez SH, Meysman F, Van de Walle D, Dewettinck K, Courtin CM, Van de Wiele T. Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. Food Funct 2019; 10:379-396. [DOI: 10.1039/c8fo01272e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Six wheat bran products, varying in particle size, histological and chemical composition differentially affected thein vitrofermentation activity and composition of human faecal microbiota of ten individuals.
Collapse
Affiliation(s)
- Kim De Paepe
- Center for Microbial Ecology and Technology (CMET)
- Department of Biotechnology
- Faculty of Bioscience Engineering
- Ghent University
- Ghent
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry
- Leuven Food Science and Nutrition Research Centre (LFoRCe)
- Faculty of Bioscience Engineering
- KU Leuven
- Heverlee
| | - Mohammad Naser Rezaei
- Laboratory of Food Chemistry and Biochemistry
- Leuven Food Science and Nutrition Research Centre (LFoRCe)
- Faculty of Bioscience Engineering
- KU Leuven
- Heverlee
| | - Silvia Hidalgo Martinez
- Ecosystem Management Research Group (ECOBE)
- Department of Biology
- Faculty of Sciences
- Universiteit Antwerpen
- Antwerp
| | - Filip Meysman
- Ecosystem Management Research Group (ECOBE)
- Department of Biology
- Faculty of Sciences
- Universiteit Antwerpen
- Antwerp
| | - Davy Van de Walle
- Laboratory of Food Technology and Engineering (FTE)
- Department of Food technology
- Safety and Health
- Faculty of Bioscience Engineering
- Ghent University
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering (FTE)
- Department of Food technology
- Safety and Health
- Faculty of Bioscience Engineering
- Ghent University
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry
- Leuven Food Science and Nutrition Research Centre (LFoRCe)
- Faculty of Bioscience Engineering
- KU Leuven
- Heverlee
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET)
- Department of Biotechnology
- Faculty of Bioscience Engineering
- Ghent University
- Ghent
| |
Collapse
|
539
|
Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:195-210. [PMID: 31016631 DOI: 10.1007/5584_2019_366] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After a long period during which the stomach was considered as an organ where microorganisms could not thrive, Helicobacter pylori was isolated in vitro from gastric biopsies, revolutionising the fields of Microbiology and Gastroenterology. Since then, and with the introduction of high-throughput sequencing technologies that allowed deep characterization of microbial communities, a growing body of knowledge has shown that the stomach contains a diverse microbial community, which is different from that of the oral cavity and of the intestine. Gastric cancer is a heterogeneous disease that is the end result of a cascade of events arising in a small fraction of patients colonized with H. pylori. In addition to H. pylori infection and to multiple host and environmental factors that influence disease development, alterations to the composition and function of the normal gastric microbiome, also known as dysbiosis, may also contribute to malignancy. Chronic inflammation of the mucosa in response to H. pylori may alter the gastric environment, paving the way to the growth of a dysbiotic gastric bacterial community. This dysbiotic microbiome may promote the development of gastric cancer by sustaining inflammation and/or inducing genotoxicity. This chapter summarizes what is known about the gastric microbiome in the context of H. pylori-associated gastric cancer, introducing the emerging dimension of the microbiome into the pathogenesis of this highly incident and deadly disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
540
|
The role of microbiota in the pathogenesis of lupus: Dose it impact lupus nephritis? Pharmacol Res 2019; 139:191-198. [DOI: 10.1016/j.phrs.2018.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
|
541
|
Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilić-Stojanović M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019; 156:46-58.e7. [PMID: 30009817 PMCID: PMC6309514 DOI: 10.1053/j.gastro.2018.07.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The existence of postinfection irritable bowel syndrome (PI-IBS) has been substantiated by epidemiology studies conducted in diverse geographic and clinical settings. However, the available evidence has not been well summarized, and there is little guidance for diagnosis and treatment of PI-IBS. The ROME Foundation has produced a working team report to summarize the available evidence on the pathophysiology of PI-IBS and provide guidance for diagnosis and treatment, based on findings reported in the literature and clinical experience. METHODS The working team conducted an evidence-based review of publication databases for articles describing the clinical features (diagnosis), pathophysiology (intestinal sensorimotor function, microbiota, immune dysregulation, barrier dysfunction, enteroendocrine pathways, and genetics), and animal models of PI-IBS. We used a Delphi-based consensus system to create guidelines for management of PI-IBS and a developed treatment algorithm based on published findings and experiences of team members. RESULTS PI-IBS develops in about 10% of patients with infectious enteritis. Risk factors include female sex, younger age, psychological distress during or before acute gastroenteritis, and severity of the acute episode. The pathogenesis of PI-PBS appears to involve changes in the intestinal microbiome as well as epithelial, serotonergic, and immune system factors. However, these mechanisms are incompletely understood. There are no evidence-based, effective pharmacologic strategies for treatment of PI-IBS. We provide a consensus-based treatment algorithm, based on clinical presentation and potential disease mechanisms. CONCLUSIONS Based on a systematic review of the literature and team experience, we summarize the clinical features, pathophysiology (from animal models and human studies), and progression of PI-IBS. Based on these findings, we present an algorithm for diagnosis and treatment of PI-IBS based on team consensus. We also propose areas for future investigation.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Madhusudan Grover
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maura Corsetti
- Nottingham Digestive Diseases Biomedical Research Centre, National Institute for Health Research, Nottingham University Hospitals NHS Trust, University of Nottingham, UK
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Lena Ohman
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
542
|
Chen HM, Chen CC, Chen CC, Wang SC, Wang CL, Huang CH, Liou JS, Liu TW, Peng HL, Lin FM, Liu CY, Weng SL, Cheng CJ, Hung YF, Liao CC, Huang HD. Gut microbiome changes in overweight male adults following bowel preparation. BMC Genomics 2018; 19:904. [PMID: 30598081 PMCID: PMC6311932 DOI: 10.1186/s12864-018-5285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Human gut microbiome has an essential role in human health and disease. Although the major dominant microbiota within individuals have been reported, the change of gut microbiome caused by external factors, such as antibiotic use and bowel cleansing, remains unclear. We conducted this study to investigate the change of gut microbiome in overweight male adults after bowel preparation, where none of the participants had been diagnosed with any systemic diseases. Methods A total of 20 overweight, male Taiwanese adults were recruited, and all participants were omnivorous. The participants provided fecal samples and blood samples at three time points: prior to bowel preparation, 7 days after colonoscopy, and 28 days after colonoscopy. The microbiota composition in fecal samples was analyzed using 16S ribosome RNA gene amplicon sequencing. Results Our results demonstrated that the relative abundance of the most dominant bacteria hardly changed from prior to bowel preparation to 28 days after colonoscopy. Using the ratio of Prevotella to the sum of Prevotella and Bacteroides in the fecal samples at baseline, the participants were separated into two groups. The fecal samples of the Type 1 group was Bacteroides-dominant, and that of the Type 2 group was Prevotella-dominant with a noticeable presence Bacteroides. Bulleidia appears more in the Type 1 fecal samples, while Akkermensia appears more in the Type 2 fecal samples. Of each type, the gut microbial diversity differed slightly among the three collection times. Additionally, the Type 2 fecal microbiota was temporarily susceptible to bowel cleansing. Predictive functional analysis of microbial community reveals that their activities for the mineral absorption metabolism and arachidonic acid metabolism differed significantly between the two types. Depending on their fecal type, the variance of triglycerides and C-reactive protein also differed between the two types of participants. Conclusions Depending upon the fecal type, the microbial diversity and the predictive functional modules of microbial community differed significantly after bowel preparation. In addition, blood biochemical markers presented somewhat associated with fecal type. Therefore, our results might provide some insights as to how knowledge of the microbial community could be used to promote health through personalized clinical treatment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5285-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Mei Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Chu Chen
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu, 300, Taiwan.,Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu, 300, Taiwan
| | - Chien-Chi Chen
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Shen-Chih Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Departmnet of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,School of Medicine, National Yang Ming University, Taipei, 112, Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Chien-Hsun Huang
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Jong-Shian Liou
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Ta-Wei Liu
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Hwei-Ling Peng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chia-Yuan Liu
- Division of Gastroenterology, Department of Medicine & Department of Medical Research, MacKay Memorial Hospital, Taipei, 112, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, 300, Taiwan.,MacKay Medicine, Nursing and Management College, Taipei, 112, Taiwan
| | - Chieh-Jen Cheng
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Yi-Fang Hung
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Chii-Cherng Liao
- Food Industry Research and Development Institute, Hsinchu, 300, Taiwan.
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,School of Science and Engineering, The Chinese University of Hong Kong, Guangdong Province, Shenzhen, 518172, China. .,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Guangdong Province, Shenzhen, 518172, China.
| |
Collapse
|
543
|
Vo TD, Lynch BS, Roberts A. Dietary Exposures to Common Emulsifiers and Their Impact on the Gut Microbiota: Is There a Cause for Concern? Compr Rev Food Sci Food Saf 2018; 18:31-47. [DOI: 10.1111/1541-4337.12410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Trung D. Vo
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| | - Barry S. Lynch
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| | - Ashley Roberts
- the Intertek Scientific & Regulatory Consultancy; 2233 Argentia Road, Suite 201 Mississauga Ontario Canada L5N 2X7
| |
Collapse
|
544
|
Williams LE, Kleinschmidt CE, Mecca S. Bacterial communities in the digester bed and liquid effluent of a microflush composting toilet system. PeerJ 2018; 6:e6077. [PMID: 30564526 PMCID: PMC6286801 DOI: 10.7717/peerj.6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
Lack of access to clean water and sanitation is a major factor impacting public health in communities worldwide. To address this, the S-Lab at Providence College and the Global Sustainable Aid Project developed a microflush composting toilet system to isolate and treat human waste. Solid waste is composted within a filter-digester bed via an aerobic process involving microbes and invertebrates. Liquid waste may be sanitized by solar disinfection (SODIS) or slow sand filtration (SSF). Here, we used 16S rRNA amplicon sequencing of samples from a scaled-down test version of the system to better understand the bacterial component of the toilet system. Immediately after fecal matter was deposited in the test system, the bacterial community of the filter-digester bed at the site of deposition resembled that of the human gut at both the phylum and genus level, which was expected. Genus-level analysis of filter-digester bed samples collected over the next 30 days from the site of deposition showed reduced or undetectable levels of fecal-associated taxa, with the exception of Clostridium XI, which persisted at low abundance throughout the sampling period. Starting with the sample collected on day 4, the bacterial community of the filter-digester bed at the site of deposition was dominated by bacterial taxa commonly associated with environmental sources, reflecting a major shift in bacterial community composition. These data support the toilet system’s capacity for processing solid human waste. We also analyzed how SODIS and SSF sanitization methods affected the bacterial community composition of liquid effluent collected on day 15 from the test system. Untreated and treated liquid effluent samples were dominated by Proteobacteria. At the genus level, the bacterial community of the untreated effluent included taxa commonly associated with environmental sources. In the SODIS-treated effluent, these genera increased in abundance, whereas in the SSF-treated effluent, they were greatly reduced or undetectable. By analyzing operational taxonomic units that were unclassified at the genus level, we observed that SSF appears to introduce new taxa into the treated effluent, likely from the biological film of microbes and small animals that constitutes the key element of SSF. These data will inform continued development of liquid waste handling strategies for the toilet system. Using the test system as an indicator of the performance of the full-scale version, we have shown the effectiveness of the microflush composting toilet system for containing and eliminating gut-associated bacteria, thereby improving sanitation and contributing to better public health in rural and peri-urban communities.
Collapse
Affiliation(s)
| | - Claire E Kleinschmidt
- Department of Biology, Providence College, Providence, RI, USA.,Department of Engineering-Physics-Systems, Providence College, Providence, RI, USA
| | - Stephen Mecca
- Department of Engineering-Physics-Systems, Providence College, Providence, RI, USA
| |
Collapse
|
545
|
Coretti L, Paparo L, Riccio MP, Amato F, Cuomo M, Natale A, Borrelli L, Corrado G, Comegna M, Buommino E, Castaldo G, Bravaccio C, Chiariotti L, Berni Canani R, Lembo F. Gut Microbiota Features in Young Children With Autism Spectrum Disorders. Front Microbiol 2018; 9:3146. [PMID: 30619212 PMCID: PMC6305749 DOI: 10.3389/fmicb.2018.03146] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Proliferation and/or depletion of clusters of specific bacteria regulate intestinal functions and may interfere with neuro-immune communication and behavior in patients with autism spectrum disorder (ASD). Consistently, qualitative and quantitative alteration of bacterial metabolites may functionally affect ASD pathophysiology. Up to date, age-restricted cohort studies, that may potentially help to identify specific microbial signatures in ASD, are lacking. We investigated the gut microbiota (GM) structure and fecal short chain fatty acids (SCFAs) levels in a cohort of young children (2-4 years of age) with ASD, with respect to age-matched neurotypical healthy controls. Strong increase of Bacteroidetes and Proteobacteria and decrease of Actinobacteria was observed in these patients. Among the 91 OTUs whose relative abundance was altered in ASD patients, we observed a striking depletion of Bifidobacterium longum, one of the dominant bacteria in infant GM and, conversely, an increase of Faecalibacterium prausnitzii, a late colonizer of healthy human gut and a major butyrate producer. High levels of F. prausnitzii were associated to increase of fecal butyrate levels within normal range, and over representation of KEGG functions related to butyrate production in ASD patients. Here we report unbalance of GM structure with a shift in colonization by gut beneficial bacterial species in ASD patients as off early childhood.
Collapse
Affiliation(s)
- Lorena Coretti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Maria Pia Riccio
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Alessandro Natale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luca Borrelli
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giusi Corrado
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Elisabetta Buommino
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimantale, Naples, Italy
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy.,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
546
|
Ticinesi A, Nouvenne A, Tana C, Prati B, Cerundolo N, Miraglia C, De' Angelis GL, Di Mario F, Meschi T. The impact of intestinal microbiota on bio-medical research: definitions, techniques and physiology of a "new frontier". ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:52-59. [PMID: 30561396 PMCID: PMC6502191 DOI: 10.23750/abm.v89i9-s.7906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/19/2022]
Abstract
In recent years the metagenomics techniques have allowed to study composition and function of the intestinal microbiota. The microbiota is a new frontier of biomedical research to be explored and there is growing evidence of its fundamental health-promoting activity. The present review gives a synthetic overview on the characteristics and the role of the microbiota in the adult with particular reference to physiology, pathophysiology and relationships with the host and the environment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma.
| | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Fitzgerald CB, Shkoporov AN, Sutton TDS, Chaplin AV, Velayudhan V, Ross RP, Hill C. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genomics 2018; 19:931. [PMID: 30547746 PMCID: PMC6295017 DOI: 10.1186/s12864-018-5313-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
Background Faecalibacterium prausnitzii is a ubiquitous member of the human gut microbiome, constituting up to 15% of the total bacteria in the human gut. Substantial evidence connects decreased levels of F. prausnitzii with the onset and progression of certain forms of inflammatory bowel disease, which has been attributed to its anti-inflammatory potential. Two phylogroups of F. prausnitzii have been identified, with a decrease in phylogroup I being a more sensitive marker of intestinal inflammation. Much of the genomic and physiological data available to date was collected using phylogroup II strains. Little analysis of F. prausnitzii genomes has been performed so far and genetic differences between phylogroups I and II are poorly understood. Results In this study we sequenced 11 additional F. prausnitzii genomes and performed comparative genomics to investigate intraspecies diversity, functional gene complement and the mobilome of 31 high-quality draft and complete genomes. We reveal a very low level of average nucleotide identity among F. prausnitzii genomes and a high level of genome plasticity. Two genomogroups can be separated based on differences in functional gene complement, albeit that this division does not fully agree with separation based on conserved gene phylogeny, highlighting the importance of horizontal gene transfer in shaping F. prausnitzii genomes. The difference between the two genomogroups is mainly in the complement of genes associated with catabolism of carbohydrates (such as a predicted sialidase gene in genomogroup I) and amino acids, as well as defense mechanisms. Conclusions Based on the combination of ANI of genomic sequences, phylogenetic analysis of core proteomes and functional differences we propose to separate the species F. prausnitzii into two new species level taxa: F. prausnitzii sensu stricto (neotype strain A2–165T = DSM 17677T = JCM 31915T) and F. moorei sp. nov. (type strain ATCC 27768T = NCIMB 13872T). Electronic supplementary material The online version of this article (10.1186/s12864-018-5313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cormac Brian Fitzgerald
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Andrei V Chaplin
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
548
|
Lobach AR, Roberts A, Rowland IR. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol 2018; 124:385-399. [PMID: 30557670 DOI: 10.1016/j.fct.2018.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Low/no-calorie sweeteners (LNCS) are continually under the spotlight in terms of their safety and benefits; in 2014 a study was published linking LNCS to an enhanced risk of glucose intolerance through modulation of the gut microbiota. In response, an in-depth review of the literature was undertaken to evaluate the major contributors to potential changes in the gut microbiota and their corresponding sequelae, and to determine if consuming LNCS (e.g., acesulfame K, aspartame, cyclamate, neotame, saccharin, sucralose, steviol glycosides) contributes to changes in the microbiome based on the data reported in human and animal studies. A few rodent studies with saccharin have reported changes in the gut microbiome, but primarily at high doses that bear no relevance to human consumption. This and other studies suggesting an effect of LNCS on the gut microbiota were found to show no evidence of an actual adverse effect on human health. The sum of the data provides clear evidence that changes in the diet unrelated to LNCS consumption are likely the major determinants of change in gut microbiota numbers and phyla, confirming the viewpoint supported by all the major international food safety and health regulatory authorities that LNCS are safe at currently approved levels.
Collapse
Affiliation(s)
- Alexandra R Lobach
- Intertek Scientific & Regulatory Consultancy, 2233 Argentia Rd., Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Ashley Roberts
- Intertek Scientific & Regulatory Consultancy, 2233 Argentia Rd., Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Ian R Rowland
- University of Reading, Department of Food and Nutritional Sciences, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| |
Collapse
|
549
|
Zhang C, Zhang W, Zhang J, Jing Y, Yang M, Du L, Gao F, Gong H, Chen L, Li J, Liu H, Qin C, Jia Y, Qiao J, Wei B, Yu Y, Zhou H, Liu Z, Yang D, Li J. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med 2018; 16:353. [PMID: 30545398 PMCID: PMC6293533 DOI: 10.1186/s12967-018-1735-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neurogenic bowel dysfunction (NBD) is a major physical and psychological problem in patients with spinal cord injury (SCI), and gut dysbiosis is commonly occurs in SCI. Here, we document neurogenic bowel management of male patients with chronic traumatic complete SCI in our centre and perform comparative analysis of the gut microbiota between our patients and healthy males. METHODS A total of 43 male patients with chronic traumatic complete SCI (20 with quadriplegia and 23 with paraplegia) and 23 healthy male adults were enrolled. Clinical data and fresh stool specimens were collected from all participants. Face-to-face interviews were conducted to survey the neurogenic bowel management of 43 patients with SCI. Gut microbiomes were analysed by sequencing of the V3-V4 region of the 16S rRNA gene. RESULTS NBD was common in adult male patients with chronic traumatic complete SCI. Patients with quadriplegia exhibited a longer time to defecate than did those with paraplegia and had higher NBD scores and heavier neurogenic bowel symptoms. The diversity of the gut microbiota in the SCI group was reduced, and the structural composition was different from that of the healthy adult male group. The abundance of Veillonellaceae and Prevotellaceae increased, while Bacteroidaceae and Bacteroides decreased in the SCI group. The abundance of Bacteroidaceae and Bacteroides in the quadriplegia group and Acidaminococcaceae, Blautia, Porphyromonadaceae, and Lachnoclostridium in the paraplegia group were significantly higher than those in the healthy male group. Serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time and COURSE had significant correlations with microbial community structure. Microbial community structure was significantly associated with serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time, and COURSE. CONCLUSIONS This study presents a comprehensive landscape of the gut microbiota in adult male patients with chronic traumatic complete SCI and documents their neurogenic bowel management. Gut microbiota dysbiosis in SCI patients was correlated with serum biomarkers and NBD symptoms.
Collapse
Affiliation(s)
- Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Wenhao Zhang
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Yingli Jing
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068 China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Hongwei Liu
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Yanmei Jia
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Jiali Qiao
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Bo Wei
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068 China
| | - Yan Yu
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068 China
| | - Hongjun Zhou
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068 China
| | - Zhizhong Liu
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Laboratory Medicine, China Rehabilitation Research Center, Beijing, 100068 China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, No. 10 Jiaomen North Road, Fengtai District, Beijing, 100068 China
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, 100068 China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068 China
- China Rehabilitation Science Institute, Beijing, 100068 China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068 China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068 China
| |
Collapse
|
550
|
Ohashi Y, Fujisawa T. Analysis of Clostridium cluster XI bacteria in human feces. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 38:65-68. [PMID: 31106109 PMCID: PMC6502712 DOI: 10.12938/bmfh.18-023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
Six species and one group of Clostridium cluster XI, Clostridium sordellii, Clostridium bifermentans, Clostridium difficile, Clostridium hiranonis, Intestinibacter bartlettii, and Romboutsia lituseburensis and the Terrisporobacter glycolicus group, respectively, in human feces collected from 18 healthy adults were analyzed with real-time PCR. Although individual differences were recognized, the predominant colonization of C. sordellii and I. bartlettii in the human large intestine was identified.
Collapse
Affiliation(s)
- Yuji Ohashi
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomohiko Fujisawa
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|