501
|
Erdemli HK, Akyol S, Armutcu F, Gulec MA, Canbal M, Akyol O. Melatonin and caffeic acid phenethyl ester in the regulation of mitochondrial function and apoptosis: The basis for future medical approaches. Life Sci 2016; 148:305-12. [DOI: 10.1016/j.lfs.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
502
|
Esteban-Zubero E, Alatorre-Jiménez MA, López-Pingarrón L, Reyes-Gonzales MC, Almeida-Souza P, Cantín-Golet A, Ruiz-Ruiz FJ, Tan DX, García JJ, Reiter RJ. Melatonin's role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-120. [PMID: 26808084 DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
Abstract
The liver is a central organ in detoxifying molecules and would otherwise cause molecular damage throughout the organism. Numerous toxic agents including aflatoxin, heavy metals, nicotine, carbon tetrachloride, thioacetamide, and toxins derived during septic processes, generate reactive oxygen species followed by molecular damage to lipids, proteins and DNA, which culminates in hepatic cell death. As a result, the identification of protective agents capable of ameliorating the damage at the cellular level is an urgent need. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other organs and many studies confirm its benefits against oxidative stress including lipid peroxidation, protein mutilation and molecular degeneration in various organs, including the liver. Recent studies confirm the benefits of melatonin in reducing the cellular damage generated as a result of the metabolism of toxic agents. These protective effects are apparent when melatonin is given as a sole therapy or in conjunction with other potentially protective agents. This review summarizes the published reports that document melatonin's ability to protect hepatocytes from molecular damage due to a wide variety of substances (aflatoxin, heavy metals, nicotine, carbon tetrachloride, chemotherapeutics, and endotoxins involved in the septic process), and explains the potential mechanisms by which melatonin provides these benefits. Melatonin is an endogenously-produced molecule which has a very high safety profile that should find utility as a protective molecule against a host of agents that are known to cause molecular mutilation at the level of the liver.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Marcos César Reyes-Gonzales
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Priscilla Almeida-Souza
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Amparo Cantín-Golet
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Francisco José Ruiz-Ruiz
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
503
|
Wang Z, Ni L, Wang J, Lu C, Ren M, Han W, Liu C. The protective effect of melatonin on smoke-induced vascular injury in rats and humans: a randomized controlled trial. J Pineal Res 2016; 60:217-27. [PMID: 26681403 DOI: 10.1111/jpi.12305] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023]
Abstract
Smoking is one of the most harmful lifestyles in the world. Very few studies have investigated the effects of melatonin in smoke-induced vascular injury. This study was designed to investigate whether melatonin could protect rats and humans from smoke-induced vascular injury. 32 male rats and a double-blind randomized controlled trial (RCT) containing 63 participants formed the subjects of this study. In rats, 10 mg/kg of melatonin was intraperitoneally injected. Blood samples and abdominal artery were harvested two weeks later. Melatonin decreased the expression of platelet endothelial cell adhesion molecule-1 (CD31), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelin-1 (ET-1) compared with the smoke exposed group (P < 0.05), whereas endothelial nitric oxide synthase (eNOS), nuclear erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO-1), catalytic glutamate cysteine ligase (GCLC) and heme oxygenase-1 (HO-1) recovered markedly (P < 0.05). In humans, 3 mg/day of melatonin was taken orally by the participants. Blood samples were drawn at baseline and after two weeks of treatment. Compared with the oral placebo group, melatonin decreased the concentration of fibrinogen (Fbg) (P = 0.04) and free fatty acids (FFA) (P = 0.04) in smokers, along with the decreased expression of ICAM-1, VCAM-1 and ET-1 (P = 0.004, P = 0.001, P < 0.0001, respectively). In contrast, Nrf2 and HO-1 expression were markedly increased (P = 0.0001, P = 0.0049, respectively) after smokers took melatonin orally. In summary, our present data suggest that melatonin could ameliorate smoke-induced vascular injury.
Collapse
Affiliation(s)
- Zhanqi Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengran Lu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Ren
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
504
|
Zielińska M, Jarmuż A, Sałaga M, Kordek R, Laudon M, Storr M, Fichna J. Melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, attenuates TNBS-induced colitis in mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:511-9. [PMID: 26899972 PMCID: PMC4823353 DOI: 10.1007/s00210-016-1214-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/25/2016] [Indexed: 12/28/2022]
Abstract
Melatonin is known as a strong antioxidant and possesses anti-inflammatory properties. Recently, melatonin was shown to improve colitis in animal models of inflammatory bowel diseases. The aim of the present study was to characterize the role of melatonin receptors (MT) in the anti-inflammatory effect of melatonin and to assess the anti-inflammatory potential of two novel MT receptor agonists, Neu-P11 and Neu-P67, in the mouse model of trinitrobenzenesulfonic acid (TNBS)-induced colitis. Colitis was induced on day 1 by intracolonic (i.c.) administration of TNBS in 30 % ethanol in saline. Melatonin (4 mg/kg, per os (p.o.)), Neu-P11 (20 mg/kg, p.o.; 50 mg/kg, intraperitoneally (i.p.), 50 mg/kg, i.c.), and Neu-P67 (20 mg/kg, p.o.) were given twice daily for 3 days. Luzindole (5 mg/kg, i.p.) was injected 15 min prior to melatonin administration. On day 4, macroscopic and microscopic damage scores were assessed and myeloperoxidase (MPO) activity quantified using O-dianisidine-based assay. Melatonin significantly attenuated colitis in mice, as indicated by the macroscopic score (1.90 ± 0.34 vs. 3.82 ± 0.62 for melatonin- and TNBS-treated mice, respectively), ulcer score (0.87 ± 0.18 vs. 1.31 ± 0.19, respectively), and MPO activity (4.68 ± 0.70 vs.6.26 ± 0.94, respectively). Luzindole, a MT receptor antagonist, did not inhibit the anti-inflammatory effect of melatonin (macroscopic score 1.12 ± 0.22, ulcer score 0.50 ± 0.16); however, luzindole increased MPO activity (7.57 ± 1.05). MT receptor agonists Neu-P11 and Neu-P67 did not improve inflammation induced by TNBS. Melatonin, but not MT receptor agonists, exerts potent anti-inflammatory action in acute TNBS-induced colitis. Our data suggests that melatonin attenuates colitis by additional, MT receptor-independent pathways.
Collapse
Affiliation(s)
- Marta Zielińska
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Jarmuż
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Martin Storr
- Walter Brendel Center of Experimental Medicine, University of Munich, Munich, Germany
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
505
|
Donmez Z, Yigit Ö, Bilici S, Dursun N, Gul M, Dastan SD, Uzun H. Evaluation of the antioxidant effects of melatonin on the larynx mucosa of rats exposed to environmental tobacco smoke. Clin Otolaryngol 2016; 41:211-21. [PMID: 26147283 DOI: 10.1111/coa.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study's aim was to investigate the effect of melatonin in terms of mitigating the effects of smoking on the laryngeal mucosa of rats exposed to environmental tobacco smoke. DESIGN Rats were divided into four groups: Melatonin + Smoking group exposed to smoke with melatonin; Smoking group exposed to smoke without melatonin; Saline group not exposed to smoke without melatonin; Melatonin group not exposed to smoke with melatonin. CuZn-superoxide dismutase (CuZn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were evaluated in plasma and tissues. Tissues were also examined the changes of squamous hyperplasia, keratosis, parakeratosis and epithelial hyperplasia by light microscope and the ultrastructural changes by electron microscope. RESULTS Tissue SOD, CAT and GSH-Px activities were significantly higher in Saline and Melatonin groups than Melatonin + Smoking and Smoking groups. Plasma CuZn-SOD and CAT activities were significantly higher in Saline and Melatonin groups than Smoking group. Plasma GSH-Px showed no significant difference. The rate of epithelial hyperplasia was significantly higher in Smoking group than the other groups. The rate of parakeratosis was significantly higher in Smoking group than the other groups. The epithelial cells in Melatonin + Smoking group displayed, normal cell structure similar to those in Saline group under electron microscope. CONCLUSIONS The study shows that smoking induces substantial pathological changes in the laryngeal mucosa and melatonin may have some beneficial effects in partially reversing smoking-induced laryngeal injury by inducing the expression of antioxidants; biochemical and histological outcomes also support these findings due to preventing tissue damage in laryngeal mucosa exposed to smoke.
Collapse
Affiliation(s)
- Z Donmez
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Ö Yigit
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - S Bilici
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - N Dursun
- Department of Pathology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - M Gul
- Department of Histology-Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - S D Dastan
- Division of Genetics, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey
| | - H Uzun
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
506
|
Álvarez-Diduk R, Galano A, Tan DX, Reiter RJ. The key role of the sequential proton loss electron transfer mechanism on the free radical scavenging activity of some melatonin-related compounds. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1785-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
507
|
Cakmak Karaer I, Simsek G, Yildiz A, Vardi N, Polat A, Tanbek K, Gurocak S, Parlakpinar H. Melatonin's protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med 2016; 45:444-9. [PMID: 26757153 DOI: 10.1111/jop.12386] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effects of melatonin on ionized radiation-induced salivary gland damage using an experimental model. MATERIALS AND METHODS Thirty-two rats were randomized into four groups: (i) the control group (C, n = 8) that received intraperitoneal (i.p.) 0.9% NaCl; (ii) the melatonin group (M, n = 8) that received i.p. 5 mg/kg melatonin; (iii) the radiotherapy group (RT, n = 8) that underwent irradiation; (iv) the melatonin plus radiotherapy group (M+RT, n = 8) that received i.p. 5 mg/kg of melatonin, followed by irradiation 30 min later; and (v) the radiotherapy plus melatonin group (RT+M, n = 8) that received irradiation followed by i.p. 5 mg/kg of melatonin 30 min later. The medications and irradiation were administered for 5 days and the salivary glands of the rats were excised 10 days later; the histopathological changes in the salivary glands were assessed and biochemical analyses were conducted (tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI)). RESULTS Regardless of whether melatonin was administered before or after radiotherapy, melatonin decreased the radiation-induced parotid and submandibular histological damage. In addition, regardless of whether administration occurred before or after radiotherapy, melatonin decreased oxidative stress markers, such as MDA, TOS, and OSI. On the contrary, levels of antioxidative markers, such as CAT and GPx, were increased by melatonin. CONCLUSIONS Melatonin may have a significant protective effect on salivary gland damage secondary to ionizing radiation.
Collapse
Affiliation(s)
| | - Gokce Simsek
- Department of ENT, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, School of Medicine, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, School of Medicine, Inonu University, Malatya, Turkey
| | - Alaadin Polat
- Department of Physiology, School of Medicine, Inonu University, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, School of Medicine, Inonu University, Malatya, Turkey
| | - Simay Gurocak
- Department of Radiation Oncology, School of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, School of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
508
|
Gonzalez-Arto M, Hamilton TRDS, Gallego M, Gaspar-Torrubia E, Aguilar D, Serrano-Blesa E, Abecia JA, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. Evidence of melatonin synthesis in the ram reproductive tract. Andrology 2016; 4:163-71. [PMID: 26742835 DOI: 10.1111/andr.12117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Abstract
Melatonin is a ubiquitous molecule found in a wide range of fluids, one of them being ram seminal plasma, in which it can reach higher concentrations than those found in blood, suggesting an extrapineal secretion by the reproductive tract. In order to identify the source of the melatonin found in ram seminal plasma, we first tried to determine whether the melatonin levels were maintained during the day. For this purpose, melatonin concentrations were measured in seminal plasma obtained from first ejaculates of six rams at 6:00 a.m. in total darkness, at 10:00 a.m. and at 14:00 p.m. The melatonin concentration was higher (p < 0.05) in ejaculates collected at 6:00 a.m. than at 10:00 and 14:00. There was no statistical difference between the latter. To further corroborate an extrapineal secretion of melatonin, the presence of the two key enzymes involved in melatonin synthesis, arylalkylamine-N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT) was analyzed by RT-PCR, q-PCR and Western-blot in ram testes, epididymis, and accessory glands. The RT-PCR showed the presence of the m-RNA codifying both AANAT and ASTM in all the tissues under study, but the q-PCR and Western-blot revealed that gene expression of these enzymes was significantly higher in the testis (p < 0.05). Immunohistochemistry confirmed the presence of AANAT and ASMT in the testis and revealed that they were found in the Leydig cells, spermatocytes, and spermatids. Also, measurable levels of melatonin were found in testicular tissue and the tail of the epididymis. In conclusion, our study indicates that the testes are one of the likely sources of the high levels of melatonin found in ram seminal plasma, at least during the day.
Collapse
Affiliation(s)
- M Gonzalez-Arto
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - T R dos S Hamilton
- Dpto. de Reprodução Animal, da Faculdade de Medicina Veterinaria e Zootecnia, da Universidade de São Paulo, São Paulo, Brazil
| | - M Gallego
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - E Gaspar-Torrubia
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - D Aguilar
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - E Serrano-Blesa
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - J A Abecia
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - R Pérez-Pé
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - T Muiño-Blanco
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - J A Cebrián-Pérez
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - A Casao
- Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
509
|
Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res 2016; 60:48-54. [PMID: 26465239 DOI: 10.1111/jpi.12287] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022]
Abstract
Melatonin, a potent antioxidant molecule, plays a role in blood pressure regulation. We hypothesized that melatonin may generate a protective effect in a high salt diet (HSD) rodent model mediated by decreasing renal oxidative stress. Dahl salt-sensitive rats were divided into three groups according to diet: normal chow (control); HSD; HSD with melatonin [30/mg/kg/day]) placed in their water (HSD + Mel) over an 8-wk period. Blood pressure was measured by the tail cuff method. Kidney injury was evaluated by 24 H urine protein excretion. Glomerular injury index (GII) (fibrotic glomeruli/100 glomeruli) was evaluated from a Masson's trichrome-stained section. Kidney oxidative stress was determined by superoxide production via dihydroethidium staining. Expression of oxidative stress-related genes was measured by reverse transcriptase-qPCR. Melatonin had no effect on blood pressure increase induced by HSD and attenuated proteinuria induced by HSD (HSD--50.7 ± 12, HSD + Mel--22.3 ± 4.3, controls--6.5 ± 1.0 gram protein/gram creatinine, P < 0.001). HSD-induced glomerular damage was significantly diminished by melatonin (GII in HSD--24 ± 6, HSD + Mel--3.6 ± 0.8, controls--0.8 ± 0.5, P < 0.05). Superoxide production was significantly higher in kidneys of HSD fed rats than the controls (99 ± 9 versus 60 ± 7 relative fluorescent units (RFU)/μm(2), respectively, P < 0.05). Melatonin also decreased superoxide production (74 ± 5 RFU/μm(2), P < 0.05). The expression of kidney inducible nitric oxide synthase and p67(phox) mRNA was significantly higher in HSD than in the controls and HSD + Mel rats. Treatment with melatonin eliminated the deleterious effect of HSD in the kidneys of Dahl salt-sensitive rats. The beneficial effect of melatonin is not mediated by lowering blood pressure but by a direct antioxidative effect.
Collapse
Affiliation(s)
- Avshalom Leibowitz
- Internal Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Alexander Volkov
- Institute of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Chen Shemesh
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Iris Barshack
- Institute of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ehud Grossman
- Internal Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
510
|
Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, Yeğen BÇ, Ozek E. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. J Pineal Res 2016; 60:74-83. [PMID: 26511903 DOI: 10.1111/jpi.12292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Melatonin exerts protection in several inflammatory and neurodegenerative disorders. To investigate the neuroprotective effects of melatonin in an experimental hemolysis-induced hyperbilirubinemia, newborn Sprague-Dawley rats (25-40 g, n = 72) were injected with phenylhydrazine hydrochloride (PHZ; 75 mg/kg) and the injections were repeated at the 24th hour. Rats were treated with saline or melatonin (10 mg/kg) 30 min before the first and second PHZ injections and 24 h after the 2nd PHZ injections. Control rats (n = 24) were injected with saline, but not PHZ. At sixth hours after the last injections of saline or melatonin, all rats were decapitated. Tumor necrosis factor (TNF)-α, IL-1β, IL-10 and brain-derived neurotrophic factor (BDNF) and S100B levels in the plasma were measured. Brain tissue malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase (MPO) activities were measured, and brain tissues were evaluated for apoptosis by TUNEL method. In the saline-treated PHZ group, hemoglobin, hematocrit levels were reduced, and total/direct bilirubin levels were elevated when compared to control group. Increased plasma TNF-α, IL-1β levels, along with decreased BDNF, S100B and IL-10 values were observed in the saline-treated PHZ group, while these changes were all reversed in the melatonin-treated group. Increased MDA levels and MPO activities in the brain tissues of saline-treated hyperbilirubinemic rats, concomitant with depleted brain GSH stores, were also reversed in the melatonin-treated hyperbilirubinemic rats. Increased TUNEL(+) cells in the hippocampus of saline-treated PHZ group were reduced by melatonin treatment. Melatonin exerts neuroprotective and anti-apoptotic effects on the oxidative neuronal damage of the newborn rats with hemolysis and hyperbilirubinemia.
Collapse
Affiliation(s)
- Asilay Pazar
- Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Aslı Memisoglu
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
511
|
Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res 2016; 60:16-26. [PMID: 26444711 PMCID: PMC4832387 DOI: 10.1111/jpi.12283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
512
|
Szafrańska K, Reiter RJ, Posmyk MM. Melatonin Application to Pisum sativum L. Seeds Positively Influences the Function of the Photosynthetic Apparatus in Growing Seedlings during Paraquat-Induced Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1663. [PMID: 27867393 PMCID: PMC5096385 DOI: 10.3389/fpls.2016.01663] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 05/20/2023]
Abstract
Melatonin, due to its pleiotropic effects plays an important role improving tolerance to stresses. Plants increase endogenous melatonin synthesis when faced with harsh environments as well as exogenously applied melatonin limits stress injuries. Presented work demonstrated that single melatonin application into the seeds during pre-sowing priming improved oxidative stress tolerance of growing seedlings exposed to paraquat (PQ). PQ is a powerful herbicide which blocks the process of photosynthesis under light conditions due to free radicals excess production, when O2 is rapidly converted to [Formula: see text] and subsequently to other reactive oxygen species. The parameters of chlorophyll fluorescence [Fv/Fm, Fv/Fo, Rfd, ΦPSII, qP, and non-photochemical quenching (NPQ)] in all variants of pea leaves (derived from control non-treated seeds - C, and those hydroprimed with water - H, and hydroprimed with melatonin water solution 50 or 200 μM - H-MEL50 and H-MEL200, respectively) were analyzed as a tool for photosynthetic efficacy testing. Moreover stability of the photosynthetic pigments (chlorophylls a, b, and carotenoids) was also monitored under oxidative stress conditions. The results suggest that melatonin applied into the seed significantly enhances oxidative stress tolerance in growing seedlings. This beneficial effect was reflected in reduced accumulation of [Formula: see text] in leaf tissues, preservation of photosynthetic pigments, improved functioning of the photosynthetic apparatus and higher water content in the tissues during PQ-mediated stress. Our findings provide evidence for the physiological role of this molecule and serve as a platform for its possible applications in agricultural or related areas of research.
Collapse
Affiliation(s)
- Katarzyna Szafrańska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, San AntonioTX, USA
| | - Małgorzata M. Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
- *Correspondence: Małgorzata M. Posmyk,
| |
Collapse
|
513
|
Benleulmi-Chaachoua A, Chen L, Sokolina K, Wong V, Jurisica I, Emerit MB, Darmon M, Espin A, Stagljar I, Tafelmeyer P, Zamponi GW, Delagrange P, Maurice P, Jockers R. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016; 60:95-108. [PMID: 26514267 DOI: 10.1111/jpi.12294] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein-coupled receptor (GPCR) super-family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1 , but not with MT2 , we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage-gated calcium channel Cav 2.2 and inhibits Cav 2.2-promoted Ca(2+) entry in an agonist-independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav 2.2 activity, providing a first hint for potential synaptic functions of MT1.
Collapse
Affiliation(s)
- Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate Sokolina
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network and TECHNA Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| | - Michel Boris Emerit
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France
| | - Michèle Darmon
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France
| | - Almudena Espin
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Pascal Maurice
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
514
|
Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 2016; 60:39-47. [PMID: 26465095 DOI: 10.1111/jpi.12286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
Abstract
Melatonin protects the heart against myocardial ischemia/reperfusion injury via the activation of the survivor activating factor enhancement (SAFE) pathway which involves tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Toll-like receptor 4 (TLR4) plays a crucial role in myocardial ischemia/reperfusion injury and activates TNFα. In this study, we investigated whether melatonin may target TLR4 to activate the SAFE pathway. Isolated hearts from rats or mice were subjected to ischemia/reperfusion injury. Melatonin (75 ng/L) and/or TAK242 (a specific inhibitor of TLR4 signaling, 500 nm) were administered to the rat hearts before the induction of ischemia. Pre-ischemic myocardial STAT3 was evaluated by Western blotting. Lipopolysaccharide (LPS, a stimulator of TLR4) was administered to wild type, TNFα receptor 2 knockout or cardiomyocyte-specific STAT3-deficient mice (2.8 mg/kg, i.p) 45 min before the heart isolation. Myocardial infarct size was measured as an endpoint. Compared to the control, administration of melatonin reduced myocardial infarct size (34.7 ± 2.8% versus 62.6 ± 2.7%, P < 0.01). This protective effect was abolished in the presence of TAK242 (49.2 ± 6.5%). Melatonin administered alone increased the pre-ischemic activation of mitochondrial STAT3, and this effect was attenuated with TAK242. Furthermore, stimulation of TLR4 with LPS pretreatment to mice reduced myocardial infarct size of the hearts isolated from wild-type animals but failed to protect the hearts isolated from TNFα receptor 2-knockout mice or cardiomyocyte-specific STAT3-deficient mice (P < 0.001). Taken together, these data suggest that cardioprotection induced by melatonin is mediated by TLR4 to activate the SAFE pathway.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kim Lamont
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Zulfah Albertyn
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lionel H Opie
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
515
|
Zhou X, Zhao H, Cao K, Hu L, Du T, Baluška F, Zou Z. Beneficial Roles of Melatonin on Redox Regulation of Photosynthetic Electron Transport and Synthesis of D1 Protein in Tomato Seedlings under Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1823. [PMID: 27965706 PMCID: PMC5127804 DOI: 10.3389/fpls.2016.01823] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
Melatonin is important in the protection of plants suffering various forms of abiotic stress. The molecular mechanisms underlying the melatonin-mediated protection of their photosynthetic machinery are not completely resolved. This study investigates the effects of exogenous melatonin applications on salt-induced damage to the light reaction components of the photosynthetic machinery of tomato seedlings. The results showed that melatonin pretreatments can help maintain growth and net photosynthetic rate (PN) under salt stress conditions. Pretreatment with melatonin increased the effective quantum yield of photosystem II (ΦPSII), the photochemical quenching coefficient (qP) and the proportion of PSII centers that are "open" (qL) under saline conditions. In this way, damage to the photosynthetic electron transport chain (PET) in photosystem II (PSII) was mitigated. In addition, melatonin pretreatment facilitated the repair of PSII by maintaining the availability of D1 protein that was otherwise reduced by salinity. The ROS levels and the gene expressions of the chloroplast TRXs and PRXs were also investigated. Salt stress resulted in increased levels of reactive oxygen species (ROS), which were mitigated by melatonin. In tomato leaves under salt stress, the expressions of PRXs and TRXf declined but the expressions of TRXm1/4 and TRXm2 increased. Melatonin pretreatment promoted the expression of TRXf and the abundances of TRXf and TRXm gene products but had no effects on the expressions of PRXs. In summary, melatonin improves the photosynthetic activities of tomato seedlings under salt stress. The mechanism could be that: (1) Melatonin controls ROS levels and prevents damaging elevations of ROS caused by salt stress. (2) Melatonin facilitates the recovery of PET and D1 protein synthesis, thus enhancing the tolerance of photosynthetic activities to salinity. (3) Melatonin induces the expression of TRXf and regulates the abundance of TRXf and TRXm gene products, which may facilitate repair of the light reaction parts of the photosynthetic machinery.
Collapse
Affiliation(s)
- Xiaoting Zhou
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Hailiang Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Kai Cao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Lipan Hu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - Tianhao Du
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Zhirong Zou
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of AgricultureYangling, China
- *Correspondence: Zhirong Zou
| |
Collapse
|
516
|
Hu W, Kong H, Guo Y, Zhang Y, Ding Z, Tie W, Yan Y, Huang Q, Peng M, Shi H, Guo A. Comparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava. FRONTIERS IN PLANT SCIENCE 2016; 7:736. [PMID: 27303428 PMCID: PMC4882330 DOI: 10.3389/fpls.2016.00736] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/12/2016] [Indexed: 05/18/2023]
Abstract
Melatonin plays important roles in various aspects of biological processes. However, it is less known on the effects and mechanism of melatonin on the postharvest physiological deterioration (PPD) process of cassava, which largely restricts the potential of cassava as a food and industrial crop. In this study, we found that exogenous application of melatonin significantly delayed PPD of cassava tuberous roots by reducing H2O2 content and improving activities of catalase and peroxidase. Moreover, 3425 differentially expressed genes by melatonin during the PPD process were identified by transcriptomic analysis. Several pathways were markedly affected by melatonin treatments, including metabolic-, ion homeostasis-, and enzyme activity-related processes. Further detailed analysis revealed that melatonin acted through activation of ROS-scavenging and ROS signal transduction pathways, including antioxidant enzymes, calcium signaling, MAPK cascades, and transcription factors at early stages. Notably, the starch degradation pathway was also activated at early stages, whereas it was repressed by melatonin at middle and late stages, thereby indicating its regulatory role in starch metabolism during PPD. Taken together, this study yields new insights into the effect and underlying mechanism of melatonin on the delay of PPD and provides a good strategy for extending shelf life and improvement of cassava tuberous roots.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Hua Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunling Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
- *Correspondence: Haitao Shi, ; Anping Guo,
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Haitao Shi, ; Anping Guo,
| |
Collapse
|
517
|
Pariente R, Pariente JA, Rodríguez AB, Espino J. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 2016; 60:55-64. [PMID: 26462739 DOI: 10.1111/jpi.12288] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022]
Abstract
Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.
Collapse
Affiliation(s)
- Roberto Pariente
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Ana B Rodríguez
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Javier Espino
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
518
|
Winiarska K, Dzik JM, Labudda M, Focht D, Sierakowski B, Owczarek A, Komorowski L, Bielecki W. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res 2016; 60:109-17. [PMID: 26514550 DOI: 10.1111/jpi.12296] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Owczarek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Komorowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Exotic, Laboratory and Non-domesticated Animals Pathology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
519
|
Relationship between Oxidative Stress, Circadian Rhythms, and AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7420637. [PMID: 26885250 PMCID: PMC4738726 DOI: 10.1155/2016/7420637] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed.
Collapse
|
520
|
An R, Zhao L, Xi C, Li H, Shen G, Liu H, Zhang S, Sun L. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 2015; 111:8. [PMID: 26671026 DOI: 10.1007/s00395-015-0526-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Myocardial dysfunction is an important manifestation of sepsis. Previous studies suggest that melatonin is protective against sepsis. In addition, activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been reported to be beneficial in sepsis. However, the role of PI3K/Akt signaling in the protective effect of melatonin against sepsis-induced myocardial dysfunction remains unclear. Here, LY294002, a PI3K inhibitor, was used to investigate the role of PI3K/Akt signaling in mediating the effects of melatonin on sepsis-induced myocardial injury. Cecal ligation and puncture (CLP) surgery was used to establish a rat model of sepsis. Melatonin was administrated to rats intraperitoneally (30 mg/kg). The survival rate, measures of myocardial injury and cardiac performance, serum lactate dehydrogenase level, inflammatory cytokine levels, oxidative stress level, and the extent of myocardial apoptosis were assessed. The results suggest that melatonin administration after CLP surgery improved survival rates and cardiac function, attenuated myocardial injury and apoptosis, and decreased the serum lactate dehydrogenase level. Melatonin decreased the production of the inflammatory cytokines TNF-α, IL-1β, and HMGB1, increased anti-oxidant enzyme activity, and decreased the expression of markers of oxidative damage. Levels of phosphorylated Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax were measured by Western blot. Melatonin increased p-Akt levels, which suggests Akt pathway activation. Melatonin induced higher Bcl-2 expression and lower Bax expression, suggesting inhibition of apoptosis. All protective effects of melatonin were abolished by LY294002, the PI3K inhibitor. In conclusion, our results demonstrate that melatonin mitigates myocardial injury in sepsis via PI3K/Akt signaling activation.
Collapse
Affiliation(s)
- Rui An
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Cong Xi
- Department of Neurology, Baoji City People's Hospital, Baoji, 721000, China
| | - Haixun Li
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guohong Shen
- Integrated Branch, Armed Police Corps Hospital of Shanxi Province, Taiyuan, 030006, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Shumiao Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Sun
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
521
|
Lyakhovich A, Lleonart ME. Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1716341. [PMID: 26697128 PMCID: PMC4677234 DOI: 10.1155/2016/1716341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
Collapse
Affiliation(s)
- Alex Lyakhovich
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Matilde E. Lleonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
522
|
Tan DX, Manchester LC, Reiter RJ. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med Hypotheses 2015; 86:3-9. [PMID: 26804589 DOI: 10.1016/j.mehy.2015.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA.
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, USA.
| |
Collapse
|
523
|
Schwartz C, Ballinger MA, Andrews MT. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1292-300. [PMID: 26354846 PMCID: PMC4666939 DOI: 10.1152/ajpregu.00292.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The brain of mammalian hibernators is naturally protected. Hibernating ground squirrels undergo rapid and extreme changes in body temperature and brain perfusion as they cycle between lengthy torpor bouts and brief periods of euthermia called interbout arousals (IBAs). Arousal from torpor to IBA occurs rapidly, but there is no evidence of brain injury accompanying this extreme physiological transition. Production of the hormone melatonin accompanies arousal, suggesting that it plays a protective role at this time. Here, we investigated mechanisms of melatonin receptor-mediated protection in the brain of the hibernating ground squirrel. We administered the competitive melatonin receptor antagonist luzindole (30 mg/kg ip) to ground squirrels at the predicted end of a torpor bout, triggering an arousal. We found that luzindole-treated animals exhibited caspase-3 activity two times higher than vehicle-treated animals in the hypothalamus at midarousal (P = 0.01), suggesting that melatonin receptor signaling is important for protection in this brain region. We also found a 30% decline in succinate-fueled mitochondrial respiration in luzindole-treated animals compared with vehicle-treated animals (P = 0.019), suggesting that melatonin receptor signaling is important for optimal mitochondrial function during arousal from torpor. The mitochondrial effects of luzindole treatment were seen only during the hibernation season, indicating that this effect is specifically important for arousal from torpor. These data provide evidence for the protective role of melatonin receptor signaling during the extreme physiological transition that occurs when a hibernating mammal arouses from torpor and provide further evidence for regional and seasonal changes in the hibernator brain.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Brain/drug effects
- Brain/metabolism
- Caspase 3/genetics
- Caspase 3/metabolism
- Central Nervous System/physiology
- Female
- Gene Expression Regulation, Enzymologic
- Hibernation/drug effects
- Hibernation/physiology
- Male
- Melatonin/metabolism
- Mitochondria/drug effects
- Mitochondria/metabolism
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/metabolism
- Sciuridae/physiology
- Seasons
- Signal Transduction/physiology
- Tryptamines/pharmacology
Collapse
Affiliation(s)
- Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Mallory A Ballinger
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| |
Collapse
|
524
|
Fraunberger EA, Scola G, Laliberté VLM, Duong A, Andreazza AC. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4729192. [PMID: 26640614 PMCID: PMC4657108 DOI: 10.1155/2016/4729192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/14/2015] [Indexed: 11/28/2022]
Abstract
Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erik A. Fraunberger
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
- Department of Pharmacology, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Gustavo Scola
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Victoria L. M. Laliberté
- Department of Pharmacology, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Angela Duong
- Department of Pharmacology, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Ana C. Andreazza
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
- Department of Pharmacology, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, Canada M5T 1R8
| |
Collapse
|
525
|
Moretti R, Zanin A, Pansiot J, Spiri D, Manganozzi L, Kratzer I, Favero G, Vasiljevic A, Rinaldi VE, Pic I, Massano D, D'Agostino I, Baburamani A, La Rocca MA, Rodella LF, Rezzani R, Ek J, Strazielle N, Ghersi-Egea JF, Gressens P, Titomanlio L. Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats. Neuroscience 2015; 311:382-97. [PMID: 26542996 DOI: 10.1016/j.neuroscience.2015.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) is a complex structure that protects the central nervous system from peripheral insults. Understanding the molecular basis of BBB function and dysfunction holds significant potential for future strategies to prevent and treat neurological damage. The aim of our study was (1) to investigate BBB alterations following excitotoxicity and (2) to test the protective properties of melatonin. Ibotenate, a glutamate analog, was injected intracerebrally in postnatal day 5 (P5) rat pups to mimic excitotoxic injury. Animals were than randomly divided into two groups, one receiving intraperitoneal (i.p.) melatonin injections (5mg/kg), and the other phosphate buffer saline (PBS) injections. Pups were sacrificed 2, 4 and 18 h after ibotenate injection. We determined lesion size at 5 days by histology, the location and organization of tight junction (TJ) proteins by immunohistochemical studies, and BBB leakage by dextran extravasation. Expression levels of BBB genes (TJs, efflux transporters and detoxification enzymes) were determined in the cortex and choroid plexus by quantitative PCR. Dextran extravasation was seen 2h after the insult, suggesting a rapid BBB breakdown that was resolved by 4h. Extravasation was significantly reduced in melatonin-treated pups. Gene expression and immunohistochemical assays showed dynamic BBB modifications during the first 4h, partially prevented by melatonin. Lesion-size measurements confirmed white matter neuroprotection by melatonin. Our study is the first to evaluate BBB structure and function at a very early time point following excitotoxicity in neonates. Melatonin neuroprotects by preventing TJ modifications and BBB disruption at this early phase, before its previously demonstrated anti-inflammatory, antioxidant and axonal regrowth-promoting effects.
Collapse
Affiliation(s)
- R Moretti
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France; Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France; Università degli studi di Udine, 33100 Udine, Italy
| | - A Zanin
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - J Pansiot
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - D Spiri
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - L Manganozzi
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I Kratzer
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - G Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - A Vasiljevic
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - V E Rinaldi
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I Pic
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - D Massano
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I D'Agostino
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - A Baburamani
- Perinatal Center, Dept Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - M A La Rocca
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - L F Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - R Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - J Ek
- Perinatal Center, Dept Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - N Strazielle
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France; Brain-i, Lyon, France
| | - J-F Ghersi-Egea
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - P Gressens
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, London, United Kingdom
| | - L Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France; Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France.
| |
Collapse
|
526
|
Laranjeira-Silva MF, Zampieri RA, Muxel SM, Floeter-Winter LM, Markus RP. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. J Pineal Res 2015; 59:478-87. [PMID: 26383232 DOI: 10.1111/jpi.12279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
Acute inflammatory responses induced by bacteria or fungi block nocturnal melatonin synthesis by rodent pineal glands. Here, we show Leishmania infection does not impair daily melatonin rhythm in hamsters. Remarkably, the attenuated parasite burden and lesion progression in hamsters infected at nighttime was impaired by blockage of melatonin receptors with luzindole, whereas melatonin treatment during the light phase attenuated Leishmania infection. In vitro studies corroborated in vivo observations. Melatonin treatment reduced macrophage expression of Cat-2b, Cat1, and ArgI, genes involved in arginine uptake and polyamine synthesis. Indeed, melatonin reduced macrophage arginine uptake by 40%. Putrescine supplementation reverted the attenuation of infectivity by melatonin indicating that its effect was due to the arrest of parasite replication. This study shows that the Leishmania/host interaction varies in a circadian manner according to nocturnal melatonin pineal synthesis. Our results provide new data regarding Leishmania infectiveness and show new approaches for applying agonists of melatonin receptors in Leishmaniasis therapy.
Collapse
Affiliation(s)
| | | | - Sandra M Muxel
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
527
|
Chen J, Qian C, Duan H, Cao S, Yu X, Li J, Gu C, Yan F, Wang L, Chen G. Melatonin attenuates neurogenic pulmonary edema via the regulation of inflammation and apoptosis after subarachnoid hemorrhage in rats. J Pineal Res 2015; 59:469-77. [PMID: 26383078 DOI: 10.1111/jpi.12278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 01/09/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a serious non-neurological complication that can occur after a subarachnoid hemorrhage (SAH) and is associated with decreased survival and a poor neurological outcome. Melatonin is a strong antioxidant that has beneficial effects against SAH in rats, including reduced mortality and reduced neurological deficits. The molecular mechanisms underlying these clinical effects in the SAH model, however, have not been clearly identified. This study was undertaken to determine the influence of melatonin on SAH-induced NPE and the potential mechanism of these effects using the filament perforation model of SAH in male Sprague Dawley rats. Either melatonin (150 mg/kg) or a vehicle was given via an intraperitoneal injection 2 hr after an SAH induction. Lung samples were extracted 24 hr after SAH. The results show that the melatonin treatment attenuated SAH-induced NPE by preventing alveolar-capillary barrier dysfunctions via inhibiting the disruption of tight junction proteins (ZO-1 and occludin). Moreover, the treatment downregulated the levels of mature interleukin (IL) -1β, myeloperoxidase (MPO), and matrix metallopeptidase (MMP) 9 expression/activation, which were increased in the lung; also, melatonin treatment improved neurological deficits. Furthermore, the melatonin treatment markedly reduced caspase-3 activity and the number of TUNEL-positive cells in the lung. Taken together, these findings show that administration of melatonin attenuates NPE by preventing alveolar-capillary barrier dysfunctions via repressing the inflammatory response and by anti-apoptosis effects after SAH.
Collapse
Affiliation(s)
- Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, The First People's Hospital of Wenling, Taizhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
528
|
Byeon Y, Tan DX, Reiter RJ, Back K. Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 2015; 59:448-54. [PMID: 26331804 DOI: 10.1111/jpi.12274] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/04/2023]
Abstract
The cloning of the gene encoding melatonin 2-hydroxylase (M2H), which is responsible for the synthesis of 2-hydroxymelatonin, has expanded the study of melatonin metabolism in plants. Kinetic analysis of M2H enzymatic activity demonstrated that the catalytic efficiency of M2H is much higher than those of other melatonin biosynthetic enzymes such as serotonin N-acetyltransferase (SNAT) and N-acetylserotonin O-methyltransferase (ASMT), suggesting that melatonin metabolism is rapid in plants. To test this prediction, we selected 24 plant species belonging to 16 families and quantified the levels of melatonin and 2-hydroxymelatonin using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The melatonin levels in most of the species were <1 ng/g fresh weight (FW), while those in leaves from radish and feverfew were 3.5 and 3.3 ng/g FW, respectively. In contrast, the average levels of 2-hydroxymelatonin were much higher at 6.2 ng/g FW. The average ratio of 2-hydroxymelatonin to melatonin in plants was approximately 368:1, indicating that the accumulation of 2-hydroxymelatonin predominates over that of melatonin. These data were consistent with previous results on the kinetics of the corresponding enzymes, as well as with in vivo melatonin conversion data. Among several melatonin metabolites in plants, the most abundant metabolite was found to be 2-hydroxymelatonin (99%) followed by 4-hydroxymelatonin (0.05%), but 6-hydroxymelatonin was not detected in rice seedlings.
Collapse
Affiliation(s)
- Yeong Byeon
- Department of Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
529
|
Liu S, Guo Y, Yuan Q, Pan Y, Wang L, Liu Q, Wang F, Wang J, Hao A. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res 2015; 59:508-17. [PMID: 26475080 DOI: 10.1111/jpi.12282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023]
Abstract
Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yuji Guo
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Pan
- Institute of Biomedical Engineering, Shandong University School of Medicine, Jinan, Shandong, China
| | - Liyan Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qian Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jingjing Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
530
|
Yip HK, Yang CC, Chen KH, Huang TH, Chen YL, Zhen YY, Sung PH, Chiang HJ, Sheu JJ, Chang CL, Chen CH, Chang HW, Chen YT. Combined melatonin and exendin-4 therapy preserves renal ultrastructural integrity after ischemia-reperfusion injury in the male rat. J Pineal Res 2015; 59:434-47. [PMID: 26309060 DOI: 10.1111/jpi.12273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
We tested whether combined melatonin (Mel) and exendin-4 (Ex4) treatment can better preserve glomerular structural integrity after ischemia-reperfusion (IR) injury compared with either alone. Adult male Sprague Dawley rats (n = 50) were equally divided into sham control (SC), IR, IR-Ex4 (10 μg/kg subcutaneously 30 min after reperfusion and daily for 5 days), IR-Mel (20 mg/kg intraperitoneally at 30 min postreperfusion and 50 mg/kg at 6 and 18 hr), and IR-Ex4-Mel were euthanized at day 14. Serum creatinine level and urine protein-to-creatinine ratio at days 3 and 14 were highest in IR group and lowest in SC, significantly higher in IR-Ex4 and IR-Mel groups than in IR-Ex4-Mel group (all P < 0.001) without significant difference between IR-Ex4 and IR-Mel groups. Changes in podocyte injury score (PIS) and kidney injury score were highest in IR group and lowest in SC, significantly higher in IR-Ex4 and IR-Mel groups than in IR-Ex4-Mel, and significantly higher in IR-Mel group than in IR-Ex4 group (all P < 0.001). Immunohistochemical microscopic findings of the expressions of FSP-1 and WT-1 (two glomerular damage indicators) and KIM-1 and snail (two renal tubular-damaged indicators) showed an identical pattern, whereas the expressions of ZO-1, p-cadherin, podocin, dystroglycan, fibronectin, and synaptopodin (six indices of glomerular integrity) demonstrated an opposite pattern compared to that of PIS among five groups (all P < 0.001). Protein expressions of inflammatory (TNF-α/NF-κB/MMP-9) and oxidative stress (NOX-1, NOX-2, oxidized protein) biomarkers exhibited an identical pattern to that of PIS among five groups (all P < 0.001). Combined melatonin-exednin-4 therapy further protected glomerulus from IR injury.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
531
|
Su J, Wang Y, Xing X, Zhang L, Sun H, Zhang Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 2015; 59:455-68. [PMID: 26331949 DOI: 10.1111/jpi.12275] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a promising technology, but its application is hampered by its low efficiency. Hence, the majority of SCNT embryos fail to develop to term. In this study, the antioxidant melatonin reduced apoptosis and reactive oxygen species (ROS) in bovine SCNT embryos. It also increased cell number, inner cell mass (ICM) cell numbers, and the ratio of ICM to total cells while improving the development of bovine SCNT embryos in vitro and in vivo. Gene expression analysis showed that melatonin suppressed the expression of the pro-apoptotic genes p53 and Bax and stimulated the expression of the antioxidant genes SOD1 and Gpx4, the anti-apoptotic gene BCL2L1, and the pluripotency-related gene SOX2 in SCNT blastocysts. We also analyzed the epigenetic modifications in bovine in vitro fertilization, melatonin-treated, and untreated SCNT embryos. The global H3K9ac levels of melatonin-treated SCNT embryos at the four-cell stage were higher than those of the untreated SCNT embryos. We conclude that exogenous melatonin affects the expression of genes related to apoptosis, antioxidant function, and development. Moreover, melatonin reduced apoptosis and ROS in bovine SCNT embryos and enhanced blastocyst quality, thereby ultimately improving bovine cloning efficiency.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| |
Collapse
|
532
|
Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, Duan W, Jin Z, Yu S. Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: in vivo and in vitro studies. J Pineal Res 2015; 59:420-33. [PMID: 26308963 DOI: 10.1111/jpi.12272] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/21/2015] [Indexed: 12/25/2022]
Abstract
Melatonin confers profound protective effect against myocardial ischemia-reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI-induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor-dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia-reperfusion (SIR)-induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl-2 expressions, and p-Akt/Akt ratio and decreased Pten, Bax, and caspase-3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor-dependent manner and Pten/Akt signaling pathways are key downstream mediators.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhihong Lu
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guolong Zhao
- Department of Cardiovascular Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
533
|
Lee HR, Kim TD, Kim HJ, Jung Y, Lee D, Lee KH, Kim DY, Woo KC, Kim KT. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner. J Pineal Res 2015; 59:518-29. [PMID: 26444903 DOI: 10.1111/jpi.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023]
Abstract
Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA.
Collapse
Affiliation(s)
- Hwa-Rim Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Tae-Don Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Hyo-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Kyung-Chul Woo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Newlife Cosmetics R&D Center for Skin Science, Gyeongsansi, Gyeongbuk, Korea
| | - Kyong-Tai Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|
534
|
Brazão V, Colato RP, Santello FH, Filipin MDV, Toldo MPA, do Vale GT, Tirapelli CR, do Prado Júnior JC. Interleukin-17, oxidative stress, and inflammation: role of melatonin during Trypanosoma cruzi infection. J Pineal Res 2015; 59:488-96. [PMID: 26432539 DOI: 10.1111/jpi.12280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Although the exact etiology of Chagas' disease remains unknown, the inflammatory process and oxidative stress are believed to be the main contributors to the dysfunction and pathogenesis during chronic Trypanosoma cruzi infection. Our hypothesis is that melatonin administered for 2 months daily could modulate the oxidative stress and the inflammatory response during the chronic infection. Flow cytometric analysis of macrophages and antigen-presenting cells (APC), expression of RT1B as well as LFA-1 and MCP-1 in CD4(+) and CD8(+) T cells and levels of interleukin-17A were assessed. The oxidative stress was evaluated through lipid peroxidation (LPO) analysis on the plasma of thiobarbituric acid-reactive substances (TBARS) and nitric oxide production. Decreased concentrations of nitrite and TBARS were found in infected and melatonin-treated animals, as well as a rising trend in the production of IL-17A as compared to infected and untreated counterparts. A significant decrease was found in the percentages of CD4(+) and CD8(+) T lymphocytes MCP-1 producers for infected and melatonin-treated rats. Reduced percentage of CD8(+) T cells producing LFA-1 was observed in control and melatonin-treated animals as compared to untreated rats. The cellular response of peritoneal APC cells and macrophages significantly dropped in infected and treated animals. As an endpoint, the use of antioxidant compounds such as melatonin emerges as a new and promising approach to control the oxidative stress during the chronic Chagas' disease partially mediated through the abrogation of LPO and the prevention of the inflammatory response and can be used for further investigation on treatment trials for other infectious diseases.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marina Del Vecchio Filipin
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Míriam Paula Alonso Toldo
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Tavares do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - José Clóvis do Prado Júnior
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
535
|
Wang D, Wei Y, Wang T, Wan X, Yang CS, Reiter RJ, Zhang J. Melatonin attenuates (-)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J Pineal Res 2015; 59:497-507. [PMID: 26426126 DOI: 10.1111/jpi.12281] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
(-)-Epigallocatehin-3-gallate (EGCG), a major constituent of green tea, can ameliorate metabolic syndrome at least in part through reducing gluconeogenesis and lipogenesis. Green tea extracts, of which EGCG is a key constituent, have been used for weight loss in humans. A potential adverse effect of high-dose EGCG or green tea extracts is hepatotoxicity. Melatonin, an endogenous antioxidant with a high safety profile, is effective in preventing various types of tissue damage. The current study investigated the influence of melatonin on EGCG-triggered hepatotoxicity and EGCG-downregulated hepatic genes responsible for gluconeogenesis and lipogenesis in mice. We found that (i) melatonin extended survival time of mice intoxicated with lethal doses of EGCG; (ii) melatonin ameliorated acute liver damage and associated hepatic Nrf2 suppression caused by a nonlethal toxic dose of EGCG; (iii) melatonin reduced subacute liver injury and hepatic Nrf2 activation caused by lower toxic doses of EGCG; and (iv) melatonin did not compromise the action of pharmacological doses of EGCG in downregulating a battery of hepatic genes responsible for gluconeogenesis and lipogenesis, including G6Pc, PEPCK, FOXO1α, SCD1, Fasn, leptin, ACCα, ACCβ, GAPT, and Srebp-1. Taken together, these results suggest that the combination of EGCG and melatonin is an effective approach for preventing potential adverse effects of EGCG as a dietary supplement for metabolic syndrome alleviation and body weight reduction.
Collapse
Affiliation(s)
- Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yaqing Wei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
536
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 667] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
537
|
Zhou L, Zhao D, An H, Zhang H, Jiang C, Yang B. Melatonin prevents lung injury induced by hepatic ischemia-reperfusion through anti-inflammatory and anti-apoptosis effects. Int Immunopharmacol 2015; 29:462-467. [PMID: 26490220 DOI: 10.1016/j.intimp.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/13/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Melatonin is a free radical scavenger and broad-spectrum antioxidant with immunomodulatory effects. The objective of the study is to investigate the effects of melatonin in hepatic ischemia/reperfusion (I/R) induced lung injury and explore its underlying mechanisms. Hepatic I/R injury was induced via portal vein and hepatic artery occlusion for 30min followed by 3-h reperfusion. Male Sprague-Dawley rats were divided into three groups: sham, I/R+ Vehicle and I/R+melatonin. Melatonin (10mg/kg) or vehicle was injected intravenously 15min before ischemia and 10min before reperfusion. The histology of the liver and lung, plasma aminotransferase and cytokine secretion, and apoptosis in the lung were evaluated. The phosphorylation of JNK, p38, and NF-ƙB and Nrf2 nuclear translocation in the lung was examined by Western blotting. We found that melatonin administration significantly attenuated hepatic I/R induced lung injury in rats. Melatonin inhibited the pro-inflammatory responses and enhanced antioxidative responses. Melatonin alleviated pathological changes of the lung and liver, and inhibited apoptosis of cells in the lung. Phosphorylation of JNK, p38 and NF-ƙB and Nrf2 nuclear translocation was increased significantly in the lung by hepatic I/R. Melatonin administration inhibited the activation of JNK, p38, and NF-ƙB, however, melatonin further enhanced Nrf2 activation. We conclude that melatonin exerts a protective effect in hepatic I/R induced lung injury by attenuating the pro-inflammatory responses, inhibiting cell apoptosis, which was mediated in part through JNK, p38 MAPK, NF-ƙB and Nrf2 signaling pathways. Melatonin may be a promising therapeutic strategy for hepatic I/R induced lung injury.
Collapse
Affiliation(s)
- Li Zhou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Chengdu, 610041,China
| | - Dong Zhao
- Department of Anesthesiology, Peking University People's Hospital, Peking, 100044, China
| | - Haiyan An
- Department of Anesthesiology, Peking University People's Hospital, Peking, 100044, China
| | - Hong Zhang
- Department of Anesthesiology, Peking University People's Hospital, Peking, 100044, China
| | - Chunling Jiang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Chengdu, 610041,China.
| | - Baxian Yang
- Department of Anesthesiology, Peking University People's Hospital, Peking, 100044, China
| |
Collapse
|
538
|
Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, Song W, Vincent B, Govitrapong P. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res 2015; 59:308-20. [PMID: 26123100 DOI: 10.1111/jpi.12260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
Abstract
Melatonin is involved in the control of various physiological functions, such as sleep, cell growth and free radical scavenging. The ability of melatonin to behave as an antioxidant, together with the fact that the Alzheimer-related amyloid β-peptide (Aβ) triggers oxidative stress through hydroxyl radical-induced cell death, suggests that melatonin could reduce Alzheimer's pathology. Although the exact etiology of Alzheimer's disease (AD) remains to be established, excess Aβ is believed to be the primary contributor to the dysfunction and degeneration of neurons that occurs in AD. Aβ peptides are produced via the sequential cleavage of β-secretase β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase (PS1/PS2), while α-secretase (ADAM10) prevents the production of Aβ peptides. We hypothesized that melatonin could inhibit BACE1 and PS1/PS2 and enhance ADAM10 expression. Using the human neuronal SH-SY5Y cell line, we found that melatonin inhibited BACE1 and PS1 and activated ADAM10 mRNA level and protein expression in a concentration-dependent manner and mediated via melatonin G protein-coupled receptors. Melatonin inhibits BACE1 and PS1 protein expressions through the attenuation of nuclear factor-κB phosphorylation (pNF-κB). Moreover, melatonin reduced BACE1 promoter transactivation and consequently downregulated β-secretase catalytic activity. The present data show that melatonin is not only a potential regulator of β/γ-secretase but also an activator of α-secretase expression through the activation of protein kinase C, thereby favoring the nonamyloidogenic pathway over the amyloidogenic pathway. Altogether, our findings suggest that melatonin may be a potential therapeutic agent for reducing the risk of AD in humans.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Napapit Chavanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Mayuri Shukla
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bruno Vincent
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Centre National de la Recherche Scientifique, Paris, France
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
539
|
Szewczyk-Golec K, Woźniak A, Reiter RJ. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. J Pineal Res 2015; 59:277-91. [PMID: 26103557 DOI: 10.1111/jpi.12257] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
Abstract
Obesity and its medical complications represent a significant problem throughout the world. In recent decades, mechanisms underlying the progression of obesity have been intensively examined. The involvement of both the behavioral aspects, such as calorie-rich diet, low physical activity and sleep deprivation, and the intrinsic factors, including adipose tissue deregulation, chronic inflammation, oxidative stress, and chronodisruption, has been identified. The circadian disturbances of the adipose tissue endocrine function have been correlated with obesity. Leptin and adiponectin are adipokines strongly associated with glucose and lipid metabolism and with energy balance. Their synthesis and secretion display circadian rhythms that are disturbed in the obese state. Hyperleptinemia resulting in leptin resistance, and hypo-adiponectinemia have been linked to the pathophysiology of the obesity-related disorders. A deficiency of melatonin, one of the consequences of sleep deprivation, has also been demonstrated to correlate with obesity. Melatonin is a pineal secretory product involved in numerous actions, such as regulation of internal biological clocks and energy metabolism, and it functions as an antioxidant and as an anti-inflammatory agent. There exists a substantial amount of evidence supporting the beneficial effects of melatonin supplementation on obesity and its complications. In the current review, the results of studies related to the interactions between melatonin, and both leptin and adiponectin are discussed. Despite the existence of some inconsistencies, melatonin has been found to normalize the expression and secretion patterns of both adipokines. These results support the concept of melatonin as a potential therapeutic agent for obesity and related disorders.
Collapse
Affiliation(s)
- Karolina Szewczyk-Golec
- The Chair of Medical Biology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Alina Woźniak
- The Chair of Medical Biology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
540
|
Shajari S, Laliena A, Heegsma J, Tuñón MJ, Moshage H, Faber KN. Melatonin suppresses activation of hepatic stellate cells through RORα-mediated inhibition of 5-lipoxygenase. J Pineal Res 2015; 59:391-401. [PMID: 26308880 DOI: 10.1111/jpi.12271] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022]
Abstract
Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture-activated rat HSC. Melatonin dose-dependently suppressed the expression of HSC activation markers Col1a1 and alpha-smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor-related orphan receptor-alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5-lipoxygenase (5-LO). The pharmacological 5-LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα-mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Shiva Shajari
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Almudena Laliena
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
541
|
Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res 2015; 59:365-75. [PMID: 26291611 DOI: 10.1111/jpi.12268] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Melatonin is a pleiotropic molecule which plays an important role in animal reproductive activities. Because of the increased global warming, the impact of heat stress (HS) on stockbreeding has become an inevitable issue to be solved. To investigate the potential effects of melatonin on the in vitro maturation of porcine oocyte under the HS, a HS model for porcine oocyte maturation has been used in this study and the different concentrations of melatonin (10(-6) -10(-9) m) were also tested for their protective effects on oocytes. The polar body rate, the index of the nuclear maturation of the oocytes, and the cleavage rate as well as the blastocyst rate were measured to evaluate the developmental competence of the oocytes after parthenogenetic activation (PA). The results showed that HS [in vitro maturation (IVM) 20-24 hr, 42°C] significantly reduced the polar body rate of oocytes and the blastocyte rate of porcine PA embryos, while melatonin (10(-7) m) application not only improved polar body rate and blastocyte rate, but also preserved the normal levels of steroid hormone which is disrupted by HS. The presence of melatonin (10(-7) m) during the oocyte maturation under the HS reduced reactive oxygen species (ROS) formation, enhanced glutathione (GSH) production, inhibited cell apoptosis, and increased the gene expressions of SIRT1, AKT2, and Polg2. Importantly, the endogenously occurring melatonin of cumulus-oocyte complexes was significantly induced by HS. The results indicated that melatonin application effectively protected the oocytes from HS. These observations warranted the further studies in vivo regarding to improve the reproductive activities of animals under the global warming environment.
Collapse
Affiliation(s)
- Yu Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhenZhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ChangJiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - KuanFeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhiYuan Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - JingLi Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - GuoShi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Xinjiang Agricultural University, Wulumuqi, Xinjiang, China
| |
Collapse
|
542
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
543
|
Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z, Li T, Zhang Z, Li W, Li X, Reiter RJ, Yan X. HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J Pineal Res 2015; 59:321-33. [PMID: 26184924 DOI: 10.1111/jpi.12261] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
Melatonin is an indoleamine synthesized in the pineal gland that shows a wide range of physiological and pharmacological functions, including anticancer effects. In this study, we investigated the effect of melatonin on drug-induced cellular apoptosis against the cultured human lung adenocarcinoma cells and explored the role of histone deacetylase (HDAC) signaling in this process. The results showed that melatonin treatment led to a dose- and time-dependent decrease in the viability of human A549 and PC9 lung adenocarcinoma cells. Additionally, melatonin exhibited potent anticancer activity in vitro, as evidenced by reductions of the cell adhesion, migration, and the intracellular glutathione (GSH) level and increases in the apoptotic index, caspase 3 activity, and reactive oxygen species (ROS) in A549 and PC9 cells. Melatonin treatment also influenced the expression of HDAC-related molecules (HDAC1 and Ac-histone H3), upregulated the apoptosis-related molecules (PUMA and Bax), and downregulated the proliferation-related molecule (PCNA) and the anti-apoptosis-related molecule (Bcl2). Furthermore, the inhibition of HDAC signaling using HDAC1 siRNA or SAHA (a potent pan-inhibitor of HDACs) sensitized A549 and PC9 cells to the melatonin treatment. In summary, these data indicate that in vitro-administered melatonin is a potential suppressor of lung adenocarcinoma cells by the targeting of HDAC signaling and suggest that melatonin in combination with HDAC inhibitors may be a novel therapeutic intervention for human lung adenocarcinoma.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunhu Pan
- Department of Respiratory Medicine, The 92nd Hospital of PLA, Nanping, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weimiao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
544
|
Aguilera Y, Herrera T, Liébana R, Rebollo-Hernanz M, Sanchez-Puelles C, Martín-Cabrejas MA. Impact of Melatonin Enrichment during Germination of Legumes on Bioactive Compounds and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7967-74. [PMID: 26307852 DOI: 10.1021/acs.jafc.5b03128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study assesses the impact of melatonin enriched watering on the germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). The melatonin levels in lentil and bean sprouts measured by HPLC-MS/MS were more important than those found in other legumes and sprouts, being higher in lentil (1090 ng/g) than in kidney bean (529 ng/g) sprouts. This alternative germination promoted a significant increase of the development of radicles in comparison with the traditional germination. The decreases in the phenolic load were less accentuated than previously observed (lentil sprouts displayed 394 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)), probably due to the protective effect of melatonin. The antioxidant capacity (oxygen radical absorbing capacity assay) increased in these sprouts, reaching 85 and 56 μmol of Trolox equivalents/g DW in lentils and beans, respectively. Hence, the melatonin-enriched foods exhibited potent free radical scavenger and antioxidant functions that may be used as a nutritional strategy to alleviate and prevent chronic and age-related diseases.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Teresa Herrera
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Rosa Liébana
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Carlos Sanchez-Puelles
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid , C/Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
545
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
546
|
Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, Ma F. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res 2015; 59:255-66. [PMID: 26122919 DOI: 10.1111/jpi.12258] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Melatonin regulates growth in many plants; however, the mechanism remains unclear. In this study, exogenous melatonin feeding resulted in both promotional (≤10 μm) and inhibitory (≥100 μm) effects on maize seedling growth. Initial analyses suggested positive correlations between the amount of melatonin and sucrose synthesis and hydrolysis-related gene expression, enzyme activities, and sucrose metabolites. However, assays of photosynthetic rate, hexokinase (HxK) activity, expression of photosynthetic marker genes, and HxK-related genes showed opposite effects under 10 μm (positive) and 100 μm (negative) melatonin treatments. Similarly, 10 μm melatonin accelerated starch catabolism at night, whereas 100 μm melatonin significantly decreased this process and led to starch accumulation in photosynthetic tissues. Furthermore, expression analysis of genes related to sucrose phloem loading resulted in a slight upregulation of sucrose transporters (SUT1 and SUT2) when seedlings were induced with 10 μm melatonin, while treatment with 100 μm melatonin resulted in significant downregulation of these sucrose transporter genes (SUT1 and SUT2), as well as tie-dyed2 (Tdy2) and sucrose export defective 1. Taken together, these results suggest that low doses of melatonin benefit maize seedling growth by promoting sugar metabolism, photosynthesis, and sucrose phloem loading. Conversely, high doses of melatonin inhibit seedling growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing photosynthesis and sucrose phloem loading.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbin Wei
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
547
|
Stefanova NA, Maksimova KY, Kiseleva E, Rudnitskaya EA, Muraleva NA, Kolosova NG. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer's disease-like pathology. J Pineal Res 2015; 59:163-77. [PMID: 25988948 DOI: 10.1111/jpi.12248] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
Translational research on Alzheimer's disease (AD) has often focused on reducing the high cerebral levels of amyloid-β (Aβ) as a key characteristic of AD pathogenesis. There is, however, a growing body of evidence that synaptic dysfunction may be crucial for the development of the most common (sporadic) form of AD. The applicability of melatonin (mainly produced by the pineal gland) to the treatment of AD is actively evaluated, but usually, such studies are based on animal models of early-onset AD, which is responsible for only ~5% of AD cases. We have shown previously that in OXYS rats (an established model of sporadic AD), accumulation of toxic forms of Aβ in the brain occurs later than does the development of signs of neurodegenerative changes and synaptic failure. In this regard, recently, we uncovered beneficial neuroprotective effects of melatonin (prophylactic dietary supplementation) in OXYS rats. Our aim here was to evaluate, starting at the age of active progression of AD-like pathology in OXYS rats, the effects of long-term oral administration of melatonin on the structure of synapses and on neuronal and glial cells of the hippocampus. Melatonin significantly increased hippocampal synaptic density and the number of excitatory synapses, decreased the number of inhibitory synapses, and upregulated pre- and postsynaptic proteins (synapsin I and PSD-95, respectively). Furthermore, melatonin improved the ultrastructure of neuronal and glial cells and reduced glial density. Based on our past and present results, the repair of neuroplasticity by melatonin is a promising strategy against AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Mitoengineering, Moscow, Russia
| |
Collapse
|
548
|
Chang CL, Sung PH, Sun CK, Chen CH, Chiang HJ, Huang TH, Chen YL, Zhen YY, Chai HT, Chung SY, Tong MS, Chang HW, Chen HH, Yip HK. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. J Pineal Res 2015; 59:206-20. [PMID: 26013733 DOI: 10.1111/jpi.12251] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 01/19/2023]
Abstract
We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Shen Tong
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
549
|
Zhou L, Chen X, Liu T, Gong Y, Chen S, Pan G, Cui W, Luo ZP, Pei M, Yang H, He F. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J Pineal Res 2015; 59:190-205. [PMID: 25975679 PMCID: PMC4523475 DOI: 10.1111/jpi.12250] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) represent an attractive source for stem cell-based regenerative therapy, but they are vulnerable to oxidative stress-induced premature senescence in pathological conditions. We previously reported antioxidant and antiarthritic effects of melatonin on MSCs against proinflammatory cytokines. In this study, we hypothesized that melatonin could protect MSCs from premature senescence induced by hydrogen peroxide (H2 O2 ) via the silent information regulator type 1 (SIRT1)-dependent pathway. In response to H2 O2 at a sublethal concentration of 200 μm, human bone marrow-derived MSCs (BM-MSCs) underwent growth arrest and cellular senescence. Treatment with melatonin before H2 O2 exposure cannot significantly prevent premature senescence; however, treatment with melatonin subsequent to H2 O2 exposure successfully reversed the senescent phenotypes of BM-MSCs in a dose-dependent manner. This result was made evident by improved cell proliferation, decreased senescence-associated β-galactosidase activity, and the improved entry of proliferating cells into the S phase. In addition, treatment with 100 μm melatonin restored the osteogenic differentiation potential of BM-MSCs that was inhibited by H2 O2 -induced premature senescence. We also found that melatonin attenuated the H2 O2 -stimulated phosphorylation of p38 mitogen-activated protein kinase, decreased expression of the senescence-associated protein p16(INK) (4α) , and increased SIRT1. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked melatonin-mediated antisenescence effects. Inhibition of SIRT1 by sirtinol counteracted the protective effects of melatonin, suggesting that melatonin reversed the senescence in cells through the SIRT1-dependent pathway. Together, these findings lay new ground for understanding oxidative stress-induced premature senescence and open perspectives for therapeutic applications of melatonin in stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Long Zhou
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Chen
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yihong Gong
- School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Sijin Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoqing Pan
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Cui
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zong-Ping Luo
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, USA
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
550
|
Sharma RD, Katkar GD, Sundaram MS, Paul M, NaveenKumar SK, Swethakumar B, Hemshekhar M, Girish KS, Kemparaju K. Oxidative stress-induced methemoglobinemia is the silent killer during snakebite: a novel and strategic neutralization by melatonin. J Pineal Res 2015; 59:240-54. [PMID: 26103459 DOI: 10.1111/jpi.12256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced methemoglobinemia remained an untouched area in venom pharmacology till date. This study for the first time explored the potential of animal venoms to oxidize hemoglobin to methemoglobin. In in vitro whole-blood assay, methemoglobin forming ability of venoms varied as Naja naja > Ophiophagus hannah > Echis carinatus > Daboia russellii > Apis mellifera > Mesobuthus tamulus > Hippasa partita. Being highly potential, N. naja venom was further studied to observe methemoglobin formation in RBCs and in combinations with PMNs and PBMCs, where maximum effect was observed in RBCs + PMNs combination. Naja naja venom/externally added methemoglobin-induced methemoglobin formation was in parallel with ROS generation in whole blood/RBCs/RBCs + PMNs/RBCs + PBMCs. In in vivo studies, the lethal dose (1 mg/kg body weight, i.p.) of N. naja venom readily induced methemoglobin formation, ROS generation, expression of inflammatory markers, and hypoxia-inducible factor-3α. Although the mice administered with three effective doses of antivenom recorded zero mortality; the methemoglobin and ROS levels remained high. However, one effective dose of antivenom when administered along with melatonin (1:50; venom/melatonin, w/w), not only offered 100% survival of experimental mice, but also significantly reduced methemoglobin level, and oxidative stress markers including hypoxia-inducible factor-3α. This study provides strong drive that, complementing melatonin would not only reduce the antivenom load, but for sure greatly increase the success rate of antivenom therapy and drastically minimize the global incidence of snakebite deaths. However, further detailed investigations are needed before translating the combined therapy towards the bed side.
Collapse
Affiliation(s)
- Rachana D Sharma
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | - Gajanan D Katkar
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | | | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| |
Collapse
|