501
|
Troemel ER, Félix MA, Whiteman NK, Barrière A, Ausubel FM. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 2008; 6:2736-52. [PMID: 19071962 PMCID: PMC2596862 DOI: 10.1371/journal.pbio.0060309] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/31/2008] [Indexed: 11/28/2022] Open
Abstract
For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.
Collapse
Affiliation(s)
- Emily R Troemel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
502
|
Abstract
The cell-invasive, trypomastigote form of Trypanosoma cruzi exhibits a unique relationship with lysosomes in target host cells. In contrast to many intracellular pathogens that are adept at avoiding contact with lysosomes, T. cruzi requires transient residence within this acidic organelle for productive infection. The low pH environment of lysosomes facilitates parasite egress from the vacuole and delivery into the host cytosol, a critical step in the T. cruzi developmental program. Recent studies also suggest that early lysosome fusion with invading or recently internalized parasites is critical for cellular retention of parasites. To ensure targeting to host cell lysosomes, T. cruzi trypomastigotes exploit two distinct modes of invasion that rapidly converge in the cell. In this chapter, we summarize the recent progress and changing views regarding the role of host cell lysosomes in the T. cruzi infection process where our discussion is limited to invasion of nonprofessional phagocytic cells.
Collapse
Affiliation(s)
- G Adam Mott
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
503
|
GURSOY ULVIKAHRAMAN, KÖNÖNEN EIJA, UITTO VELIJUKKA. Intracellular replication of fusobacteria requires new actin filament formation of epithelial cells. APMIS 2008; 116:1063-70. [DOI: 10.1111/j.1600-0463.2008.00868.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
504
|
Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 2008; 10:2553-67. [PMID: 18754852 DOI: 10.1111/j.1462-5822.2008.01229.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.
Collapse
Affiliation(s)
- Danelle S Eto
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | |
Collapse
|
505
|
Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF, McCormick BA, Reinecker HC. GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog 2008; 4:e1000228. [PMID: 19043560 PMCID: PMC2583055 DOI: 10.1371/journal.ppat.1000228] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 11/04/2008] [Indexed: 02/07/2023] Open
Abstract
Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Shigella is a bacterium that causes food poisoning and serious intestinal infections with diarrheal illness. Pathogens like Shigella utilize intracellular active effectors to overcome the intestinal barrier and invade the host. We demonstrate that intestinal epithelial cells can sense the disturbance of the tight junctional seal, which normally prevents access of microbes to the circulation. A signaling molecule, which is required for cell invasion by Shigella, also activates messengers that activate immune defenses. This pathway of intestinal pathogen detection is activated by Shigella products, which are injected into host cells by the pathogen and depends on intracellular microbial recognition receptors. The detection of altered cellular function by bacterial effectors may be important for the ability to rapidly respond to barrier disruption in the intestine with the attraction and activation of immune cells to defend against the intruders.
Collapse
Affiliation(s)
- Atsuko Fukazawa
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen Alonso
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kiyotaka Kurachi
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sonal Gupta
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cammie F. Lesser
- Department of Microbiology and Molecular Genetics and Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Ann McCormick
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hans-Christian Reinecker
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
506
|
Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 2008; 191:1044-55. [PMID: 19028886 DOI: 10.1128/jb.01270-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.
Collapse
|
507
|
Abstract
How invasive bacteria exploit mammalian host cell components to induce their entry into cells has received a lot of attention in the last two decades. Model organisms have emerged and helped understanding the various mechanisms that are used. Among those, Listeria monocytogenes is one of the most documented organisms. It enters into cells via two bacterial proteins, internalin (also called InlA) and InlB, which interact with cell surface receptors, E-cadherin and the hepatocyte growth factor receptor, Met, respectively. These interactions initiate a series of events that leads to actin polymerization, membrane invagination and bacterial internalization. Investigations on internalin- and InlB-mediated entries have repeatedly shown that Listeria fully usurps the host cell machinery. Moreover, they have also shown that previously unknown components discovered during the study of Listeria invasion play a role either in E-cadherin-mediated cell-cell adhesion or Met signalling. Unexpectedly, recent studies have highlighted a role for clathrin in Listeria InlB-mediated actin polymerization and entry, revealing a new role for this endocytic protein, i.e. in bacterial-induced internalization. Furthermore, comparative studies have demonstrated that the clathrin-mediated endocytosis machinery is also used in the internalin-E-cadherin pathway, and for the entry of other bacteria that enter by a 'zipper' mechanism. By contrast, the clathrin-mediated endocytic machinery is not used by bacteria that inject effectors into mammalian cells via the type III secretion system and enter by the so-called trigger mechanism, characterized by enormous membrane ruflles that result in the macropinocytosis of the corresponding bacteria. Finally, adherent bacteria, for example enteropathogenic Escherichia coli (EPEC), also co-opt clathrin to induce the formation of actin-rich pedestals. Together, these new data illuminate our view on how actin rearrangements may be coupled to clathrin recruitment during bacterial infection. They also shed light on a new function for clathrin in mammalian cells, i.e. internalization of objects much larger than previously accepted.
Collapse
Affiliation(s)
- P Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris, France.
| | | |
Collapse
|
508
|
Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. J Transl Med 2008; 88:1215-26. [PMID: 18810251 DOI: 10.1038/labinvest.2008.86] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Crohn's disease is characterized by a defect in intestinal barrier function, where bacteria are considered the most important inflammation-driving factor. Enteric bacteria, including E. coli and Yersinia spp, affect tight junctions in enterocytes, but little is known about bacterial effects on the transcellular pathway. Our objective was to study the short-term effects of Y. pseudotuberculosis on uptake of nanoparticles across human villus epithelium. Monolayers of human colon epithelium-derived Caco-2 cells and biopsies of normal human ileum were studied after 2 h exposure to Y. pseudotuberculosis expressing (inv+) or lacking (inv-) the bacterial adhesion molecule, invasin. Transepithelial transport of fluorescent nanoparticles (markers of transcytosis) was quantified by flow cytometry, and mechanisms explored by using inhibitors of endocytosis. Epithelial expressions of beta1-integrin and particle uptake pathways were studied by confocal microscopy. The paracellular pathway was assessed by electrical resistance (TER), mannitol flux, and expression of tight junction proteins occludin and caludin-4 by confocal microscopy. Inv+ Y. pseudotuberculosis adhered to the apical surface of epithelial cells and induced transcytosis of exogenous nanoparticles across Caco-2 monolayers (30-fold increase, P<0.01) and ileal mucosa (268+/-47% of control; P<0.01), whereas inv bacteria had no effect on transcytosis. The transcytosis was concentration-, particle size- and temperature-dependent, and possibly mediated via macropinocytosis. Y. pseudotuberculosis also induced apical expression of beta1-integrin on epithelial cells. A slight drop in TER was seen after exposure to inv+ Y. pseudotuberculosis, whereas mannitol flux and tight junction protein expression was unchanged. In summary, Y. pseudotuberculosis induced apical expression of beta1-integrin and stimulated uptake of nanoparticles via invasin-dependent transcytosis in human intestinal epithelium. Our findings suggest that bacterial factors may initiate transcytosis of luminal exogenous particles across human ileal mucosa, thus presenting a novel mechanism of intestinal barrier dysfunction.
Collapse
|
509
|
Velasquez Almonacid LA, Tafuri S, Dipineto L, Matteoli G, Fiorillo E, Della Morte R, Fioretti A, Menna LF, Staiano N. Role of connexin-43 hemichannels in the pathogenesis of Yersinia enterocolitica. Vet J 2008; 182:452-7. [PMID: 18824377 DOI: 10.1016/j.tvjl.2008.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/10/2008] [Accepted: 08/07/2008] [Indexed: 01/09/2023]
Abstract
Connexin (Cx) channels are sites of cytoplasmic communication between contacting cells. Evidence indicates that the opening of hemichannels occurs under both physiological and pathological conditions. In this paper, the involvement of Cx-43 hemichannels is demonstrated in the pathogenesis of Yersinia. Parental HeLa cells and transfected HeLa cells stably expressing Cx-43 (HCx43) were infected with Yersiniaenterocolitica, and bacterial uptake was measured by the colony-forming unit method. Bacterial uptake was higher in HCx43 cells than in parental cells and was inhibited by the Cx channel blocker, 18-alpha-glycyrrhetinic acid (AGA). The inhibitory effect of AGA was more pronounced on the Y. enterocolitica uptake by HCx43 cells than by parental cells. The ability of HCx43 cells to incorporate the permeable fluorescent tracer Lucifer Yellow (LY) was assessed. Dye incorporation was inhibited by AGA, whereas Y. enterocolitica infection of HCx43 cells increased LY incorporation. Western blotting analysis demonstrated that Y. enterocolitica infection of HCx43 cells induced tyrosine phosphorylation of Cx-43, thus supporting a critical role for Cx-43 in the strategies exploited by bacterial pathogens to invade non-phagocytic cells.
Collapse
Affiliation(s)
- L A Velasquez Almonacid
- Dipartimento di Patologia e Sanità Animale, Università di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Siggers KA, Lesser CF. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 2008; 4:8-15. [PMID: 18621006 DOI: 10.1016/j.chom.2008.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Collapse
Affiliation(s)
- Keri A Siggers
- Department of Medicine (Microbiology and Molecular Genetics), Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
511
|
Abstract
Intracellular pathogenic organisms such as salmonellae and shigellae are able to evade the effects of many antibiotics because the drugs are not able to penetrate the plasma membrane. In addition, these bacteria may be able to transfer genes within cells while protected from the action of drugs. The primary mode by which virulence and antibiotic resistance genes are spread is bacterial conjugation. Salmonellae have been shown to be competent for conjugation in the vacuoles of cultured mammalian cells. We now show that the conjugation machinery is also functional in the mammalian cytosol. Specially constructed Escherichia coli strains expressing Shigella flexneri plasmid and chromosomal virulence factors for escape from vacuoles and synthesizing the invasin protein from Yersinia pseudotuberculosis to enhance cellular entry were able to enter 3T3 cells and escape from the phagocytic vacuole. One bacterial strain (the donor) of each pair to be introduced sequentially into mammalian cells had a conjugative plasmid. We found that this plasmid could be transferred at high frequency. Conjugation in the cytoplasm of cells may well be a general phenomenon.
Collapse
|
512
|
Spears PA, Suyemoto MM, Palermo AM, Horton JR, Hamrick TS, Havell EA, Orndorff PE. A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infect Immun 2008; 76:4046-54. [PMID: 18559424 PMCID: PMC2519439 DOI: 10.1128/iai.00283-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/09/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022] Open
Abstract
A Listeria monocytogenes bacteriophage was used to identify a phage-resistant Tn917 insertion mutant of the mouse-virulent listerial strain F6214-1. The mutant was attenuated when it was inoculated orally into female A/J mice and failed to replicate efficiently in cultured mouse enterocytes. Phage binding studies indicated that the mutant had a cell surface alteration that precluded phage attachment. All phenotypes associated with the mutation could be complemented in trans by a single open reading frame (ORF) that corresponded to the ORF interrupted by the Tn917 insertion. The complementation effected was, in all cases, at a level indistinguishable from that of the parent. The Tn917 insertion interrupted a gene that is predicted to encode a group 2 glycosyl transferase (provisionally designated glcV). A similar glcV gene is present in Listeria welshimeri and Listeria innocua and in some serotypes of L. monocytogenes. We speculate that the loss of the glcV product results in a defective phage receptor and that this alteration coincidentally influences a feature of the normal host-pathogen interaction required for virulence. Interestingly, the glcV lesion, while preventing phage attachment, did not alter the mutant's ability to bind to cultured mouse enterocyte monolayers. Rather, the mutation appeared to alter a subsequent step in intracellular replication measured by a reduction in plaque-forming efficiency and plaque size. In vivo, the mutant was undetectable in the liver and spleen 48 h after oral inoculation. The mutation is significant in part because it is one of the few that produce attenuation when the mutant is delivered orally.
Collapse
Affiliation(s)
- Patricia A Spears
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | |
Collapse
|
513
|
Tattoli I, Lembo-Fazio L, Nigro G, Carneiro LAM, Ferraro E, Rossi G, Martino MC, de Stefano ME, Cecconi F, Girardin SE, Philpott DJ, Bernardini ML. Intracellular bacteriolysis triggers a massive apoptotic cell death in Shigella-infected epithelial cells. Microbes Infect 2008; 10:1114-23. [PMID: 18606244 DOI: 10.1016/j.micinf.2008.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/22/2022]
Abstract
Infected epithelial cells, which act as a first barrier against pathogens, seldom undergo apoptosis. Rather, infected epithelial cells undergo a slow cell death that displays hallmarks of necrosis. Here, we demonstrate that rapid intracellular lysis of Shigella flexneri, provoked by either the use of a diaminopimelic acid auxotroph mutant or treatment of infected cells with antibiotics of the beta-lactam family, resulted in a massive and rapid induction of apoptotic cell death. This intracellular bacteriolysis-mediated apoptotic death (IBAD) was characterized by the specific involvement of the mitochondrial-dependent cytochrome c/Apaf-1 axis that resulted in the activation of caspases-3, -6 and -9. Importantly, Bcl-2 family members and the NF-kappaB pathway seemed to be critical modulators of IBAD. Finally, we identified that IBAD was also triggered by Salmonella enterica serovar Typhimurium but not by the Gram-positive bacteria, Listeria monocytogenes. Together, our results demonstrate that, contrary to previous findings, epithelial cells are intrinsically able to mount an efficient apoptotic cell death response following infection. Indeed, apoptosis in normal circumstances is masked by powerful anti-apoptotic mechanisms, which are overcome in IBAD. Our results also uncover an unexpected consequence of the treatment of infected cells with certain classes of antibiotics.
Collapse
Affiliation(s)
- Ivan Tattoli
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, Via dei Sardi 70, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Dudani R, Murali-Krishna K, Krishnan L, Sad S. IFN-gamma induces the erosion of preexisting CD8 T cell memory during infection with a heterologous intracellular bacterium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1700-9. [PMID: 18641306 PMCID: PMC4015950 DOI: 10.4049/jimmunol.181.3.1700] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8(+) T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8(+) T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8(+) T cells were not restored, indicating that erosion of preexisting memory CD8(+) T cells was irreversible. Irrespective of the initial numbers of memory CD8(+) T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8(+) T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8(+) T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8(+) T cells was abrogated in the absence of IFN-gamma. These studies help reveal the paradoxical role of IFN-gamma. Although IFN-gamma promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8(+) T cells in the wake of infection with heterologous pathogens.
Collapse
Affiliation(s)
- Renu Dudani
- National Research Council-Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | - Lakshmi Krishnan
- National Research Council-Institute for Biological Sciences, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Subash Sad
- National Research Council-Institute for Biological Sciences, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
515
|
Murakami J, Kato T, Kawai S, Akiyama S, Amano A, Morisaki I. Cellular motility of Down syndrome gingival fibroblasts is susceptible to impairment by Porphyromonas gingivalis invasion. J Periodontol 2008; 79:721-7. [PMID: 18380567 DOI: 10.1902/jop.2008.070400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Severe periodontal breakdown is often associated with Down syndrome (DS); however, the etiology of this condition is not understood fully. Cellular motility of gingival fibroblasts is a critical event for wound healing and regeneration of periodontal tissues. Porphyromonas gingivalis is known to be a periodontal pathogen that invades host cells, contributing to periodontal destruction. In this study, we examined the influence of P. gingivalis infection on the motility of DS gingival fibroblasts (DGFs). METHODS DGFs and normal gingival fibroblasts (NGFs) were infected with P. gingivalis with type II fimbriae, and cellular motility was evaluated using an in vitro wounding assay. Protein degradation of alpha5beta1-integrin subunits and a migration-regulating signaling molecule, paxillin, were investigated using specific antibodies. The adhesion to and invasion of fibroblasts by P. gingivalis were determined with a colony forming assay. The gene expressions of alpha5beta1-integrin subunits were also quantified using a reverse transcription-polymerase chain reaction method. RESULTS The cellular motility of DGFs was impaired significantly by P. gingivalis compared to NGFs, and the former were invaded readily by P. gingivalis. Further, cellular paxillin from DGFs was degraded markedly by the pathogen. Although protein degradation of alpha5beta1 integrin was induced, its mRNA expression was not affected significantly. CONCLUSIONS P. gingivalis readily invades DGFs and subsequently degrades paxillin, which impairs cellular motility and likely prevents wound healing and the regeneration of periodontal tissues. These characteristics may be involved in the etiology of DS periodontitis.
Collapse
Affiliation(s)
- Jumpei Murakami
- Division of Special Care Dentistry, Osaka University Dental Hospital, Suita-Osaka, Japan
| | | | | | | | | | | |
Collapse
|
516
|
Inhibition of Salmonella enterica serovar typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody. Infect Immun 2008; 76:4137-44. [PMID: 18625740 DOI: 10.1128/iai.00416-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) antibodies directed against the O antigen of lipopolysaccharide (LPS) are the primary determinants of mucosal immunity to gram-negative enteric pathogens. However, the underlying mechanisms by which these antibodies interfere with bacterial colonization and invasion of intestinal epithelial cells are not well understood. In this study, we report that Sal4, a protective, anti-O5-specific monoclonal IgA, is a potent inhibitor of Salmonella enterica serovar Typhimurium flagellum-based motility. Using video light microscopy, we observed that Sal4 completely and virtually instantaneously "paralyzed" laboratory and clinical strains of serovar Typhimurium. Sal4-mediated motility arrest preceded and occurred independently of agglutination. Polyclonal anti-LPS IgG antibodies and F(ab)(2) fragments were as potent as was Sal4 at impeding bacterial motility, whereas monovalent Fab fragments were 5- to 10-fold less effective. To determine whether motility arrest can fully account for Sal4's protective capacity in vitro, we performed epithelial cell infection assays in which the requirement for flagellar motility in adherence and invasion was bypassed by centrifugation. Under these conditions, Sal4-treated serovar Typhimurium cells remained noninvasive, revealing that the monoclonal IgA, in addition to interfering with motility, has an effect on bacterial uptake into epithelial cells. Sal4 did not, however, inhibit bacterial uptake into mouse macrophages, indicating that the antibody interferes specifically with Salmonella pathogenicity island 1 (SPI-1)-dependent, but not SPI-1-independent, entry into host cells. These results reveal a previously unrecognized capacity of SIgA to "disarm" microbial pathogens on mucosal surfaces and prevent colonization and invasion of the intestinal epithelium.
Collapse
|
517
|
Abstract
Central nervous system (CNS) infections continue to be an important cause of morbidity and mortality. Microbial invasion and traversal of the blood-brain barrier is a prerequisite for CNS infections. Pathogens can cross the blood-brain barrier transcellularly, paracellularly and/or in infected phagocytes (the so-called Trojan-horse mechanism). Consequently, pathogens can cause blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. A more complete understanding of the microbial-host interactions that are involved in microbial traversal of the blood-brain barrier and the associated barrier dysfunction should help to develop new strategies to prevent CNS infections.
Collapse
|
518
|
Bonazzi M, Veiga E, Pizarro-Cerdá J, Cossart P. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell Microbiol 2008; 10:2208-22. [PMID: 18624796 DOI: 10.1111/j.1462-5822.2008.01200.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France
| | | | | | | |
Collapse
|
519
|
Abstract
Trypanosoma cruzi is the protozoan parasite that causes Chagas' disease, a highly prevalent vector-borne disease in Latin America. Chagas' disease is a major public health problem in endemic regions with an estimated 18 million people are infected with T. cruzi and another 100 million at risk (http://www.who.int/ctd/chagas/disease.htm). During its life cycle, T. cruzi alternates between triatomine insect vectors and mammalian hosts. While feeding on host's blood, infected triatomines release in their feces highly motile and infective metacyclic trypomastigotes that may initiate infection. Metacyclic trypomastigotes promptly invade host cells (including gastric mucosa) and once free in the cytoplasm, differentiate into amastigotes that replicate by binary fission. Just before disruption of the parasite-laden cell, amastigotes differentiate back into trypomastigotes which are then released into the tissue spaces and access the circulation. Circulating trypomastigotes that disseminate the infection in the mammalian host may be taken up by feeding triatomines and may also transform, extracellularly, into amastigote-like forms. Unlike their intracellular counterparts, these amastigote-like forms, henceforth called amastigotes, are capable of infecting host cells. Studies in which the mechanisms of amastigote invasion of host cells have been compared to metacyclic trypomastigote entry have revealed interesting differences regarding the involvement of the target cell actin microfilament system.
Collapse
|
520
|
Arbeloa A, Bulgin RR, MacKenzie G, Shaw RK, Pallen MJ, Crepin VF, Berger CN, Frankel G. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell Microbiol 2008; 10:1429-41. [PMID: 18331467 PMCID: PMC2610399 DOI: 10.1111/j.1462-5822.2008.01136.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 12/01/2022]
Abstract
Rho GTPases are common targets of bacterial toxins and type III secretion system effectors. IpgB1 and IpgB2 of Shigella and Map of enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli were recently grouped together on the basis that they share a conserved WxxxE motif. In this study, we characterized six WxxxE effectors from attaching and effacing pathogens: TrcA and EspM1 of EPEC strain B171, EspM1 and EspM2 of EHEC strain Sakai and EspM2 and EspM3 of Citrobacter rodentium. We show that EspM2 triggers formation of global parallel stress fibres, TrcA and EspM1 induce formation of localized parallel stress fibres and EspM3 triggers formation of localized radial stress fibres. Using EspM2 and EspM3 as model effectors, we report that while substituting the conserved Trp with Ala abolished activity, conservative Trp to Tyr or Glu to Asp substitutions did not affect stress-fibre formation. We show, using dominant negative constructs and chemical inhibitors, that the activity of EspM2 and EspM3 is RhoA and ROCK-dependent. Using Rhotekin pull-downs, we have shown that EspM2 and EspM3 activate RhoA; translocation of EspM2 and EspM3 triggered phosphorylation of cofilin. These results suggest that the EspM effectors modulate actin dynamics by activating the RhoA signalling pathway.
Collapse
Affiliation(s)
- Ana Arbeloa
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Richard R Bulgin
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Georgina MacKenzie
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Robert K Shaw
- Division of Immunity and Infection, School of Medicine, University of BirminghamBirmingham B15 2TT, UK
| | - Mark J Pallen
- Division of Immunity and Infection, School of Medicine, University of BirminghamBirmingham B15 2TT, UK
| | - Valerie F Crepin
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Cedric N Berger
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Gad Frankel
- Division of Cell and Molecular Biology, Imperial College LondonLondon SW7 2AZ, UK
| |
Collapse
|
521
|
Cossart P, Toledo-Arana A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 2008; 10:1041-50. [DOI: 10.1016/j.micinf.2008.07.043] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
522
|
Craven RR, Hall JD, Fuller JR, Taft-Benz S, Kawula TH. Francisella tularensis invasion of lung epithelial cells. Infect Immun 2008; 76:2833-42. [PMID: 18426871 PMCID: PMC2446690 DOI: 10.1128/iai.00043-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/19/2008] [Accepted: 04/11/2008] [Indexed: 01/16/2023] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and replicates within alveolar epithelial cells following inhalation in a mouse model of tularemia. TC-1 cells, a mouse lung epithelial cell line, were used to study the process of F. tularensis invasion and intracellular trafficking within nonphagocytic cells. Live and paraformaldehyde-fixed F. tularensis live vaccine strain organisms associated with, and were internalized by, TC-1 cells at similar frequencies and with indistinguishable differences in kinetics. Inhibitors of microfilament and microtubule activity resulted in significantly decreased F. tularensis invasion, as did inhibitors of phosphatidylinositol 3-kinase and tyrosine kinase activity. Collectively, these results suggest that F. tularensis epithelial cell invasion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell processes. Once internalized, F. tularensis-containing endosomes associated with early endosome antigen 1 (EEA1) followed by lysosome-associated membrane protein 1 (LAMP-1), with peak coassociation frequencies occurring at 30 and 120 min postinoculation, respectively. By 2 h postinoculation, 70.0% (+/- 5.5%) of intracellular bacteria were accessible to antibody delivered to the cytoplasm, indicating vacuolar breakdown and escape into the cytoplasm.
Collapse
Affiliation(s)
- Robin R Craven
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
523
|
Deane JE, Graham SC, Mitchell EP, Flot D, Johnson S, Lea SM. Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol 2008; 69:267-76. [PMID: 18485071 PMCID: PMC2615192 DOI: 10.1111/j.1365-2958.2008.06293.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2008] [Indexed: 12/17/2022]
Abstract
The pathogenic bacterium Shigella flexneri uses a type III secretion system to inject virulence factors from the bacterial cytosol directly into host cells. The machinery that identifies secretion substrates and controls the export of extracellular components and effector proteins consists of several inner-membrane and cytoplasmic proteins. One of the inner membrane components, Spa40, belongs to a family of proteins proposed to regulate the switching of substrate specificity of the export apparatus. We show that Spa40 is cleaved within the strictly conserved amino acid sequence NPTH and substitution of the proposed autocatalytic residue abolishes cleavage. Here we also report the crystal structure of the cytoplasmic complex Spa40(C) and compare it with the recent structures of the homologues from Escherichia coli and Salmonella typhimurium. These structures reveal the tight association of the cleaved fragments and show that the conserved NPTH sequence lies on a loop which, when cleaved, swings away from the catalytic N257 residue, resulting in different surface features in this region. This structural rearrangement suggests a mechanism by which non-cleaving forms of these proteins interfere with correct substrate switching of the apparatus.
Collapse
Affiliation(s)
- Janet E Deane
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| | - Stephen C Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of OxfordOX3 7BN, UK
| | - Edward P Mitchell
- European Synchrotron Radiation Facility6 Rue Jules Horowitz, 38043 Grenoble, France
- EPSAM, Keele UniversityStafforshire, ST5 5BG, UK
| | - David Flot
- European Molecular Biology Laboratory6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Steven Johnson
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, South Parks Rd, University of OxfordOX1 3RE, UK
| |
Collapse
|
524
|
Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 2008; 76:3869-80. [PMID: 18559426 DOI: 10.1128/iai.00427-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, beta(1) integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an "invasin," is not required for beta(1) integrin recruitment or bacterial internalization.
Collapse
|
525
|
EspF Interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun 2008; 76:3854-68. [PMID: 18559425 DOI: 10.1128/iai.00072-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic bacteria subvert normal host cell processes by delivering effector proteins which mimic eukaryotic functions directly into target cells. EspF is a multifunctional protein injected into host cells by attaching and effacing pathogens, but its mechanism of action is not understood completely. In silico analyses of EspF revealed two key motifs: proline-rich domains and PDZ domain binding motifs. Such functional domains may allow EspF to act as an actin nucleation-promoting factor by mimicking host proteins. In agreement with these predictions, we found that EspF from rabbit enteropathogenic Escherichia coli (E22) participates in the regulation of actin polymerization by binding to a complex of proteins at the tight junctions (TJ). EspF bound to actin and profilin throughout the course of infection. However, after 2 h of infection, EspF also bound to the neural Wiskott-Aldrich syndrome protein and to the Arp2/3, zonula occludens-1 (ZO-1), and ZO-2 proteins. Moreover, EspF caused occludin, claudin, ZO-1, and ZO-2 redistribution and loss of transepithelial electrical resistance, suggesting that actin sequestration by EspF may cause local actin depolymerization leading to EspF-induced TJ disruption. Furthermore, EspF caused recruitment of these TJ proteins into the pedestals. An E22 strain lacking EspF did not cause TJ disruption and pedestals were smaller than those induced by the wild-type strain. Additionally, the pedestals were located mainly in the TJ. The overexpression of EspF caused bigger pedestals located along the length of the cells. Thus, actin sequestration by EspF allows the recruitment of junctional proteins into the pedestals, leading to the maturation of actin pedestals and the disruption of paracellular permeability.
Collapse
|
526
|
Chamekh M, Phalipon A, Quertainmont R, Salmon I, Sansonetti P, Allaoui A. Delivery of biologically active anti-inflammatory cytokines IL-10 and IL-1ra in vivo by the Shigella type III secretion apparatus. THE JOURNAL OF IMMUNOLOGY 2008; 180:4292-8. [PMID: 18322242 DOI: 10.4049/jimmunol.180.6.4292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathogenicity of many Gram-negative bacteria relies on a type III secretion (T3S) apparatus, which is used for delivery of bacterial effectors into the host cell cytoplasm allowing the bacteria to manipulate host cell cytoskeleton network as well as to interfere with intracellular signaling pathways. In this study, we investigated the potential of the Shigella flexneri T3SA as an in vivo delivery system for biologically active molecules such as cytokines. The anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1ra) were genetically fused to the first 30 or 60 residues of the Shigella T3S effector IpaH9.8 or to the first 50 residues of the Yersinia enterocolitica effector YopE and the recombinant fusion proteins were expressed in S. flexneri. YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra were efficiently secreted via the T3S apparatus of Shigella. Moreover, these recombinant proteins did not impair the invasive ability of the bacteria in vitro. In a murine model, Shigella strains expressing YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra induced a lower mortality in mice that was associated with reduced inflammation and a restricted localization of bacteria within the lung tissues as compared with wild-type Shigella. Moreover, the level of TNF-alpha and IL-1beta mRNA were reduced in the lungs following infection by IL-10- and IL-1ra-secreting Shigella, respectively. These findings demonstrate that the Shigella T3S apparatus can deliver biologically active cytokines in vivo, thus opening new avenues for the use of attenuated bacteria to deliver proteins for immunomodulation or gene therapy purposes.
Collapse
Affiliation(s)
- Mustapha Chamekh
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
527
|
A novel immunoprecipitation strategy identifies a unique functional mimic of the glial cell line-derived neurotrophic factor family ligands in the pathogen Trypanosoma cruzi. Infect Immun 2008; 76:3530-8. [PMID: 18541656 DOI: 10.1128/iai.00411-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The journey of the Chagas' disease parasite Trypanosoma cruzi in the human body usually starts in the skin after an insect bite, when trypomastigotes get through the extracellular matrix to bind specific surface receptors in the epidermis and dermis to enter cells, where they differentiate and replicate. As the infection spreads to the heart, nervous system, and other parts of the body via the circulatory system, the parasite must also cope with additional receptors in the immune system and vascular endothelium. The molecular underpinnings that govern host cell receptor recognition by T. cruzi counterreceptors remain largely unknown. Here, we describe an immunoprecipitation strategy designed to concurrently identify host receptors and complementing parasite counterreceptors. Extracellular domains of growth factor receptors fused to human immunoglobulin G (IgG) Fc were incubated with parasite lysates, immunoprecipitated on protein G-Sepharose, and eluted with Laemmli sample buffer. Possible T. cruzi counterreceptors pulled down by the receptor-Fc bait were visualized on immunoblots probed with multispecific high-affinity IgG from chronic chagasic sera and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels stained with silver or Coomassie blue. In screening receptors important for nervous system repair, this parasite counterreceptor immunoprecipitation (PcIP) assay identified 7 to 11 polypeptides (molecular masses, 14 kDa to 55 kDa) that bound to the coreceptors of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) GFRalpha-1, -2, and -3. Binding was specific because the T. cruzi mimic of host GFLs, named TGFL, did not react with GFL coreceptor tyrosine kinase RET and with other neurotrophic receptors. The polypeptides were located on the parasite outer membrane and bound noncovalently to each other. TGFL eluted from the GFL receptor/protein G affinity column with 0.5 M NaCl, pH 7.5, and potently promoted neurite outgrowth and cell survival in a GFL-sensitive mouse pheochromocytoma cell line. Given that GFLs are neuron survival factors crucial for development and maintenance of central and peripheral nervous systems, it may be that T. cruzi mimicry of host GFLs helps in mutually beneficial host repair of infected and damaged nervous tissue. As there are >30 growth factor receptor-Fc chimeras commercially available, this PcIP assay can be readily adapted to identify receptors/counterreceptors in other T. cruzi invasion sites and in other infections such as Lyme disease, amebiasis, and schistosomiasis.
Collapse
|
528
|
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. MICROBIOLOGY (READING, ENGLAND) 2008; 154:1570-1583. [PMID: 18524912 DOI: 10.1099/mic.0.2008/016840-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for IcmF-associated homologous proteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced in vivo. Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.
Collapse
Affiliation(s)
- Alain Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Abderrahman Hachani
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| |
Collapse
|
529
|
Abstract
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights.
Collapse
|
530
|
Abstract
Autophagy is an evolutionary conserved mechanism in eukaryotic cells that is known to process redundant or defective cellular proteins and organelles. The recent renewal of interest in autophagy research has led to a significant expansion in our understanding of the importance of autophagy in cellular health and disease. This invited review summarizes key elements of autophagy research, emphasizes those of particular interest to gastroenterologists, and offers insights into present and future research directions.
Collapse
|
531
|
Sad S, Dudani R, Gurnani K, Russell M, van Faassen H, Finlay B, Krishnan L. Pathogen proliferation governs the magnitude but compromises the function of CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5853-61. [PMID: 18424704 PMCID: PMC4015947 DOI: 10.4049/jimmunol.180.9.5853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.
Collapse
Affiliation(s)
- Subash Sad
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
532
|
The nascent parasitophorous vacuole membrane of Encephalitozoon cuniculi is formed by host cell lipids and contains pores which allow nutrient uptake. EUKARYOTIC CELL 2008; 7:1001-8. [PMID: 18408058 DOI: 10.1128/ec.00004-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microsporidia are obligate intracellular pathogens which enter host cells by the discharge of a hollow tube through which the sporoplasma is extruded into the host cell. Since this invasion mechanism is very different from common entry strategies, the formation of the parasitophorous vacuole (PV) in Encephalitozoon species is likely to be distinct from known principles. We investigated the origin of the nascent Encephalitozoon cuniculi PV membrane with the aid of fluorescent lipid probes. When Bodipy 500/510-C(12)-HPC-labeled spores were used for infection, the emerging PV membrane was unlabeled, suggesting that sporoplasma-derived lipids do not significantly contribute to the formation of the PV membrane. In contrast, when raft and nonraft microdomains of the host cell plasma membrane were selectively labeled with DiIC(16) and Speedy DiO, both tracers were detectable in the nascent PV membrane shortly after infection, indicating that the bulk lipids of the PV membrane are host cell derived. Time-lapse fluorescence microscopy revealed that the formation of the PV membrane is a fast event (<1.3 s), which occurred simultaneously with the extrusion of the sporoplasma. The portion of the discharged tube which is in contact with the host cell was found to be coated with labeled host cell lipids, which might be an indication for a plasma membrane invagination at the contact site. To investigate the presence of pores in the E. cuniculi PV membrane, we microinjected fluorescent dyes of different sizes into infected host cells. A 0.5-kDa dextran as well as 0.8- to 1.1-kDa peptides could rapidly enter the PV, while a 10-kDa dextran was stably excluded from the PV lumen, indicating that the PV membrane possesses pores with an exclusion size of <10 kDa, which should allow metabolite exchange.
Collapse
|
533
|
Cain RJ, Hayward RD, Koronakis V. Deciphering interplay between Salmonella invasion effectors. PLoS Pathog 2008; 4:e1000037. [PMID: 18389058 PMCID: PMC2268969 DOI: 10.1371/journal.ppat.1000037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/03/2008] [Indexed: 01/26/2023] Open
Abstract
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. Critical to the onset of Salmonella infection is the ability of bacteria to force their own entry (‘invade’) into intestinal cells of their mammalian host from where they replicate, spread and cause damage. To achieve this invasion, Salmonella deliver a cocktail of proteins directly into host target cells. These proteins override host cell communications and remodel cell structure, tricking the normally dormant cells into engulfing the invaders. Although we are beginning to understand the functions of each delivered protein, little is known about how their activities are coordinated. Here we describe new techniques that systematically examine the interplay between the delivered bacterial proteins within the host cell. The results illuminate an unexpectedly complex network of interrelated relationships that must be precisely coordinated to promote bacterial invasion. The data provide new insights into how this important pathogen triggers invasion of host cells during infection.
Collapse
Affiliation(s)
- Robert J. Cain
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Richard D. Hayward
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Vassilis Koronakis
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
534
|
Single Residue Determines the Specificity of Neutrophil Elastase for Shigella Virulence Factors. J Mol Biol 2008; 377:1053-66. [DOI: 10.1016/j.jmb.2007.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/23/2022]
|
535
|
de Diesbach P, Medts T, Carpentier S, D'Auria L, Van Der Smissen P, Platek A, Mettlen M, Caplanusi A, van den Hove MF, Tyteca D, Courtoy PJ. Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res 2008; 314:1465-79. [DOI: 10.1016/j.yexcr.2008.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
|
536
|
Slagowski NL, Kramer RW, Morrison MF, LaBaer J, Lesser CF. A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog 2008; 4:e9. [PMID: 18208325 PMCID: PMC2211553 DOI: 10.1371/journal.ppat.0040009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture. Many bacterial pathogens promote infection and ultimately cause disease, in part, through the actions of proteins that the bacteria directly inject into host cells. These proteins subvert host cell processes to favor survival of the pathogen. The identification of such proteins can be limited since many of the injected proteins lack homology with other virulence proteins and pathogens that no longer express the proteins are often unimpaired in conventional assays of pathogenesis. Many of these proteins target cellular processes conserved from mammals to yeast, and overexpression of these proteins in yeast results in growth inhibition. We have established a high throughput growth assay amenable to systematically screening open reading frames from bacterial pathogens for those that inhibit yeast growth. We observe that yeast growth inhibition is a sensitive and specific indicator of proteins that are injected into host cells. Expression of about half of the injected bacterial proteins but almost none of the bacteria-confined proteins results in yeast growth inhibition. Since this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to grow in the laboratory.
Collapse
Affiliation(s)
- Naomi L Slagowski
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Roger W Kramer
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Monica F Morrison
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Joshua LaBaer
- Harvard Institute of Proteomics, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
537
|
Wang H, Liang FX, Kong XP. Characteristics of the phagocytic cup induced by uropathogenic Escherichia coli. J Histochem Cytochem 2008; 56:597-604. [PMID: 18347076 DOI: 10.1369/jhc.2008.950923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uropathogenic Escherichia coli invade the urothelial umbrella cells by using the zipper mechanism. However, the details of the early events of this invasion, such as the formation of the phagocytic cup, are not yet well understood. We show here, using thin section electron microscopy and immunogold labeling, that the plasma membrane curves around the bacterial surface in the phagocytic cup. There exists a uniform gap between the bacterium and the urothelial membrane, and actin filaments are present in the phagocytic cup. We suggest that the action-reaction between the mechanical forces generated by pilus retraction of the bacterium and the actin polymerization in the urothelial cell plays a role in maintaining the phagocytic cup. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Huaibin Wang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
538
|
Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 2008; 4:e1000014. [PMID: 18383626 PMCID: PMC2279300 DOI: 10.1371/journal.ppat.1000014] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/30/2008] [Indexed: 11/23/2022] Open
Abstract
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.
Collapse
Affiliation(s)
- B. Josh Lane
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Charla Mutchler
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Souhaila Al Khodor
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Scott S. Grieshaber
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, Florida, United States of America
| | - Rey A. Carabeo
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| |
Collapse
|
539
|
Abstract
During infection, most pathogenic bacteria deliver proteins to the host cell cytoplasm to manipulate host behavior. In this issue of Cell Host & Microbe, Spanò and colleagues describe a system where a bacterium produces an exotoxin while inside the host cell. Only after this exotoxin is transported to the mammalian cell surface and secreted into the extracellular milieu can it intoxicate the infected cell or noninfected distant cells.
Collapse
Affiliation(s)
- Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH 1015 Lausanne, Switzerland
| | | |
Collapse
|
540
|
The cell biology of cross‐presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86:353-62. [DOI: 10.1038/icb.2008.3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
541
|
Watson RO, Galán JE. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 2008; 4:e14. [PMID: 18225954 PMCID: PMC2323279 DOI: 10.1371/journal.ppat.0040014] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/14/2007] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni–containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells. Campylobacter jejuni is one of the most common causes of food-borne illness in the United States and a major cause of diarrheal disease throughout the world. After infection through the oral route, this bacterium invades the cells of the intestinal epithelium, a property that is important for its ability to cause disease. Usually, bacteria and other material entering the cell move to compartments called lysosomes, where an acidic mix of enzymes breaks it down. This study shows that C. jejuni can survive within intestinal epithelial cells by avoiding delivery to lysosomes. In contrast, in macrophages, which are specialized cells with the capacity to engulf and kill bacteria, C. jejuni cannot avoid delivery into lysosomes and consequently is rapidly killed. These studies help explain an important virulence attribute of C. jejuni.
Collapse
Affiliation(s)
- Robert O Watson
- Section of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E Galán
- Section of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
542
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
543
|
Kadaoui KA, Corthésy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. THE JOURNAL OF IMMUNOLOGY 2008; 179:7751-7. [PMID: 18025221 DOI: 10.4049/jimmunol.179.11.7751] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In addition to fulfilling its function of immune exclusion at mucosal surfaces, secretory IgA (SIgA) Ab exhibits the striking feature to adhere selectively to M cells in the mouse and human intestinal Peyer's patches (PPs). Subsequent uptake drives the SIgA Ab to dendritic cells (DCs), which become partially activated. Using freshly isolated mouse DCs, we found that the interaction with SIgA was tissue and DC subtype dependent. Only DCs isolated from PPs and mesenteric lymph nodes interacted with the Ab. CD11c(+)CD11b(+) DCs internalized SIgA, while CD11c(+)CD19(+) DCs only bound SIgA on their surface, and no interaction occurred with CD11c(+)CD8alpha(+) DCs. We next examined whether SIgA could deliver a sizeable cargo to PP DCs in vivo by administering SIgA-Shigella flexneri immune complexes into a mouse ligated intestinal loop containing a PP. We found that such immune complexes entered the PPs and were internalized by subepithelial dome PP DCs, in contrast to S. flexneri alone that did not penetrate the intestinal epithelium in mice. Dissemination of intraepithelial S. flexneri delivered as immune complexes was limited to PPs and mesenteric lymph nodes. We propose that preexisting SIgA Abs associated with microbes contribute to mucosal defense by eliciting responses that prevent overreaction while maintaining productive immunity.
Collapse
Affiliation(s)
- Khalil A Kadaoui
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, Switzerland
| | | |
Collapse
|
544
|
Abstract
The exit of intracellular pathogens from host cells is an important step in the infectious cycle, but is poorly understood. It has recently emerged that microbial exit is a process that can be directed by organisms from within the cell, and is not simply a consequence of the physical or metabolic burden that is imposed on the host cell. This Review summarizes our current knowledge on the diverse mechanisms that are used by intracellular pathogens to exit cells. An integrated understanding of the diversity that exists for microbial exit pathways represents a new horizon in the study of host-pathogen interactions.
Collapse
|
545
|
Kim KP, Loessner MJ. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infect Immun 2008; 76:562-70. [PMID: 18070906 PMCID: PMC2223463 DOI: 10.1128/iai.00937-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/26/2007] [Accepted: 11/17/2007] [Indexed: 11/20/2022] Open
Abstract
Enterobacter sakazakii is an opportunistic pathogen that causes systemic bacteremia and meningitis with high mortality, and powdered infant formula is a frequent source of this bacterium. However, the mechanisms that this organism uses to invade and translocate through the intestinal barrier are unknown. Using Caco-2 epithelial cells, we were able to demonstrate penetration of E. sakazakii and to determine invasion-associated properties. We found that E. sakazakii entry and invasion were dependent on the exposure time and multiplicity of infection and required bacterial de novo protein synthesis but was independent of cell polarity in the presence of tight junctions. Moreover, the presence of actin filaments and microtubule structures was required, and disruption of the tight junction significantly enhanced the initial association with Caco-2 cells and the efficiency of invasion, which provides a possible explanation for the preferential occurrence of this infection in babies and neonates. This is the first description of E. sakazakii invasion of host intestinal cells, and our findings suggest that this emerging pathogen employs a novel invasion mechanism for development of systemic infection.
Collapse
Affiliation(s)
- Kwang-Pyo Kim
- Institute of Food Science and Nutrition, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | |
Collapse
|
546
|
Jutfelt F, Sundh H, Glette J, Mellander L, Thrandur Björnsson B, Sundell K. The involvement of Aeromonas salmonicida virulence factors in bacterial translocation across the rainbow trout, Oncorhynchus mykiss (Walbaum), intestine. JOURNAL OF FISH DISEASES 2008; 31:141-151. [PMID: 18234022 DOI: 10.1111/j.1365-2761.2007.00879.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The pathogenic bacterium Aeromonas salmonicida is the causative agent of furunculosis, a lethal disease in salmonids. The mode of lateral transmission has not been conclusively defined, but A. salmonicida is able to translocate across the intestinal epithelium of salmonids, making the intestinal route a probable candidate. This study investigated some of the virulence mechanisms used by the bacteria to promote translocation. Intestinal segments were placed in modified Ussing chambers to investigate epithelial functions during exposure to bacterial factors. The factors were: extracellular products (ECP), lipopolysaccharide (LPS) or live or heat-inactivated A. salmonicida. Fluorescein isothiocynate (FITC)-labelling enabled detection of translocated bacteria by fluorometry. Live A. salmonicida translocated to a greater degree than heat-inactivated bacteria, suggesting that the bacteria utilize a heat sensitive surface-bound virulence factor which promotes translocation. The epithelium was negatively affected by ECP, manifested as decreased net ion transport, indicating a disturbance in ion channels or cell metabolism. LPS did not affect the epithelium in vitro when administered on the luminal side of the intestinal segment, but significantly increased epithelial translocation of fluorescent bacterial-sized microspheres when administered on the serosal side. This is suggested to be caused by increased transcellular transport, as the paracellular permeability was unaffected indicating maintained epithelial integrity.
Collapse
Affiliation(s)
- F Jutfelt
- Department of Zoology/Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
547
|
Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 2008; 27:447-57. [PMID: 18188151 DOI: 10.1038/sj.emboj.7601976] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/04/2007] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S) systems are largely used by pathogenic gram-negative bacteria to inject multiple effectors into eukaryotic cells. Upon cell contact, these bacterial microinjection devices insert two T3S substrates into host cell membranes, forming a so-called 'translocon' that is required for targeting of type III effectors in the cell cytosol. Here, we show that secretion of the translocon component IpaC of invasive Shigella occurs at the level of one bacterial pole during cell invasion. Using IpaC fusions with green fluorescent protein variants (IpaCi), we show that the IpaC cytoplasmic pool localizes at an old or new bacterial pole, where secretion occurs upon T3S activation. Deletions in ipaC identified domains implicated in polar localization. Only polar IpaCi derivatives inhibited T3S, while IpaCi fusions with diffuse cytoplasmic localization had no detectable effect on T3S. Moreover, the deletions that abolished polar localization led to secretion defects when introduced in ipaC. These results indicate that cytoplasmic polar localization directs secretion of IpaC at the pole of Shigella, and may represent a mandatory step for T3S.
Collapse
|
548
|
Markham AP, Birket SE, Picking WD, Picking WL, Middaugh CR. pH sensitivity of type III secretion system tip proteins. Proteins 2008; 71:1830-42. [DOI: 10.1002/prot.21864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
549
|
Abstract
Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.
Collapse
Affiliation(s)
- Vojo Deretic
- Health Sciences Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
550
|
Zakikhany K, Thewes S, Wilson D, Martin R, Albrecht A, Hube B. From Attachment to Invasion: Infection Associated Genes of Candida albicans. ACTA ACUST UNITED AC 2008; 49:245-51. [DOI: 10.3314/jjmm.49.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|