501
|
Moraes-Fontes MF, Hsu AP, Caramalho I, Martins C, Araújo AC, Lourenço F, Taulaigo AV, Lladó A, Holland SM, Uzel G. Fatal CTLA-4 heterozygosity with autoimmunity and recurrent infections: a de novo mutation. Clin Case Rep 2017; 5:2066-2070. [PMID: 29225858 PMCID: PMC5715409 DOI: 10.1002/ccr3.1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023] Open
Abstract
Primary immunodeficiency disorders are rarely diagnosed in adults but must be considered in the differential diagnosis of combined recurrent infections and autoimmune disease. We describe a patient with CTLA-4 haploinsufficiency and an abnormal regulatory T-cell phenotype. Unusually, infections were more severe than autoimmunity, illustrating therapeutic challenges in disease course.
Collapse
Affiliation(s)
- Maria Francisca Moraes-Fontes
- Unidade de Doenças Auto-imunes Serviço Medicina 7.2 Hospital de Curry Cabral Centro Hospitalar de Lisboa Central Lisboa Portugal.,Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases National Institute of Allergy and Infectious Diseases Bethesda Maryland USA
| | | | - Catarina Martins
- CEDOC, Chronic Diseases Research Center Immunology, NOVA Medical School/FCM Universidade Nova de Lisboa Lisbon Portugal
| | - Ana Carolina Araújo
- Unidade de Doenças Auto-imunes Serviço Medicina 7.2 Hospital de Curry Cabral Centro Hospitalar de Lisboa Central Lisboa Portugal
| | - Filipa Lourenço
- Unidade de Doenças Auto-imunes Serviço Medicina 7.2 Hospital de Curry Cabral Centro Hospitalar de Lisboa Central Lisboa Portugal
| | - Anna V Taulaigo
- Unidade de Doenças Auto-imunes Serviço Medicina 7.2 Hospital de Curry Cabral Centro Hospitalar de Lisboa Central Lisboa Portugal
| | - Ana Lladó
- Unidade de Doenças Auto-imunes Serviço Medicina 7.2 Hospital de Curry Cabral Centro Hospitalar de Lisboa Central Lisboa Portugal
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases National Institute of Allergy and Infectious Diseases Bethesda Maryland USA
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases National Institute of Allergy and Infectious Diseases Bethesda Maryland USA
| |
Collapse
|
502
|
|
503
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
504
|
Alroqi FJ, Charbonnier LM, Keles S, Ghandour F, Mouawad P, Sabouneh R, Mohammed R, Almutairi A, Chou J, Massaad MJ, Geha RS, Baz Z, Chatila TA. DOCK8 Deficiency Presenting as an IPEX-Like Disorder. J Clin Immunol 2017; 37:811-819. [PMID: 29058101 DOI: 10.1007/s10875-017-0451-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The dedicator of cytokinesis 8 (DOCK8) deficiency is an autosomal recessive-combined immunodeficiency whose clinical spectra include recurrent infections, autoimmunity, malignancies, elevated serum IgE, eczema, and food allergies. Here, we report on patients with loss of function DOCK8 mutations with profound immune dysregulation suggestive of an immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX)-like disorder. METHODS Immunophenotyping of lymphocyte subpopulations and analysis of DOCK8 protein expression were evaluated by flow cytometry. T regulatory (Treg) cells were isolated by cell sorting, and their suppressive activity was analyzed by flow cytometry. Gene mutational analysis was performed by whole-exome and Sanger sequencing. RESULTS Patient 1 (P1) presented at 10 months of age with chronic severe diarrhea and active colitis in the absence of an infectious trigger, severe eczema with elevated serum IgE, and autoimmune hemolytic anemia, suggestive of an IPEX-related disorder. Whole-exome sequencing revealed a homozygous nonsense mutation in DOCK8 at the DOCK-homology region (DHR)-1 (c.1498C>T; p. R500X). Patient P2, a cousin of P1 who carries the same DOCK8 nonsense mutation, presented with eczema and recurrent ear infections in early infancy, and she developed persistent diarrhea by 3 years of age. Patient P3 presented with lymphoproliferation, severe eczema with allergic dysregulation, and chronic diarrhea with colitis. She harbored a homozygous loss of function DOCK8 mutation (c.2402 -1G→A). Treg cell function was severely compromised by both DOCK8 mutations. CONCLUSION DOCK8 deficiency may present severe immune dysregulation with features that may overlap with those of IPEX and other IPEX-like disorders.
Collapse
Affiliation(s)
- Fayhan J Alroqi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
- Department of Pediatrics, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Fatima Ghandour
- Department of Pathology, St George Hospital University Medical Center, Beirut, Lebanon
| | - Pierre Mouawad
- Department of Pediatrics, St George Hospital University Medical Center, Beirut, Lebanon
| | - Rami Sabouneh
- Department of Pediatrics, St George Hospital University Medical Center, Beirut, Lebanon
| | - Reem Mohammed
- Department of Pediatrics, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abduarahman Almutairi
- Department of Pediatrics, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Zeina Baz
- Department of Pediatrics, St George Hospital University Medical Center, Beirut, Lebanon
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA.
| |
Collapse
|
505
|
Molecular control of regulatory T cell development and function. Curr Opin Immunol 2017; 49:64-70. [PMID: 29065384 DOI: 10.1016/j.coi.2017.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023]
Abstract
Treg cells expressing the transcription factor Foxp3 are essential for immunological tolerance and homeostasis. Recent genome-wide studies have revealed that Foxp3+ natural Treg cells possess a number of unique transcriptional and epigenetic features, which appear to be acquired along the course of Treg cell development and maintained throughout their lifespan. These studies also provide novel insights into how genomic variations contribute to genetic susceptibility to human autoimmune diseases by affecting Treg cell development and function.
Collapse
|
506
|
Umetsu SE, Brown I, Langner C, Lauwers GY. Autoimmune enteropathies. Virchows Arch 2017; 472:55-66. [PMID: 29022145 DOI: 10.1007/s00428-017-2243-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022]
Abstract
Autoimmune enteropathy (AIE) is a rare condition characterized by intractable diarrhea and immune-mediated injury of the intestinal mucosa. As the clinical and histopathologic manifestations of this disease are highly variable, its diagnosis is challenging for both clinicians and pathologists. In fact, the term autoimmune enteropathies is likely more appropriate since the clinicopathologic manifestations are observed in association with a heterogeneous group of disorders. The pathophysiology of AIE has not been fully elucidated. It appears to result from dysregulation of intestinal immunity and particularly in children, often presents in association with immunodeficiency. The overarching histopathologic changes seen in AIE include mucosal inflammation and epithelial injury, although this can manifest in the form of different patterns. Recognition of the clinical settings and of the various histologic patterns can aid the pathologist in establishing the correct diagnosis.
Collapse
Affiliation(s)
- Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, Room M551A, Box 0102, San Francisco, CA, 94143-0102, USA.
| | - Ian Brown
- Envoi Pathology, Kelvin Grove, Qld, Australia
| | - Cord Langner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
507
|
Maglione PJ, Cols M, Cunningham-Rundles C. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2017; 17:77. [PMID: 28983810 DOI: 10.1007/s11882-017-0746-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
508
|
Kuehn HS, Niemela JE, Sreedhara K, Stoddard JL, Grossman J, Wysocki CA, de la Morena MT, Garofalo M, Inlora J, Snyder MP, Lewis DB, Stratakis CA, Fleisher TA, Rosenzweig SD. Novel nonsense gain-of-function NFKB2 mutations associated with a combined immunodeficiency phenotype. Blood 2017; 130:1553-1564. [PMID: 28778864 PMCID: PMC5620416 DOI: 10.1182/blood-2017-05-782177] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022] Open
Abstract
NF-κB signaling through its NFKB1-dependent canonical and NFKB2-dependent noncanonical pathways plays distinctive roles in a diverse range of immune processes. Recently, mutations in these 2 genes have been associated with common variable immunodeficiency (CVID). While studying patients with genetically uncharacterized primary immunodeficiencies, we detected 2 novel nonsense gain-of-function (GOF) NFKB2 mutations (E418X and R635X) in 3 patients from 2 families, and a novel missense change (S866R) in another patient. Their immunophenotype was assessed by flow cytometry and protein expression; activation of canonical and noncanonical pathways was examined in peripheral blood mononuclear cells and transfected HEK293T cells through immunoblotting, immunohistochemistry, luciferase activity, real-time polymerase chain reaction, and multiplex assays. The S866R change disrupted a C-terminal NF-κΒ2 critical site affecting protein phosphorylation and nuclear translocation, resulting in CVID with adrenocorticotropic hormone deficiency, growth hormone deficiency, and mild ectodermal dysplasia as previously described. In contrast, the nonsense mutations E418X and R635X observed in 3 patients led to constitutive nuclear localization and activation of both canonical and noncanonical NF-κΒ pathways, resulting in a combined immunodeficiency (CID) without endocrine or ectodermal manifestations. These changes were also found in 2 asymptomatic relatives. Thus, these novel NFKB2 GOF mutations produce a nonfully penetrant CID phenotype through a different pathophysiologic mechanism than previously described for mutations in NFKB2.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Karthik Sreedhara
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer Grossman
- Division of Hematology and Hematologic Malignancies, Alberta Health Services, Calgary, AB, Canada
| | - Christian A Wysocki
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - M Teresa de la Morena
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mary Garofalo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | | | | | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA; and
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics
- Program on Developmental Endocrinology and Genetics, and
- Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
509
|
Ochs HD, Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2017; 176:784-803. [DOI: 10.1002/ajmg.a.38480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hans D. Ochs
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| | - Daniel Petroni
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| |
Collapse
|
510
|
Rae W, Ward D, Mattocks CJ, Gao Y, Pengelly RJ, Patel SV, Ennis S, Faust SN, Williams AP. Autoimmunity/inflammation in a monogenic primary immunodeficiency cohort. Clin Transl Immunology 2017; 6:e155. [PMID: 28983403 PMCID: PMC5628267 DOI: 10.1038/cti.2017.38] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are rare inborn errors of immunity that have a heterogeneous phenotype that can include severe susceptibility to life-threatening infections from multiple pathogens, unique sensitivity to a single pathogen, autoimmune/inflammatory (AI/I) disease, allergies and/or malignancy. We present a diverse cohort of monogenic PID patients with and without AI/I diseases who underwent clinical, genetic and immunological phenotyping. Novel pathogenic variants were identified in IKBKG, CTLA4, NFKB1, GATA2, CD40LG and TAZ as well as previously reported pathogenic variants in STAT3, PIK3CD, STAT1, NFKB2 and STXBP2. AI/I manifestations were frequently encountered in PIDs, including at presentation. Autoimmunity/inflammation was multisystem in those effected, and regulatory T cell (Treg) percentages were significantly decreased compared with those without AI/I manifestations. Prednisolone was used as the first-line immunosuppressive agent in all cases, however steroid monotherapy failed long-term control of autoimmunity/inflammation in the majority of cases and additional immunosuppression was required. Patients with multisystem autoimmunity/inflammation should be investigated for an underlying PID, and in those with PID early assessment of Tregs may help to assess the risk of autoimmunity/inflammation.
Collapse
Affiliation(s)
- William Rae
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher J Mattocks
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Yifang Gao
- Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sanjay V Patel
- Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Saul N Faust
- Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK.,Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony P Williams
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| |
Collapse
|
511
|
Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 2017; 44:955-72. [PMID: 27192563 DOI: 10.1016/j.immuni.2016.05.002] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 01/10/2023]
Abstract
Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.
Collapse
Affiliation(s)
- Frank A Schildberg
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
512
|
Marquet S, Bucheton B, Reymond C, Argiro L, El-Safi SH, Kheir MM, Desvignes JP, Béroud C, Mergani A, Hammad A, Dessein AJ. Exome Sequencing Identifies Two Variants of the Alkylglycerol Monooxygenase Gene as a Cause of Relapses in Visceral Leishmaniasis in Children, in Sudan. J Infect Dis 2017; 216:22-28. [PMID: 28586473 DOI: 10.1093/infdis/jix277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (kala-azar, KA) is the most severe form of leishmaniasis, characterized by fever, weight loss, hepatosplenomegaly, and lymphadenopathy. During an outbreak of KA in Babar El Fugara (Sudan), 5.7% of cured patients displayed relapses, with familial clustering in half the cases. Methods We performed whole-exome sequencing on 10 relapsing individuals and 11 controls from 5 nuclear families. Results Rare homozygous and compound-heterozygous nonsense (c.1213C > T, rs139309795, p.Arg405*) and missense (c.701A > G, rs143439626, p.Lys234Arg) mutations of the alkylglycerol monooxygenase (AGMO) gene were associated with KA relapse in 3 families. Sequencing in additional family members confirmed the segregation of these mutations with relapse and revealed an autosomal dominant mode of transmission. These mutations were detected heterozygous in 2 subjects among 100 unrelated individuals with KA who never relapsed after cure, suggesting incomplete penetrance of AGMO deficiency. AGMO is expressed in hematopoietic cells, and is strongly expressed in the liver. AGMO modulates PAF production by mouse macrophages, suggesting that it may act through the PAF/PAF receptor pathway previously shown to have anti-Leishmania activity. Conclusions This is the first demonstration that relapses after a first episode of KA are due to differences in human genetic susceptibility and not to modifications of parasite pathogenicity.
Collapse
Affiliation(s)
- Sandrine Marquet
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Bruno Bucheton
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille.,Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Camille Reymond
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Laurent Argiro
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Sayda Hassan El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Musa Mohamed Kheir
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Christophe Béroud
- INSERM UMR910, GMGF, Aix-Marseille University.,AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Marseille, France
| | - Adil Mergani
- College of Applied Medical Sciences, Taif University, Turabah, Saudi Arabia
| | - Awad Hammad
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alain J Dessein
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| |
Collapse
|
513
|
Makadia P, Srinath A, Madan-Khetarpal S, McGuire M, Infante E, Zhang J, Felgar RE, Davis AW, Chong HJ, Windreich RM. Aplastic anemia and cytotoxic T lymphocyte antigen-4 haploinsufficiency treated with bone marrow transplantation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:1445-1447.e2. [DOI: 10.1016/j.jaip.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
|
514
|
Saettini F, Pelagatti MA, Sala D, Moratto D, Giliani S, Badolato R, Biondi A. Early diagnosis of PI3Kδ syndrome in a 2 years old girl with recurrent otitis and enlarged spleen. Immunol Lett 2017; 190:279-281. [PMID: 28842185 DOI: 10.1016/j.imlet.2017.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous gain of function mutations in the gene encoding p110δ subunit of PI3K have been recently associated with activated PI3K-δ syndrome (APDS), a novel combined immune deficiency characterized by recurrent sinopulmonary infections, lymphopenia, reduced class-switched memory B cells, lymphadenopathy, CMV and/or EBV viremia and EBV-related lymphoma. Here we report a dominant gain of function PIK3CD mutation (E1021K) in a patient presenting with recurrent otitis media, massive splenomegaly, and persistent EBV-viraemia. The immunological studies showed low IgA level, but normal IgM, IgG, and normal antibody response to diphtheria and tetanus toxoid vaccination. Analysis of B lymphocyte subsets revealed abnormal expansion of transitional B cells, and low percentage of switched CD27+IgD- and CD27+IgD+ memory B cells. Analysis of T cell compartment unveiled prevalence of terminally differentiated cells. This study suggests that PIK3CD gain of function mutations should be suspected despite incomplete phenotype in patients with early onset splenomegaly, persistent EBV viremia and abnormal B and T cell subsets despite normal IgG levels. Currently the optimal treatment is still debated, but prompt management can hopefully diminish incidence of severe long-lasting sequelae (i.e. bronchiectasis, ear and sinus damage).
Collapse
Affiliation(s)
- F Saettini
- Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy; Università degli Studi di Milano-Bicocca, Monza, Italy.
| | - M A Pelagatti
- Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - D Sala
- Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - D Moratto
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, and Cytogenetics and Clinical Genetics Unit, Laboratory Department, Spedali Civili, Brescia, Italy
| | - S Giliani
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, and Cytogenetics and Clinical Genetics Unit, Laboratory Department, Spedali Civili, Brescia, Italy
| | - R Badolato
- Università degli Studi di Brescia, Brescia, Italy
| | - A Biondi
- Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy; Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
515
|
Vanoverbeke L, Sprangers B. Management of checkpoint inhibitor-associated renal toxicities. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/23809000.2017.1369045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lowie Vanoverbeke
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Experimental Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Cancer-Kidney International Network (C-KIN), Brussels, Belgium
| |
Collapse
|
516
|
Hayakawa S, Ohno N, Okada S, Kobayashi M. Significant augmentation of regulatory T cell numbers occurs during the early neonatal period. Clin Exp Immunol 2017; 190:268-279. [PMID: 28677152 DOI: 10.1111/cei.13008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 01/13/2023] Open
Abstract
Regulatory T cells (Tregs ) control immune responses by suppressing various inflammatory cells. Tregs in newborn babies may play an important role in preventing excessive immune responses during their environmental change. We examined the number and phenotype of Tregs during the neonatal period in 49 newborn babies. Tregs were characterized by flow cytometry using cord blood (CB) and peripheral blood (PB) from the early (7-8 days after birth) and late (2-4 weeks after birth) neonatal periods. CD4+ forkhead box protein 3 (FoxP3+ ) T cells were classified into resting Tregs (CD45RA+ FoxP3low ), activated Tregs (CD45RA- FoxP3high ) and newly activated T cells (CD45RA- FoxP3low ). Compared with CB and PB during the late neonatal period, the percentage of Tregs and all Treg subpopulations in the CD4+ lymphocyte population were increased significantly during the early neonatal period. Furthermore, the proportion and absolute number of activated Tregs were increased markedly compared with other Treg subpopulations, such as resting Tregs and newly activated T cells (non-Tregs ), in the early neonatal period. Increased Tregs concomitantly expressed the suppressive molecule cytotoxic T lymphocyte antigen-4 (CTLA-4). The up-regulated expression of chemokine receptor 4 (CCR4) and down-regulated expression of CCR7 were also observed in expanded Tregs . When cord blood cells were cultured in vitro with CD3 monoclonal antibodies (mAb) for 5 days, CD4+ CD45RA- FoxP3high cells were increased significantly during the culture. Thus, the presence of increased activated Tregs in early neonates may play an important role in immunological regulation by suppressing excessive T cell activation caused by the immediate exposure to ubiquitous antigens after birth.
Collapse
Affiliation(s)
- S Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - N Ohno
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - M Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
517
|
Uhlig HH, Muise AM. Clinical Genomics in Inflammatory Bowel Disease. Trends Genet 2017; 33:629-641. [PMID: 28755896 DOI: 10.1016/j.tig.2017.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Genomic technologies inform the complex genetic basis of polygenic inflammatory bowel disease (IBD) as well as Mendelian disease-associated IBD. Aiming to diagnose patients that present with extreme phenotypes due to monogenic forms of IBD, genomics has progressed from 'orphan disease' research towards an integrated standard of clinical care. Advances in diagnostic clinical genomics are increasingly complemented by pathway-specific therapies that aim to correct the consequences of genetic defects. This highlights the exceptional potential for personalized precision medicine. IBD is nevertheless a challenging example for genomic medicine because the overall fraction of patients with Mendelian defects is low, the number of potential candidate genes is high, and interventional evidence is still emerging. We discuss requirements and prospects of explanatory and predictive clinical genomics in IBD.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, UK; Department of Paediatrics, University of Oxford, UK.
| | - Aleixo M Muise
- Program in Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; SickKids Inflammatory Bowel Disease Centre and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
518
|
Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Front Immunol 2017; 8:847. [PMID: 28791010 PMCID: PMC5522848 DOI: 10.3389/fimmu.2017.00847] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are genetic disorders impairing host immunity, leading to life-threatening infections, autoimmunity, and/or malignancies. Genomic technologies have been critical for expediting the discovery of novel genetic defects underlying PIDs, expanding our knowledge of the complex clinical phenotypes associated with PIDs, and in shifting paradigms of PID pathogenesis. Once considered Mendelian, monogenic, and completely penetrant disorders, genomic studies have redefined PIDs as a heterogeneous group of diseases found in the global population that may arise through multigenic defects, non-germline transmission, and with variable penetrance. This review examines the uses of next-generation DNA sequencing (NGS) in the diagnosis of PIDs. While whole genome sequencing identifies variants throughout the genome, whole exome sequencing sequences only the protein-coding regions within a genome, and targeted gene panels sequence only a specific cohort of genes. The advantages and limitations of each sequencing approach are compared. The complexities of variant interpretation and variant validation remain the major challenge in wide-spread implementation of these technologies. Lastly, the roles of NGS in newborn screening and precision therapeutics for individuals with PID are also addressed.
Collapse
Affiliation(s)
- Michael Seleman
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | | | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
519
|
Ferreira RC, Simons HZ, Thompson WS, Rainbow DB, Yang X, Cutler AJ, Oliveira J, Castro Dopico X, Smyth DJ, Savinykh N, Mashar M, Vyse TJ, Dunger DB, Baxendale H, Chandra A, Wallace C, Todd JA, Wicker LS, Pekalski ML. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J Autoimmun 2017; 84:75-86. [PMID: 28747257 PMCID: PMC5656572 DOI: 10.1016/j.jaut.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023]
Abstract
Identification of alterations in the cellular composition of the human immune system is key to understanding the autoimmune process. Recently, a subset of FOXP3+ cells with low CD25 expression was found to be increased in peripheral blood from systemic lupus erythematosus (SLE) patients, although its functional significance remains controversial. Here we find in comparisons with healthy donors that the frequency of FOXP3+ cells within CD127lowCD25low CD4+ T cells (here defined as CD25lowFOXP3+ T cells) is increased in patients affected by autoimmune disease of varying severity, from combined immunodeficiency with active autoimmunity, SLE to type 1 diabetes. We show that CD25lowFOXP3+ T cells share phenotypic features resembling conventional CD127lowCD25highFOXP3+ Tregs, including demethylation of the Treg-specific epigenetic control region in FOXP3, HELIOS expression, and lack of IL-2 production. As compared to conventional Tregs, more CD25lowFOXP3+HELIOS+ T cells are in cell cycle (33.0% vs 20.7% Ki-67+; P = 1.3 × 10−9) and express the late-stage inhibitory receptor PD-1 (67.2% vs 35.5%; P = 4.0 × 10−18), while having reduced expression of the early-stage inhibitory receptor CTLA-4, as well as other Treg markers, such as FOXP3 and CD15s. The number of CD25lowFOXP3+ T cells is correlated (P = 3.1 × 10−7) with the proportion of CD25highFOXP3+ T cells in cell cycle (Ki-67+). These findings suggest that CD25lowFOXP3+ T cells represent a subset of Tregs that are derived from CD25highFOXP3+ T cells, and are a peripheral marker of recent Treg expansion in response to an autoimmune reaction in tissues. FOXP3+ compartment within CD127lowCD25low T cells is expanded in autoimmune patients. Increased numbers of CD25lowFOXP3+ T cells are a circulating marker of autoimmunity. CD25lowFOXP3+ HELIOS+ T cells are fully demethylated at the FOXP3 TSDR. CD25lowFOXP3+ T cells could represent a terminal differentiation stage of regulatory T cells.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Henry Z Simons
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Whitney S Thompson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Xin Yang
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Antony J Cutler
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Joao Oliveira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Xaquin Castro Dopico
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Natalia Savinykh
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Meghavi Mashar
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tim J Vyse
- Department of Medical and Molecular Genetics, King's College Hospital, London, UK
| | - David B Dunger
- Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Helen Baxendale
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Anita Chandra
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK.
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
520
|
Verma N, Burns SO, Walker LSK, Sansom DM. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol 2017; 190:1-7. [PMID: 28600865 DOI: 10.1111/cei.12997] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Immune deficiency disorders are a heterogeneous group of diseases of variable genetic aetiology. While the hallmark of immunodeficiency is susceptibility to infection, it is increasingly clear that autoimmunity is prevalent, suggestive of a more general immune dysregulation in some cases. With the increasing use of genetic technologies, the underlying causes of immune dysregulation are beginning to emerge. Here we provide a review of the heterozygous mutations found in the immune checkpoint protein CTLA-4, identified in cases of common variable immunodeficiency disorders (CVID) with accompanying autoimmunity. Study of these mutations provides insights into the biology of CTLA-4 as well as suggesting approaches for rational treatment of these patients.
Collapse
Affiliation(s)
- N Verma
- Clinical Immunology Department, Royal Free Hospital, London, UK
| | - S O Burns
- Clinical Immunology Department, Royal Free Hospital, London, UK.,Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - L S K Walker
- Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| | - D M Sansom
- Division of Infection and Immunity, School of Life and Medical Sciences, Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK
| |
Collapse
|
521
|
Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol 2017; 139:715-723. [PMID: 28270363 DOI: 10.1016/j.jaci.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiency disorders (PIDs) represent a range of genetically determined diseases that typically have increased susceptibility to infections and in many cases also have evidence of immune dysregulation that often presents as autoimmunity. Most recently, the concept of gain-of-function mutations associated with PIDs has become well recognized and adds a new dimension to the understanding of this group of disorders, moving beyond the more commonly seen loss-of-function mutations. The rapidly expanding genetic defects that have been identified in patients with previously uncharacterized PIDs has opened up the potential for targeted therapy directed at the specific disease-causing abnormality. This has been driven by linking PID-specific genetic defects to the associated unique abnormalities in cellular signaling pathways amenable to directed therapies. These include agents that either block overactive or enhance underresponsive cellular pathways. Selected primary immunodeficiencies were chosen, the genetic defects of which have been recently characterized and are amenable to targeted therapy, as a reflection of the power of precision medicine.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
522
|
Abstract
From the application of Coley's toxin in the early 1900s to the present clinical trials using immune checkpoint regulatory inhibitors, the history of cancer immunotherapy has consisted of extremely high levels of enthusiasm after anecdotal case reports of enormous success, followed by decreasing levels of enthusiasm as the results of controlled clinical trials are available. In this review, this pattern will be documented for the various immunotherapeutic approaches over the years. The sole exception being vaccination against cancer causing viruses, which have already prevented thousands of cancers. We can only hope that the present high level of enthusiasm for the use of immune stimulation by removal of blocks to cancer immunity will be more productive than the incremental improvements using previous immunotherapies.
Collapse
Affiliation(s)
- Stewart Sell
- Wadsworth Center, New York State Department of Health and Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
523
|
Nawaf MG, Ulvmar MH, Withers DR, McConnell FM, Gaspal FM, Webb GJ, Jones ND, Yagita H, Allison JP, Lane PJL. Concurrent OX40 and CD30 Ligand Blockade Abrogates the CD4-Driven Autoimmunity Associated with CTLA4 and PD1 Blockade while Preserving Excellent Anti-CD8 Tumor Immunity. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28646041 PMCID: PMC5523579 DOI: 10.4049/jimmunol.1700088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although strategies that block FOXP3-dependent regulatory T cell function (CTLA4 blockade) and the inhibitory receptor PD1 have shown great promise in promoting antitumor immune responses in humans, their widespread implementation for cancer immunotherapy has been hampered by significant off-target autoimmune side effects that can be lethal. Our work has shown that absence of OX40 and CD30 costimulatory signals prevents CD4 T cell–driven autoimmunity in Foxp3-deficient mice, suggesting a novel way to block these side effects. In this study, we show that excellent antitumor CD8 T cell responses can be achieved in Foxp3KO mice deficient in OX40 and CD30 signals, particularly in the presence of concurrent PD1 blockade. Furthermore, excellent antitumor immune responses can also be achieved using combinations of Abs that block CTLA4, PD1, OX40, and CD30 ligands, without CD4 T cell–driven autoimmunity. By dissociating autoimmune side effects from anticancer immune responses, this potentially shifts this antitumor approach to patients with far less advanced disease.
Collapse
Affiliation(s)
- Maher G Nawaf
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fiona M McConnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fabrina M Gaspal
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gwilym J Webb
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nick D Jones
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - James P Allison
- Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; .,Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
524
|
Burnett DL, Parish IA, Masle-Farquhar E, Brink R, Goodnow CC. Murine LRBA deficiency causes CTLA-4 deficiency in Tregs without progression to immune dysregulation. Immunol Cell Biol 2017; 95:775-788. [PMID: 28611475 PMCID: PMC5636941 DOI: 10.1038/icb.2017.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in lipopolysaccharide-responsive beige-like anchor (LRBA) cause a recessive human immune dysregulation syndrome with memory B-cell and antibody deficiency (common variable immunodeficiency), inflammatory bowel disease, enlarged spleen and lymph nodes, accumulation of activated T cells and multiple autoimmune diseases. To understand the pathogenesis of the syndrome, C57BL/6 mice carrying a homozygous truncating mutation in Lrba were produced using CRISPR/Cas9-mediated gene targeting. These mice revealed that LRBA has a critical, cell-autonomous role in promoting cytotoxic T-lymphocyte antigen-4 (CTLA-4) accumulation within CD4 effector T cells and FOXP3+ T-regulatory cells (Tregs). In young mice, or in chimeric mice where only half of the T cells are LRBA deficient, low CTLA-4 was the only detectable abnormality in Tregs, whereas in old mice FOXP3 was also decreased. Low CTLA-4 did not translate into increased CD86 on B cells unless the LRBA-deficient mice were immunised, and neither immunisation nor chronic lymphocytic choriomeningitis virus infection precipitated immune dysregulation. LRBA deficiency did not alter antigen-specific B-cell activation, germinal centre (GC) formation, isotype switching or affinity maturation. Paradoxically, CD86 was decreased on GC B cells in LRBA-deficient mice, pointing to compensatory mechanisms for controlling CD86 in the face of low CTLA-4. These results add to the experimental rationale for treating LRBA deficiency with the CTLA4-Ig fusion protein, Abatacept, and pose questions about the limitations of laboratory experiments in mice to reproduce human disease in natura.
Collapse
Affiliation(s)
- Deborah L Burnett
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Ian A Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - Robert Brink
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
525
|
Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol 2017; 141:1050-1059.e10. [PMID: 28601686 DOI: 10.1016/j.jaci.2017.05.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) deficiencies give rise to overlapping phenotypes of immune dysregulation and autoimmunity, with dramatically increased frequencies of circulating follicular helper T (cTFH) cells. OBJECTIVE We sought to determine the mechanisms of cTFH cell dysregulation in patients with LRBA deficiency and the utility of monitoring cTFH cells as a correlate of clinical response to CTLA4-Ig therapy. METHODS cTFH cells and other lymphocyte subpopulations were characterized. Functional analyses included in vitro follicular helper T (TFH) cell differentiation and cTFH/naive B-cell cocultures. Serum soluble IL-2 receptor α chain levels and in vitro immunoglobulin production by cultured B cells were quantified by using ELISA. RESULTS cTFH cell frequencies in patients with LRBA or CTLA4 deficiency sharply decreased with CTLA4-Ig therapy in parallel with other markers of immune dysregulation, including soluble IL-2 receptor α chain, CD45RO+CD4+ effector T cells, and autoantibodies, and this was predictive of favorable clinical responses. cTFH cells in patients with LRBA deficiency were biased toward a TH1-like cell phenotype, which was partially reversed by CTLA4-Ig therapy. LRBA-sufficient but not LRBA-deficient regulatory T cells suppressed in vitro TFH cell differentiation in a CTLA4-dependent manner. LRBA-deficient TFH cells supported in vitro antibody production by naive LRBA-sufficient B cells. CONCLUSIONS cTFH cell dysregulation in patients with LRBA deficiency reflects impaired control of TFH cell differentiation because of profoundly decreased CTLA4 expression on regulatory T cells and probably contributes to autoimmunity in patients with this disease. Serial monitoring of cTFH cell frequencies is highly useful in gauging the clinical response of LRBA-deficient patients to CTLA4-Ig therapy.
Collapse
|
526
|
Abstract
PURPOSE OF REVIEW We review select studies of newly discovered rare variants in autoimmune diseases with a focus on newly described monogenic disorders, rheumatoid arthritis, and systemic lupus erythematosus. RECENT FINDINGS Two new monogenic syndromes of inflammatory arthritis were discovered using whole exome sequencing: the coatomer subunit alpha syndrome because of rare mutations in coatomer subunit alpha and haploinsufficiency of A20 resulting from rare mutations in TNFAIP3. Targeted exon sequencing identified rare variants in IL2RA and IL2RB associated with rheumatoid arthritis. Rare variants in TREX1 and other genes associated with monogenic interferonopathies are also associated with systemic lupus erythematosus. SUMMARY Rare genetic variants contribute to the heritability of autoimmunity and provide key insight into both novel and previously implicated immunological pathways that are disrupted in autoimmune diseases.
Collapse
|
527
|
Huang J, Liu F, Liu Z, Tang H, Wu H, Gong Q, Chen J. Immune Checkpoint in Glioblastoma: Promising and Challenging. Front Pharmacol 2017; 8:242. [PMID: 28536525 PMCID: PMC5422441 DOI: 10.3389/fphar.2017.00242] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is a severe malignant brain cancer with poor overall survival. Conventional intervention remains dismal to prevent recurrence and deterioration of GBM cell. Recent years have witnessed exciting breakthroughs in novel immune strategies, especially checkpoint inhibitors, some of which have become adjuvant setting after standard of care in melanoma. Several clinical trials of checkpoint inhibitors are ongoing in glioblastoma and other brain carcinomas. Plus, synergistic combinations of checkpoint inhibitors with conventional therapy strategies—radiotherapy, temozolomide, bevacizumab, and corticosteroids are now being exploited and applied in clinical settings. This review highlights the recent developments of checkpoints in GBM immunotherapy to provide a brief and comprehensive review of current treatment options. Furthermore, we will discuss challenges remained, such as unique immune system of central nervous system (CNS), immune-related toxicities, synergies, and adverse interactions of combination therapies.
Collapse
Affiliation(s)
- Jing Huang
- Department of Psychiatry, the Second Xiangya Hospital, Central South UniversityChangsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Central South UniversityChangsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU)Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU)Changsha, China
| | - Hui Tang
- Department of Psychiatry, the Second Xiangya Hospital, Central South UniversityChangsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Central South UniversityChangsha, China
| | - Haishan Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South UniversityChangsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Central South UniversityChangsha, China
| | - Qianni Gong
- Department of Minimally Invasive Surgery, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Jindong Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South UniversityChangsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Central South UniversityChangsha, China
| |
Collapse
|
528
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
529
|
Abnormality of regulatory T cells in common variable immunodeficiency. Cell Immunol 2017; 315:11-17. [DOI: 10.1016/j.cellimm.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 01/23/2023]
|
530
|
Iwata A, Durai V, Tussiwand R, Briseño CG, Wu X, Grajales-Reyes GE, Egawa T, Murphy TL, Murphy KM. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex. Nat Immunol 2017; 18:563-572. [PMID: 28346410 PMCID: PMC5401770 DOI: 10.1038/nrm.2017.56, 10.1038/ni.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 07/28/2023]
Abstract
Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.
Collapse
Affiliation(s)
- Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
- Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
531
|
Henrickson SE, Ruffner MA, Kwan M. Unintended Immunological Consequences of Biologic Therapy. Curr Allergy Asthma Rep 2017; 16:46. [PMID: 27324478 DOI: 10.1007/s11882-016-0624-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent advances in the understanding of immune dysregulation in autoimmune diseases have enabled the development of new monoclonal antibody-based drugs called biologics. Biologics have been used to target aberrant immune responses in many diseases, but patients with rheumatologic and other autoimmune diseases have benefited the most and improvements in outcomes have been significant. The use of biologics is not without hazard, however, as these agents block immune pathways adapted to protect the host. This has been borne out by increased rates of infections as well as induction of new autoimmune and hematologic adverse effects. As new drugs for the treatment of autoimmune conditions are entering the pipeline, it is incumbent on the practicing immunologist to understand the mechanism of these biologics and the implications of clinical use.
Collapse
Affiliation(s)
- Sarah E Henrickson
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St. 3rd floor, Philadelphia, PA, 19104, USA
| | - Melanie A Ruffner
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St. 3rd floor, Philadelphia, PA, 19104, USA
| | - Mildred Kwan
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, University of North Carolina School of Medicine, 3300 Thurston, CB #7280, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
532
|
Humoral primary immunodeficiency diseases: clinical overview and chest high-resolution computed tomography (HRCT) features in the adult population. Clin Radiol 2017; 72:534-542. [PMID: 28433201 DOI: 10.1016/j.crad.2017.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
Abstract
Humoral primary immunodeficiency diseases (hPIDs) are a heterogeneous group of hereditary disorders resulting in abnormal susceptibility to infections of the sinopulmonary tract. Some of these conditions (e.g., common variable immunodeficiency disorders [CVID]) imply a number of non-infectious thoracic complications such as non-infectious airway disorders, diffuse lung parenchymal diseases, and neoplasms. Chest high-resolution computed tomography (HRCT) is a key imaging tool to characterise and quantify the extent of underlying thoracic involvement, as well as to direct and monitor treatment. The aims of this review are to provide a brief clinical overview of hPIDs and describe the related chest HRCT imaging features in the adult population, with a special focus on CVID and its complications.
Collapse
|
533
|
Walker LS. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017; 184:43-50. [DOI: 10.1016/j.imlet.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
|
534
|
CTLA-4 haploinsufficiency in a patient with an autoimmune lymphoproliferative disorder. J Allergy Clin Immunol 2017; 140:862-864.e4. [PMID: 28366794 DOI: 10.1016/j.jaci.2017.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 02/11/2017] [Accepted: 02/20/2017] [Indexed: 01/22/2023]
|
535
|
Iwata A, Durai V, Tussiwand R, Briseño CG, Wu X, Grajales-Reyes GE, Egawa T, Murphy TL, Murphy KM. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex. Nat Immunol 2017; 18:563-572. [PMID: 28346410 PMCID: PMC5401770 DOI: 10.1038/ni.3714] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
Abstract
Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes, but the mechanism remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared TH2 gene expression with BATF/IRF4 enhancer occupancy at varying strengths of TCR stimulation. BATF/IRF4-dependent genes clustered into distinct TCR-sensitivities. Enhancers exhibited a spectrum of occupancy by BATF/IRF4 ternary complex that correlated with TCR-sensitivity of gene expression. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity for BATF/IRF4 for direct binding to DNA. ChIP-exo analysis allowed identification of a novel high-affinity AICE2 motif at a human SNP of CTLA4 associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex may underlie divergent signaling outcomes in response to various strengths of TCR signaling.
Collapse
Affiliation(s)
- Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA.,Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
536
|
British Lung Foundation/United Kingdom Primary Immunodeficiency Network Consensus Statement on the Definition, Diagnosis, and Management of Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:938-945. [PMID: 28351785 DOI: 10.1016/j.jaip.2017.01.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/29/2022]
Abstract
A proportion of people living with common variable immunodeficiency disorders develop granulomatous-lymphocytic interstitial lung disease (GLILD). We aimed to develop a consensus statement on the definition, diagnosis, and management of GLILD. All UK specialist centers were contacted and relevant physicians were invited to take part in a 3-round online Delphi process. Responses were graded as Strongly Agree, Tend to Agree, Neither Agree nor Disagree, Tend to Disagree, and Strongly Disagree, scored +1, +0.5, 0, -0.5, and -1, respectively. Agreement was defined as greater than or equal to 80% consensus. Scores are reported as mean ± SD. There was 100% agreement (score, 0.92 ± 0.19) for the following definition: "GLILD is a distinct clinico-radio-pathological ILD occurring in patients with [common variable immunodeficiency disorders], associated with a lymphocytic infiltrate and/or granuloma in the lung, and in whom other conditions have been considered and where possible excluded." There was consensus that the workup of suspected GLILD requires chest computed tomography (CT) (0.98 ± 0.01), lung function tests (eg, gas transfer, 0.94 ± 0.17), bronchoscopy to exclude infection (0.63 ± 0.50), and lung biopsy (0.58 ± 0.40). There was no consensus on whether expectant management following optimization of immunoglobulin therapy was acceptable: 67% agreed, 25% disagreed, score 0.38 ± 0.59; 90% agreed that when treatment was required, first-line treatment should be with corticosteroids alone (score, 0.55 ± 0.51).
Collapse
|
537
|
Su H. Studying human immunodeficiencies in humans: advances in fundamental concepts and therapeutic interventions. F1000Res 2017; 6:318. [PMID: 28408979 PMCID: PMC5373415 DOI: 10.12688/f1000research.10594.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/23/2023] Open
Abstract
Immunodeficiencies reveal the crucial role of the immune system in defending the body against microbial pathogens. Given advances in genomics and other technologies, this is currently best studied in humans who have inherited monogenic diseases. Such investigations have provided insights into how gene products normally function in the natural environment and have opened the door to new, exciting treatments for these diseases.
Collapse
Affiliation(s)
- Helen Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
538
|
Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease-Lessons from Primary Immunodeficiency? Front Immunol 2017; 8:328. [PMID: 28377772 PMCID: PMC5359217 DOI: 10.3389/fimmu.2017.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) is used to treat increasing numbers of malignant and non-malignant disorders. Despite significant advances in improved human leukocyte antigens-typing techniques, less toxic conditioning regimens and better supportive care, resulting in improved clinical outcomes, acute graft-versus-host disease (aGvHD) continues to be a major obstacle and, although it principally involves the skin, gastrointestinal tract, and liver, the thymus is also a primary target. An important aim following HSCT is to achieve complete and durable immunoreconstitution with a diverse T-cell receptor (TCR) repertoire to recognize a broad range of pathogens providing adequate long-term adaptive T-lymphocyte immunity, essential to reduce the risk of infection, disease relapse, and secondary malignancies. Reconstitution of adaptive T-lymphocyte immunity is a lengthy and complex process which requires a functioning and structurally intact thymus responsible for the production of new naïve T-lymphocytes with a broad TCR repertoire. Damage to the thymic microenvironment, secondary to aGvHD and the effect of corticosteroid treatment, disturbs normal signaling required for thymocyte development, resulting in impaired T-lymphopoiesis and reduced thymic export. Primary immunodeficiencies, in which failure of central or peripheral tolerance is a major feature, because of intrinsic defects in hematopoietic stem cells leading to abnormal T-lymphocyte development, or defects in thymic stroma, can give insights into critical processes important for recovery from aGvHD. Extracorporeal photopheresis is a potential alternative therapy for aGvHD, which acts in an immunomodulatory fashion, through the generation of regulatory T-lymphocytes (Tregs), alteration of cytokine patterns and modulation of dendritic cells. Promoting normal central and peripheral immune tolerance, with selective downregulation of immune stimulation, could reduce aGvHD, and enable a reduction in other immunosuppression, facilitating thymic recovery, restoration of normal T-lymphocyte ontogeny, and complete immunoreconstitution with improved clinical outcome as the ability to fight infections improves and risk of secondary malignancy or relapse diminishes.
Collapse
Affiliation(s)
- Aisling M Flinn
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Andrew R Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
539
|
Wang K, Zhu Q, Lu Y, Lu H, Zhang F, Wang X, Fan Y. CTLA-4 +49 G/A Polymorphism Confers Autoimmune Disease Risk: An Updated Meta-Analysis. Genet Test Mol Biomarkers 2017; 21:222-227. [PMID: 28384040 DOI: 10.1089/gtmb.2016.0335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a pivotal role in immune homeostasis. Dysregulated expression of CTLA-4 leads to many autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes (T1D). There has been a controversial association between the CTLA-4 +49 G/A SNP (rs231775) and autoimmune diseases. Therefore, this meta-analysis was performed to assess the link between rs231775 and autoimmune disease risk. MATERIALS AND METHODS We retrieved the available studies from PUBMED and EMBASE through February, 2016 and then performed meta-analyses that included all populations, as well as by ethnicity. RESULTS After evaluating data from 4732 patients and 6270 healthy controls that included both Caucasian and Asian ethnicities, we found that rs231775 is strongly associated with autoimmune disease incidence in a homozygote comparison (GG vs. AA, 95% confidence interval [95% CI] 1.382-2.401), in a heterozygote comparison (AG vs. AA, 95% CI 1.151-1.611), in an allelic model (T allele vs. G allele, 95% CI 1.109-1.441), in a dominant model (GG/AG vs. AA, 95% CI 1.220-1.787), and in a recessive model (GG vs. AA/AG, 95% CI 1.128-1.661). The OR (odds ratio) from all models suggested a very significant association between rs231775 and autoimmune diseases. CONCLUSION Our present study indicates that CTLA-4 +49 G/A (rs231775) is associated with the susceptibility of autoimmune disease. Hence, rs231775 might be utilized as a diagnostic biomarker in both Asian and Caucasian populations.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Qin Zhu
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Yunjie Lu
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Hao Lu
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Feng Zhang
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Xuehao Wang
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ye Fan
- Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| |
Collapse
|
540
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
541
|
Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood 2017; 129:1458-1468. [PMID: 28159733 DOI: 10.1182/blood-2016-10-745174] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Heterozygous CTLA-4 deficiency has been reported as a monogenic cause of common variable immune deficiency with features of immune dysregulation. Direct mutation in CTLA-4 leads to defective regulatory T-cell (Treg) function associated with impaired ability to control levels of the CTLA-4 ligands, CD80 and CD86. However, additional mutations affecting the CTLA-4 pathway, such as those recently reported for LRBA, indirectly affect CTLA-4 expression, resulting in clinically similar disorders. Robust phenotyping approaches sensitive to defects in the CTLA-4 pathway are therefore required to inform understanding of such immune dysregulation syndromes. Here, we describe assays capable of distinguishing a variety of defects in the CTLA-4 pathway. Assessing total CTLA-4 expression levels was found to be optimal when restricting analysis to the CD45RA-Foxp3+ fraction. CTLA-4 induction following stimulation, and the use of lysosomal-blocking compounds, distinguished CTLA-4 from LRBA mutations. Short-term T-cell stimulation improved the capacity for discriminating the Foxp3+ Treg compartment, clearly revealing Treg expansions in these disorders. Finally, we developed a functionally orientated assay to measure ligand uptake by CTLA-4, which is sensitive to ligand-binding or -trafficking mutations, that would otherwise be difficult to detect and that is appropriate for testing novel mutations in CTLA-4 pathway genes. These approaches are likely to be of value in interpreting the functional significance of mutations in the CTLA-4 pathway identified by gene-sequencing approaches.
Collapse
|
542
|
Chandrakasan S, Venkateswaran S, Kugathasan S. Nonclassic Inflammatory Bowel Disease in Young Infants: Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome, and Other Disorders. Pediatr Clin North Am 2017; 64:139-160. [PMID: 27894441 DOI: 10.1016/j.pcl.2016.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article discusses non-classical forms of inflammatory bowel disease (IBD) mainly occurs in infants and very young children. Defects in every aspect of the immune system, such as neutrophils, T-cell and B-cell lymphocytes, and macrophages are associated with IBD in infants. Also, non lympho-hematopoietic defects with primary defects in enterocytes can also lead to IBD-like manifestations. Clinical vignettes are presented and the genetic origins and possible management strategies are outlined. Early evaluation of these patients is important because identification of underlying immune defects would facilitate the use of better-targeted therapy for the specific genetic defect.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Department of Pediatrics, Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Division of Hematology, Oncology and BMT, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh Venkateswaran
- Department of Pediatrics, Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics, Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Division of Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
543
|
Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 2017; 139:1629-1640.e2. [PMID: 28139313 DOI: 10.1016/j.jaci.2016.11.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in the human signal transducer and activator of transcription 1 (STAT1) manifest in immunodeficiency and autoimmunity with impaired TH17 cell differentiation and exaggerated responsiveness to type I and II interferons. Allogeneic bone marrow transplantation has been attempted in severely affected patients, but outcomes have been poor. OBJECTIVE We sought to define the effect of increased STAT1 activity on T helper cell polarization and to investigate the therapeutic potential of ruxolitinib in treating autoimmunity secondary to STAT1 GOF mutations. METHODS We used in vitro polarization assays, as well as phenotypic and functional analysis of STAT1-mutated patient cells. RESULTS We report a child with a novel mutation in the linker domain of STAT1 who had life-threatening autoimmune cytopenias and chronic mucocutaneous candidiasis. Naive lymphocytes from the affected patient displayed increased TH1 and follicular T helper cell and suppressed TH17 cell responses. The mutation augmented cytokine-induced STAT1 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reduced hyperresponsiveness to type I and II interferons, normalized TH1 and follicular T helper cell responses, improved TH17 differentiation, cured mucocutaneous candidiasis, and maintained remission of immune-mediated cytopenias. CONCLUSIONS Autoimmunity and infection caused by STAT1 GOF mutations are the result of dysregulated T helper cell responses. Janus kinase inhibitor therapy could represent an effective targeted treatment for long-term disease control in severely affected patients for whom hematopoietic stem cell transplantation is not available.
Collapse
|
544
|
Carbonnel F, Soularue E, Coutzac C, Chaput N, Mateus C, Lepage P, Robert C. Inflammatory bowel disease and cancer response due to anti-CTLA-4: is it in the flora? Semin Immunopathol 2017; 39:327-331. [PMID: 28093620 DOI: 10.1007/s00281-016-0613-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
Abstract
Checkpoint inhibitors blocking CTLA-4 (ipilimumab) and PD-1 (nivolumab, pembrolizumab) have transfigured our cancer treatment paradigm. However, these drugs can induce immune-related adverse events that share clinical and pathological characteristics with immune-mediated diseases. One of the most severe immune-related adverse event observed with anti-CTLA-4 is an enterocolitis that mirrors naturally occurring inflammatory bowel disease. This paper reviews the clinical, immunological, and microbiota data associated with the immune-related enterocolitis induced by the cancer immunotherapy blocking CTLA-4, ipilimumab. A parallel analysis of the mechanisms underlying inflammatory bowel diseases on the one hand, and anti-CTLA-4-induced colitis on the other hand, stresses the crucial role of the gut microbiota and of resident Treg in the genesis of both iatrogenic and spontaneous inflammatory bowel diseases.
Collapse
Affiliation(s)
- Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, F-94276, France
| | - Emilie Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, F-94276, France
| | - Clélia Coutzac
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, and CNRS-UMS 3655 and INSERM-US23, Villejuif, F-94805, France
| | - Nathalie Chaput
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, and CNRS-UMS 3655 and INSERM-US23, Villejuif, F-94805, France
- Université Paris-Sud, Faculté de pharmacie, Chatenay-Malabry, Châtenay-Malabry, F-92296, France
| | - Christine Mateus
- Gustave Roussy, Département de Médecine, Service de Dermatologie, et Université Paris-Sud Villejuif, Villejuif, F-94805, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Caroline Robert
- Gustave Roussy, Département de Médecine, Service de Dermatologie, et Université Paris-Sud Villejuif, Villejuif, F-94805, France.
| |
Collapse
|
545
|
NEIL1 is a candidate gene associated with common variable immunodeficiency in a patient with a chromosome 15q24 deletion. Clin Immunol 2017; 176:71-76. [PMID: 28093361 DOI: 10.1016/j.clim.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/07/2023]
Abstract
We report the first patient with an interstitial deletion of chromosome 15q24.1-q24.3 associated with common variable immunodeficiency (CVID). The 18-year old female patient's clinical and immunological phenotype was compared with 8 additional previously published patients with chr15q24 deletions. A CGH analysis estimated the deletion to be 3.767Mb in size (chr15: 74,410,916-78,178,418) and the result was confirmed using qRT-PCR. We defined an immune-related commonly deleted region (ICDR) within the chromosomal band 15q24.2, deleted in all four patients with different forms of antibody deficiencies. Mutations in the 14 genes within this ICDR were not identified in the remaining allele in our patient by WES and gene expression analyses showed haploinsufficiency of all the genes. Among these genes, we consider Nei Like DNA Glycosylase 1 (NEIL1) as a likely candidate gene due to its crucial role in B-cell activation and terminal differentiation.
Collapse
|
546
|
Dai Z, Tian T, Wang M, Liu X, Lin S, Yang P, Liu K, Zheng Y, Xu P, Liu M, Yang X, Dai Z. CTLA-4 polymorphisms associate with breast cancer susceptibility in Asians: a meta-analysis. PeerJ 2017; 5:e2815. [PMID: 28097051 PMCID: PMC5228500 DOI: 10.7717/peerj.2815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies have investigated the association between cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and breast cancer susceptibility, but the results remained inconsistent. Therefore, we evaluated the relationship between four common CTLA-4 polymorphisms and breast cancer risk by a meta-analysis, aiming to derive a comprehensive and precise conclusion. We searched EMBASE, Pubmed, Web of Science, CNKI, and Wanfang databases until July 18th, 2016. Finally, ten eligible studies involving 4,544 breast cancer patients and 4,515 cancer-free controls were included; all these studies were from Asia. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the breast cancer risk in five genetic models. The results indicated that the CTLA-4 +49A>G (rs231775) polymorphism had a significant association with decreased breast cancer risk in allelic, homozygous, dominant and recessive models. Also, the +6230G>A (rs3087243) polymorphism reduced breast cancer risk especially in the Chinese population under homozygous and recessive models. In contrast, the -1661A>G (rs4553808) polymorphism increased breast cancer risk in allelic, heterozygous and dominant models, whereas -1722 T>C (rs733618) did not relate to breast cancer risk. In conclusion, CTLA-4 polymorphisms significantly associate with breast cancer susceptibility in Asian populations, and different gene loci may have different effects on breast cancer development. Further large-scale studies including multi-racial populations are required to confirm our findings.
Collapse
Affiliation(s)
- Zhiming Dai
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesia, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pengtao Yang
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Liu
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuewen Yang
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
547
|
Senant M, Giusti D, Weiss L, Dragon-Durey MA. Auto-immunité et gestion des toxicités des traitements par anti-check point inhibiteurs. Bull Cancer 2017; 103 Suppl 1:S175-S185. [PMID: 28057182 DOI: 10.1016/s0007-4551(16)30376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AUTOIMMUNITY AND MANAGEMENT OF THE IMMUNE-RELATED ADVERSE EFFECTS OF THE IMMUNE CHECKPOINT INHIBITORS: The immune checkpoint molecules such as CTLA-4 and PD-1 are involved in the tolerance mechanisms preventing the immune system to react against the self-antigens. When these receptors expressed on the lymphocyte membrane, bind to their ligands, they induce a negative signal to the cell which becomes unable to be completely activated in the presence of its antigen. In a context of tumor, the infiltrating T cells are frequently exhausted due to the expression of CTLA-4 and PD-1 ligands by the microenvironment impairing the antitumoral immunity. The use of antagonistic antibodies targeting these receptors or their ligands (called checkpoint inhibitors) aims to block their interaction unbalancing the negative regulation of the antitumoral lymphocytes. However, this effect affects all lymphocytes and may also disrupt the negative regulation of the peripheral autoreactive lymphocytes. Thus, a significant proportion of patients treated by these molecules develop immune-related symptoms affecting different tissues and organs due to lymphocyte activation. These symptoms are called immune-related adverse events (irAEs). This article aims to summarize the scientific data demonstrating the implication of these molecules in the tolerance mechanisms and in the autoimmune diseases. It also reports on the IrAEs observed in treated patients and gives an outline of guidelines to monitor and manage these patients.
Collapse
Affiliation(s)
- Marie Senant
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'immunologie biologique, hôpital européen Georges-Pompidou, Assistance publique-hôpitaux de Paris.
| | - Delphine Giusti
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'immunologie biologique, hôpital européen Georges-Pompidou, Assistance publique-hôpitaux de Paris.
| | - Laurence Weiss
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'immunologie clinique, hôpital européen Georges-Pompidou, Assistance publique-hôpitaux de Paris
| | - Marie-Agnès Dragon-Durey
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'immunologie biologique, hôpital européen Georges-Pompidou, Assistance publique-hôpitaux de Paris
| |
Collapse
|
548
|
Weinreich MA, Vogel TP, Rao VK, Milner JD. Up, Down, and All Around: Diagnosis and Treatment of Novel STAT3 Variant. Front Pediatr 2017; 5:49. [PMID: 28349047 PMCID: PMC5347118 DOI: 10.3389/fped.2017.00049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
The number of identified monogenic causes of childhood-onset autoimmunity due to nodal and extranodal lymphoproliferation has increased. These pathogenic genetic variants provide the potential for pathway-specific treatment. Novel variants also require pathway-specific verification. In this report, we describe a 14-year-old patient with a novel variant in STAT3. We report clinical and laboratory findings that support STAT3 p.G419R as a novel pathogenic STAT3 gain-of-function variant.
Collapse
Affiliation(s)
- Michael Alexander Weinreich
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD , USA
| | - Tiphanie P Vogel
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA
| | - V Koneti Rao
- Division of Intramural Research, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD , USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD , USA
| |
Collapse
|
549
|
Abstract
The response of peripheral T lymphocytes (T cell) is controlled by multiple checkpoints to avoid unwanted activation against self-tissues. Two opposing costimulatory receptors, CD28 and CTLA-4, on T cells bind to the same ligands (CD80 and CD86) on antigen-presenting cells (APCs), and provide positive and negative feedback for T-cell activation, respectively. Early studies suggested that CTLA-4 is induced on activated T cells and binds to CD80/CD86 with much stronger affinity than CD28, providing a competitive inhibition. Subsequent studies by many researchers revealed the more complex mode of T-cell inhibition by CTLA-4. After T-cell activation, CTLA-4 is stored in the intracellular vesicles, and recruited to the immunological synapse formed between T cells and APCs, and inhibits further activation of T cells by blocking signals initiated by T-cell receptors and CD28. CTLA-4-positive cells can also provide cell-extrinsic regulation on other autoreactive T cells, and are considered to provide an essential regulatory mechanism for FoxP3+ regulatory T cells. Genetic deficiency of CTLA-4 leads to CD28-mediated severe autoimmunity in mice and humans, suggesting its function as a fundamental brake that restrains the expansion and activation of self-reactive T cells. In cancer, therapeutic approaches targeting CTLA-4 by humanized blocking antibodies has been demonstrated to be an effective immunotherapy by reversing T-cell tolerance against tumors. This chapter introduces CTLA-4 biology, including its discovery and mechanism of action, and discusses questions related to CTLA-4.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
550
|
Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr Top Microbiol Immunol 2017; 410:3-27. [PMID: 28879523 DOI: 10.1007/82_2017_58] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD4+ regulatory T cells (Tregs) are a highly immune-suppressive subset of CD4+ T cells, characterized by expression of the master regulatory transcription factor FOXP3. Tregs are proven to play central roles in the maintenance of self-tolerance in healthy individuals. Tregs are involved in maintaining immune homeostasis: they protect hosts from developing autoimmune diseases and allergy, whereas in malignancies, they promote tumor progression by suppressing anti-tumor immunity. Elucidating factors influencing Treg homeostasis and function have important implications for understanding disease pathogenesis and identifying therapeutic opportunities. Thus, the manipulating Tregs for up- or down-regulation of their suppressive function is a new therapeutic strategy for treating various diseases including autoimmune disorders and cancer. This review will focus on recent advances in how Tregs integrate extracellular and intracellular signals to control their survival and stability. Deeper mechanistic understanding of disease-specific Treg development, maintenance, and function could make disease-specific Treg-targeted therapy more effective, resulting in an increase of efficacy and decrease of side effects related to manipulating Tregs.
Collapse
Affiliation(s)
- Yosuke Togashi
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|