501
|
Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR, Hatfull GF. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 2008; 69:164-74. [PMID: 18466296 PMCID: PMC2615189 DOI: 10.1111/j.1365-2958.2008.06274.x] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Successful treatment of human tuberculosis requires 6-9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms--organized communities of surface-attached cells--but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics.
Collapse
Affiliation(s)
- Anil K Ojha
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Lin MY, Ottenhoff TH. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biol Chem 2008; 389:497-511. [DOI: 10.1515/bc.2008.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractMycobacterium tuberculosisis one of the worlds' most successful and sophisticated pathogens. It is estimated that over 2 billion people today harbour latentM. tuberculosisinfection without any clinical symptoms. As most new cases of active tuberculosis (TB) arise from this (growing) number of latently infected individuals, urgent measures to control TB reactivation are required, including post-exposure/therapeutic vaccines. The current bacille Calmette-Guérin (BCG) vaccine and all new generation TB vaccines being developed and tested are essentially designed as prophylactic vaccines. Unfortunately, these vaccines are unlikely to be effective in individuals already latently infected withM. tuberculosis. Here, we argue that detailed analysis ofM. tuberculosisgenes that are switched on predominantly during latent stage infection may lead to the identification of new antigenic targets for anti-TB strategies. We will describe essential host-pathogen interactions in TB with particular emphasis on TB latency and persistent infection. Subsequently, we will focus on novel groups of late-stage specific genes, encoded amongst others by theM. tuberculosisdormancy (dosR) regulon, and summarise recent studies describing human T-cell recognition of these dormancy antigens in relation to (latent)M. tuberculosisinfection. We will discuss the possible relevance of these new classes of antigens for vaccine development against TB.
Collapse
|
503
|
Dover LG, Bhatt A, Bhowruth V, Willcox BE, Besra GS. New drugs and vaccines for drug-resistant Mycobacterium tuberculosis infections. Expert Rev Vaccines 2008; 7:481-97. [PMID: 18444894 DOI: 10.1586/14760584.7.4.481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Tuberculosis remains the most common cause of death due to a single infective organism. Despite the availability of a vaccine and chemotherapeutic options, the global disease burden remains relatively unaffected. The ability of the mycobacterial etiological agents to adopt a semidormant, phenotypically drug-resistant state requires that chemotherapy is both complex and lengthy. The emergence of drug resistance has raised the possibility of virtually untreatable tuberculosis. Furthermore, the currently used bacillus Calmette-Guerin vaccine has had mixed success in protecting susceptible populations. Given this backdrop, the need for novel anti-infectives and more effective vaccines is clearly evident. Recent progress, described herein, has seen the development and entry into clinical trials of several new drugs and vaccine candidates.
Collapse
Affiliation(s)
- Lynn G Dover
- Senior Lecturer, Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | | | | | | |
Collapse
|
504
|
Saxena A, Srivastava V, Srivastava R, Srivastava BS. Identification of genes of Mycobacterium tuberculosis upregulated during anaerobic persistence by fluorescence and kanamycin resistance selection. Tuberculosis (Edinb) 2008; 88:518-25. [PMID: 18434250 DOI: 10.1016/j.tube.2008.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/12/2008] [Accepted: 01/12/2008] [Indexed: 11/18/2022]
Abstract
Molecular mechanisms involved in maintaining the latent infection of Mycobacterium tuberculosis are least understood. We have applied principles of in vivo expression technology (IVET) to identify upregulated genes in an in vitro simulated condition of anaerobic persistence likely to be encountered by the pathogen in lung granulomas. A promoter library of M. tuberculosis constructed in plasmid pLL192 was subjected to hypoxic condition (dissolved oxygen <1%) in a controlled fermenter. On the basis of green fluorescent protein fluorescence and kanamycin resistance the upregulated promoters were selected, identified by nucleotide sequence and the genes were confirmed by RT-PCR. The upregulated genes include Rv0050 (penicillin binding protein), Rv1511 (GDP-d-mannose dehydratase), Rv1489, Rv2257, Rv2258 (all conserved hypothetical proteins), Rv0467 (isocitrate lyase) and Rv2031c (alpha-crystalline homolog). The involvement of the last four genes in latency has been suggested before. The functional role of Rv0050 and Rv1511 may be important in determining cell wall characteristics controlling permeability of nutrients and antibiotics.
Collapse
Affiliation(s)
- Alka Saxena
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | |
Collapse
|
505
|
Wisedchaisri G, Wu M, Sherman DR, Hol WGJ. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J Mol Biol 2008; 378:227-42. [PMID: 18353359 PMCID: PMC2364609 DOI: 10.1016/j.jmb.2008.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 A resolution and its C-terminal DNA-binding domain at 1.7 A resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (beta alpha)(4) topology instead of the canonical (beta alpha)(5) fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix alpha 10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix alpha 10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| | - Meiting Wu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| | - David R. Sherman
- Department of Pathobiology, University of Washington, Seattle, Washington 98195
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
- Biomolecular Structure and Design (BMSD) Graduate Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
506
|
The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol 2008; 190:4360-6. [PMID: 18408028 DOI: 10.1128/jb.00239-08] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of the mechanisms used by Mycobacterium tuberculosis to persist in a "dormant" state is essential to the development of therapies effective in sterilizing tissues. Gene expression profiling in model systems has revealed a complex adaptive response thought to endow M. tuberculosis with the capacity to survive several months of combinatorial antibiotic treatment. We show here that this adaptive response may involve remodeling of the peptidoglycan network by substitution of 4-->3 cross-links generated by the D,D-transpeptidase activity of penicillin-binding proteins by 3-->3 cross-links generated by a transpeptidase of L,D specificity. A candidate gene, previously shown to be upregulated upon nutrient starvation, was found to encode an L,D-transpeptidase active in the formation of 3-->3 cross-links. The enzyme, Ldt(Mt1), was inactivated by carbapenems, a class of beta-lactam antibiotics that are poorly hydrolyzed by the M. tuberculosis beta-lactamases. Ldt(Mt1) and carbapenems may therefore represent a target and a drug family relevant to the eradication of persistent M. tuberculosis.
Collapse
|
507
|
Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan BS, Kramnik I, Agarwal A, Steyn AJC. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 2008; 283:18032-9. [PMID: 18400743 DOI: 10.1074/jbc.m802274200] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that allow Mycobacterium tuberculosis (Mtb) to persist in human tissue for decades and to then abruptly cause disease are not clearly understood. Regulatory elements thought to assist Mtb to enter such a state include the heme two-component sensor kinases DosS and DosT and the cognate response regulator DosR. We have demonstrated previously that O(2), nitric oxide (NO), and carbon monoxide (CO) are regulatory ligands of DosS and DosT. Here, we show that in addition to O(2) and NO, CO induces the complete Mtb dormancy (Dos) regulon. Notably, we demonstrate that CO is primarily sensed through DosS to induce the Dos regulon, whereas DosT plays a less prominent role. We also show that Mtb infection of macrophage cells significantly increases the expression, protein levels, and enzymatic activity of heme oxygenase-1 (HO-1, the enzyme that produces CO), in an NO-independent manner. Furthermore, exploiting HO-1(+/+) and HO-1(-/-) bone marrow-derived macrophages, we demonstrate that physiologically relevant levels of CO induce the Dos regulon. Finally, we demonstrate that increased HO-1 mRNA and protein levels are produced in the lungs of Mtb-infected mice. Our data suggest that during infection, O(2), NO, and CO are being sensed concurrently rather than independently via DosS and DosT. We conclude that CO, a previously unrecognized host factor, is a physiologically relevant Mtb signal capable of inducing the Dos regulon, which introduces a new paradigm for understanding the molecular basis of Mtb persistence.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Microbiology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
508
|
Expression of the Mycobacterium tuberculosis acr-coregulated genes from the DevR (DosR) regulon is controlled by multiple levels of regulation. Infect Immun 2008; 76:2478-89. [PMID: 18391009 DOI: 10.1128/iai.01443-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how Mycobacterium tuberculosis regulates gene expression in response to its host environment, despite its importance as a pathogen. We previously characterized 10 acr-coregulated genes (ACGs), all of which belong to the DevR (DosR) "dormancy" regulon, and identified one to three copies of a conserved 18-bp palindromic DNA motif in the promoter of each ACG family member. In the present study, we used base substitution analyses to assess the importance of individual motif copies and to identify additional regulatory sequences in five ACG promoters. Regulation of acr, acg, Rv2623, narK2, and Rv1738 was examined by using single-copy M. tuberculosis promoter-lacZ reporter constructs in Mycobacterium bovis BCG under conditions of ambient air versus hypoxia, each in shaking versus standing shallow culture conditions. We found that regulation of these ACG promoters is more heterogeneous than expected and is controlled at multiple levels. In addition to the positive regulation previously associated with DevR (DosR) and the 18-bp ACG motif, we identified negative regulation associated with sequences in the 5' untranslated regions of acg and Rv2623 and positive regulation associated with far upstream regulatory regions of narK2 and Rv1738. The importance of individual ACG motifs varied among the promoters examined, and Rv1738 was exceptional in that its ACG motif copies were associated with negative, rather than positive, regulation under some conditions. Further understanding of this important regulon requires the identification of additional regulators that compete and/or collaborate with DevR (DosR) to regulate its individual gene members.
Collapse
|
509
|
Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 2008; 5:e75. [PMID: 18384229 PMCID: PMC2276522 DOI: 10.1371/journal.pmed.0050075] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 02/14/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tuberculous sputum provides a sample of bacilli that must be eliminated by chemotherapy and that may go on to transmit infection. A preliminary observation that Mycobacterium tuberculosis cells contain triacylglycerol lipid bodies in sputum, but not when growing in vitro, led us to investigate the extent of this phenomenon and its physiological basis. METHODS AND FINDINGS Microscopy-positive sputum samples from the UK and The Gambia were investigated for their content of lipid body-positive mycobacteria by combined Nile red and auramine staining. All samples contained a lipid body-positive population varying from 3% to 86% of the acid-fast bacilli present. The recent finding that triacylglycerol synthase is expressed by mycobacteria when they enter in vitro nonreplicating persistence led us to investigate whether this state was also associated with lipid body formation. We found that, when placed in laboratory conditions inducing nonreplicating persistence, two M. tuberculosis strains had lipid body levels comparable to those found in sputum. We investigated these physiological findings further by comparing the M. tuberculosis transcriptome of growing and nonreplicating persistence cultures with that obtained directly from sputum samples. Although sputum has traditionally been thought to contain actively growing tubercle bacilli, our transcript analyses refute the hypothesis that these cells predominate. Rather, they reinforce the results of the lipid body analyses by revealing transcriptional signatures that can be clearly attributed to slowly replicating or nonreplicating mycobacteria. Finally, the lipid body count was highly correlated (R(2) = 0.64, p < 0.03) with time to positivity in diagnostic liquid cultures, thereby establishing a direct link between this cytological feature and the size of a potential nonreplicating population. CONCLUSION As nonreplicating tubercle bacilli are tolerant to the cidal action of antibiotics and resistant to multiple stresses, identification of this persister-like population of tubercle bacilli in sputum presents exciting and tractable new opportunities to investigate both responses to chemotherapy and the transmission of tuberculosis.
Collapse
Affiliation(s)
- Natalie J Garton
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
| | - Simon J Waddell
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
| | - Anna L Sherratt
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
| | - Su-Min Lee
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
| | - Rebecca J Smith
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
| | - Claire Senner
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
| | - Jason Hinds
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
- Department of Clinical Microbiology, University Hospitals of Leicester National Health Service Trust, Leicester, United Kingdom
| | | | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Philip D Butcher
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, London, United Kingdom
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, United Kingdom
- Department of Clinical Microbiology, University Hospitals of Leicester National Health Service Trust, Leicester, United Kingdom
| |
Collapse
|
510
|
Cho HY, Cho HJ, Kim YM, Oh JI, Kang BS. Crystallization and preliminary crystallographic analysis of the second GAF domain of DevS from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:274-6. [PMID: 18391425 DOI: 10.1107/s1744309108005186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 02/23/2008] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis is known to transform into the nonreplicating persistence state under the influence of hypoxia or nitric oxide. DevS-DevR is a two-component regulatory system that mediates the genetic response for the transformation. DevS is a histidine kinase that contains two GAF domains for sensing hypoxia or nitric oxide. The second GAF from M. smegmatis DevS was crystallized using the sitting-drop vapour-diffusion method in the presence of sodium citrate and 2-propanol as precipitants. X-ray diffraction data were collected from crystals containing selenomethionine to a maximum resolution of 2.0 A on a synchrotron beamline. The crystals belong to the hexagonal space group P6(1). The asymmetric unit contains one molecule, corresponding to a packing density of 2.5 A(3) Da(-1). The selenium substructure was determined by the single anomalous dispersion method and structure refinement is in progress.
Collapse
Affiliation(s)
- Ha Yeon Cho
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
511
|
Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. J Bacteriol 2008; 190:4301-12. [PMID: 18359816 DOI: 10.1128/jb.01308-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DevR-DevS two-component system of Mycobacterium tuberculosis mediates bacterial adaptation to hypoxia, a condition believed to be associated with the initiation and maintenance of dormant bacilli during latent tuberculosis. The activity of the Rv3134c-devRS operon was studied in M. tuberculosis using several transcriptional fusions comprised of promoter regions and the gfp reporter gene under inducing and aerobic conditions. Aerobic transcription was DevR independent, while hypoxic induction was completely DevR dependent. The hypoxia transcriptional start point, T(H), was mapped at -40 bp upstream of Rv3134c. In contrast, the divergently transcribed Rv3135 gene was not induced under hypoxic conditions. DNase I footprinting and mutational analyses demonstrated that induction required the interaction of DevR-P with binding sites centered at bp -42.5 and -63.5 relative to T(H). Binding to the distal site (D) was necessary to recruit another molecule of DevR-P to the proximal site (P), and interaction with both sequences was essential for promoter activation. These sites did not bind to either unphosphorylated or phosphorylation-defective DevR protein, which was consistent with an essential role for DevR-P in activation. Phosphorylated DevR also bound to three copies of the motif at the hspX promoter. The Rv3134c and hspX promoters have a similar architecture, wherein the proximal DevR-P binding site overlaps with the promoter -35 element. A model for the likely mode of action of DevR at these promoters is discussed.
Collapse
|
512
|
Velaparthi S, Brunsteiner M, Uddin R, Wan B, Franzblau SG, Petukhov PA. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: initiating a quest for new antitubercular drugs. J Med Chem 2008; 51:1999-2002. [PMID: 18335974 DOI: 10.1021/jm701372r] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pantothenate synthetase (PS) is one of the potential new antimicrobial targets that may also be useful for the treatment of the nonreplicating persistent forms of Mycobacterium tuberculosis. In this Letter we present a series of 5- tert-butyl- N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[ d]isoxazole-3-carboxamide derivatives as novel potent Mycobacterium tuberculosis PS inhibitors, their in silico molecular design, synthesis, and inhibitory activity.
Collapse
Affiliation(s)
- Subash Velaparthi
- Department of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
513
|
Lipolytic enzymes in Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2008; 78:741-9. [PMID: 18309478 DOI: 10.1007/s00253-008-1397-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.
Collapse
|
514
|
Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 2008; 190:2981-6. [PMID: 18296525 DOI: 10.1128/jb.01857-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When oxygen is slowly depleted from growing cultures of Mycobacterium tuberculosis, they enter a state of nonreplicating persistence that resembles the dormant state seen with latent tuberculosis. In this hypoxic state, nitrate reductase activity is strongly induced. Nitrate in the medium had no effect on long-term persistence during gradual oxygen depletion (Wayne model) for up to 46 days, but significantly enhanced survival during sudden anaerobiosis. This enhancement required a functional nitrate reductase. Thioridazine is a member of the class of phenothiazines that act, in part, by inhibiting respiration. Thioridazine was toxic to both actively growing and nonreplicating cultures of M. tuberculosis. At a sublethal concentration of thioridazine, nitrate in the medium improved the growth. At lethal concentrations of thioridazine, nitrate increased survival during aerobic incubation as well as in microaerobic cultures that had just entered nonreplicating persistence (NRP-1). In contrast, the survival of anaerobic persistent (NRP-2) cultures exposed to thioridazine was not increased by the addition of nitrate. Nitrate reduction is proposed to play a role during the sudden interruption of aerobic respiration due to causes such as hypoxia, thioridazine, or nitric oxide.
Collapse
|
515
|
Jakimowicz D, Brzostek A, Rumijowska-Galewicz A, Żydek P, Dołzbłasz A, Smulczyk-Krawczyszyn A, Zimniak T, Wojtasz Ł, Zawilak-Pawlik A, Kois A, Dziadek J, Zakrzewska-Czerwińska J. Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2008; 153:4050-4060. [PMID: 18048919 DOI: 10.1099/mic.0.2007/011619-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial chromosomes (though not Escherichia coli and some other gamma-proteobacterial chromosomes) contain parS sequences and parAB genes encoding partitioning proteins, i.e. ParA (ATPase) and ParB (DNA-binding proteins) that are components of the segregation machinery. Here, mycobacterial parABS elements were characterized for the first time. parAB genes are not essential in Mycobacterium smegmatis; however, elimination or overexpression of ParB protein causes growth inhibition. Deletion of parB also leads to a rather severe chromosome segregation defect: up to 10% of the cells were anucleate. Mycobacterial ParB protein uses three oriC-proximal parS sequences as targets to organize the origin region into a compact nucleoprotein complex. Formation of such a complex involves ParB-ParB interactions and is assisted by ParA protein.
Collapse
Affiliation(s)
- Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wroclaw, ul. Tamka 2, 50-137 Wroclaw, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Anna Brzostek
- Medical Biology Center, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| | | | - Paulina Żydek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Alicja Dołzbłasz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Aleksandra Smulczyk-Krawczyszyn
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz Zimniak
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Łukasz Wojtasz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Kois
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Jarosław Dziadek
- Medical Biology Center, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wroclaw, ul. Tamka 2, 50-137 Wroclaw, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
516
|
Khan A, Sarkar D. A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods 2008; 73:62-8. [PMID: 18328582 DOI: 10.1016/j.mimet.2008.01.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
This study aimed at developing a whole cell based high throughput screening protocol to identify inhibitors against both active and dormant tubercle bacilli. A respiratory type of nitrate reductase (NarGHJI), which was induced during dormancy, could reflect the viability of dormant bacilli of Mycobacterium bovis BCG in microplate adopted model of in vitro dormancy. Correlation between reduction in viability and nitrate reductase activity was seen clearly when dormant stage inhibitor metronidazole and itaconic anhydride were applied in this in vitro microplate model. Active replicating stage could also be monitored in the same assay by measuring the A(620) of the culture. MIC values of 0.08, 0.075, 0.3 and 3.0 microg/ml, determined through monitoring A(620) in this assay for rifampin, isoniazid, streptomycin and ethambutol respectively, were well in agreement with previously reported by BACTEC and Bio-Siv assays. S/N ratio and Z' factor for the assay were 8.5 and 0.81 respectively which indicated the robustness of the protocol. Altogether the assay provides an easy, inexpensive, rapid, robust and high content screening tool to search novel antitubercular molecules against both active and dormant bacilli.
Collapse
Affiliation(s)
- Arshad Khan
- CombiChem Bio Resource Center, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | | |
Collapse
|
517
|
Zhao L, Zhang J. Biochemical characterization of a chromosomal toxin-antitoxin system in Mycobacterium tuberculosis. FEBS Lett 2008; 582:710-4. [DOI: 10.1016/j.febslet.2008.01.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/03/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
518
|
Rustad TR, Harrell MI, Liao R, Sherman DR. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 2008; 3:e1502. [PMID: 18231589 PMCID: PMC2198943 DOI: 10.1371/journal.pone.0001502] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 12/28/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A significant body of evidence accumulated over the last century suggests a link between hypoxic microenvironments within the infected host and the latent phase of tuberculosis. Studies to test this correlation have identified the M. tuberculosis initial hypoxic response, controlled by the two-component response regulator DosR. The initial hypoxic response is completely blocked in a dosR deletion mutant. METHODOLOGY/PRINCIPAL FINDINGS We show here that a dosR deletion mutant enters bacteriostasis in response to in vitro hypoxia with only a relatively mild decrease in viability. In the murine infection model, the phenotype of the mutant was indistinguishable from that of the parent strain. These results suggested that additional genes may be essential for entry into and maintenance of bacteriostasis. Detailed microarray analysis of oxygen starved cultures revealed that DosR regulon induction is transient, with induction of nearly half the genes returning to baseline within 24 hours. In addition, a larger, sustained wave of gene expression follows the DosR-mediated initial hypoxic response. This Enduring Hypoxic Response (EHR) consists of 230 genes significantly induced at four and seven days of hypoxia but not at initial time points. These genes include a surprising number of transcriptional regulators that could control the program of bacteriostasis. We found that the EHR is independent of the DosR-mediated initial hypoxic response, as EHR expression is virtually unaltered in the dosR mutant. CONCLUSIONS/SIGNIFICANCE Our results suggest a reassessment of the role of DosR and the initial hypoxic response in MTB physiology. Instead of a primary role in survival of hypoxia induced bacteriostasis, DosR may regulate a response that is largely optional in vitro and in mouse infections. Analysis of the EHR should help elucidate the key regulatory factors and enzymatic machinery exploited by M. tuberculosis for long-term bacteriostasis in the face of oxygen deprivation.
Collapse
Affiliation(s)
- Tige R. Rustad
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Maria I. Harrell
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
519
|
den Hengst CD, Buttner MJ. Redox control in actinobacteria. Biochim Biophys Acta Gen Subj 2008; 1780:1201-16. [PMID: 18252205 DOI: 10.1016/j.bbagen.2008.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
As most actinobacteria are obligate aerobes, they have to cope with endogenously generated reactive oxygen species, and actinobacterial pathogens have to resist oxidative attack by phagocytes. Actinobacteria also have to survive long periods under low oxygen tension; for example, Mycobacterium tuberculosis can persist in the host for years under apparently hypoxic conditions in a latent, non-replicative state. Here we focus on the regulatory switches that control actinobacterial responses to peroxide stress, disulfide stress and low oxygen tension. Other unique aspects of their redox biology will be highlighted, including the use of the pseudodisaccharide mycothiol as their major low-molecular-weight thiol buffer, and the [4Fe-4S]-containing WhiB-like proteins, which play diverse, important roles in actinobacterial biology, but whose biochemical role is still controversial.
Collapse
Affiliation(s)
- Chris D den Hengst
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
520
|
Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol 2008; 6:41-52. [PMID: 18079742 DOI: 10.1038/nrmicro1816] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tuberculosis (TB) claims a life every 10 seconds and global mortality rates are increasing despite the use of chemotherapy. But why have we not progressed towards the eradication of the disease? There is no simple answer, although apathy, politics, poverty and our inability to fight the chronic infection have all contributed. Drug resistance and HIV-1 are also greatly influencing the current TB battle plans, as our understanding of their complicity grows. In this Review, recent efforts to fight TB will be described, specifically focusing on how drug discovery could combat the resistance and persistence that make TB worthy of the moniker 'The Great White Plague'.
Collapse
|
521
|
van Keulen G, Alderson J, White J, Sawers RG. The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 2008; 9:3143-9. [PMID: 17991041 DOI: 10.1111/j.1462-2920.2007.01433.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The actinomycete Streptomyces coelicolor is an obligate aerobe that is found in soil and aqueous habitats. The levels of oxygen in these environments can vary considerably, which raises the question of how these bacteria survive during periods of anaerobiosis. Although S. coelicolor cannot grow in the complete absence of oxygen, we demonstrate here that it is capable of microaerobic growth and maintaining viability through several weeks of strict anaerobiosis. Both resting and germinated spores are able to survive abrupt exposure to anaerobiosis, which contrasts the situation with Mycobacterium species where gradual oxygen depletion is required to establish a latent state in which the bacterium is able to survive extended periods of anaerobiosis. Growth of S. coelicolor resumes immediately upon re-introduction of oxygen. Taken together these findings indicate that survival is not restricted to spores and suggest that the bacterium has evolved a mechanism to maintain viability and a membrane potential in the hyphal state. Furthermore, although we demonstrate that several members of the genus also survive long periods of anaerobic stress, one species, Streptomyces avermitilis, does not have this capacity and might represent a naturally occurring variant that is unable to adopt this survival strategy.
Collapse
Affiliation(s)
- Geertje van Keulen
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
522
|
Amin AG, Goude R, Shi L, Zhang J, Chatterjee D, Parish T. EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2008; 154:240-248. [PMID: 18174142 PMCID: PMC2885622 DOI: 10.1099/mic.0.2007/012153-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 01/31/2023]
Abstract
The Emb proteins (EmbA, EmbB, EmbC) are mycobacterial arabinosyltransferases involved in the biogenesis of the mycobacterial cell wall. EmbA and EmbB are predicted to work in unison as a heterodimer. EmbA and EmbB are involved in the formation of the crucial terminal hexaarabinoside motif [Arabeta(1-->2)Araalpha(1-->5)] [Arabeta(1-->2)Araalpha(1-->3)]Araalpha(1-->5)Araalpha1-->(Ara(6)) in the cell wall polysaccharide arabinogalactan. Studies conducted in Mycobacterium smegmatis revealed that mutants with disruptions in embA or embB are viable, although the growth rate was affected. In contrast, we demonstrate here that embA is an essential gene in Mycobacterium tuberculosis, since a deletion of the chromosomal gene could only be achieved when a second functional copy was provided on an integrated vector. Complementation of an embA mutant of M. smegmatis by M. tuberculosis embA confirmed that it encodes a functional arabinosyltransferase. We identified a promoter for M. tuberculosis embA located immediately upstream of the gene, indicating that it is expressed independently from the upstream gene, embC. Promoter activity from P(embA)((Mtb)) was sevenfold lower when assayed in M. smegmatis compared to M. tuberculosis, indicating that the latter is not a good host for genetic analysis of M. tuberculosis embA expression. P(embA)((Mtb)) activity remained constant throughout growth phases and after stress treatment, although it was reduced during hypoxia-induced non-replicating persistence. Ethambutol exposure had no effect on P(embA)((Mtb)) activity. These data demonstrate that M. tuberculosis embA encodes a functional arabinosyltransferase which is constitutively expressed and plays a critical role in M. tuberculosis.
Collapse
Affiliation(s)
- Anita G. Amin
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO 80523, USA
| | - Renan Goude
- Centre for Infectious Disease, Barts and the London, Queen Mary's School of Medicine and Dentistry, London E1 2AT, UK
| | - Libin Shi
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO 80523, USA
| | - Jian Zhang
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO 80523, USA
| | - Delphi Chatterjee
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO 80523, USA
| | - Tanya Parish
- Centre for Infectious Disease, Barts and the London, Queen Mary's School of Medicine and Dentistry, London E1 2AT, UK
| |
Collapse
|
523
|
Reddy MCM, Gokulan K, Jacobs WR, Ioerger TR, Sacchettini JC. Crystal structure of Mycobacterium tuberculosis LrpA, a leucine-responsive global regulator associated with starvation response. Protein Sci 2008; 17:159-70. [PMID: 18042675 PMCID: PMC2144582 DOI: 10.1110/ps.073192208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/22/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
The bacterial leucine-responsive regulatory protein (Lrp) is a global transcriptional regulator that controls the expression of many genes during starvation and the transition to stationary phase. The Mycobacterium tuberculosis gene Rv3291c encodes a 150-amino acid protein (designated here as Mtb LrpA) with homology with Escherichia coli Lrp. The crystal structure of the native form of Mtb LrpA was solved at 2.1 A. The Mtb LrpA structure shows an N-terminal DNA-binding domain with a helix-turn-helix (HTH) motif, and a C-terminal regulatory domain. In comparison to the complex of E. coli AsnC with asparagine, the effector-binding pocket (including loop 100-106) in LrpA appears to be largely preserved, with hydrophobic substitutions consistent with its specificity for leucine. The effector-binding pocket is formed at the interface between adjacent dimers, with an opening to the core of the octamer as in AsnC, and an additional substrate-access channel opening to the outer surface of the octamer. Using electrophoretic mobility shift assays, purified Mtb LrpA protein was shown to form a protein-DNA complex with the lat promoter, demonstrating that the lat operon is a direct target of LrpA. Using computational analysis, a putative motif is identified in this region that is also present upstream of other operons differentially regulated under starvation. This study provides insights into the potential role of LrpA as a global regulator in the transition of M. tuberculosis to a persistent state.
Collapse
Affiliation(s)
- Manchi C M Reddy
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, Texas 77843-2128, USA
| | | | | | | | | |
Collapse
|
524
|
Locht C, Rouanet C, Hougardy JM, Mascart F. How a different look at latency can help to develop novel diagnostics and vaccines against tuberculosis. Expert Opin Biol Ther 2007; 7:1665-77. [PMID: 17961090 DOI: 10.1517/14712598.7.11.1665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful human pathogens. It kills every year approximately 1.5 - 2 million people, and at present a third of the human population is estimated to be infected. Fortunately, only a relatively small proportion of the infected individuals will progress to active disease, and most will maintain a latent infection. Although a latent infection is clinically silent and not contagious, it can reactivate to cause highly contagious pulmonary tuberculosis, the most prevalent form of the disease in adults. Therefore, a thorough understanding of latency and reactivation may help to develop novel control strategies against tuberculosis. The most widely held view is that the mycobacteria are imprisoned in granulomatous structures during latency, where they can survive in a non-replicating, dormant form until reactivation occurs. However, there is no hard data to sustain that the reactivating mycobacteria are indeed those that laid dormant within the granulomas. In this review an alternative model, based on evidence from early studies, as well as recent reports is presented, in which the latent mycobacteria reside outside granulomas, within non-macrophage cell types throughout the infected body. Potential implications for new diagnostic and vaccine design are discussed.
Collapse
|
525
|
Katsube T, Matsumoto S, Takatsuka M, Okuyama M, Ozeki Y, Naito M, Nishiuchi Y, Fujiwara N, Yoshimura M, Tsuboi T, Torii M, Oshitani N, Arakawa T, Kobayashi K. Control of cell wall assembly by a histone-like protein in Mycobacteria. J Bacteriol 2007; 189:8241-9. [PMID: 17873049 PMCID: PMC2168677 DOI: 10.1128/jb.00550-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria coordinate assembly of the cell wall as well as synthesis of cellular components depending on the growth state. The mycobacterial cell wall is dominated by mycolic acids covalently linked to sugars, such as trehalose and arabinose, and is critical for pathogenesis of mycobacteria. Transfer of mycolic acids to sugars is necessary for cell wall biogenesis and is mediated by mycolyltransferases, which have been previously identified as three antigen 85 (Ag85) complex proteins. However, the regulation mechanism which links cell wall biogenesis and the growth state has not been elucidated. Here we found that a histone-like protein has a dual concentration-dependent regulatory effect on mycolyltransferase functions of the Ag85 complex through direct binding to both the Ag85 complex and the substrate, trehalose-6-monomycolate, in the cell wall. A histone-like protein-deficient Mycobacterium smegmatis strain has an unusual crenellated cell wall structure and exhibits impaired cessation of glycolipid biosynthesis in the growth-retarded phase. Furthermore, we found that artificial alteration of the amount of the extracellular histone-like protein and the Ag85 complex changes the growth rate of mycobacteria, perhaps due to impaired down-regulation of glycolipid biosynthesis. Our results demonstrate novel regulation of cell wall assembly which has an impact on bacterial growth.
Collapse
Affiliation(s)
- Tomoya Katsube
- Department of Host Defense, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Khan A, Akhtar S, Ahmad JN, Sarkar D. Presence of a functional nitrate assimilation pathway in Mycobacterium smegmatis. Microb Pathog 2007; 44:71-7. [PMID: 17888619 DOI: 10.1016/j.micpath.2007.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
Ability of Mycobacterium smegmatis to assimilate nitrate was evaluated in its active and dormant phase. Nitrate (10 mM), nitrite (0.5 mM) and ammonia (10mM) allowed growth of M. smegmatis concomitant with their complete depletion from the culture in 144, 120 and 96 h, respectively, when used as sole nitrogen source. Azide (50 microM) stopped the growth of M. smegmatis when nitrate was used as sole nitrogen source. l-methionine-S-sulfoximine (l-MSO), which is a well-known inhibitor of glutamine synthetase, an enzyme also involved in nitrogen metabolic pathway, when applied at 10 microg/ml concentration, completely inhibited the growth of the organism when nitrate or nitrite was used as sole nitrogen source. There was no effect of either azide or l-MSO at above concentrations on the growth of the organism when asparagine or ammonia was used as sole nitrogen source. More significantly, utilization of nitrate, nitrite and ammonia continued even in oxygen depletion induced dormant culture at the rates of 289, 25 and 354 microM/day, respectively. These rates were 5-8 times slower than the rates of 1966, 127 and 2890 microM/day, respectively, in active replicating phase. In the presence of azide (50 microM) and l-MSO (10 microg/ml), 2.1 and 1.51 logs reduction in viability of dormant M. smegmatis was observed using nitrate and nitrite, respectively, as sole nitrogen source. Altogether, the results indicated the presence of nitrate assimilation pathway operating in both active and dormant stage of M. smegmatis.
Collapse
Affiliation(s)
- Arshad Khan
- Combichem Bio Resource Center, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
| | | | | | | |
Collapse
|
527
|
Schnell R, Oehlmann W, Singh M, Schneider G. Structural Insights into Catalysis and Inhibition of O-Acetylserine Sulfhydrylase from Mycobacterium tuberculosis. J Biol Chem 2007; 282:23473-81. [PMID: 17567578 DOI: 10.1074/jbc.m703518200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine biosynthetic genes are up-regulated in the persistent phase of Mycobacterium tuberculosis, and the corresponding enzymes are therefore of interest as potential targets for novel antibacterial agents. cysK1 is one of these genes and has been annotated as coding for an O-acetylserine sulfhydrylase. Recombinant CysK1 is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-acetylserine to cysteine. The crystal structure of the enzyme was determined to 1.8A resolution. CysK1 belongs to the family of fold type II PLP enzymes and is similar in structure to other O-acetylserine sulfhydrylases. We were able to trap the alpha-aminoacrylate reaction intermediate and determine its structure by cryocrystallography. Formation of the aminoacrylate complex is accompanied by a domain rotation resulting in active site closure. The aminoacrylate moiety is bound in the active site via the covalent linkage to the PLP cofactor and by hydrogen bonds of its carboxyl group to several enzyme residues. The catalytic lysine residue is positioned such that it can protonate the Calpha-carbon atom of the aminoacrylate only from the si-face, resulting in the formation of L-cysteine. CysK1 is competitively inhibited by a four-residue peptide derived from the C-terminal of serine acetyl transferase. The crystallographic analysis reveals that the peptide binds to the enzyme active site, suggesting that CysK1 forms an bi-enzyme complex with serine acetyl transferase, in a similar manner to other bacterial and plant O-acetylserine sulfhydrylases. The structure of the enzyme-peptide complex provides a framework for the design of strong binding inhibitors.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
528
|
Murphy DJ, Brown JR. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 2007; 7:84. [PMID: 17655757 PMCID: PMC1950094 DOI: 10.1186/1471-2334-7-84] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/26/2007] [Indexed: 12/30/2022] Open
Abstract
Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant M. tuberculosis strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections. Methods The availability of M. tuberculosis genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality. Results Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by devR, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (devR/devS, relA, mprAB), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development. Conclusion Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.
Collapse
Affiliation(s)
- Dennis J Murphy
- Informatics, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
- Department of Biochemistry, UW2523, Cardiovascular and Urogenital CEDD, GlaxoSmithKline, 709 Swedeland Road, Box 1539, King of Prussia, PA 19406, USA
| | - James R Brown
- Informatics, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
| |
Collapse
|
529
|
Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci U S A 2007; 104:11562-7. [PMID: 17609386 PMCID: PMC1906726 DOI: 10.1073/pnas.0700490104] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in the redox biology of Mycobacterium tuberculosis (Mtb) is to understand the mechanisms involved in sensing redox signals such as oxygen (O2), nitric oxide (NO), and nutrient depletion, which are thought to play a crucial role in persistence. Here we show that Mtb WhiB3 responds to the dormancy signals NO and O2 through its iron-sulfur (Fe-S) cluster. To functionally assemble the WhiB3 Fe-S cluster, we identified and characterized the Mtb cysteine desulfurase (IscS; Rv3025c) and developed a native enzymatic reconstitution system for assembling Fe-S clusters in Mtb. EPR and UV-visible spectroscopy analysis of reduced WhiB3 is consistent with a one-electron reduction of EPR silent [4Fe-4S]2+ to EPR visible [4Fe-4S]+. Atmospheric O2 gradually degrades the WhiB3 [4Fe-4S]2+ cluster to generate a [3Fe-4S]+ intermediate. Furthermore, EPR analysis demonstrates that NO forms a protein-bound dinitrosyl-iron-dithiol complex with the Fe-S cluster, indicating that NO specifically targets the WhiB3 Fe-S cluster. Our data suggest that the mechanism of WhiB3 4Fe-4S cluster degradation is similar to that of fumarate nitrate regulator. Importantly, Mtb DeltawhiB3 shows enhanced growth on acetate medium, but a growth defect on media containing glucose, pyruvate, succinate, or fumarate as the sole carbon source. Our results implicate WhiB3 in metabolic switching and in sensing the physiologically relevant host signaling molecules NO and O2 through its [4Fe-4S] cluster. Taken together, our results suggest that WhiB3 is an intracellular redox sensor that integrates environmental redox signals with core intermediary metabolism.
Collapse
Affiliation(s)
- Amit Singh
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Loni Guidry
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - K. V. Narasimhulu
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487; and
| | - Deborah Mai
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John Trombley
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kevin E. Redding
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487; and
| | - Gregory I. Giles
- Departments of Anesthesiology, Physiology, Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Departments of Anesthesiology, Physiology, Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Adrie J. C. Steyn
- *Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- To whom correspondence should be addressed at:
Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, 308 BBRB, Birmingham, AL 35294. E-mail:
| |
Collapse
|
530
|
Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A 2007; 104:11568-73. [PMID: 17609369 PMCID: PMC1906723 DOI: 10.1073/pnas.0705054104] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS and DosT and the response regulator DosR through activation of the dormancy/NO (Dos) regulon. However, the regulatory ligands of DosS and DosT and the mechanism of signal sensing were unknown. Here, we show that both DosS and DosT bind heme as a prosthetic group and that DosS is rapidly autooxidized to attain the met (Fe3+) form, whereas DosT exists in the O2-bound (oxy) form. EPR and UV-visible spectroscopy analysis showed that O2, NO, and CO are ligands of DosS and DosT. Importantly, we demonstrate that the oxidation or ligation state of the heme iron modulates DosS and DosT autokinase activity and that ferrous DosS, and deoxy DosT, show significantly increased autokinase activity compared with met DosS and oxy DosT. Our data provide direct proof that DosS functions as a redox sensor, whereas DosT functions as a hypoxia sensor, and that O2, NO, and CO are modulatory ligands of DosS and DosT. Finally, we identified a third potential dormancy signal, CO, that induces the Mtb Dos regulon. We conclude that Mtb has evolved finely tuned redox and hypoxia-mediated sensing strategies for detecting O2, NO, and CO. Data presented here establish a paradigm for understanding the mechanism of bacilli persistence.
Collapse
Affiliation(s)
| | - Jose C. Toledo
- Anesthesiology
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rakesh P. Patel
- Pathology
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Anesthesiology
- Physiology and Biophysics, and
- **Environmental Health Sciences, and
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Adrie J. C. Steyn
- Departments of * Microbiology
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
531
|
Sousa EHS, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 2007; 16:1708-19. [PMID: 17600145 PMCID: PMC2203369 DOI: 10.1110/ps.072897707] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposure of Mycobacterium tuberculosis to hypoxia is known to alter the expression of many genes, including ones thought to be involved in latency, via the transcription factor DevR (also called DosR). Two sensory kinases, DosT and DevS (also called DosS), control the activity of DevR. We show that, like DevS, DosT contains a heme cofactor within an N-terminal GAF domain. For full-length DosT and DevS, we determined the ligand-binding parameters and the rates of ATP reaction with the liganded and unliganded states. In both proteins, the heme state was coupled to the kinase such that the unliganded, CO-bound, and NO-bound forms were active, but the O(2)-bound form was inactive. Oxygen-bound DosT was unusually inert to oxidation to the ferric state (half life in air >60 h). Though the kinase activity of DosT was unaffected by NO, this ligand bound 5000 times more avidly than O(2) to DosT (K(d) [NO] approximately 5 nM versus K(d) [O(2)] = 26 microM). These results demonstrate direct and specific O(2) sensing by proteins in M. tuberculosis and identify for the first time a signal ligand for a sensory kinase from this organism. They also explain why exposure of M. tuberculosis to NO donors under aerobic conditions can give results identical to hypoxia, i.e., NO saturates DosT, preventing O(2) binding and yielding an active kinase.
Collapse
|
532
|
Abstract
Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy.
Collapse
Affiliation(s)
- Michael W Schelle
- Department of Chemistry, University of California Berkeley, CA 94720, USA
| | | |
Collapse
|
533
|
Jamshidi N, Palsson BØ. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC SYSTEMS BIOLOGY 2007; 1:26. [PMID: 17555602 PMCID: PMC1925256 DOI: 10.1186/1752-0509-1-26] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/08/2007] [Indexed: 12/03/2022]
Abstract
Background: Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them. Results: We completed a bottom up reconstruction of the metabolic network of Mycobacterium tuberculosis H37Rv. This functional in silico bacterium, iNJ661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium in silico on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints. Conclusion: Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between in vitro and in silico or in vivo and in silico results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for tuberculosis treatment we proposed new alternative, but equivalent drug targets.
Collapse
Affiliation(s)
- Neema Jamshidi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| |
Collapse
|
534
|
Hill PC, Brookes RH, Fox A, Jackson-Sillah D, Jeffries DJ, Lugos MD, Donkor SA, Adetifa IM, de Jong BC, Aiken AM, Adegbola RA, McAdam KP. Longitudinal assessment of an ELISPOT test for Mycobacterium tuberculosis infection. PLoS Med 2007; 4:e192. [PMID: 17564487 PMCID: PMC1891317 DOI: 10.1371/journal.pmed.0040192] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/11/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Very little longitudinal information is available regarding the performance of T cell-based tests for Mycobacterium tuberculosis infection. To address this deficiency, we conducted a longitudinal assessment of the enzyme-linked immunosorbent spot test (ELISPOT) test in comparison to the standard tuberculin skin test (TST). METHODS AND FINDINGS In tuberculosis (TB) contacts we repeated ELISPOT tests 3 mo (n = 341) and 18 mo (n = 210) after recruitment and TSTs at 18 mo (n = 130). We evaluated factors for association with conversion and reversion and investigated suspected cases of TB. Of 207 ELISPOT-negative contacts, 51 (24.6%) had 3-mo ELISPOT conversion, which was associated with a positive recruitment TST (odds ratio [OR] 2.2, 95% confidence interval [CI] 1.0-5.0, p = 0.048) and negatively associated with bacillus Calmette-Guérin (BCG) vaccination (OR 0.5, 95% CI 0.2-1.0, p = 0.06). Of 134 contacts, 54 (40.2%) underwent 3-mo ELISPOT reversion, which was less likely in those with a positive recruitment TST (OR 0.3, 95% CI 0.1-0.8, p = 0.014). Between 3 and 18 mo, 35/132 (26.5%) contacts underwent ELISPOT conversion and 28/78 (35.9%) underwent ELISPOT reversion. Of the 210 contacts with complete results, 73 (34.8%) were ELISPOT negative at all three time points; 36 (17.1%) were positive at all three time points. Between recruitment and 18 mo, 20 (27%) contacts had ELISPOT conversion; 37 (50%) had TST conversion, which was associated with a positive recruitment ELISPOT (OR 7.2, 95% CI 1.4-37.1, p = 0.019); 18 (32.7%) underwent ELISPOT reversion; and five (8.9%) underwent TST reversion. Results in 13 contacts diagnosed as having TB were mixed, but suggested higher TST sensitivity. CONCLUSIONS Both ELISPOT conversion and reversion occur after M. tuberculosis exposure. Rapid ELISPOT reversion may reflect M. tuberculosis clearance or transition into dormancy and may contribute to the relatively low reported ELISPOT conversion rate. Therefore, a negative ELISPOT test for M. tuberculosis infection should be interpreted with caution.
Collapse
Affiliation(s)
- Philip C Hill
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Beste DJV, Laing E, Bonde B, Avignone-Rossa C, Bushell ME, McFadden JJ. Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 2007; 189:3969-76. [PMID: 17384194 PMCID: PMC1913408 DOI: 10.1128/jb.01787-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 03/13/2007] [Indexed: 11/20/2022] Open
Abstract
The adaptation of the tubercle bacillus to the host environment is likely to involve a complex set of gene regulatory events and physiological switches in response to environmental signals. In order to deconstruct the physiological state of Mycobacterium tuberculosis in vivo, we used a chemostat model to study a single aspect of the organism's in vivo state, slow growth. Mycobacterium bovis BCG was cultivated at high and low growth rates in a carbon-limited chemostat, and transcriptomic analysis was performed to identify the gene regulation events associated with slow growth. The results demonstrated that slow growth was associated with the induction of expression of several genes of the dormancy survival regulon. There was also a striking overlap between the transcriptomic profile of BCG in the chemostat model and the response of M. tuberculosis to growth in the macrophage, implying that a significant component of the response of the pathogen to the macrophage environment is the response to slow growth in carbon-limited conditions. This demonstrated the importance of adaptation to a low growth rate to the virulence strategy of M. tuberculosis and also the value of the chemostat model for deconstructing components of the in vivo state of this important pathogen.
Collapse
Affiliation(s)
- D J V Beste
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | | | | | | | | |
Collapse
|
536
|
Ioanoviciu A, Yukl ET, Moënne-Loccoz P, Ortiz de Montellano PR. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry 2007; 46:4250-60. [PMID: 17371046 PMCID: PMC2518089 DOI: 10.1021/bi602422p] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis can exist in the actively growing state of the overt disease or in a latent quiescent state that can be induced, among other things, by anaerobiosis. Eradication of the latent state is particularly difficult with the available drugs and requires prolonged treatment. DevS is a member of the DevS-DevR two-component regulatory system that is thought to mediate the cellular response to anaerobiosis. Here we report the cloning, expression, and initial characterization of a truncated version of DevS (DevS642) containing only the N-terminal GAF sensor domain (GAF-A) and of the full-length protein DevS. The DevS truncated construct quantitatively binds heme in a 1:1 stoichiometry, and the complex of the protein with ferrous heme reversibly binds O2, NO, and CO. UV-vis and resonance Raman spectroscopy of the wild-type protein and the H149A mutant confirm that His149 is the proximal ligand to the heme iron atom. While the heme-CO complex is present as two conformers in the GAF-A domain, a single set of [Fe-C-O] vibrations is observed with the full-length protein, suggesting that interactions between domains within DevS influence the distal pocket environment of the heme in the GAF-A domain.
Collapse
Affiliation(s)
- Alexandra Ioanoviciu
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Erik T. Yukl
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Pierre Moënne-Loccoz
- Department of Environmental & Biomolecular Systems, 20,000 NW Walker Road, OGI School of Science and Engineering, Oregon Health & Sciences University, Beaverton, Oregon 97006-8921
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
537
|
Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 2007; 189:2583-9. [PMID: 17237171 PMCID: PMC1855800 DOI: 10.1128/jb.01670-06] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/09/2007] [Indexed: 11/20/2022] Open
Abstract
The Beijing family of Mycobacterium tuberculosis strains has been associated with epidemic spread and an increased likelihood of developing drug resistance. The characteristics that predispose this family to such clinical outcomes have not been identified, although one potential candidate, the phenolic glycolipid PGL-tb, has been shown to mediate a fulminant lethal disease in mice and rabbits due to lipid-mediated immunosuppression. However, PGL-tb is not uniformly expressed throughout the Beijing lineage and may not be the only unique virulence trait associated with this family. In an attempt to define phenotypes common to all Beijing strains, we interrogated a carefully selected set of isolates representing the five extant lineages of the Beijing family. Comparison of lipid production in this set revealed that all Beijing strains accumulated large quantities of triacylglycerides in in vitro aerobic culture. This accumulation was found to be coincident with upregulation of Rv3130c, whose product was previously characterized as a triacylglyceride synthase. Rv3130c is a member of the DosR-controlled regulon of M. tuberculosis, and further examination revealed that several members of this regulon were upregulated throughout this strain family. The upregulation of the DosR regulon may confer an adaptive advantage for growth in microaerophilic or anaerobic environments encountered by the bacillus during infection and thus may be related to the epidemiological phenomena associated with this important strain lineage.
Collapse
Affiliation(s)
- Michael B Reed
- The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec, Canada H3G 1A4.
| | | | | | | | | |
Collapse
|
538
|
Woolhiser L, Tamayo MH, Wang B, Gruppo V, Belisle JT, Lenaerts AJ, Basaraba RJ, Orme IM. In vivo adaptation of the Wayne model of latent tuberculosis. Infect Immun 2007; 75:2621-5. [PMID: 17283091 PMCID: PMC1865751 DOI: 10.1128/iai.00918-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultures of Mycobacterium tuberculosis grown under oxygen depletion conditions enter into a state of nonreplicating persistence that may reflect a physiologically latent state. When these cultures were harvested and injected intranasally into mice, no bacteria could be recovered from the lungs for about 3 weeks, but after that evidence of regrowth was observed. Preimmunization of mice with a panel of selected vaccine candidates slowed or prevented this event. This simple model has potential for identifying vaccines targeting latent tuberculosis.
Collapse
Affiliation(s)
- Lisa Woolhiser
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
539
|
Bhowruth V, Dover LG, Besra GS. Tuberculosis chemotherapy: recent developments and future perspectives. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:169-203. [PMID: 17280904 DOI: 10.1016/s0079-6468(06)45504-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
540
|
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 2007; 8:R89. [PMID: 17521419 PMCID: PMC1929162 DOI: 10.1186/gb-2007-8-5-r89] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/16/2007] [Accepted: 05/23/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis. RESULTS GSMN-TB, a genome-scale metabolic model of M. tuberculosis, was constructed, consisting of 849 unique reactions and 739 metabolites, and involving 726 genes. The model was calibrated by growing Mycobacterium bovis bacille Calmette Guérin in continuous culture and steady-state growth parameters were measured. Flux balance analysis was used to calculate substrate consumption rates, which were shown to correspond closely to experimentally determined values. Predictions of gene essentiality were also made by flux balance analysis simulation and were compared with global mutagenesis data for M. tuberculosis grown in vitro. A prediction accuracy of 78% was achieved. Known drug targets were predicted to be essential by the model. The model demonstrated a potential role for the enzyme isocitrate lyase during the slow growth of mycobacteria, and this hypothesis was experimentally verified. An interactive web-based version of the model is available. CONCLUSION The GSMN-TB model successfully simulated many of the growth properties of M. tuberculosis. The model provides a means to examine the metabolic flexibility of bacteria and predict the phenotype of mutants, and it highlights previously unexplored features of M. tuberculosis metabolism.
Collapse
Affiliation(s)
- Dany JV Beste
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Tracy Hooper
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Graham Stewart
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Bhushan Bonde
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Claudio Avignone-Rossa
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Michael E Bushell
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Paul Wheeler
- Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, UK
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, D-39106 Magdeburg, Germany
| | - Andrzej M Kierzek
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
541
|
Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornès P, Tailleux L, Barrios Payán JA, Pivert E, Bordat Y, Aguilar D, Prévost MC, Petit C, Gicquel B. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 2006; 1:e43. [PMID: 17183672 PMCID: PMC1762355 DOI: 10.1371/journal.pone.0000043] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/11/2006] [Indexed: 11/23/2022] Open
Abstract
Background Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. Methodology/Principal Findings We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. Conclusions/Significance Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection.
Collapse
Affiliation(s)
- Olivier Neyrolles
- Genetics and Biochemistry of Microorganisms, Centre National de la Recherche Scientifique, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 2006; 210:298-305. [PMID: 17001607 DOI: 10.1002/path.2055] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is often assumed that Mycobacterium tuberculosis (Mtb)-induced granulomatous lesions, particularly those undergoing central caseation, are anoxic, and that the survival of Mtb in these lesions requires the integrity of its non-oxidative respiratory pathways. Using the hypoxia marker pimonidazole, we now provide immunohistochemical evidence that in the most frequently used animal model system of inbred mice Mtb-induced granulomas, even after more than one year of aerogenic infection, are not severely hypoxic. In contrast, chronic aerosol infection with M. avium strain TMC724 was associated with hypoxia surrounding necrotizing granuloma centres. Direct measurements of oxygen tension with a flexible microelectrode in mouse lungs chronically infected with Mtb disclosed a wide range of oxygen partial pressures in different parts of the lungs which, however, rarely approached the anoxic conditions consistently found in necrotizing tumours. We further show that an Mtb mutant, defective in nitrate reductase (narG) necessary for survival under anaerobic conditions in vitro, can persist in the lungs of chronically infected mice to a similar extent as wild-type Mtb. These findings have important implications for the use of the mouse model of Mtb infection in developing eradication chemotherapy and for evaluating putative mechanisms of chronic persistence and latency of Mtb.
Collapse
Affiliation(s)
- S Aly
- Molecular Infection Biology, Research Centre Borstel, Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
543
|
Roupie V, Romano M, Zhang L, Korf H, Lin MY, Franken KLMC, Ottenhoff THM, Klein MR, Huygen K. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 2006; 75:941-9. [PMID: 17145953 PMCID: PMC1828490 DOI: 10.1128/iai.01137-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia and low concentrations of nitric oxide have been reported to upregulate in vitro gene expression of 48 proteins of the dormancy (DosR) regulon of Mycobacterium tuberculosis. These proteins are thought to be essential for the survival of bacteria during persistence in vivo and are targeted by the immune system during latent infection in humans. Here we have analyzed the immunogenicity of eight DosR regulon-encoded antigens by plasmid DNA vaccination of BALB/c and C57BL/6 mice, i.e., Rv1733c, Rv1738, Rv2029c (pfkB), Rv2031c/hspX (acr), Rv2032 (acg), Rv2626c, Rv2627c, and Rv2628. Strong humoral and/or cellular Th1-type (interleukin-2 and gamma interferon) immune responses could be induced against all but one (Rv1738) of these antigens. The strongest Th1 responses were measured following vaccination with DNA encoding Rv2031c and Rv2626c. Using synthetic 20-mer overlapping peptides, 11 immunodominant, predicted major histocompatibility complex class II-restricted epitopes and one K(d)-restricted T-cell epitope could be identified. BALB/c and (B6D2)F(1) mice persistently infected with M. tuberculosis developed immune responses against Rv1733c, Rv2031c, and Rv2626c. These findings have implications for proof-of-concept studies in mice mimicking tuberculosis (TB) latency models and their extrapolation to humans for potential new vaccination strategies against TB.
Collapse
Affiliation(s)
- Virginie Roupie
- Mycobacterial Immunology, WIV-Pasteur Institute Brussels, 642 Engelandstraat, B1180 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Jiménez de Bagüés MP, Loisel-Meyer S, Liautard JP, Jubier-Maurin V. Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: Cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice. Infect Immun 2006; 75:531-5. [PMID: 17101669 PMCID: PMC1828397 DOI: 10.1128/iai.01185-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The survival of Brucella suis mutant strains in mice demonstrated different roles of the two high-oxygen-affinity terminal oxidases. The cbb3-type cytochrome c oxidase was essential for chronic infection in oxygen-deficient organs. Lack of the cytochrome bd ubiquinol oxidase led to hypervirulence of bacteria, which could rely on nitrite accumulation inhibiting the inducible nitric oxide synthase of the host.
Collapse
|
545
|
Medina Rodríguez F. Terapia biológica e infecciones. ACTA ACUST UNITED AC 2006; 2:302-12. [DOI: 10.1016/s1699-258x(06)73066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 10/10/2005] [Indexed: 11/15/2022]
|
546
|
Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. MICROBIOLOGY-SGM 2006; 152:2717-2725. [PMID: 16946266 PMCID: PMC1575465 DOI: 10.1099/mic.0.28993-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis under stress stores triacylglycerol (TG). There are 15 genes in M. tuberculosis that belong to a novel family of TG synthase genes (tgs), but it is not known which of them is responsible for this accumulation of TG. In this paper, it is reported that M. tuberculosis H37Rv accumulated TG under acidic, static or hypoxic growth conditions, or upon treatment with NO, whereas TG accumulation was drastically reduced in the tgs1 (Rv3130c) disrupted mutant. Complementation with tgs1 restored this TG accumulation. C(26) was a major fatty acid in this TG, indicating that the TGS1 gene product uses C(26) fatty acid, which is known to be produced by the mycobacterial fatty acid synthase. TGS1 expressed in Escherichia coli preferred C(26 : 0)-CoA for TG synthesis. If TG storage is needed for the long-term survival of M. tuberculosis under dormant conditions, the tgs1 product could be a suitable target for antilatency drugs.
Collapse
Affiliation(s)
- Tatiana D Sirakova
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Vinod S Dubey
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Chirajyoti Deb
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Jaiyanth Daniel
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Tatiana A Korotkova
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Bassam Abomoelak
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Pappachan E Kolattukudy
- Biomolecular Science Center, and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| |
Collapse
|
547
|
Boes N, Schreiber K, Härtig E, Jaensch L, Schobert M. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. J Bacteriol 2006; 188:6529-38. [PMID: 16952944 PMCID: PMC1595484 DOI: 10.1128/jb.00308-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection of the cystic fibrosis (CF) lung, Pseudomonas aeruginosa microcolonies are embedded in the anaerobic CF mucus. This anaerobic environment seems to contribute to the formation of more robust P. aeruginosa biofilms and to an increased antibiotic tolerance and therefore promotes persistent infection. This study characterizes the P. aeruginosa protein PA4352, which is important for survival under anaerobic energy stress conditions. PA4352 belongs to the universal stress protein (Usp) superfamily and harbors two Usp domains in tandem. In Escherichia coli, Usp-type stress proteins are involved in survival during aerobic growth arrest and under various other stresses. A P. aeruginosa PA4352 knockout mutant was tested for survival under several stress conditions. We found a decrease in viability of this mutant compared to the P. aeruginosa wild type during anaerobic energy starvation caused by the missing electron acceptors oxygen and nitrate. Consistent with this phenotype under anaerobic conditions, the PA4352 knockout mutant was also highly sensitive to carbonyl cyanide m-chlorophenylhydrazone, the chemical uncoupler of the electron transport chain. Primer extension experiments identified two promoters upstream of the PA4352 gene. One promoter is activated in response to oxygen limitation by the oxygen-sensing regulatory protein Anr. The center of a putative Anr binding site was identified 41.5 bp upstream of the transcriptional start site. The second promoter is active only in the stationary phase, however, independently of RpoS, RelA, or quorum sensing. This is the second P. aeruginosa Usp-type stress protein that we have identified as important for survival under anaerobic conditions, which resembles the environment during persistent infection.
Collapse
Affiliation(s)
- Nelli Boes
- Institute of Microbiology, Technical University Braunschweig, Spielmannstr. 7D-38106, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
548
|
Singh U, Sarkar D. Development of a simple high-throughput screening protocol based on biosynthetic activity of Mycobacterium tuberculosis glutamine synthetase for the identification of novel Inhibitors. ACTA ACUST UNITED AC 2006; 11:1035-42. [PMID: 16973920 DOI: 10.1177/1087057106292798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A high-throughput screening protocol has been developed for Mycobacterium tuberculosis glutamine synthetase by quantitative estimation of inorganic phosphate. The K(m) values determined at pH 6.8 are 22 mM for L-glutamic acid, 0.75 mM for NH(4)Cl, 3.25 mM for MgCl(2), and 2.5 mM for adenosine triphosphate. The K(m) value for glutamine is affected significantly by the increase in pH of assay buffer. At the saturating level of the substrate, the enzyme activity at pH 6.8 and 25 degrees C is found to be linear up to 3 h. The reduction of enzyme activity is negligible even in presence of 10% DMSO. The Z' factor and signal-to-noise ratio are found to be 0.75 and 6.18, respectively, when the enzyme is used at 62.5 microg/ml concentration. The IC(50) values obtained at pH 6.8 for both L-methionine S-sulfoximine and DL-phosphothriacin are 500 microM and 30 microM, respectively, which is lowest compared to the values obtained at other pH levels. The Beckman Coulter high-throughput screening platform was found to take 5 h 9 min to complete the screening of 60 plates. For each assay plate, a replica plate is used to normalize the data. Screening of 1164 natural product fractions/extracts and synthetic molecules from an in-house library was able to identify 12 samples as confirmed hits. Altogether, the validation data from screening of a small set of an in-house library coupled with Z' and signal-to-noise values indicate that the protocol is robust for high-throughput screening of a diverse chemical library.
Collapse
Affiliation(s)
- Upasana Singh
- Combi Chem-Bio Resource Center, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
549
|
Wältermann M, Stöveken T, Steinbüchel A. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases. Biochimie 2006; 89:230-42. [PMID: 16938377 DOI: 10.1016/j.biochi.2006.07.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Triacylglycerols (TAGs) and wax esters (WEs) are beside polyhydroxyalkanoates (PHAs) important storage lipids in some groups of prokaryotes. Accumulation of these lipids occurs in cells when they are cultivated under conditions of unbalanced growth in the presence of high concentrations of a suitable carbon source, which can be used for fatty acid and storage lipid biosyntheses. The key enzymes, which mediate both WE and TAG formations from long-chain acyl-coenzyme A (CoA) as acyl donor and long-chain fatty alcohols or diacylglycerols as respective acyl acceptors in bacteria, are WE synthases/acyl-CoA:diacylglycerol acyltransferases (WS/DGATs). The WS/DGATs identified so far represent rather unspecific enzymes with broad spectra of possible substrates; this makes them interesting for many biotechnological applications. This review traces the molecular structure and biochemical properties including the probable regions responsible for acyltransferase properties, enzymatic activity and substrate specifities. The phylogenetic relationships based on amino acid sequence similarities of this unique class of enzymes were revealed. Furthermore, recent advances in understanding the physiological functions of WS/DGATs in their natural hosts including pathogenic Mycobacterium tuberculosis were discussed.
Collapse
Affiliation(s)
- Marc Wältermann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | | | | |
Collapse
|
550
|
Rogerson BJ, Jung YJ, LaCourse R, Ryan L, Enright N, North RJ. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 2006; 118:195-201. [PMID: 16771854 PMCID: PMC1782281 DOI: 10.1111/j.1365-2567.2006.02355.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium tuberculosis lung infection in mice was controlled at an approximately stationary level after 20 days of log linear growth. Onset of stationary level infection was associated with the generation by the host of T helper type 1 (Th1) immunity, as evidenced by the accumulation of CD4 Th1 cells specific for the early secretory antigen (ESAT-6) of M. tuberculosis encoded by esat6, and for a mycolyl transferase (Ag85B) encoded by fbpB. CD4 T cells specific for these antigens were maintained at relatively high numbers throughout the course of infection. The number of CD4 T cells generated against ESAT-6 was larger than the number generated against Ag85B, and this was associated with a higher transcription level of esat6. The total number of transcripts of esat6 increased during the first 15 days of infection, after which it decreased and then approximately stabilized at 10(6.5) per lung. The total number of fbpB transcripts increased for 20 days of infection before decreasing and then approximately stabilizing at 10(4.8) per lung. The number of transcripts of esat6 per colony-forming unit of M. tuberculosis fell from 8.6 to 0.8 after day 15, and of fbpB from 0.3 to less than 0.02 after day 10, suggesting that at any given time during stationary level infection the latter gene was expressed by a very small percentage of bacilli. Expressed at an even lower level was an M. tuberculosis replication gene involved in septum formation (ftsZ), indicating that there was no significant turnover of the M. tuberculosis population during stationary level infection.
Collapse
|