501
|
Osorio-Pérez SM, Estrada-Meza C, Ruiz-Manriquez LM, Arvizu-Espinosa MG, Srivastava A, Sharma A, Paul S. Thymoquinone Potentially Modulates the Expression of Key Onco- and Tumor Suppressor miRNAs in Prostate and Colon Cancer Cell Lines: Insights from PC3 and HCT-15 Cells. Genes (Basel) 2023; 14:1730. [PMID: 37761870 PMCID: PMC10531155 DOI: 10.3390/genes14091730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer (PC) and colon cancer significantly contribute to global cancer-related morbidity and mortality. Thymoquinone (TQ), a naturally occurring phytochemical found in black cumin, has shown potential as an anticancer compound. This study aimed to investigate the effects of TQ on the expression profile of key tumor suppressor and onco-suppressor miRNAs in PC3 prostate cancer cells and HCT-15 colon cancer cells. Cell viability assays revealed that TQ inhibited the growth of both cell lines in a dose-dependent manner, with IC50 values of approximately 82.59 μM for HCT-15 and 55.83 μM for PC3 cells. Following TQ treatment at the IC50 concentrations, miRNA expression analysis demonstrated that TQ significantly downregulated miR-21-5p expression in HCT-15 cells and upregulated miR-34a-5p, miR-221-5p, miR-17-5p, and miR-21-5p expression in PC3 cells. However, no significant changes were observed in the expression levels of miR-34a-5p and miR-200a-5p in HCT-15 cells. The current findings suggest that TQ might exert its antiproliferative effects by modulating specific tumor suppressor and onco-suppressor miRNAs in prostate and colon cancer cells. Further investigations are warranted to elucidate the precise underlying mechanisms and to explore the therapeutic potential of TQ in cancer treatment. To the best of our knowledge, this is the first report regarding the effect of TQ on the miRNA expression profile in colon and prostate cancer cell lines.
Collapse
Affiliation(s)
- Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Luis M. Ruiz-Manriquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey 64700, Mexico
| | - María Goretti Arvizu-Espinosa
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| |
Collapse
|
502
|
Firman A, Warli SM, Sihombing B, Lelo A, Indharty RS, Nasution IPA, Muhar AM. Changes in thyroid function in prostate cancer patients receiving docetaxel chemotherapy at Haji Adam Malik Hospital, Indonesia. Rep Pract Oncol Radiother 2023; 28:522-528. [PMID: 37795233 PMCID: PMC10547421 DOI: 10.5603/rpor.a2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
Background Prostate cancer treatment is determined based on several factors, namely tumor grading, staging, co-morbidity, patient preferences, life expectancy at diagnosis. Today, taxanes are commonly prescribed to treat several types of cancer and have been shown to have antitumor effects in many cancers. This research has never been done in prostate cancer patients but similar studies have been done before in breast cancer patients. Materials and methods The research design was observational analytic where this type of research was a prospective cohort where data was collected to record prostate cancer patients who received docetaxel chemotherapy which were then examined for thyroid function in cancer patients at the Adam Malik Hospital, Medan, Indonesia. Result In this study, data were collected regarding the thyroid function of the study sample in the form of free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels before chemotherapy with the docetaxel regimen. The mean of fT4 in all research subjects was 1.05 with a standard deviation of 0.26. The mean TSH in all study subjects was 1.52 with a standard deviation of 1.21. Thyroid function was examined after 3 cycles of docetaxel chemotherapy. The mean of fT4 in all research subjects was 0.91 with a standard deviation of 0.23. The mean TSH in all study subjects was 1.69 with a standard deviation of 1.09. Conclusion There are traces of the use of docetaxel chemotherapy in prostate cancer patients on decreased thyroid function at the Adam Malik Hospital in the form of decreased fT4 levels and increased TSH.
Collapse
Affiliation(s)
- Al Firman
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
| | - Syah Mirsya Warli
- Department of Urology, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
- Division of Urology, Department of Surgery Faculty of Medicine, Universitas Sumatera Utara–Haji Adam Malik Hospital, Medan, Indonesia
| | - Bungaran Sihombing
- Division of Urology, Department of Surgery Faculty of Medicine, Universitas Sumatera Utara–Haji Adam Malik Hospital, Medan, Indonesia
| | - Aznan Lelo
- Department of Clinical Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
| | - Rr. Suzy Indharty
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
| | - Iqbal Pahlevi Adeputera Nasution
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
| | - Adi Muradi Muhar
- Division of Digestive Surgery, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan, Indonesia
| |
Collapse
|
503
|
Bishani A, Makarova DM, Shmendel EV, Maslov MA, Sen‘kova AV, Savin IA, Gladkikh DV, Zenkova MA, Chernolovskaya EL. Influence of the Composition of Cationic Liposomes on the Performance of Cargo Immunostimulatory RNA. Pharmaceutics 2023; 15:2184. [PMID: 37765155 PMCID: PMC10535620 DOI: 10.3390/pharmaceutics15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the impact of different delivery systems on the cytokine-inducing, antiproliferative, and antitumor activities of short immunostimulatory double-stranded RNA (isRNA) was investigated. The delivery systems, consisting of the polycationic amphiphile 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20 tetraazahexacosan tetrahydrochloride (2X3), and the lipid-helper dioleoylphosphatidylethanolamine (DOPE), were equipped with polyethylene glycol lipoconjugates differing in molecular weight and structure. The main findings of this work are as follows: (i) significant activation of MCP-1 and INF-α, β, and γ production in CBA mice occurs under the action of isRNA complexes with liposomes containing lipoconjugates with long PEG chains, while activation of MCP-1 and INF-γ, but not INF-α or β, was observed under the action of isRNA lipoplexes containing lipoconjugates with short PEG chains; (ii) a pronounced antiproliferative effect on B16 melanoma cells in vitro, as well as an antitumor and hepatoprotective effect in vivo, was induced by isRNA pre-complexes with non-pegylated liposomes, while complexes containing lipoconjugates with long-chain liposomes were inactive; (iii) the antitumor activity of isRNA correlated with the efficiency of its accumulation in the cells and did not explicitly depend on the activation of cytokine and interferon production. Thus, the structure of the delivery system plays a vital role in determining the response to isRNA and allows for the choice of a delivery system depending on the desired effect.
Collapse
Affiliation(s)
- Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Darya M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Aleksandra V. Sen‘kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| |
Collapse
|
504
|
Asghariazar V, Amini M, Pirdel Z, Fekri R, Asadi A, Nejati-Koshki K, Baradaran B, Panahi Y. The Schiff base hydrazine copper(II) complexes induce apoptosis by P53 overexpression and prevent cell migration through protease-independent pathways. Med Oncol 2023; 40:271. [PMID: 37594547 DOI: 10.1007/s12032-023-02150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Although chemotherapy has increased the life expectancy of cancer patients, its toxic side effects remain a major challenge. Recently, organometallic compounds, such as Schiff base copper complexes, have become promising candidates for next-generation anticancer drugs owing to their unique anticancer activities. In this study, binuclear copper(II) complex-1 and mononuclear copper(II) complex-2 were examined to analyze their anticancer mechanisms further. For this purpose, a viability test, flow cytometry analysis of apoptosis and the cell cycle, migration assay, and gene expression analysis were performed. According to our results, complex-1 was more cytotoxic than complex-2 at 24/48-h intervals. Our findings also demonstrated that both complexes induced apoptosis at IC50 concentrations and arrested the cell cycle at the G1-S checkpoint. However, complex-1 accelerates cell cycle arrest at the sub-G0/G1 phase more than complex-2 does. Furthermore, gene expression analysis showed that only complex-1 induces the expression of p53. Interestingly, both complexes induced Bcl-2 overexpression. However, they did not affect MMP-13 expression. More interestingly, both complexes inhibited cell migration in different ways, including amoeboid and collective, by recruiting protease-independent pathways. This study confirmed that adding several metal cores and co-ligands increased the activity of the complex. It also appeared that Cu-containing complexes could prevent the migration of cancer cells through protease-independent pathways, which can be used for novel therapeutic purposes.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pirdel
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roghayeh Fekri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 5816753464, Iran.
| |
Collapse
|
505
|
Fakudze NT, Sarbadhikary P, George BP, Abrahamse H. Ethnomedicinal Uses, Phytochemistry, and Anticancer Potentials of African Medicinal Fruits: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1117. [PMID: 37631032 PMCID: PMC10458058 DOI: 10.3390/ph16081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Africa is home to diverse medicinal plants that have been used for generations for the treatment of several different cancers and, presently, they are gaining interest from researchers as promising approaches to cancer treatment. This review aims to provide a comprehensive review of dietary and medicinal African fruits including their traditional uses, botanical description, ethnobotanical uses, bioactive phytochemical compositions, and anticancer properties investigated to date in vitro, in vivo, and in clinical studies. Data on recent updates concerning the traditional uses and anticancer properties of these fruits were collected from a myriad of available publications in electronic databases, such as Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The results suggest that approximately 12 native or commercially grown African fruits belonging to different plant species, including Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum, have been reported for their potential as treatment options for the management of cancer. We further found that approximately eight different fruits from native plant species from Africa, namely, Sclerocarya birrea, Dovyalis caffra, Parinari curatellifolia, Mimusops caffra, Carpobrotus edulis, Vangueria infausta, Harpephyllum caffrum, and Carissa macrocarpa, have been widely used for the traditional treatment of different ailments but somehow failed to gain the interest of researchers for their use in anticancer research. In this review, we show the potential use of various fruits as anticancer agents, such as Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum; unfortunately, not enough reported research data have been published to gain thorough mechanistic insights and clinical applications. Additionally, we discuss the possibility of the utilization of potential phytochemicals from fruits like Persea americana and Punica granatum in anticancer research, as well as future directions.
Collapse
Affiliation(s)
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | | |
Collapse
|
506
|
Abd GM, Laird MC, Ku JC, Li Y. Hypoxia-induced cancer cell reprogramming: a review on how cancer stem cells arise. Front Oncol 2023; 13:1227884. [PMID: 37614497 PMCID: PMC10442830 DOI: 10.3389/fonc.2023.1227884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer stem cells are a subset of cells within the tumor that possess the ability to self-renew as well as differentiate into different cancer cell lineages. The exact mechanisms by which cancer stem cells arise is still not completely understood. However, current research suggests that cancer stem cells may originate from normal stem cells that have undergone genetic mutations or epigenetic changes. A more recent discovery is the dedifferentiation of cancer cells to stem-like cells. These stem-like cells have been found to express and even upregulate induced pluripotent stem cell markers known as Yamanaka factors. Here we discuss developments in how cancer stem cells arise and consider how environmental factors, such as hypoxia, plays a key role in promoting the progression of cancer stem cells and metastasis. Understanding the mechanisms that give rise to these cells could have important implications for the development of new strategies in cancer treatments and therapies.
Collapse
Affiliation(s)
- Genevieve M. Abd
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Madison C. Laird
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
507
|
Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA, Refat MS. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules 2023; 28:5911. [PMID: 37570881 PMCID: PMC10421429 DOI: 10.3390/molecules28155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.
Collapse
Affiliation(s)
- Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Maryam Mushtaq
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Haishan Deng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faris Ibrahim Alrayes
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Shaima A. El-Mowafi
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Moamen S. Refat
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
508
|
Jeon Y, Kim T, Kwon H, Kim JK, Park YT, Ham J, Kim YJ. Cannabidiol Enhances Cabozantinib-Induced Apoptotic Cell Death via Phosphorylation of p53 Regulated by ER Stress in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3987. [PMID: 37568803 PMCID: PMC10417827 DOI: 10.3390/cancers15153987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Cannabidiol (CBD), a primary constituent in hemp and cannabis, exerts broad pharmacological effects against various diseases, including cancer. Additionally, cabozantinib, a potent multi-kinase inhibitor, has been approved for treating patients with advanced hepatocellular carcinoma (HCC). Recently, there has been an increase in research on combination therapy using cabozantinib to improve efficacy and safety when treating patients. Here, we investigated the effect of a combination treatment of cabozantinib and CBD on HCC cells. CBD treatment enhanced the sensitivity of HCC cells to cabozantinib-mediated anti-cancer activity by increasing cytotoxicity and apoptosis. Phospho-kinase array analysis demonstrated that the apoptotic effect of the combination treatment was mainly related to p53 phosphorylation regulated by endoplasmic reticulum (ER) stress when compared to other kinases. The inhibition of p53 expression and ER stress suppressed the apoptotic effect of the combination treatment, revealing no changes in the expression of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-8, or cleaved caspase-9. Notably, the effect of the combination treatment was not associated with cannabinoid receptor 1 (CNR1) and the CNR2 signaling pathways. Our findings suggest that the combination therapy of cabozantinib and CBD provides therapeutic efficacy against HCC.
Collapse
Affiliation(s)
- Youngsic Jeon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | - Taejung Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyukjoon Kwon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | | | - Young-Tae Park
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | - Jungyeob Ham
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- NeoCannBio Co., Ltd., Seoul 02792, Republic of Korea;
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| |
Collapse
|
509
|
Ibrahim SRM, Fahad ALsiyud D, Alfaeq AY, Mohamed SGA, Mohamed GA. Benzophenones-natural metabolites with great Hopes in drug discovery: structures, occurrence, bioactivities, and biosynthesis. RSC Adv 2023; 13:23472-23498. [PMID: 37546221 PMCID: PMC10402873 DOI: 10.1039/d3ra02788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Fungi have protruded with enormous development in the repository of drug discovery, making them some of the most attractive sources for the synthesis of bio-significant and structural novel metabolites. Benzophenones are structurally unique metabolites with phenol/carbonyl/phenol frameworks, that are separated from microbial and plant sources. They have drawn considerable interest from researchers due to their versatile building blocks and diversified bio-activities. The current work aimed to highlight the reported data on fungal benzophenones, including their structures, occurrence, and bioactivities in the period from 1963 to April 2023. Overall, 147 benzophenones derived from fungal source were listed in this work. Structure activity relationships of the benzophenones derivatives have been discussed. Also, in this review, a brief insight into their biosynthetic routes was presented. This work could shed light on the future research of benzophenones.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College Jeddah 21442 Saudi Arabia +966-581183034
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Duaa Fahad ALsiyud
- Department of Medical Laboratories - Hematology, King Fahd Armed Forces Hospital Corniche Road, Andalus Jeddah 23311 Saudi Arabia
| | - Abdulrahman Y Alfaeq
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs Jeddah 22384 Saudi Arabia
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City Suez Desert Road Cairo 11837 Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
510
|
Abd Aziz NA, Awang N, Chan KM, Kamaludin NF, Mohamad Anuar NN. Organotin (IV) Dithiocarbamate Compounds as Anticancer Agents: A Review of Syntheses and Cytotoxicity Studies. Molecules 2023; 28:5841. [PMID: 37570810 PMCID: PMC10421081 DOI: 10.3390/molecules28155841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023] Open
Abstract
Organotin (IV) dithiocarbamate has recently received attention as a therapeutic agent among organotin (IV) compounds. The individual properties of the organotin (IV) and dithiocarbamate moieties in the hybrid complex form a synergy of action that stimulates increased biological activity. Organotin (IV) components have been shown to play a crucial role in cytotoxicity. The biological effects of organotin compounds are believed to be influenced by the number of Sn-C bonds and the number and nature of alkyl or aryl substituents within the organotin structure. Ligands target and react with molecules while preventing unwanted changes in the biomolecules. Organotin (IV) dithiocarbamate compounds have also been shown to have a broad range of cellular, biochemical, and molecular effects, with their toxicity largely determined by their structure. Continuing the investigation of the cytotoxicity of organotin (IV) dithiocarbamates, this mini-review delves into the appropriate method for synthesis and discusses the elemental and spectroscopic analyses and potential cytotoxic effects of these compounds from articles published since 2010.
Collapse
Affiliation(s)
| | - Normah Awang
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.A.); (K.M.C.); (N.F.K.); (N.N.M.A.)
| | | | | | | |
Collapse
|
511
|
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother 2023; 164:114954. [PMID: 37257227 DOI: 10.1016/j.biopha.2023.114954] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
Traditionally, vaccines have helped eradication of several infectious diseases and also saved millions of lives in the human history. Those prophylactic vaccines have acted through inducing immune responses against a live attenuated, killed organism or antigenic subunits to protect the recipient against a real infection caused by the pathogenic microorganism. Nevertheless, development of anticancer vaccines as valuable targets in human health has faced challenges and requires further optimizations. Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) that play essential roles in tumor immunotherapies through induction of CD8+ T cell immunity. Accordingly, various strategies have been tested to employ DCs as therapeutic vaccines for exploiting their activity against tumor cells. Application of whole tumor cells or purified/recombinant antigen peptides are the most common approaches for pulsing DCs, which then are injected back into the patients. Although some hopeful results are reported for a number of DC vaccines tested in animal and clinical trials of cancer patients, such approaches are still inefficient and require optimization. Failure of DC vaccination is postulated due to immunosuppressive tumor microenvironment (TME), overexpression of checkpoint proteins, suboptimal avidity of tumor-associated antigen (TAA)-specific T lymphocytes, and lack of appropriate adjuvants. In this review, we have an overview of the current experiments and trials evaluated the anticancer efficacy of DC vaccination as well as focusing on strategies to improve their potential including combination therapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
512
|
Tian Y, Jing H, Wang Q, Hu S, Wu Z, Duan Y. Dissolving microneedles-based programmed delivery system for enhanced chemo-immunotherapy of melanoma. J Control Release 2023; 360:630-646. [PMID: 37414221 DOI: 10.1016/j.jconrel.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 μm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 μm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8+ T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Suxian Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
513
|
Narayan KMV, Jagannathan R, Ridderstråle M. Managing type 2 diabetes needs a paradigm change. Lancet Diabetes Endocrinol 2023; 11:534-536. [PMID: 37385288 DOI: 10.1016/s2213-8587(23)00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Affiliation(s)
- K M Venkat Narayan
- Emory Global Diabetes Research Center of Woodruff Health Sciences Center, Rollins School of Public Health Emory University, Atlanta, GA, USA; School of Medicine, Emory University, Atlanta, GA, USA.
| | - Ram Jagannathan
- Emory Global Diabetes Research Center of Woodruff Health Sciences Center, Rollins School of Public Health Emory University, Atlanta, GA, USA
| | - Martin Ridderstråle
- Department of Clinical Sciences, Lund University, Malmö, Sweden; The Novo Nordisk Foundation, Hellerup, Department of Clinical Sciences, Lund University, Malmö, Sweden; The Novo Nordisk Foundation, Hellerup, Denmark, Denmark
| |
Collapse
|
514
|
Agarwal M, Afzal O, Salahuddin, Altamimi AS, Alamri MA, Alossaimi MA, Sharma V, Ahsan MJ. Design, Synthesis, ADME, and Anticancer Studies of Newer N-Aryl-5-(3,4,5-Trifluorophenyl)-1,3,4-Oxadiazol-2-Amines: An Insight into Experimental and Theoretical Investigations. ACS OMEGA 2023; 8:26837-26849. [PMID: 37593245 PMCID: PMC10431697 DOI: 10.1021/acsomega.3c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
In continuance of our investigation into the anticancer activity of oxadiazoles, we report here the preparation of 10 new 1,3,4-oxadiazole analogues using the scaffold hopping technique. We have prepared the oxadiazoles having a common pharmacophoric structure (oxadiazole linked aryl nucleus) as seen in the reported anticancer agents IMC-038525 (tubulin inhibitor), IMC-094332 (tubulin inhibitor), and FATB (isosteric replacement of the S of thiadiazole with the O of oxadiazole). All of the oxadiazole analogues were predicted for their absorption, distribution, metabolism, and excretion (ADME) profiles and toxicity studies. All of the compounds were found to follow Lipinski's rule of 5 with a safe toxicity profile (Class IV compound) against immunotoxicity, mutagenicity, and toxicity. All of the compounds were synthesized and characterized using spectral data, followed by their anticancer activity tested in a single-dose assay at 10 μM as reported by the National Cancer Institute (NCI US) Protocol against nearly 59 cancer cell lines obtained from nine panels, including non-small-cell lung, ovarian, breast, central nervous system (CNS), colon, leukemia, prostate, and cancer melanoma. N-(2,4-Dimethylphenyl)-5-(3,4,5-trifluorophenyl)-1,3,4-oxadiazol-2-amine (6h) displayed significant anticancer activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of 86.61, 85.26, and 75.99 and moderate anticancer activity against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, A549/ATCC, HCT-116, MDA-MB-231, and SF-295 with PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4, and 51.88, respectively. The compound 6h also registered better anticancer activity than Imatinib against CNS, ovarian, renal, breast, prostate, and melanoma cancers with average PGIs of 56.18, 40.41, 36.36, 27.61, 22.61, and 10.33, respectively. Molecular docking against tubulin, one of the appealing cancer targets, demonstrated an efficient binding within the binding site of combretastatin A4. The ligand 6h (docking score = -8.144 kcal/mol) interacted π-cationically with the residue Lys352 (with the oxadiazole ring). Furthermore, molecular dynamic (MD) simulation studies in complex with the tubulin-combretastatin A4 protein and ligand 6h were performed to examine the dynamic stability and conformational behavior.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
- Department
of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan 303
121, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salahuddin
- Department
of Pharmaceutical Chemistry, Noida Institute
of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Vandana Sharma
- Department
of Pharmaceutical Chemistry, Arya College
of Pharmacy, Jaipur, Rajasthan 302 001, India
| | - Mohamed Jawed Ahsan
- Department
of Pharmaceutical Chemistry, Maharishi Arvind
College of Pharmacy, Jaipur, Rajasthan 302 039, India
| |
Collapse
|
515
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
516
|
Ghorbani Alvanegh A, Mirzaei Nodooshan M, Dorostkar R, Ranjbar R, Jalali Kondori B, Shahriary A, Parastouei K, Vazifedust S, Afrasiab E, Esmaeili Gouvarchinghaleh H. Antiproliferative effects of mesenchymal stem cells carrying Newcastle disease virus and Lactobacillus Casei extract on CT26 Cell line: synergistic effects in cancer therapy. Infect Agent Cancer 2023; 18:46. [PMID: 37525229 PMCID: PMC10391864 DOI: 10.1186/s13027-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal Cancer (CRC) is a frequent malignancy with a high mortality rate. Specific inherited and environmental influences can affect CRC. Oncolytic viruses and bacteria in treating CRC are one of the innovative therapeutic options. This study aims to determine whether mesenchymal stem cells (MSCs) infected with the Newcastle Disease Virus (NDV) in combination with Lactobacillus casei extract (L. casei) have a synergistic effects on CRC cell line growth. MATERIALS AND METHODS MSCs taken from the bone marrow of BALB/c mice and were infected with the 20 MOI of NDV. Then, using the CT26 cell line in various groups as a single and combined treatment, the anticancer potential of MSCs containing the NDV and L. casei extract was examined. The evaluations considered the CT26 survival and the rate at which LDH, ROS, and levels of caspases eight and nine were produced following various treatments. RESULTS NDV, MSCs-NDV, and L. casei in alone or combined treatment significantly increased apoptosis percent, LDH, and ROS production compared with the control group (P˂0.05). Also, NDV, in free or capsulated in MSCs, had anticancer effects, but in capsulated form, it had a delay compared with free NDV. The findings proved that L. casei primarily stimulates the extrinsic pathway, while NDV therapy promotes apoptosis through the activation of both intrinsic and extrinsic apoptosis pathways. CONCLUSIONS The results suggest that MSCs carrying oncolytic NDV in combination with L. casei extract as a potentially effective strategy for cancer immunotherapy by promoting the generation of LDH, ROS, and apoptosis in the microenvironment of the CT26 cell line.
Collapse
Affiliation(s)
| | | | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheil Vazifedust
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
517
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
518
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
519
|
Yamakawa T, Zhang G, Najjar LB, Li C, Itakura K. The uncharacterized transcript KIAA0930 confers a cachexic phenotype on cancer cells. Oncotarget 2023; 14:723-737. [PMID: 37477523 PMCID: PMC10360925 DOI: 10.18632/oncotarget.28476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Patients with cancer cachexia have a poor prognosis and impaired quality of life. Numerous studies using preclinical models have shown that inflammatory cytokines play an important role in the development of cancer cachexia; however, no clinical trial targeting cytokines has been successful. Therefore, it is essential to identify molecular mechanisms to develop anti-cachexia therapies. Here we identified the uncharacterized transcript KIAA0930 as a candidate cachexic factor based on analyses of microarray datasets and an in vitro muscle atrophy assay. While conditioned media from pancreatic, colorectal, gastric, and tongue cancer cells caused muscle atrophy in vitro, conditioned medium from KIAA0930 knockdown cells did not. The PANC-1 orthotopic xenograft study showed that the tibialis anterior muscle weight and cross-sectional area were increased in mice bearing KIAA0930 knockdown cells compared to control mice. Interestingly, KIAA0930 knockdown did not cause consistent changes in the secretion of inflammatory cytokines/chemokines from a variety of cancer cell lines. An initial characterization experiment showed that KIAA0930 is localized in the cytosol and not secreted from cells. These data suggest that the action of KIAA0930 is independent of the expression of cytokines/chemokines and that KIAA0930 could be a novel therapeutic target for cachexia.
Collapse
Affiliation(s)
- Takahiro Yamakawa
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoxiang Zhang
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Liza Bengrine Najjar
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun Li
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
520
|
Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Sidhom PA, Tawfeek AM, Mekhemer GAH, Abd El-Rahman MK, Dabbish E, Shoeib T. In-Silico Mining of the Toxins Database (T3DB) towards Hunting Prospective Candidates as ABCB1 Inhibitors: Integrated Molecular Docking and Lipid Bilayer-Enhanced Molecular Dynamics Study. Pharmaceuticals (Basel) 2023; 16:1019. [PMID: 37513931 PMCID: PMC10384459 DOI: 10.3390/ph16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Multidrug resistance (MDR) is one of the most problematic issues in chemotherapeutic carcinoma therapy. The ABCB1 transporter, a drug efflux pump overexpressed in cancer cells, has been thoroughly investigated for its association with MDR. Thus, discovering ABCB1 inhibitors can reverse the MDR in cancer cells. In the current work, a molecular docking technique was utilized for hunting the most prospective ABCB1 inhibitors from the Toxin and Toxin-Target Database (T3DB). Based on the docking computations, the most promising T3DB compounds complexed with the ABCB1 transporter were subjected to molecular dynamics (MD) simulations over 100 ns. Utilizing the MM-GBSA approach, the corresponding binding affinities were computed. Compared to ZQU (calc. -49.8 kcal/mol), Emamectin B1a (T3D1043), Emamectin B1b (T3D1044), Vincristine (T3D4016), Vinblastine (T3D4017), and Vindesine (T3D2479) complexed with ABCB1 transporter demonstrated outstanding binding affinities with ΔGbinding values of -93.0, -92.6, -93.8, -92.2, and -90.8 kcal/mol, respectively. The structural and energetic investigations confirmed the constancy of the identified T3DB compounds complexed with the ABCB1 transporter during the 100 ns MD course. To mimic the physiological conditions, MD simulations were conducted for those identified inhibitors complexed with ABCB1 transporter in the presence of a POPC membrane. These findings revealed that Emamectin B1a, Emamectin B1b, Vincristine, Vinblastine, and Vindesine are promising ABCB1 inhibitors that can reverse the MDR. Therefore, subjecting those compounds to further in-vitro and in-vivo investigations is worthwhile.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Khlood A A Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamal A H Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed K Abd El-Rahman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
521
|
Pandey P, Khan F, Khan MA, Kumar R, Upadhyay TK. An Updated Review Summarizing the Anticancer Efficacy of Melittin from Bee Venom in Several Models of Human Cancers. Nutrients 2023; 15:3111. [PMID: 37513529 PMCID: PMC10385528 DOI: 10.3390/nu15143111] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Apitherapy (using bee products) has gained broad recognition in cancer therapeutics globally. Honeybee venom has a broad range of biological potential, and its utilization is rapidly emerging in apitherapy. Bee products have significant potential to strengthen the immune system and improve human health. Thus, this review is targeted toward recapitulating the chemo-preventive potential of melittin (MEL), which constitutes a substantial portion of honeybee venom. Honeybee venom (apitoxin) is produced in the venom gland of the honeybee abdomen, and adult bees utilize it as a primary colony defense mechanism. Apitoxin comprises numerous biologically active compounds, including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates, and volatile components. We are mainly focused on exploring the potential of melittin (a peptide component) of bee venom that has shown promising potential in the treatment of several human cancers, including breast, stomach, lung, prostate, ovary, kidney, colon, gastric, esophageal, cervical cancers, melanoma, osteosarcoma, and hepatocellular carcinoma. This review has summarized all potential studies related to the anticancerous efficacy of melittin (apitoxin), its formulations, conjugates, and nano-formulations against several human carcinomas, which would further pave the way for future researchers in developing potent drugs for cancer management.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India
| | - Minhaj Ahmad Khan
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
522
|
Villalobos Gutiérrez PT, Muñoz Carrillo JL, Sandoval Salazar C, Viveros Paredes JM, Gutiérrez Coronado O. Functionalized Metal Nanoparticles in Cancer Therapy. Pharmaceutics 2023; 15:1932. [PMID: 37514119 PMCID: PMC10383728 DOI: 10.3390/pharmaceutics15071932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.
Collapse
Affiliation(s)
| | | | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico
| | - Juan Manuel Viveros Paredes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
523
|
Garg P, Awasthi S, Horne D, Salgia R, Singhal SS. The innate effects of plant secondary metabolites in preclusion of gynecologic cancers: Inflammatory response and therapeutic action. Biochim Biophys Acta Rev Cancer 2023; 1878:188929. [PMID: 37286146 DOI: 10.1016/j.bbcan.2023.188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Gynecologic cancers can make up the bulk of cancers in both humans and animals. The stage of diagnosis and the type of tumor, its origin, and its spread are a few of the factors that influence how effectively a treatment modality works. Currently, radiotherapy, chemotherapy, and surgery are the major treatment options recommended for the eradication of malignancies. The use of several anti-carcinogenic drugs increases the chance of harmful side effects, and patients might not react to the treatments as expected. The significance of the relationship between inflammation and cancer has been underscored by recent research. As a result, it has been shown that a variety of phytochemicals with beneficial bioactive effects on inflammatory pathways have the potential to act as anti-carcinogenic medications for the treatment of gynecologic cancer. The current paper reviews the significance of inflammatory pathways in gynecologic malignancies and discusses the role of plants-derived secondary metabolites that are useful in the treatment of cancer.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Grand Cayman, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
524
|
Gonsalves A, Sorkhdini P, Bazinet J, Ghumman M, Dhamecha D, Zhou Y, Menon JU. Development and characterization of lung surfactant-coated polymer nanoparticles for pulmonary drug delivery. BIOMATERIALS ADVANCES 2023; 150:213430. [PMID: 37104963 PMCID: PMC10187589 DOI: 10.1016/j.bioadv.2023.213430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Lung cancer is often diagnosed at an advanced stage where tumors are usually inoperable and first-line therapies are inefficient and have off-targeted adverse effects, resulting in poor patient survival. Here, we report the development of an inhalable poly lactic-co-glycolic acid polymer-based nanoparticle (PLGA-NP) formulation with a biomimetic Infasurf® lung surfactant (LS) coating, for localized and sustained lung cancer drug delivery. The nanoparticles (188 ± 7 nm) were stable in phosphate buffered saline, serum and Gamble's solution (simulated lung fluid), and demonstrated cytocompatibility up to 1000 μg/mL concentration and dose-dependent uptake by lung cancer cells. The LS coating significantly decreased nanoparticle (NP) uptake by NR8383 alveolar macrophages in vitro compared to uncoated NPs. The coating, however, did not impair NP uptake by A549 lung adenocarcinoma cells. The anti-cancer drug gemcitabine hydrochloride encapsulated in the PLGA core was released in a sustained manner while the paclitaxel loaded in the LS shell demonstrated a rapid or burst release profile over 21 days. The drug-loaded NPs significantly decreased cancer cell survival and colony formation in vitro compared to free drugs and single drug-loaded NPs. In vivo studies confirmed greater retention of LS-coated NPs in the lungs of C57BL/6 WT mice compared to uncoated NPs, at 24 h and 72 h following intranasal administration. The overall results confirm that LS coating is a unique strategy for cloaking polymeric NPs to potentially prevent their rapid lung clearance and facilitate prolonged pulmonary drug delivery.
Collapse
Affiliation(s)
- Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Jasmine Bazinet
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
525
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
526
|
Notaro A, Lauricella M, Di Liberto D, Emanuele S, Giuliano M, Attanzio A, Tesoriere L, Carlisi D, Allegra M, De Blasio A, Calvaruso G, D'Anneo A. A Deadly Liaison between Oxidative Injury and p53 Drives Methyl-Gallate-Induced Autophagy and Apoptosis in HCT116 Colon Cancer Cells. Antioxidants (Basel) 2023; 12:1292. [PMID: 37372022 DOI: 10.3390/antiox12061292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Methyl gallate (MG), which is a gallotannin widely found in plants, is a polyphenol used in traditional Chinese phytotherapy to alleviate several cancer symptoms. Our studies provided evidence that MG is capable of reducing the viability of HCT116 colon cancer cells, while it was found to be ineffective on differentiated Caco-2 cells, which is a model of polarized colon cells. In the first phase of treatment, MG promoted both early ROS generation and endoplasmic reticulum (ER) stress, sustained by elevated PERK, Grp78 and CHOP expression levels, as well as an upregulation in intracellular calcium content. Such events were accompanied by an autophagic process (16-24 h), where prolonging the time (48 h) of MG exposure led to cellular homeostasis collapse and apoptotic cell death with DNA fragmentation and p53 and γH2Ax activation. Our data demonstrated that a crucial role in the MG-induced mechanism is played by p53. Its level, which increased precociously (4 h) in MG-treated cells, was tightly intertwined with oxidative injury. Indeed, the addition of N-acetylcysteine (NAC), which is a ROS scavenger, counteracted the p53 increase, as well as the MG effect on cell viability. Moreover, MG promoted p53 accumulation into the nucleus and its inhibition by pifithrin-α (PFT-α), which is a negative modulator of p53 transcriptional activity, enhanced autophagy, increased the LC3-II level and inhibited apoptotic cell death. These findings provide new clues to the potential action of MG as a possible anti-tumor phytomolecule for colon cancer treatment.
Collapse
Affiliation(s)
- Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Luisa Tesoriere
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mario Allegra
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
527
|
Injectable nano-composite hydrogels based on hyaluronic acid-chitosan derivatives for simultaneous photothermal-chemo therapy of cancer with anti-inflammatory capacity. Carbohydr Polym 2023; 310:120721. [PMID: 36925247 DOI: 10.1016/j.carbpol.2023.120721] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Nowadays, the photothermal therapy (PTT) has received widespread attention and research by rapidly killing tumors with local high temperature. However, due to the irregular edges of tumor and the blurred boundary between normal and necrotic tissues, the desirable treatment cannot be achieved by the single PTT, and excessive heat will cause serious inflammation in local tissues. Herein, an injectable composite hydrogel is prepared by the oxidized hyaluronic acid (OHA) and hydroxypropyl chitosan (HPCS) via the imine bonds, which is employed as the delivery substrate for functional substances. In the gel medium, the mesoporous polydopamine (MPDA) nanoparticles are incorporated as the high efficiency photothermal agent and a reservoir of DOX, which can achieve the good photothermal conversion performance and pulsed drug release. Besides, the addition of the curcumin-cyclodextrin host-guest inclusion complex (CUR@NH2-CD) in the composite hydrogel could reduce the inflammation caused by PTT. The composite hydrogel shows favorable the Hepa1-6 tumor inhibition in vivo by virtue of the comprehensive effect of the admired photothermal efficacy of MPDA, chemotherapy of DOX and anti-inflammatory of CUR. It can be predicted that the composite hydrogel has a broad prospect in the field of comprehensive therapy for tumor.
Collapse
|
528
|
Boopathy LK, Gopal T, Roy A, Kalari Kandy RR, Arumugam MK. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Adv 2023; 13:18760-18774. [PMID: 37346950 PMCID: PMC10281231 DOI: 10.1039/d3ra02673f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Quantum dots (QDs) are small nanoparticles with semiconductor properties ranging from 2 to 10 nanometers comprising 10-50 atoms. The single wavelength excitation character of QDs makes it more significant, as it can excite multiple particles in a confined surface simultaneously by narrow emission. QDs are more photostable than traditional organic dyes; however, when injected into tissues, whole animals, or ionic solutions, there is a significant loss of fluorescence. HQD-based probes conjugated with cancer-specific ligands, antibodies, or peptides are used in clinical diagnosis. It is more precise and reliable than standard immunohistochemistry (IHC) at minimal protein expression levels. Advanced clinical studies use photodynamic therapy (PDT) with fluorescence imaging to effectively identify and treat cancer. Recent studies revealed that a combination of unique characteristics of QDs, including their fluorescence capacity and abnormal expression of miRNA in cancer cells, were used for the detection and monitoring progression of cancer. In this review, we have highlighted the unique properties of QDs and the theranostic behavior of various macromolecule-conjugated HQDs leading to cancer treatment.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Molecular Research Laboratory, Meenakshi Medical College Hospital and Research Institute, MAHER Kanchipuram 631552 Tamil Nadu India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
| | - Rakhee Rathnam Kalari Kandy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland Baltimore-21201 MD USA
| | - Madan Kumar Arumugam
- Cancer Biology Laboratory, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +91-9942110146
| |
Collapse
|
529
|
Tanase BC, Burlacu AI, Nistor CE, Horvat T, Oancea C, Marc M, Tudorache E, Mateescu T, Manolescu D. A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients. Healthcare (Basel) 2023; 11:1745. [PMID: 37372863 DOI: 10.3390/healthcare11121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to compare the outcomes and cost differences between primary lung cancer (PLC) and second primary lung cancer (SPLC) patients who underwent video-assisted thoracoscopic surgery (VATS). This was a retrospective analysis of 124 patients with lung cancer stages I, II, and III who underwent VATS between January 2018 and January 2023. The patients were divided into two groups based on their cancer status that was matched by age and gender: the PLC group (n = 62) and the SPLC group (n = 62). The results showed that there was no significant difference in the clinical characteristics between the 2 groups, except for the Charlson Comorbidity Index (CCI), with a score above 3 in 62.9% of PLC patients and 80.6% among SPLC patients (p = 0.028). Regarding the surgical outcomes, the operative time for the VATS intervention was significantly higher in the SPLC group, with a median of 300 min, compared with 260 min in the PLC group (p = 0.001), varying by the cancer staging as well. The average duration of hospitalization was significantly longer before and after surgery among patients with SPLC (6.1 days after surgery), compared with 4.2 days after surgery in the PLC group (0.006). Regarding the cost analysis, the total hospitalization cost was significantly higher in the SPLC group (15,400 RON vs. 12,800 RON; p = 0.007). Lastly, there was a significant difference in the survival probability between the two patient groups (log-rank p-value = 0.038). The 2-year survival was 41.9% among PLC patients and only 24.2% among those with SPLC. At the 5-year follow-up, there were only 1.6% survivors in the SPLC group, compared with 11.3% in the PLC group (p-value = 0.028). In conclusion, this study found that VATS is a safe and effective surgical approach for both PLC and SPLC patients. However, SPLC patients have a higher VATS operating time and require more healthcare resources than PLC patients, resulting in higher hospitalization costs. These findings suggest that careful pre-operative evaluation and individualized surgical planning are necessary to optimize the outcomes and cost-effectiveness of VATS for lung cancer patients. Nevertheless, the 5-year survival remains very low and concerning.
Collapse
Affiliation(s)
- Bogdan Cosmin Tanase
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Alin Ionut Burlacu
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Claudiu Eduard Nistor
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Teodor Horvat
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Monica Marc
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Tudor Mateescu
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Diana Manolescu
- Department of Radiology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
530
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
531
|
D'Urso A, Oltolina F, Borsotti C, Prat M, Colangelo D, Follenzi A. Macrophage Reprogramming via the Modulation of Unfolded Protein Response with siRNA-Loaded Magnetic Nanoparticles in a TAM-like Experimental Model. Pharmaceutics 2023; 15:1711. [PMID: 37376159 DOI: 10.3390/pharmaceutics15061711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo.
Collapse
Affiliation(s)
- Annarita D'Urso
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Oltolina
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Maria Prat
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
532
|
Jafari B, Reza Bahrami A, Matin MM. Targeted bacteria-mediated therapy of mouse colorectal cancer using baicalin, a natural glucuronide compound, and E. coli overexpressing β-glucuronidase. Int J Pharm 2023:123099. [PMID: 37271252 DOI: 10.1016/j.ijpharm.2023.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The side effects of common chemotherapeutic drugs that damage healthy tissues account for one of the most important problems in cancer research that needs careful addressing. Bacterial-Directed Enzyme Prodrug Therapy (BDEPT) is a promising strategy that uses bacteria to direct a converting enzyme to the tumor site and activate a systemically injected prodrug selectively within the tumor; so that the side effects of the therapy would significantly decrease. In this study, we evaluated the efficacy of baicalin, a natural compound, as a glucuronide prodrug in association with an engineered strain of Escherichia coli DH5α harboring the pRSETB-lux/βG plasmid in a mouse model of colorectal cancer. E. coli DH5α-lux/βG was designed to emit luminescence and overexpress the β-glucuronidase. Unlike the non-engineered bacteria, E. coli DH5α-lux/βG showed the ability to activate baicalin, and the cytotoxic effects of baicalin on the C26 cell line were increased in the presence of E. coli DH5α-lux/βG. Analyzing the tissue homogenates of mice bearing C26 tumors inoculated with E. coli DH5α-lux/βG indicated the specific accumulation and multiplication of bacteria in the tumor tissues. While both baicalin and E. coli DH5α-lux/βG could inhibit tumor growth as monotherapy, an enhanced inhibition was observed when animals were subjected to combination therapy. Moreover, no significant side effects were observed after histological investigation. The results of this study indicate that baicalin has the capability of being used as a suitable prodrug in the BDEPT, however further research is required before it can be applied in the clinic.
Collapse
Affiliation(s)
- Bahareh Jafari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
533
|
Chinnakorn A, Nuansing W, Bodaghi M, Rolfe B, Zolfagharian A. Recent progress of 4D printing in cancer therapeutics studies. SLAS Technol 2023; 28:127-141. [PMID: 36804175 DOI: 10.1016/j.slast.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a critical cause of global human death. Not only are complex approaches to cancer prognosis, accurate diagnosis, and efficient therapeutics concerned, but post-treatments like postsurgical or chemotherapeutical effects are also followed up. The four-dimensional (4D) printing technique has gained attention for its potential applications in cancer therapeutics. It is the next generation of the three-dimensional (3D) printing technique, which facilitates the advanced fabrication of dynamic constructs like programmable shapes, controllable locomotion, and on-demand functions. As is well-known, it is still in the initial stage of cancer applications and requires the insight study of 4D printing. Herein, we present the first effort to report on 4D printing technology in cancer therapeutics. This review will illustrate the mechanisms used to induce the dynamic constructs of 4D printing in cancer management. The recent potential applications of 4D printing in cancer therapeutics will be further detailed, and future perspectives and conclusions will finally be proposed.
Collapse
Affiliation(s)
- Atchara Chinnakorn
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wiwat Nuansing
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Bernard Rolfe
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
534
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
535
|
Fernandez RAT, Ting FIL. Achieving health equity in cancer care in the Philippines. Ecancermedicalscience 2023; 17:1547. [PMID: 37377687 PMCID: PMC10292855 DOI: 10.3332/ecancer.2023.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Indexed: 06/29/2023] Open
Abstract
Notwithstanding the progress made across the cancer care continuum, a major problem that many patients with cancer experience is the difficulty of access to global standards of care. Awareness of this problem has been increasing most especially when the economic context of a country forces health systems to deliver quality care despite the rising costs of diagnostic and therapeutic innovations amidst limited resources. Ultimately, inappropriate delivery of care to patients with cancer contributes to inadequate and unequal access to high-value therapy increasing financial toxicity among patients. This paper aims to highlight (1) the economic burden of cancer in the Philippines, (2) the saliency of identifying low-value interventions which come in two forms: the persistent over usage of proven ineffective modalities, and the underusage of potentially effective ones, and (3) the adverse effects of a decentralized health care system. The paper will also provide suggestions to address the challenges of achieving health equity in cancer care.
Collapse
Affiliation(s)
- Rey Arturo T Fernandez
- Ateneo Professional Schools, Graduate School of Business, Rockwell Drive, Makati 1210, Philippines
| | - Frederic Ivan L Ting
- Division of Oncology, Department of Internal Medicine, Corazon Locsin Montelibano Memorial Regional Hospital, Bacolod 6100, Philippines
- Department of Clinical Sciences, College of Medicine, University of St. La Salle, Bacolod 6100, Philippines
| |
Collapse
|
536
|
Delgado-Waldo I, Contreras-Romero C, Salazar-Aguilar S, Pessoa J, Mitre-Aguilar I, García-Castillo V, Pérez-Plasencia C, Jacobo-Herrera NJ. A triple-drug combination induces apoptosis in cervical cancer-derived cell lines. Front Oncol 2023; 13:1106667. [PMID: 37223676 PMCID: PMC10200932 DOI: 10.3389/fonc.2023.1106667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Cervical cancer is a worldwide health problem due to the number of deaths caused by this neoplasm. In particular, in 2020, 30,000 deaths of this type of tumor were reported in Latin America. Treatments used to manage patients diagnosed in the early stages have excellent results as measured by different clinical outcomes. Existing first-line treatments are not enough to avoid cancer recurrence, progression, or metastasis in locally advanced and advanced stages. Therefore, there is a need to continue with the proposal of new therapies. Drug repositioning is a strategy to explore known medicines as treatments for other diseases. In this scenario, drugs used in other pathologies that have antitumor activity, such as metformin and sodium oxamate, are analyzed. Methods In this research, we combined the drugs metformin and sodium oxamate with doxorubicin (named triple therapy or TT) based on their mechanism of action and previous investigation of our group against three CC cell lines. Results Through flow cytometry, Western blot, and protein microarray experiments, we found TT-induced apoptosis on HeLa, CaSki, and SiHa through the caspase 3 intrinsic pathway, including the critical proapoptotic proteins BAD, BAX, cytochrome-C, and p21. In addition, mTOR and S6K phosphorylated proteins were inhibited in the three cell lines. Also, we show an anti-migratory activity of the TT, suggesting other targets of the drug combination in the late CC stages. Discussion These results, together with our former studies, conclude that TT inhibits the mTOR pathway leading to cell death by apoptosis. Our work provides new evidence of TT against cervical cancer as a promising antineoplastic therapy.
Collapse
Affiliation(s)
- Izamary Delgado-Waldo
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Copilco Universidad, Coyoacán, Mexico
| | - Carlos Contreras-Romero
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Copilco Universidad, Coyoacán, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | - Sandra Salazar-Aguilar
- Laboratorio de Hematopoiesis y Leucemia, Unidad de Investigación, Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Mexico
| | - João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Irma Mitre-Aguilar
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| | - Verónica García-Castillo
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| |
Collapse
|
537
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
538
|
Farzaneh M, Masoodi T, Ghaedrahmati F, Radoszkiewicz K, Anbiyaiee A, Sheykhi-Sabzehpoush M, Rad NK, Uddin S, Jooybari SPM, Khoshnam SE, Azizidoost S. An updated review of contribution of long noncoding RNA-NEAT1 to the progression of human cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Seyedeh Pardis Motiee Jooybari
- Department of Biology, Faculty of Basic Sciences and Engineering, University of Gonbad Kavous, Gonbad Kavus, Golestan, Iran
| | - Seyed Esmaeil Khoshnam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
539
|
Song X, Yu H, Sullenger C, Gray BP, Yan A, Kelly L, Sullenger B. An Aptamer That Rapidly Internalizes into Cancer Cells Utilizes the Transferrin Receptor Pathway. Cancers (Basel) 2023; 15:cancers15082301. [PMID: 37190227 DOI: 10.3390/cancers15082301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Strategies to direct drugs specifically to cancer cells have been increasingly explored, and significant progress has been made toward such targeted therapy. For example, drugs have been conjugated into tumor-targeting antibodies to enable delivery directly to tumor cells. Aptamers are an attractive class of molecules for this type of drug targeting as they are high-affinity/high-specificity ligands, relatively small in size, GMP manufacturable at a large-scale, amenable to chemical conjugation, and not immunogenic. Previous work from our group revealed that an aptamer selected to internalize into human prostate cancer cells, called E3, can also target a broad range of human cancers but not normal control cells. Moreover, this E3 aptamer can deliver highly cytotoxic drugs to cancer cells as Aptamer-highly Toxic Drug Conjugates (ApTDCs) and inhibit tumor growth in vivo. Here, we evaluate its targeting mechanism and report that E3 selectively internalizes into cancer cells utilizing a pathway that involves transferrin receptor 1 (TfR 1). E3 binds to recombinant human TfR 1 with high affinity and competes with transferrin (Tf) for binding to TfR1. In addition, knockdown or knockin of human TfR1 results in a decrease or increase in E3 cell binding. Here, we reported a molecular model of E3 binding to the transferrin receptor that summarizes our findings.
Collapse
Affiliation(s)
- Xirui Song
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Bethany Powell Gray
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy Yan
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Linsley Kelly
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce Sullenger
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
540
|
Fantoukh OI, Al-Hamoud GA, Nasr FA, Almarfadi OM, Hawwal MF, Ali Z, Alobaid WA, Binawad A, Alrashidi M, Alasmari F, Ahmed MZ, Noman OM. Revisiting the Flora of Saudi Arabia: Phytochemical and Biological Investigation of the Endangered Plant Species Euphorbia saudiarabica. Metabolites 2023; 13:metabo13040556. [PMID: 37110214 PMCID: PMC10144502 DOI: 10.3390/metabo13040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells' proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Omer I Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah A Al-Hamoud
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Waleed A Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Binawad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Menwer Alrashidi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
541
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
542
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
543
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
544
|
Manisekaran R, Chettiar ADR, Kandasamy G, Garcia-Contreras R, Acosta-Torres LS. State-of-the-art: MXene structures in nano-oncology. BIOMATERIALS ADVANCES 2023; 147:213354. [PMID: 36842245 DOI: 10.1016/j.bioadv.2023.213354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Cancer nanomedicine has been investigated widely and boomed in the last two decades, resulting in designing nanostructures with biofunctionalization, giving rise to an "All-in-One" multifunctional platform. The development of rational design technology with extended functionalities brought interdisciplinary researchers to work continuously, aiming to find a prevent or effectively treat the deadly disease of the century. Thus, it led to some Food and Drug Administration (FDA)-approving nano-based formulations for cancer treatment and opening a vast area of promising discoveries by exploiting different nanomaterials. Two-dimensional (2D) materials have recently gained tremendous interest among scientists because of their outstanding structural, optical, electronic, thermal, and mechanical characteristics. Among various 2D nanomaterials, MXenes are a widely studied nanosystem because of their close similarity to graphene analogs. So, it is synthesized using multiple approaches and exploits their inherited properties. But in most cases, surface functionalization techniques are carried out for targeting, site-specific drug clearance, renal clearance, and biocompatible with healthy cells. Thus, fabricating a multimodal agent for mono or combined therapies is also an image-guided diagnostic agent. This review will explain the recent and emerging advancements of MXenes-based composites as a multifunctional theragnostic agent and discuss the possibilities of transferring laboratory research to clinical translation.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico.
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| |
Collapse
|
545
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
546
|
Yang C, Li D, Ko CN, Wang K, Wang H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front Immunol 2023; 14:1133050. [PMID: 36969211 PMCID: PMC10036358 DOI: 10.3389/fimmu.2023.1133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Immunotherapy is a type of treatment that uses our own immune system to fight cancer. Studies have shown that traditional Chinese medicine (TCM) has antitumor activity and can enhance host immunity. This article briefly describes the immunomodulatory and escape mechanisms in tumors, as well as highlights and summarizes the antitumor immunomodulatory activities of some representative active ingredients of TCM. Finally, this article puts forward some opinions on the future research and clinical application of TCM, aiming to promote the clinical applications of TCM in tumor immunotherapy and to provide new ideas for the research of tumor immunotherapy using TCM.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| |
Collapse
|
547
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
548
|
The effect of Azo-dyes on glioblastoma cells in vitro. Saudi J Biol Sci 2023; 30:103599. [PMID: 36874201 PMCID: PMC9975690 DOI: 10.1016/j.sjbs.2023.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Despite the multidisciplinary standard treatment of glioblastoma (GB) consisting of maximal surgical resection, followed by radiotherapy (RT) plus concomitant chemotherapy with temozolomide (TMZ), the majority of patients experience tumor progression and almost universal mortality. In recent years, efforts have been made to create new agents for GB treatment, of which azo-dyes proved to be potential candidates, showing antiproliferative effects by inducing apoptosis and by inhibiting different signaling pathways. In this study we evaluated the antiproliferative the effect of six azo-dyes and TMZ on a low passage human GB cell line using MTT assay. We found that all compounds proved antiproliferative properties on GB cells. At equimolar concentrations azo-dyes induced more cytotoxic effect than TMZ. We found that Methyl Orange required the lowest IC50 for 3 days of treatment (26.4684 μM), whilst for 7 days of treatment, two azo dyes proved to have the highest potency: Methyl Orange IC50 = 13.8808 μM and Sudan I IC50 = 12.4829 μM. The highest IC50 was determined for TMZ under both experimental situations. Conclusions: Our research represents a novelty, by offering unique valuable data regarding the azo-dye cyototoxic effects in high grade brain tumors. This study may focus the attention on azo-dye agents that may represent an insufficient exploited source of agents for cancer treatment.
Collapse
|
549
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Kicha AA, Ivanchina NV, Ermakova SP. Combined Radiomodifying Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Pacificusoside D from the Starfish Solaster pacificus in the Model of 3D Melanoma Cells. Biomolecules 2023; 13:419. [PMID: 36979354 PMCID: PMC10046073 DOI: 10.3390/biom13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is one of the main causes of human mortality worldwide. Despite the advances in the diagnostics, surgery, radiotherapy, and chemotherapy, the search for more effective treatment regimens and drug combinations are relevant. This work aimed to assess the radiomodifying effect and molecular mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and product of its autohydrolysis (ScF_AH) in combination with pacificusoside D from the starfish Solaster pacificus (SpD) on the model of viability and invasion of three-dimension (3D) human melanoma cells SK-MEL-2. The cytotoxicity of ScF (IC50 JB6 Cl41 > 800 µg/mL; IC50 SK-MEL-2 = 685.7 µg/mL), ScF_AH (IC50 JB6 Cl41/SK-MEL-2 > 800 µg/mL), SpD (IC50 JB6 Cl41 = 22 µM; IC50 SK-MEL-2 = 5.5 µM), and X-ray (ID50 JB6 Cl41 = 11.7 Gy; ID50 SK-MEL-2 = 6.7 Gy) was determined using MTS assay. The efficiency of two-component treatment of 3D SK-MEL-2 cells was revealed for ScF in combination with SpD or X-ray but not for the combination of fucoidan derivative ScF_AH with SpD or X-ray. The pre-treatment of spheroids with ScF, followed by cell irradiation with X-ray and treatment with SpD (three-component treatment) at low non-toxic concentrations, led to significant inhibition of the spheroids' viability and invasion and appeared to be the most effective therapeutic scheme for SK-MEL-2 cells. The molecular mechanism of radiomodifying effect of ScF with SpD was associated with the activation of the initiator and effector caspases, which in turn caused the DNA degradation in SK-MEL-2 cells as determined by the Western blotting and DNA comet assays. Thus, the combination of fucoidan from brown algae and triterpene glycoside from starfish with radiotherapy might contribute to the development of highly effective method for melanoma therapy.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| | | | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| |
Collapse
|
550
|
Joudeh N, Sawafta E, Abu Taha A, Hamed Allah M, Amer R, Odeh RY, Salameh H, Sabateen A, Aiesh BM, Zyoud SH. Epidemiology and source of infection in cancer patients with febrile neutropenia: an experience from a developing country. BMC Infect Dis 2023; 23:106. [PMID: 36814229 PMCID: PMC9944765 DOI: 10.1186/s12879-023-08058-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Febrile neutropenia (FN) is a life-threatening complication that predisposes cancer patients to serious infections. This study aims to describe the epidemiology and source of infection in cancer patients with FN in a tertiary care hospital. METHODS A hospital-based retrospective study was conducted in a large tertiary care hospital from January 2020 to December 2021. Data on cancer patients with FN were collected from the hospital information system. RESULTS 150 cancer patients with FN were identified during the study period. Most patients were males (98; 65.3%), and the mean age of participants was 42.2 ± 16.0 years. Most patients (127; 84.7%) had hematologic malignancies, and acute myeloid leukemia was the most common diagnosis (42; 28%), followed by acute lymphocytic leukemia (28; 18.7%) and Hodgkin's lymphoma (20; 13.3%). Fifty-four (36%) patients had a median Multinational Association for Supportive Care in Cancer (MASCC) scores greater than 21. Regarding the outcome, nine (6%) died, and 141(94%) were discharged. The focus of fever was unknown in most patients (108; 72%). Among the known origins of fever were colitis (12; 8%), pneumonia (8; 5.3%), cellulitis (6; 4%), bloodstream infections (7; 4.6%), perianal abscess (2; 1.3%) and others. The median duration of fever was two days, and the median duration of neutropenia was seven days. Sixty-three (42%) patients had infections: 56 (73.3%) were bacterial, four (2.6%) were viral, two (1%) were fungal and 1 (0.7%) was parasitic. Among the bacterial causes, 50 cases (89.2%) were culture-positive. Among the culture-positive cases, 34 (68%) were gram-positive and 22 (44%) were gram-negative. The most frequent gram-positive bacteria were E. faecalis (9; 18% of culture-positive cases), and the most frequent gram-negative organisms were Klebsiella pneumoniae (5; 10%). Levofloxacin was the most commonly used prophylactic antibiotic (23; 15.33%), followed by acyclovir (1610.7%) and fluconazole in 15 patients (10%). Amikacin was the most popular empiric therapy, followed by piperacillin/tazobactam (74; 49.3%), ceftazidime (70; 46.7%), and vancomycin (63; 42%). One-third of E. faecalis isolates were resistant to ampicillin. Approximately two-thirds of Klebsiella pneumoniae isolates were resistant to piperacillin/tazobactam and ceftazidime. Amikacin resistance was proven in 20% of isolates. CONCLUSIONS The majority of patients suffered from hematologic malignancies. Less than half of the patients had infections, and the majority were bacterial. Gram-positive bacteria comprised two-thirds of cases. Therefore, empiric therapy was appropriate and in accordance with the antibiogram of the isolated bacteria.
Collapse
Affiliation(s)
- Nagham Joudeh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Elana Sawafta
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Adham Abu Taha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Majd Hamed Allah
- Department of Hematology and Oncology, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Riad Amer
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Hematology and Oncology, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Razan Y. Odeh
- Department of Hematology and Oncology, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Husam Salameh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Hematology and Oncology, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Ali Sabateen
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Banan M. Aiesh
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Sa’ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839 Palestine
| |
Collapse
|