501
|
MacKrell JG, Yaden BC, Bullock H, Chen K, Shetler P, Bryant HU, Krishnan V. Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. NUCLEAR RECEPTOR SIGNALING 2015; 13:e005. [PMID: 26457071 PMCID: PMC4599140 DOI: 10.1621/nrs.13005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/05/2015] [Indexed: 01/25/2023]
Abstract
The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration.Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identified temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration.
Collapse
Affiliation(s)
- James G MacKrell
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Benjamin C Yaden
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Heather Bullock
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Keyue Chen
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Pamela Shetler
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Henry U Bryant
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| | - Venkatesh Krishnan
- Musculoskeletal Research (JGM, BCY, HB, PS, HUB, VK), Lead Optimization Biology (KC), Lilly Research Labs, Eli Lilly & Company, Indianapolis, IN, USA
| |
Collapse
|
502
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
503
|
Talbert EE, Guttridge DC. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol 2015; 54:82-91. [PMID: 26385617 DOI: 10.1016/j.semcdb.2015.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia.
Collapse
Affiliation(s)
- Erin E Talbert
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, and the Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, and the Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
504
|
Saera-Vila A, Kasprick DS, Junttila TL, Grzegorski SJ, Louie KW, Chiari EF, Kish PE, Kahana A. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish. Invest Ophthalmol Vis Sci 2015; 56:4977-93. [PMID: 26230763 DOI: 10.1167/iovs.14-16103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. METHODS Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. RESULTS Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2'-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. CONCLUSIONS EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular tools for targeted therapeutic regeneration in skeletal muscle disorders and beyond.
Collapse
|
505
|
Fu X, Zhu MJ, Dodson MV, Du M. AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J Biol Chem 2015; 290:26445-56. [PMID: 26370082 DOI: 10.1074/jbc.m115.665232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration.
Collapse
Affiliation(s)
- Xing Fu
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| | - Mei-Jun Zhu
- the School of Food Sciences, Washington State University, Pullman, Washington 99164
| | - Mike V Dodson
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| | - Min Du
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| |
Collapse
|
506
|
Abstract
Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein.
Collapse
|
507
|
Osterloh M, Böhm M, Kalbe B, Osterloh S, Hatt H. Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch 2015; 468:321-33. [DOI: 10.1007/s00424-015-1729-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
508
|
Joanisse S, McKay BR, Nederveen JP, Scribbans TD, Gurd BJ, Gillen JB, Gibala MJ, Tarnopolsky M, Parise G. Satellite cell activity, without expansion, after nonhypertrophic stimuli. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1101-11. [PMID: 26333785 DOI: 10.1152/ajpregu.00249.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/27/2015] [Indexed: 11/22/2022]
Abstract
The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study, recreationally active men (n = 16) and women (n = 3) completed 6 wk of either traditional moderate-intensity continuous exercise (n = 9, 21 ± 4 yr) or low-volume sprint interval training (n = 10, 21 ± 2 yr). Muscle biopsies were obtained from the vastus lateralis before and after training. The fiber type-specific SC response to training was determined, as was the activity of the SC pool using immunofluorescent microscopy of muscle cross sections. Training did not induce hypertrophy, as assessed by muscle cross-sectional area, nor did the SC pool expand in any group. However, there was an increase in the number of active SCs after each intervention. Specifically, the number of activated (Pax7(+)/MyoD(+), P ≤ 0.05) and differentiating (Pax7(-)/MyoD(+), P ≤ 0.05) SCs increased after each training intervention. Here, we report evidence of activated and cycling SCs that may or may not contribute to exercise-induced adaptations while the SC pool remains constant after three nonhypertrophic exercise training protocols.
Collapse
Affiliation(s)
- Sophie Joanisse
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Bryon R McKay
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trisha D Scribbans
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Jenna B Gillen
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Gianni Parise
- Departments of Kinesiology, McMaster University, Hamilton, Ontario, Canada; Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
509
|
Association of lamin A/C with muscle gene-specific promoters in myoblasts. Biochem Biophys Rep 2015; 4:76-82. [PMID: 29124189 PMCID: PMC5668900 DOI: 10.1016/j.bbrep.2015.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022] Open
Abstract
The A-type and B-type lamins form a filamentous meshwork underneath the inner nuclear membrane called the nuclear lamina, which is an important component of nuclear architecture in metazoan cells. The lamina interacts with large, mostly repressive chromatin domains at the nuclear periphery. In addition, genome–lamina interactions also involve dynamic association of lamin A/C with gene promoters in adipocytes. Mutations in the human lamin A gene cause a spectrum of hereditary diseases called the laminopathies which affect muscle, cardiac and adipose tissues. Since most mutations in lamin A/C affect skeletal muscle, we investigated lamin–chromatin interactions at promoters of muscle specific genes in both muscle and non-muscle cell lines by ChIP-qPCR. We observed that lamin A/C was specifically associated with promoter regions of muscle genes in myoblasts but not in fibroblasts. Lamin A/C dissociated from the promoter regions of the differentiation specific MyoD, myogenin and muscle creatine kinase genes when myoblasts were induced to differentiate. In the promoter regions of the myogenin and MyoD genes, the binding of lamin A/C in myoblasts inversely correlated with the active histone mark, H3K4me3. Lamin A/C binding on muscle genes was reduced and differentiation potential was enhanced on treatment of myoblasts with a histone deacetylase inhibitor. These findings suggest a role for lamina–chromatin interactions in muscle differentiation and have important implications for the pathological mechanisms of striated muscle associated laminopathies. Lamina–chromatin interactions are important for nuclear processes. We show lamin A/C binding to promoters of muscle genes in myoblasts. Lamin A/C binding is reduced upon myoblast differentiation. Lamin A/C binding inversely correlates with active histone marks on muscle genes. Our findings suggest that lamin A/C binding to promoters is cell-type specific.
Collapse
|
510
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
511
|
Boateng J, Catanzano O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J Pharm Sci 2015; 104:3653-3680. [PMID: 26308473 DOI: 10.1002/jps.24610] [Citation(s) in RCA: 534] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.
Collapse
Affiliation(s)
- Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Ovidio Catanzano
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
512
|
Bustos F, de la Vega E, Cabezas F, Thompson J, Cornelison DDW, Olwin BB, Yates JR, Olguín HC. NEDD4 Regulates PAX7 Levels Promoting Activation of the Differentiation Program in Skeletal Muscle Precursors. Stem Cells 2015; 33:3138-51. [PMID: 26304770 DOI: 10.1002/stem.2125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor Pax7 regulates skeletal muscle stem cell (satellite cells) specification and maintenance through various mechanisms, including repressing the activity of the muscle regulatory factor MyoD. Hence, Pax7-to-MyoD protein ratios can determine maintenance of the committed-undifferentiated state or activation of the differentiation program. Pax7 expression decreases sharply in differentiating myoblasts but is maintained in cells (re)acquiring quiescence, yet the mechanisms regulating Pax7 levels based on differentiation status are not well understood. Here we show that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4. Our results indicate that Nedd4 is expressed in quiescent and activated satellite cells, that Nedd4 and Pax7 physically interact during early muscle differentiation-correlating with Pax7 ubiquitination and decline-and that Nedd4 loss of function prevented this effect. Furthermore, even transient nuclear accumulation of Nedd4 induced a drop in Pax7 levels and precocious muscle differentiation. Consequently, we propose that Nedd4 functions as a novel Pax7 regulator, which activity is temporally and spatially controlled to modulate the Pax7 protein levels and therefore satellite cell fate.
Collapse
Affiliation(s)
- Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - James Thompson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Hugo C Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
513
|
Knappe S, Zammit PS, Knight RD. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent. Front Aging Neurosci 2015; 7:161. [PMID: 26379543 PMCID: PMC4548158 DOI: 10.3389/fnagi.2015.00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 to repair and replace damaged myofibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of skeletal muscle. We found that both small focal injuries, and large injuries affecting the entire myotome, lead to expression of myf5 and myogenin, which was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post-fertilization (dpf). Following a small single myotome injury, GFP+ cells responded by extending processes, before migrating to the injured myofibers. Furthermore, these cells responded more rapidly to injury in 4 dpf larvae compared to 7 dpf. Interestingly, we did not see GFP+ myofibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to myofiber formation in this injury context. On the contrary, numerous GFP+ myofibers could be observed after an extensive single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4 dpf than 7 dpf. This indicates intriguing developmental differences, at these early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during skeletal muscle regeneration, which may reflect the extent of muscle damage.
Collapse
Affiliation(s)
- Stefanie Knappe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London London, UK
| | - Robert D Knight
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| |
Collapse
|
514
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
515
|
Chakroun I, Yang D, Girgis J, Gunasekharan A, Phenix H, Kærn M, Blais A. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB J 2015; 29:4738-55. [PMID: 26229056 DOI: 10.1096/fj.15-277053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023]
Abstract
Adult skeletal muscles can regenerate after injury, due to the presence of satellite cells, a quiescent population of myogenic progenitor cells. Once activated, satellite cells repair the muscle damage by undergoing myogenic differentiation. The myogenic regulatory factors (MRFs) coordinate the process of progenitor differentiation in cooperation with other families of transcription factors (TFs). The Six1 and Six4 homeodomain TFs are expressed in developing and adult muscle and Six1 is critical for embryonic and adult myogenesis. However, the lack of a muscle developmental phenotype in Six4-null mice, which has been attributed to compensation by other Six family members, has discouraged further assessment of the role of Six4 during adult muscle regeneration. By employing genome-wide approaches to address the function of Six4 during adult skeletal myogenesis, we have identified a core set of muscle genes coordinately regulated in adult muscle precursors by Six4 and the MRF MyoD. Throughout the genome of differentiating adult myoblasts, the cooperation between Six4 and MyoD is associated with chromatin repressive mark removal by Utx, a demethylase of histone H3 trimethylated at lysine 27. Among the genes coordinately regulated by Six4 and MyoD are several genes critical for proper in vivo muscle regeneration, implicating a role of Six4 in this process. Using in vivo RNA interference of Six4, we expose an uncompensated function of this TF during muscle regeneration. Together, our results reveal a role for Six4 during adult muscle regeneration and suggest a widespread mechanism of cooperation between Six4 and MyoD.
Collapse
Affiliation(s)
- Imane Chakroun
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dabo Yang
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - John Girgis
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Atchayaa Gunasekharan
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hilary Phenix
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mads Kærn
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- *Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada; and Department of Biochemistry, Microbiology, and Immunology and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
516
|
Moresi V, Marroncelli N, Adamo S. New insights into the epigenetic control of satellite cells. World J Stem Cells 2015; 7:945-955. [PMID: 26240681 PMCID: PMC4515437 DOI: 10.4252/wjsc.v7.i6.945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetics finely tunes gene expression at a functional level without modifying the DNA sequence, thereby contributing to the complexity of genomic regulation. Satellite cells (SCs) are adult muscle stem cells that are important for skeletal post-natal muscle growth, homeostasis and repair. The understanding of the epigenome of SCs at different stages and of the multiple layers of the post-transcriptional regulation of gene expression is constantly expanding. Dynamic interactions between different epigenetic mechanisms regulate the appropriate timing of muscle-specific gene expression and influence the lineage fate of SCs. In this review, we report and discuss the recent literature about the epigenetic control of SCs during the myogenic process from activation to proliferation and from their commitment to a muscle cell fate to their differentiation and fusion to myotubes. We describe how the coordinated activities of the histone methyltransferase families Polycomb group (PcG), which represses the expression of developmentally regulated genes, and Trithorax group, which antagonizes the repressive activity of the PcG, regulate myogenesis by restricting gene expression in a time-dependent manner during each step of the process. We discuss how histone acetylation and deacetylation occurs in specific loci throughout SC differentiation to enable the time-dependent transcription of specific genes. Moreover, we describe the multiple roles of microRNA, an additional epigenetic mechanism, in regulating gene expression in SCs, by repressing or enhancing gene transcription or translation during each step of myogenesis. The importance of these epigenetic pathways in modulating SC activation and differentiation renders them as promising targets for disease interventions. Understanding the most recent findings regarding the epigenetic mechanisms that regulate SC behavior is useful from the perspective of pharmacological manipulation for improving muscle regeneration and for promoting muscle homeostasis under pathological conditions.
Collapse
|
517
|
Farup J, Madaro L, Puri PL, Mikkelsen UR. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis 2015. [PMID: 26203859 PMCID: PMC4650743 DOI: 10.1038/cddis.2015.198] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical exercise.
Collapse
Affiliation(s)
- J Farup
- Section for Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - L Madaro
- 1] Sanford-Burnham Medical Research Institute, Sanford Children's Health Research Center, La Jolla, CA, USA [2] IRCCS Fondazione Santa Lucia, Rome, Italy
| | - P L Puri
- 1] Sanford-Burnham Medical Research Institute, Sanford Children's Health Research Center, La Jolla, CA, USA [2] IRCCS Fondazione Santa Lucia, Rome, Italy
| | - U R Mikkelsen
- 1] Section for Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark [2] Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
518
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
519
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
520
|
MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat Commun 2015; 6:7713. [PMID: 26151913 DOI: 10.1038/ncomms8713] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle stem cells, called satellite cells, are a quiescent heterogeneous population. Their heterogeneity is influenced by Pax7, a well-defined transcriptional regulator of satellite cell functions that defines two subpopulations: Pax7(Hi) and Pax7(Lo). However, the mechanisms by which these subpopulations are established and maintained during myogenesis are not completely understood. Here we show that miR-431, which is predominantly expressed in the skeletal muscle, mediates satellite cell heterogeneity by fine-tuning Pax7 levels during muscle development and regeneration. In miR-431 transgenic mice, the Pax7(Lo) subpopulation is enriched, enhances myogenic differentiation and accelerates muscle regeneration. Notably, miR-431 attenuates the muscular dystrophic phenotype in mdx mice and may be a potential therapeutic target in muscular diseases. miR-431 transgenic mice are a unique genetic model for investigating the cellular features and biological functions of Pax7(Lo) satellite cells during muscle development and regeneration.
Collapse
|
521
|
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015; 142:1572-81. [PMID: 25922523 PMCID: PMC4419274 DOI: 10.1242/dev.114223] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles. Summary: This Review discusses how satellite stem cell behaviour is regulated during regeneration and degeneration by a complex balance between extrinsic cues and intrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
522
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
523
|
Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2012-24. [DOI: 10.1016/j.ajpath.2015.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
524
|
|
525
|
Oncorhynchus mykiss pax7 sequence variations with comparative analyses against other teleost species. SPRINGERPLUS 2015; 4:263. [PMID: 26090310 PMCID: PMC4469688 DOI: 10.1186/s40064-015-1030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/12/2015] [Indexed: 12/24/2022]
Abstract
The paired box-7 (pax7) transcription factor expressed in satellite cells (SCs) is an essential regulator of skeletal muscle growth and regeneration in vertebrates including fish. Characterization of rainbow trout (Oncorhynchus mykiss) pax7 gene/s may offer novel insights into skeletal myogenesis by SCs in this indeterminate growth species. Further, evaluation of promoters for cis-regulatory regions may shed light on the evolutionary fate of the duplicated genes. Employing standard PCR, cloning and computational approach, we identified and report complete coding sequences of two pax7 paralogs of rainbow trout (rt); rtpax7α and rtpax7β. Both genes show significant identity in the nucleotide (97%) and the predicted amino acid (98%) sequences, and bear the characteristic paired domain (PD), octapeptide (OP) and homeodomain (HD) motifs. We further report several splice variants of each gene and nucleotide differences in coding sequence that predicts six putative amino acid changes between the two genes. Additionally, we noted a trinucleotide deletion in rtpax7β that results in putative serine elimination at the N-terminus and a single nucleotide polymorphism (SNP) in majority of the rtpax7β variants (6/10) that predicts an arginine substitution for a lysine. We also deciphered the genomic organization up to the first three exons and the upstream putative promoter regions of both genes. Comparative in silico analysis of both the trout pax7 promoters with that of zebrafish pax7 duplicates; zfpax7a and zfpax7b; predicts several important cis-elements/transcription factor binding sites (TFBS) in these teleost pax7 promoter regions.
Collapse
|
526
|
Skuk D, Tremblay JP. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin Biol Ther 2015; 15:1307-19. [PMID: 26076715 DOI: 10.1517/14712598.2015.1057564] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Muscular dystrophies (MDs) are genetic diseases that produce progressive loss of skeletal muscle fibers. Cell therapy (CT) is an experimental approach to treat MD. The first clinical trials of CT in MD conducted in the 1990s were based on myoblast transplantation (MT). Since they did not yield the expected results, several researchers sought to discover other cells with more advantageous properties than myoblasts whereas others sought to improve MT. AREAS COVERED We explain the properties that are required for a cell to be used in CT of MD. We briefly review most of the cells that were proposed for this CT, and to what extent these properties were met not only in laboratory animals but also in clinical trials. EXPERT OPINION Although the repertoire of cells proposed for CT of MD has been expanded since the 1990s, only myoblasts have currently demonstrated unequivocally to significantly engraft in humans. Indeed, MT for MD involves significant technical challenges that need be solved. While it would be ideal to find cells involving less technical challenges for CT of MD, there is so far no clinical evidence that this is possible and therefore the work to improve MT should continue.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, P-09300, Centre Hospitalier de l'Université Laval , 2705 boulevard Laurier, Québec (QC), G1V 4G2 , Canada +1 418 654 2186 ; +1 418 654 2207 ;
| | | |
Collapse
|
527
|
Mohammadi E, Nassiri SM, Rahbarghazi R, Siavashi V, Araghi A. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells. Cell Tissue Res 2015; 362:597-609. [DOI: 10.1007/s00441-015-2228-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/22/2015] [Indexed: 01/07/2023]
|
528
|
FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS One 2015; 10:e0128094. [PMID: 26039259 PMCID: PMC4454513 DOI: 10.1371/journal.pone.0128094] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023] Open
Abstract
Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.
Collapse
|
529
|
Sciorati C, Clementi E, Manfredi AA, Rovere-Querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015; 72:2135-56. [PMID: 25854633 PMCID: PMC11113943 DOI: 10.1007/s00018-015-1857-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
Collapse
Affiliation(s)
- Clara Sciorati
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | |
Collapse
|
530
|
Sousa-Victor P, García-Prat L, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 2015; 26:287-96. [PMID: 25869211 DOI: 10.1016/j.tem.2015.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
Abstract
Aging is characterized by a progressive decline of physiological integrity leading to the loss of tissue function and vulnerability to disease, but its causes remain poorly understood. Skeletal muscle has an outstanding regenerative capacity that relies on its resident stem cells (satellite cells). This capacity declines with aging, and recent discoveries have redefined our view of why this occurs. Here, we discuss how an interconnection of extrinsic changes in the systemic and local environment and cell-intrinsic mechanisms might provoke failure of normal muscle stem cell functions with aging. We focus particularly on the emergent biology of rejuvenation of old satellite cells, including cells of geriatric age, by restoring traits of youthfulness, with the final goal of improving human health during aging.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Buck Institute for Research on Aging, Novato, CA, USA; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Laura García-Prat
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
531
|
Blais A. Myogenesis in the Genomics Era. J Mol Biol 2015; 427:2023-38. [DOI: 10.1016/j.jmb.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
|
532
|
Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada SI, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells 2015; 33:2456-68. [PMID: 25917344 DOI: 10.1002/stem.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.
Collapse
Affiliation(s)
- Madoka Ikemoto-Uezumi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Yamamoto
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, Aichi, Japan
| | - Kosuke Shiomi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
533
|
Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 2015; 6:7087. [PMID: 25971691 PMCID: PMC4435732 DOI: 10.1038/ncomms8087] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle.
Collapse
|
534
|
Kollu S, Abou-Khalil R, Shen C, Brack AS. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells. Stem Cell Reports 2015; 4:1061-74. [PMID: 25960061 PMCID: PMC4471836 DOI: 10.1016/j.stemcr.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC), whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21(CIP1) is responsible for these SAC-deficient phenotypes. Despite aneuploidy's correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21(CIP1)-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.
Collapse
Affiliation(s)
- Swapna Kollu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Rana Abou-Khalil
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Carl Shen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
535
|
Lee JD, Fry CS, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance. J Gerontol A Biol Sci Med Sci 2015; 71:461-7. [PMID: 25878030 PMCID: PMC5175449 DOI: 10.1093/gerona/glv033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/25/2022] Open
Abstract
Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7(CreER)-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response.
Collapse
Affiliation(s)
- Jonah D Lee
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington. Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston
| | - Jyothi Mula
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington
| | - Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - Fujun Liu
- Department of Biomedical Engineering, University of Florida, Gainesville
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington. Department of Physiology, College of Medicine, University of Kentucky, Lexington.
| |
Collapse
|
536
|
Masuda S, Hisamatsu T, Seko D, Urata Y, Goto S, Li TS, Ono Y. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiol Rep 2015; 3:3/4/e12377. [PMID: 25869487 PMCID: PMC4425979 DOI: 10.14814/phy2.12377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsubasa Hisamatsu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
537
|
Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:188-97. [PMID: 25271446 DOI: 10.1016/j.addr.2014.09.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle.
Collapse
|
538
|
Wei C, Ren H, Xu L, Li L, Liu R, Zhang L, Zhao F, Lu J, Zhang X, Du L. Signals of Ezh2, Src, and Akt Involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation. PLoS One 2015; 10:e0120956. [PMID: 25811841 PMCID: PMC4374906 DOI: 10.1371/journal.pone.0120956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022] Open
Abstract
Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis.
Collapse
Affiliation(s)
- Caihong Wei
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hangxing Ren
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Lingyang Xu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruizao Liu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoning Zhang
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Du
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
539
|
Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, Chipkin S, Clarkson PM, Parcell AC. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 2015; 29:2894-904. [PMID: 25808538 DOI: 10.1096/fj.14-266668] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
This study determined the contribution of extracellular matrix (ECM) remodeling to the protective adaptation of human skeletal muscle known as the repeated-bout effect (RBE). Muscle biopsies were obtained 3 hours, 2 days, and 27 days following an initial bout (B1) of lengthening contractions (LCs) and 2 days following a repeated bout (B2) in 2 separate studies. Biopsies from the nonexercised legs served as controls. In the first study, global transcriptomic analysis indicated widespread changes in ECM structural, deadhesive, and signaling transcripts, 3 hours following LC. To determine if ECM remodeling is involved in the RBE, we conducted a second study by use of a repeated-bout paradigm. TNC immunoreactivity increased 10.8-fold following B1, was attenuated following B2, and positively correlated with LC-induced strength loss (r(2) = 0.45; P = 0.009). Expression of collagen I, III, and IV (COL1A1, COL3A1, COL4A1) transcripts was unchanged early but increased 5.7 ± 2.5-, 3.2 ± 0.9-, and 2.1 ± 0.4-fold (P < 0.05), respectively, 27 days post-B1 and were unaffected by B2. Likewise, TGF-β signaling demonstrated a delayed response following LC. Satellite cell content increased 80% (P < 0.05) 2 days post-B1 (P < 0.05), remained elevated 27 days post-B1, and was unaffected by B2. Collectively, the data suggest sequential ECM remodeling characterized by early deadhesion and delayed reconstructive activity that appear to contribute to the RBE.
Collapse
Affiliation(s)
- Robert D Hyldahl
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Brad Nelson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Ling Xin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Tyson Welling
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Logan Groscost
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Monica J Hubal
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Stuart Chipkin
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Priscilla M Clarkson
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| | - Allen C Parcell
- *Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA; Department of Natural Sciences, Ohio Dominican University, Columbus, Ohio, USA; Department of Kinesiology, University of Massachusetts Amherst, Massachusetts, USA; and Department of Integrative Systems Biology, George Washington University, Washington, DC, USA
| |
Collapse
|
540
|
Garg K, Ward CL, Corona BT. Asynchronous inflammation and myogenic cell migration limit muscle tissue regeneration mediated by a cellular scaffolds. INFLAMMATION AND CELL SIGNALING 2015; 1. [PMID: 26949720 DOI: 10.14800/ics.530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Volumetric muscle loss (VML) following orthopaedic trauma results in chronic loss of strength and can contribute to disability. Tissue engineering and regenerative medicine approaches to regenerate the lost skeletal muscle and improve functional outcomes are currently under development. At the forefront of these efforts, decellularized extracellular matrices (ECMs) have reached clinical testing and provide the foundation for other approaches that include stem/progenitor cell delivery. ECMs have been demonstrated to possess many qualities to initiate regeneration, to include stem cell chemotaxis and pro-regenerative macrophage polarization. However, the majority of observations indicate that ECM-repair of VML does not promote appreciable muscle fiber regeneration. In a recent study, ECM-repair of VML was compared to classical muscle fiber regeneration (Garg et al., 2014, Cell & Tissue Research) mediated by autologous minced grafts. The most salient findings of this study were: 1) Satellite cells did not migrate into the scaffold beyond ~0.5 mm from the remaining host tissue, although other migratory stem cells (Sca-1+) were observed throughout the scaffold;2) Macrophage migration to the scaffold was over two-times that observed with muscle grafts, but they appeared to be less active, as gene expression of pro- and anti-inflammatory cytokines (TNF-α, IL-12, IL-4, IL-10, VEGF, and TGF-β1) was significantly reduced in scaffold-repaired muscles; And, 3) scaffolds did not promote appreciable muscle fiber regeneration. Collectively, these data suggest that the events following ECM transplantation in VML are either incongruous or asynchronous with classical muscle fiber regeneration.
Collapse
Affiliation(s)
- Koyal Garg
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, USA; University of Illinois, Urbana Champaign, Beckman Institute of Advanced Science and Technology, USA
| | - Catherine L Ward
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, USA
| | - Benjamin T Corona
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, USA
| |
Collapse
|
541
|
Ward CL, Ji L, Corona BT. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss. Biores Open Access 2015; 4:198-208. [PMID: 26309796 PMCID: PMC4497650 DOI: 10.1089/biores.2015.0009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is a hallmark of orthopedic trauma with no current standard of care. As a potential therapy for some VML indications, autologous minced muscle grafts (1 mm(3) pieces of muscle) are effective in promoting remarkable de novo fiber regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the hypothesis that autologous minced grafts may be volume expanded in a collagen hydrogel, allowing for the use of lesser autologous muscle while maintaining regenerative and functional efficacy. The results of the study indicate that 50% (but not 75%) less minced graft tissue suspended in a collagen hydrogel promoted a functional improvement similar to that of a 100% minced graft repair. However, approximately half of the number of fibers regenerated de novo with 50% graft repair. Moreover, the fibers that regenerated had a smaller cross-sectional area. These findings support the concept of using autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion.
Collapse
Affiliation(s)
- Catherine L. Ward
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Lisa Ji
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T. Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|
542
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
543
|
Fu D, Lala-Tabbert N, Lee H, Wiper-Bergeron N. Mdm2 promotes myogenesis through the ubiquitination and degradation of CCAAT/enhancer-binding protein β. J Biol Chem 2015; 290:10200-7. [PMID: 25720496 DOI: 10.1074/jbc.m115.638577] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Myogenesis is a tightly regulated differentiation process during which precursor cells express in a coordinated fashion the myogenic regulatory factors, while down-regulating the satellite cell marker Pax7. CCAAT/Enhancer-binding protein β (C/EBPβ) is also expressed in satellite cells and acts to maintain the undifferentiated state by stimulating Pax7 expression and by triggering a decrease in MyoD protein expression. Herein, we show that C/EBPβ protein is rapidly down-regulated upon induction of myogenesis and this is not due to changes in Cebpb mRNA expression. Rather, loss of C/EBPβ protein is accompanied by an increase in Mdm2 expression, an E3 ubiquitin ligase. We demonstrate that Mdm2 interacts with, ubiquitinates and targets C/EBPβ for degradation by the 26 S proteasome, leading to increased MyoD expression. Knockdown of Mdm2 expression in myoblasts using a shRNA resulted in high C/EBPβ levels and a blockade of myogenesis, indicating that Mdm2 is necessary for myogenic differentiation. Primary myoblasts expressing the shMdm2 construct were unable to contribute to muscle regeneration when grafted into cardiotoxin-injured muscle. The differentiation defect imposed by loss of Mdm2 could be partially rescued by loss of C/EBPβ, suggesting that the regulation of C/EBPβ turnover is a major role for Mdm2 in myoblasts. Taken together, we provide evidence that Mdm2 regulates entry into myogenesis by targeting C/EBPβ for degradation by the 26 S proteasome.
Collapse
Affiliation(s)
- Dechen Fu
- From the Department of Cellular and Molecular Medicine and
| | - Neena Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hwabin Lee
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
544
|
Westerman KA. Myospheres are composed of two cell types: one that is myogenic and a second that is mesenchymal. PLoS One 2015; 10:e0116956. [PMID: 25706128 PMCID: PMC4338034 DOI: 10.1371/journal.pone.0116956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
Abstract
Previously, in an attempt to isolate stem cells that would be capable of regenerating injured skeletal muscle, we cultured cells derived from muscle, non-adherently, in serum-free media. As a result of the culture conditions used, these cells formed spheres, and thus were referred to as myospheres. It was found that myosphere-derived cells expressed Sca-1, a marker that is not typically associated with myogenic cells, and as a result has generated some questions as to the origin of these cells. The goal of this study was to clearly determine the origin of myosphere-derived cells, and in particular to answer the question of whether myospheres contain myogenic cells. To determine if myospheres were composed of myogenic cells without altering the structure of myospheres or the culture conditions used to maintain myospheres, I isolated these cells from yellow fluorescent protein (YFP)-Myf5, YFP-MyoD, and ZsGreen-Pax7 lineage-tracing mice and monitored their growth over time. I found that myospheres do contain myogenic cells, but that these cells are gradually lost over time (within 2 months). Additionally, the use of the lineage-tracing mice gave an interesting perspective into the composition of myospheres. I found that myospheres were composed of two distinct cell types, one that is myogenic (α7 integrin+) and contains cells expressing Myf5, MyoD, and Pax7, and a second that is non-myogenic (α7 integrin-) expressing platelet-derived growth factor receptor alpha (PDGFRα) and Sca-1, both of which have been associated with fibro/adipocyte mesenchymal cells.
Collapse
Affiliation(s)
- Karen A. Westerman
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
545
|
Parker MH. The altered fate of aging satellite cells is determined by signaling and epigenetic changes. Front Genet 2015; 6:59. [PMID: 25750654 PMCID: PMC4335604 DOI: 10.3389/fgene.2015.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023] Open
Abstract
Skeletal muscle is a striated tissue composed of multinucleated fibers that contract under the control of the somatic nervous system to direct movement. The stem cells of skeletal muscle, known as satellite cells, are responsible for muscle fiber growth, turnover, and regeneration. Satellite cells are activated and proliferate in response to stimuli, and simplistically, have two main fates—to repopulate the satellite cell niche, or differentiate to regenerate or repair muscle fibers. However, the ability to regenerate muscle and replace lost myofibers declines with age. This loss of function may be a result of extrinsic changes in the niche, such as alterations in signaling or modifications to the extracellular matrix. However, intrinsic epigenetic changes within satellite cells may also affect cell fate and cause a decline in regenerative capacity. This review will describe the mechanisms that regulate cell fate decisions in adult skeletal muscle, and how changes during aging affect muscle fiber turnover and regeneration.
Collapse
Affiliation(s)
- Maura H Parker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
| |
Collapse
|
546
|
Satellite cells: regenerative mechanisms and applicability in muscular dystrophy. Stem Cells Int 2015; 2015:487467. [PMID: 25763072 PMCID: PMC4339711 DOI: 10.1155/2015/487467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022] Open
Abstract
The satellite cells are long regarded as heterogeneous cell population, which is intimately linked to the processes of muscular recovery. The heterogeneous cell population may be classified by specific markers. In spite of the significant amount of variation amongst the satellite cell populations, it seems that their activity is tightly bound to the paired box 7 transcription factor expression, which is, therefore, used as a canonical marker for these cells. Muscular dystrophic diseases, such as Duchenne muscular dystrophy, elicit severe tissue injuries leading those patients to display a very specific pattern of muscular recovery abnormalities. There have been works on the application of precursors cells as a therapeutic alternative for Duchenne muscular dystrophy and initial attempts have proven the cells inefficient; however later endeavours have proposed solutions for the experiments improving significantly the results. The presence of a range of satellite cells populations indicates the existence of specific cells with enhanced capability of muscular recovery in afflicted muscles.
Collapse
|
547
|
Zhuang L, Hulin JA, Gromova A, Tran Nguyen TD, Yu RT, Liddle C, Downes M, Evans RM, Makarenkova HP, Meech R. Barx2 and Pax7 have antagonistic functions in regulation of wnt signaling and satellite cell differentiation. Stem Cells 2015; 32:1661-73. [PMID: 24753152 DOI: 10.1002/stem.1674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/16/2013] [Accepted: 01/16/2012] [Indexed: 11/05/2022]
Abstract
The canonical Wnt signaling pathway is critical for myogenesis and can induce muscle progenitors to switch from proliferation to differentiation; how Wnt signals integrate with muscle-specific regulatory factors in this process is poorly understood. We previously demonstrated that the Barx2 homeobox protein promotes differentiation in cooperation with the muscle regulatory factor (MRF) MyoD. Pax7, another important muscle homeobox factor, represses differentiation. We now identify Barx2, MyoD, and Pax7 as novel components of the Wnt effector complex, providing a new molecular pathway for regulation of muscle progenitor differentiation. Canonical Wnt signaling induces Barx2 expression in muscle progenitors and perturbation of Barx2 leads to misregulation of Wnt target genes. Barx2 activates two endogenous Wnt target promoters as well as the Wnt reporter gene TOPflash, the latter synergistically with MyoD. Moreover, Barx2 interacts with the core Wnt effectors β-catenin and T cell-factor 4 (TCF4), is recruited to TCF/lymphoid enhancer factor sites, and promotes recruitment of β-catenin. In contrast, Pax7 represses the Wnt reporter gene and antagonizes the activating effect of Barx2. Pax7 also binds β-catenin suggesting that Barx2 and Pax7 may compete for interaction with the core Wnt effector complex. Overall, the data show for the first time that Barx2, Pax7, and MRFs can act as direct transcriptional effectors of Wnt signals in myoblasts and that Barx2 and Wnt signaling participate in a regulatory loop. We propose that antagonism between Barx2 and Pax7 in regulation of Wnt signaling may help mediate the switch from myoblast proliferation to differentiation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Department of Clinical Pharmacology, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
548
|
Abstract
Skeletal muscles in vertebrates have a phenomenal regenerative capacity. A muscle that has been crushed can regenerate fully both structurally and functionally within a month. Remarkably, efficient regeneration continues to occur following repeated injuries. Thousands of muscle precursor cells are needed to accomplish regeneration following acute injury. The differentiated muscle cells, the multinucleated contractile myofibers, are terminally withdrawn from mitosis. The source of the regenerative precursors is the skeletal muscle stem cells-the mononucleated cells closely associated with myofibers, which are known as satellite cells. Satellite cells are mitotically quiescent or slow-cycling, committed to myogenesis, but undifferentiated. Disruption of the niche after muscle damage results in their exit from quiescence and progression towards commitment. They eventually arrest proliferation, differentiate, and fuse to damaged myofibers or make de novo myofibers. Satellite cells are one of the well-studied adult tissue-specific stem cells and have served as an excellent model for investigating adult stem cells. They have also emerged as an important standard in the field of ageing and stem cells. Several recent reviews have highlighted the importance of these cells as a model to understand stem cell biology. This chapter begins with the discovery of satellite cells as skeletal muscle stem cells and their developmental origin. We discuss transcription factors and signalling cues governing stem cell function of satellite cells and heterogeneity in the satellite cell pool. Apart from satellite cells, a number of other stem cells have been shown to make muscle and are being considered as candidate stem cells for amelioration of muscle degenerative diseases. We discuss these "offbeat" muscle stem cells and their status as adult skeletal muscle stem cells vis-a-vis satellite cells. The ageing context is highlighted in the concluding section.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore, 560065, India,
| | | |
Collapse
|
549
|
Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015; 56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of microRNAs (miRNA) in vertebrates has uncovered new mechanisms regulating skeletal muscle development and disease. miRNAs are inhibitors and act by silencing specific mRNAs or by repressing protein translation. In many cases, miRNAs are involved in physiological or pathological stress, suggesting they function to exacerbate or protect the organism during stress or disease. Although many skeletal muscle diseases differ in clinical and pathological manifestations, they all have a common feature of dysregulation of miRNA expression. In particular, analysis of miRNA expression patterns in skeletal muscle diseases reveals miRNA signatures, showing many miRNAs are dysregulated during disease. Emerging identification of miRNA targets and involvement in genetic regulatory networks serve to reveal new regulatory pathways in skeletal muscle biology. This chapter features the findings pertaining to skeletal muscle miRNAs in skeletal muscle development and disease and highlights therapeutic applications of miRNA-based technology in diagnosis and treatment of skeletal muscle myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA,
| | | |
Collapse
|
550
|
Syverud BC, Lee JD, VanDusen KW, Larkin LM. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. ACTA ACUST UNITED AC 2015; 3. [PMID: 26413555 DOI: 10.4172/2325-9620.1000117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineered skeletal muscle holds promise as a source of graft tissue for the repair of traumatic injuries such as volumetric muscle loss. The resident skeletal muscle stem cell, the satellite cell, has been identified as an ideal progenitor for tissue engineering due to its role as an essential player in the potent skeletal muscle regeneration mechanism. A significant challenge facing tissue engineers, however, is the isolation of sufficiently large satellite cell populations with high purity. The two common isolation techniques, single fiber explant culture and enzymatic dissociation, can yield either a highly pure satellite cell population or a suitably large number or cells but fail to do both simultaneously. As a result, it is often necessary to use a purification technique such as pre-plating or cell sorting to enrich the satellite cell population post-isolation. Furthermore, the absence of complex chemical and biophysical cues influencing the in vivo satellite cell "niche" complicates the culture of isolated satellite cells. Techniques under investigation to maximize myogenic proliferation and differentiation in vitro are described in this article, along with current methods for isolating and purifying satellite cells.
Collapse
Affiliation(s)
- Brian C Syverud
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonah D Lee
- Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keith W VanDusen
- Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa M Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA ; Department of Molecular and Integrated Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|