501
|
Shawahna R. Breast milk to blood lead ratios among women from the West Bank of Palestine: a cross-sectional study of associated factors. Int Breastfeed J 2021; 16:61. [PMID: 34425844 PMCID: PMC8381486 DOI: 10.1186/s13006-021-00410-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Infants fed contaminated breast milk are at an increased risk of exposure to lead. Breast milk to blood (M/B) ratios have not been investigated among women in Palestine. The aim of this study was to assess blood, breast milk, and M/B lead ratios in samples collected from Palestinian breastfeeding women. Associations between sociodemographic characteristics with breast milk lead levels and M/B lead ratios were also investigated. Methods This study was conducted in a cross-sectional design in the period between October 2017 and April 2018. Breastfeeding women visiting maternity care centers in different regions of the West Bank of Palestine were recruited to the study by the nurses in the maternity care centers. Sociodemographic characteristics, venous blood, and breast milk samples were collected from each participant. Lead concentrations were analyzed using a validated inductively coupled plasma-mass spectrometric method. Mann–Whitney U test, Pearson’s Chi-square, Fisher’s exact, and Spearman’s correlations were used to analyze the data. Odds ratios (OR) were computed using a multivariate logistic regression model. Results Matching blood and milk samples were collected from 80 women. Lead concentrations in 11 (13.8%) of the breast milk samples were above the World Health Organization’s recommended levels. Breast milk lead levels were more likely to be ≥5 μg/L in breastfeeding women who lived in urban areas (aOR 4.96; 95% CI 1.10, 22.38) compared to those who lived in rural areas. Breast milk to blood lead ratios were more likely to be ≥25% in breastfeeding women who lived in urban areas (aOR 7.06; 95% CI 1.68, 29.77), used eye kohl (aOR 14.29; 95% CI 1.32, 155.06), and used hair dye (aOR 5.33; 95% CI 1.58, 18.00) compared to those who lived in rural areas, did not use eye kohl, and did not use hair dye, respectively. Conclusions Higher M/B lead ratios were predicted by living in urban areas, using eye kohl, and using hair dye. Decision makers in health authorities should address sources of exposure to lead in urban areas. Cosmetics containing lead should be assessed and regulated for lead content. Supplementary Information The online version contains supplementary material available at 10.1186/s13006-021-00410-3.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine. .,An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
502
|
Environmentally Compatible Lead-Free Perovskite Solar Cells and Their Potential as Light Harvesters in Energy Storage Systems. NANOMATERIALS 2021; 11:nano11082066. [PMID: 34443897 PMCID: PMC8402099 DOI: 10.3390/nano11082066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Next-generation renewable energy sources and perovskite solar cells have revolutionised photovoltaics research and the photovoltaic industry. However, the presence of toxic lead in perovskite solar cells hampers their commercialisation. Lead-free tin-based perovskite solar cells are a potential alternative solution to this problem; however, numerous technological issues must be addressed before the efficiency and stability of tin-based perovskite solar cells can match those of lead-based perovskite solar cells. This report summarizes the development of lead-free tin-based perovskite solar cells from their conception to the most recent improvements. Further, the methods by which the issue of the oxidation of tin perovskites has been resolved, thereby enhancing the device performance and stability, are discussed in chronological order. In addition, the potential of lead-free tin-based perovskite solar cells in energy storage systems, that is, when they are integrated with batteries, is examined. Finally, we propose a research direction for tin-based perovskite solar cells in the context of battery applications.
Collapse
|
503
|
Berríos-Cartagena N, Rubio-Dávila MM, Rivera-Delgado I, Feliciano-Bonilla MM, De Cardona-Juliá EA, Ortiz JG. Effects of Zinc, Mercury, or Lead on [ 3H]MK-801 and [ 3H]Fluorowillardiine Binding to Rat Synaptic Membranes. Neurochem Res 2021; 46:3159-3165. [PMID: 34370167 DOI: 10.1007/s11064-021-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Glutamate (Glu) is considered the most important excitatory amino acid neurotransmitter in the mammalian Central Nervous System. Zinc (Zn) is co-released with Glu during synaptic transmission and interacts with Glutamate receptors and transporters. We performed binding experiments using [3H]MK-801 (NMDA), and [3H]Fluorowillardine (AMPA) as ligands to study Zn-Glutamate interactions in rat cortical synaptic membranes. We also examined the effects of mercury and lead on NMDA or AMPA receptors. Zinc at 1 nM, significantly potentiates [3H]MK-801 binding. Lead inhibits [3H]MK-801 binding at micromolar concentrations. At millimolar concentrations, Hg also has a significant inhibitory effect. These effects are not reversed by Zn (1 nM). Zinc displaces the [3H]FW binding curve to the right. Lead (nM) and Hg (μM) inhibit [3H]FW binding. At certain concentrations, Zn reverses the effects of these metals on [3H]FW binding. These specific interactions serve to clarify the role of Zn, Hg, and Pb in physiological and pathological conditions.
Collapse
Affiliation(s)
- N Berríos-Cartagena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Rubio-Dávila
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - I Rivera-Delgado
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Feliciano-Bonilla
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - E A De Cardona-Juliá
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - J G Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
504
|
Annaç E, Uçkun M, Özkaya A, Yoloğlu E, Pekmez H, Bulmuş Ö, Aydın A. The protective effects of pomegranate juice on lead acetate-induced neurotoxicity in the male rat: A histomorphometric and biochemical study. J Food Biochem 2021; 46:e13881. [PMID: 34346512 DOI: 10.1111/jfbc.13881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/10/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to investigate the potential side-effects of lead acetate (LA), which is toxic to the nerves, blood and muscles, in the rat brain. The neuroprotective effects of pomegranate juice (PJ) against LA exposure were also observed. The experiment involved 28 male Wistar albino rats aged 12 weeks. These were divided into four groups: Control, PJ, LA and LA+PJ. Stereological techniques were employed to determine hippocampal volume in each rat brain. Biochemical investigations and histopathological examinations were also performed. Analysis demonstrated a significant decrease in hippocampal volume in the LA group compared to the control group (p < .05). The stereology results also indicated that PJ has protective effects when compared with the LA and LA+PJ groups. A significant increase was also determined in malondialdehyde (MDA) levels and glutathione S-transferase (GST) activity in the LA group compared to the control group, in contrast to glutathione (GSH) levels and carboxylesterase (CaE) and acetylcholinesterase (AchE) activities. MDA and GST activity decreased significantly in the LA+PJ group compared to the LA group in contrast to GSH levels and CaE and AchE activities. Histopathological examination revealed a number of degenerative changes in the LA group. Exposure to LA adversely affects the hippocampus on the male rat brain. It might also be suggested that PJ may ameliorate these deleterious effects.
Collapse
Affiliation(s)
- Ebru Annaç
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adiyaman University, Adiyaman, Turkey
| | - Ahmet Özkaya
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, Adiyaman, Turkey
| | - Ertan Yoloğlu
- Department of Science Education, Faculty of Education, Adiyaman University, Adiyaman, Turkey
| | - Hıdır Pekmez
- Department of Anatomy, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
| | - Özgür Bulmuş
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Balıkesir University, Balıkesir, Turkey
| | - Ali Aydın
- Department of Anatomy, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
505
|
Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M. Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38817-38828. [PMID: 33745043 DOI: 10.1007/s11356-021-13063-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Seafood has long been considered a unique source of nutrition. However, increasing trends in consumption of marine products must be considered, especially in potentially polluted environments such as the Persian Gulf. This study was undertaken to analyse the level of heavy metal contamination of nickel (Ni), zinc (Zn), and lead (Pb) in shrimp (Penaeus merguiensis) captured from the northern Persian Gulf. The concentration of heavy metals in the muscle of shrimp followed the order Zn > Ni > Pb. The content of Zn and Ni was higher than recommended standard limits by the FAO/WHO. The combined impact of all metals was lower than the acceptable limit of 1 in shrimp. The carcinogenic risk for Ni was higher than the unacceptable value. In total, our finding indicated no potential health risk from the daily consumption of this species. However, long-term consumption of shrimp can pose a risk of carcinogenic effects of nickel. Continuous monitoring of these trace metals in seafood is necessary to ensure the quality of seafood and food safety.
Collapse
Affiliation(s)
- Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
506
|
Suleiman MHA, Brima EI. Phytochemicals, Trace Element Contents, and Antioxidant Activities of Bark of Taleh (Acacia seyal) and Desert Rose (Adenium obesum). Biol Trace Elem Res 2021; 199:3135-3146. [PMID: 33048292 DOI: 10.1007/s12011-020-02428-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Acacia seyal and Adenium obesum are used in traditional medicines by indigenous communities of the Asir region of Saudi Arabia. The present study aimed to acquire the phytochemical profiles, quantify the trace element contents and the total phenolic (TPC) and flavonoid (TFC) contents, and evaluate the antioxidant activity of the two species. Phytochemical screening was conducted to detect the presence of the phytochemical constituents. Bark samples were digested with a microwave, and ICP-MS was used for the elemental analysis. The antioxidant capacities in DPPH, H2O2, and FRAP assays and the TPC and TFC were determined by spectrophotometry, and their correlation with the IC50 of the DPPH and H2O2 and the EC50 of the FRAP capacities were analyzed by Pearson's correlation. Both plant extracts contain a variety of phytochemicals. A. obesum had the highest concentrations of all 11 elements measured. In both plants, manganese was found at the highest concentration, and cadmium exhibited the lowest concentration. The aqueous-methanolic extract of A. seyal showed the highest TPC (309.32 ± 2.15 mg gallic acid equivalent/g), whereas the aqueous-methanolic extract of A. obesum exhibited the highest TFC (32.16 ± 3.16 mg quercetin equivalent/g). Significant differences in the IC50 and EC50 values were observed among the tested plant extracts. The highest antioxidant activity was found in aqueous-methanolic extract of A. obesum. Correlation analysis showed significant correlations between the DPPH and FRAP activities and the TFC. The present findings highlight that these plants are good sources of phenolic compounds and essential elements and support their therapeutic use as antioxidant drugs.
Collapse
Affiliation(s)
- Mohamed H A Suleiman
- Department of Chemistry, College of Science, King Khalid University, Abha, Asir, 61413, Saudi Arabia.
- Department of Chemistry, Faculty of Science, University of Kordofan, El Obeid, Sudan.
| | - Eid I Brima
- Department of Chemistry, College of Science, King Khalid University, Abha, Asir, 61413, Saudi Arabia
- School of Allied Health Sciences, Faculty of Health and Life Science, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
507
|
Joseph Anthuvan A, Kumaravel K, Chinnuswamy V. Synergetic effect of hierarchical zinc oxide (ZnO) nanostructure with enhanced adsorption and antibacterial action towards waterborne detrimental contaminants. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
508
|
Socha K, Karwowska A, Kurianiuk A, Markiewicz-Żukowska R, Guzowski A, Gacko M, Hirnle T, Borawska MH. Estimation of Selected Minerals in Aortic Aneurysms-Impaired Ratio of Zinc to Lead May Predispose? Biol Trace Elem Res 2021; 199:2811-2818. [PMID: 33006035 PMCID: PMC8222018 DOI: 10.1007/s12011-020-02410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 12/04/2022]
Abstract
The objective of this study was to estimate the content of copper, zinc, selenium, cadmium, and lead in the tissue of patients with aortic aneurysms. Molar ratio of Cu/Zn and antioxidant micronutrients to toxic elements was also calculated. A total of 108 patients: 47 with abdominal aortic aneurysm (AAA), 61 patients with thoracic aortic aneurysm (TAA), and a control group of 20 abdominal aortic (AA) and 20 thoracic aortic (TA) wall samples from the deceased were studied. The concentrations of mineral components in the tissue samples were determined by the AAS method. The average concentration of Cu in the aortic wall of patients with TAA was significantly lower than in the aortic wall samples of healthy people. The mean concentration of Zn in the aortic wall of patients with AAA and TAA was significantly lower than in the control group samples. Cu/Zn ratio was significantly higher in AAA patients than in control group which indicates a greater role of oxidative stress and inflammatory process in this type of aneurysm. The concentration of Se was significantly decreased in TAA patients compared with the control group; in turn, the concentration of Pb was increased in this group of patients. We observed significantly lower Cu/Pb ratio in TAA patients than in control group, whereas Zn/Pb ratio was significantly lower comparing with control samples in both types of aneurysms. In the examined aneurysms, we have shown the differences in concentrations of mineral components compared with the control tissues. The Zn concentration was decreased in both AAA and TAA samples. Impaired ratio of Zn to Pb may predispose to aortic aneurysms.
Collapse
Affiliation(s)
- Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Bialystok, Poland.
| | - Alicja Karwowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kurianiuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | | - Andrzej Guzowski
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Bialystok, Poland
| | - Marek Gacko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Hirnle
- Department of Cardiosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Maria H Borawska
- Department of Bromatology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
509
|
Alexandrino RCS, Lima FRD, Martins GC, Natal-da-Luz T, Sousa JP, Guilherme LRG, Marques JJ. Lead acetate ecotoxicity in tropical soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1029-1042. [PMID: 34191243 DOI: 10.1007/s10646-021-02443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Lead acetate (AcPb) is an important raw material used in chemical industries worldwide. The potential toxicity of AcPb is generally attributed to the presence of Pb. However, the effect of AcPb on the environment as a whole is still poorly known. This study aimed to evaluate AcPb toxicity on three standard species of soil invertebrates and two plant species using ecotoxicology tests. Three tropical soils (Oxisol, Inceptisol, and Tropical Artificial Soil (TAS)) were contaminated with different concentrations of AcPb and one dose of K-acetate (positive control). These soils were used in tests with Eisenia andrei (earthworm), Folsomia candida (springtail), Enchytraeus crypticus (enchytraeid), Zea mays (maize), and Phaseolus vulgaris (common bean). Dose-response curves obtained in the laboratory tests were used to estimate the EC50 values for each species. Among invertebrates, the highest sensitivity to AcPb was observed for E. crypticus in the TAS (EC50 = 29.8 mg AcPb kg-1), whereas for E. andrei and F. candida the highest sensitivity was observed in the Oxisol (EC50 = 141.9 and 1835 mg AcPb kg-1, respectively). Folsomia candida was the least sensitive invertebrate species to AcPb in all soils. Among plant species, Z. mays was less sensitive (EC50 = 1527.5 mg AcPb kg-1) than P. vulgaris (EC50 = 560.5 mg AcPb kg-1) in the Oxisol. The present study evidenced that the toxicity of AcPb should not be attributed uniquely to the presence of Pb, as the treatment containing uniquely Ac provoked the same toxicity as the highest dose of AcPb.
Collapse
Affiliation(s)
- R C S Alexandrino
- Fundação Estadual do Meio Ambiente/Empresa de Pesquisa Agropecuária de Minas Gerais, 31630-900, Belo Horizonte, Brazil
| | - F R D Lima
- Soil Science Department, Universidade Federal de Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | - G C Martins
- Instituto Tecnológico Vale, 66055-090, Belém, Brazil
| | - T Natal-da-Luz
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - J P Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - L R G Guilherme
- Soil Science Department, Universidade Federal de Lavras, 37200-900, Lavras, Minas Gerais, Brazil
| | - J J Marques
- Soil Science Department, Universidade Federal de Lavras, 37200-900, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
510
|
Omeiza NA, Abdulrahim HA, Alagbonsi AI, Ezurike PU, Soluoku TK, Isiabor H, Alli-Oluwafuyi AA. Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav 2021; 11:e2227. [PMID: 34087957 PMCID: PMC8413791 DOI: 10.1002/brb3.2227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Lead is the most used nonphysiological neurotoxic heavy metal in the world that has been indicated to interfere with the cognitive and noncognitive processes via numerous mechanisms. The neuroprotective effect of melatonin is well known, but the effect of its interaction with lead in the brain remains inconclusive. OBJECTIVE To assess the therapeutic role of melatonin on cognitive deficit, anxiety and depressive-like symptoms in matured male Wistar rats exposed to a subchronic lead chloride (PbCl2 ). METHODS Twenty male Wistar rats were blindly randomized into four groups (n = 5/group): group 1 to 4 underwent intragastric administration of physiological saline (10 ml/kg; vehicle), PbCl2 (50 mg/kg), melatonin (10 mg/kg) and PbCl2 + melatonin respectively for a period of 4 weeks during which neurobehavioral data were extracted, followed by neurochemical and histopathological evaluations. RESULTS Exposure to PbCl2 reduced cognitive performance by increasing the escape latency and average proximity to the platform zone border, decreasing average path length in the platform zone, cognitive score, and time spent in probing. It raised the thigmotaxis percentage, time spent in rearing, number of pellet-like feces, and time spent in the dark compartment of a bright/dark box which are predictors of anxiety. It also induced depressive-like behavior as immobility time was enhanced. PbCl2 deranged neurochemicals; malondialdehyde, interlukin-1β, and tumor necrotic factor-α were increased while superoxide dismutase and acetylcholinesterase were decreased without remarkable alteration in reduced glutathione and nitric oxide. Administration of PbCl2 further disrupted neuronal settings of hippocampal proper and dentate gyrus. In contrast, the supplementation of melatonin reversed all the neurological consequences of PbCl2 neurotoxicity by eliciting its properties against oxidative and nonoxidative action of PbCl2 . CONCLUSION These findings suggest that melatonin down-regulates neurotoxicant interplays in the brain systems. Therefore, this study suggests the use of melatonin as an adjuvant therapy in neuropathological disorders/dysfunctions.
Collapse
Affiliation(s)
- Noah A Omeiza
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Republic of Rwanda
| | - Precious U Ezurike
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Talha K Soluoku
- Department of Neuroscience, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Happy Isiabor
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abdulmusawwir A Alli-Oluwafuyi
- Department of Pharmacology and Therapeutics, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
511
|
Huang H, Jin Y, Chen C, Feng M, Wang Q, Li D, Chen W, Xing X, Yu D, Xiao Y. A toxicity pathway-based approach for modeling the mode of action framework of lead-induced neurotoxicity. ENVIRONMENTAL RESEARCH 2021; 199:111328. [PMID: 34004169 DOI: 10.1016/j.envres.2021.111328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The underlying mechanisms of lead (Pb) toxicity are not fully understood, which makes challenges to the traditional risk assessment. There is growing use of the mode of action (MOA) for risk assessment by integration of experimental data and system biology. The current study aims to develop a new pathway-based MOA for assessing Pb-induced neurotoxicity. METHODS The available Comparative Toxicogenomic Database (CTD) was used to search genes associated with Pb-induced neurotoxicity followed by developing toxicity pathways using Ingenuity Pathway Analysis (IPA). The spatiotemporal sequence of disturbing toxicity pathways and key events (KEs) were identified by upstream regulator analysis. The MOA framework was constructed by KEs in biological and chronological order. RESULTS There were a total of 71 references showing the relationship between lead exposure and neurotoxicity, which contained 2331 genes. IPA analysis showed that the neuroinflammation signaling pathway was the core toxicity pathway in the enriched pathways relevant to Pb-induced neurotoxicity. The upstream regulator analysis demonstrated that the aryl hydrocarbon receptor (AHR) signaling pathway was the upstream regulator of the neuroinflammation signaling pathway (11.76% overlap with upstream regulators, |Z-score|=1.451). Therefore, AHR activation was recognized as the first key event (KE1) in the MOA framework. The following downstream molecular and cellular key events were also identified. The pathway-based MOA framework of Pb-induced neurotoxicity was built starting with AHR activation, followed by an inflammatory response and neuron apoptosis. CONCLUSION Our toxicity pathway-based approach not only advances the development of risk assessment for Pb-induced neurotoxicity but also brings new insights into constructing MOA frameworks of risk assessment for new chemicals.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Chuanying Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiyao Feng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
512
|
Gadde R, Betharia S. N,N'bis-(2-mercaptoethyl) isophthalamide (NBMI) exerts neuroprotection against lead-induced toxicity in U-87 MG cells. Arch Toxicol 2021; 95:2643-2657. [PMID: 34165617 DOI: 10.1007/s00204-021-03103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic heavy metal chelator and thiol redox antioxidant. This study was designed to investigate the neuroprotective activity of NBMI in U-87 MG cells exposed to lead acetate (PbAc). Cells were pretreated with NBMI for 24 h prior to a 48 h exposure to PbAc. Cell death (55%, p < 0.0001) and reduction of intracellular GSH levels (0.70-fold, p < 0.005) induced by 250 µM Pb were successfully attenuated by NBMI pretreatment at concentrations as low as 10 µM. A similar pretreatment with the FDA-approved Pb chelator dimercaptosuccinic acid (DMSA) proved ineffective, indicating a superior PKPD profile for NBMI. Pretreatment with NBMI successfully counteracted Pb-induced neuroinflammation by reducing IL-1β (0.59-fold, p < 0.05) and GFAP expression levels. NBMI alone was also found to significantly increase ferroportin expression (1.97-fold, p < 0.05) thereby enhancing cellular ability to efflux heavy metals. While no response was observed on the apoptotic pathway, this study demonstrated for the first time that necrotic cell death induced by Pb in U-87 MG cells is successfully attenuated by NBMI. Collectively these data demonstrate NBMI to be a promising neuroprotective compound in the realm of Pb poisoning.
Collapse
Affiliation(s)
- Rajitha Gadde
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Avenue, Boston, MA, 02115, USA.
| | - Swati Betharia
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
513
|
Sharma HB, Vanapalli KR, Barnwal VK, Dubey B, Bhattacharya J. Evaluation of heavy metal leaching under simulated disposal conditions and formulation of strategies for handling solar panel waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146645. [PMID: 34030301 DOI: 10.1016/j.scitotenv.2021.146645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/11/2023]
Abstract
With the steady growth in the worldwide solar installed capacity, there is an immediate concern about the fate of the solar panels at the end of their life. Solar panel waste is often disposed of indiscriminately, exposing the environment to chemical hazards. The major objective of the current study was to evaluate the leaching potential of the polycrystalline solar panel waste under different simulated disposal conditions through toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP) and pH static leaching procedure tests. Moreover, the study evaluates the effects of ageing and the breakage of the Glass Laminate Encapsulation (GLE) of solar panels on their leaching potential. Among the metals studied (silver (Ag), aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn)), the concentrations of Pb were as high as 9.3 mg/L, 1.4 mg/L, 6.7 mg/L in the TCLP, SPLP, and pH static test respectively. This indicated the hazardous nature of the waste with leaching potential of Pb above the permissible limits stipulated by various regulatory bodies. The presence of GLE reduced the mobility of Pb by a factor of 4.1-8.8 in the TCLP test, thereby rendering the waste as non-hazardous for its disposal in a landfill. However, the indiscriminate disposal of solar panel waste in the natural environment as simulated by the SPLP test indicated its harmful nature irrespective of the physical condition. Ageing of the solar panels before disposal and acidic pH conditions also positively influenced the leaching potential of the selected metals subjected to their reactivity and the accessibility of internal layers of waste to the leaching solution. Strategies such as extended producer responsibilty, advance-recycling fee, and incentivizing the recycling industry will lead to both economic benefit creation and effective waste management of this waste stream.
Collapse
Affiliation(s)
- Hari Bhakta Sharma
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Vikram Kumar Barnwal
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Brajesh Dubey
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
514
|
Ahangar H, Karimdoost A, Salimi A, Akhgari M, Phillips S, Zamani N, Hassanpour N, Kolahi AA, Krieger GR, Hassanian-Moghaddam H. Environmental assessment of pediatric Lead exposure in Tehran; a prospective cross-sectional study. BMC Public Health 2021. [DOI: https://doi.org/10.1186/s12889-021-11494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Ingestion and inhalation are common routes of exposure for lead in humans. Developing countries still have unacceptably high rates of lead toxicity, especially in children. Studies on probable risk factors of lead poisoning in Iranian children are insufficient. In this study, we aimed to evaluate possible environmental factors in children with high blood lead concentrations living in Tehran and neighboring cities.
Methods
In a prospective cross-sectional study between March 2018 and March 2019 we followed all children referred from two pediatric gastrointestinal clinics with blood lead level (BLL) > 5 μg/dL in metropolitan Tehran to investigate possible environmental risk factors in their home. Household specimens including scratched wall paint, house floor dust, windowsill dust, tap water, and consumed spice were evaluated using atomic absorption method to detect lead concentrations. Epidemiological and environmental data collected through in-depth interviews with parents/guardians. Industrial areas were defined based on municipality maps on industrial places.
Results
Thirty of 56 parents/guardians with BLL > 5 μg/dL agreed to be followed through environmental investigation. The only categorical statistically significant risk factor was a history of lead poisoning in the family and living in an industrial zone. There was a positive correlation between BLL and interior windowsills dust lead level, r = 0.46, p = 0.01. Scratched paint lead level and BLL showed a significant positive correlation, r = 0.50, p = 0.005. House floor dust lead level (median = 77.4, p < 0.001) and interior windowsill dust lead level (median = 291, p = 0.011) were both significantly higher than the environmental protection agency (EPA) standards of 40 μg/ft2, 250 μg/ft2. Interior windowsill dust lead concentrations were significantly higher in industrial areas (p = 0.026).
Conclusion
Children’s playing environment should be cleaned more often to reduce dust. Moreover, specific rules may need to be implemented for paint lead concentrations and air pollution, especially in industrial areas.
Collapse
|
515
|
Ahangar H, Karimdoost A, Salimi A, Akhgari M, Phillips S, Zamani N, Hassanpour N, Kolahi AA, Krieger GR, Hassanian-Moghaddam H. Environmental assessment of pediatric Lead exposure in Tehran; a prospective cross-sectional study. BMC Public Health 2021; 21:1437. [PMID: 34289825 PMCID: PMC8296531 DOI: 10.1186/s12889-021-11494-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ingestion and inhalation are common routes of exposure for lead in humans. Developing countries still have unacceptably high rates of lead toxicity, especially in children. Studies on probable risk factors of lead poisoning in Iranian children are insufficient. In this study, we aimed to evaluate possible environmental factors in children with high blood lead concentrations living in Tehran and neighboring cities. METHODS In a prospective cross-sectional study between March 2018 and March 2019 we followed all children referred from two pediatric gastrointestinal clinics with blood lead level (BLL) > 5 μg/dL in metropolitan Tehran to investigate possible environmental risk factors in their home. Household specimens including scratched wall paint, house floor dust, windowsill dust, tap water, and consumed spice were evaluated using atomic absorption method to detect lead concentrations. Epidemiological and environmental data collected through in-depth interviews with parents/guardians. Industrial areas were defined based on municipality maps on industrial places. RESULTS Thirty of 56 parents/guardians with BLL > 5 μg/dL agreed to be followed through environmental investigation. The only categorical statistically significant risk factor was a history of lead poisoning in the family and living in an industrial zone. There was a positive correlation between BLL and interior windowsills dust lead level, r = 0.46, p = 0.01. Scratched paint lead level and BLL showed a significant positive correlation, r = 0.50, p = 0.005. House floor dust lead level (median = 77.4, p < 0.001) and interior windowsill dust lead level (median = 291, p = 0.011) were both significantly higher than the environmental protection agency (EPA) standards of 40 μg/ft2, 250 μg/ft2. Interior windowsill dust lead concentrations were significantly higher in industrial areas (p = 0.026). CONCLUSION Children's playing environment should be cleaned more often to reduce dust. Moreover, specific rules may need to be implemented for paint lead concentrations and air pollution, especially in industrial areas.
Collapse
Affiliation(s)
- Hedieh Ahangar
- Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Afsoon Karimdoost
- Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Amir Salimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Akhgari
- Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | - Scott Phillips
- University of Colorado Anchutz Medical Campus, Rocky Mountain Poison & Drug Safety, Denver, CO and Washington Poison Center, Seattle, WA, USA
| | - Nasim Zamani
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Toxicology, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, South Karegar Street, Tehran, Iran
| | - Nasibeh Hassanpour
- Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gary R Krieger
- Skaggs School of Pharmacy and Pharmaceutical Science, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Toxicology, Loghman Hakim Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, South Karegar Street, Tehran, Iran.
| |
Collapse
|
516
|
Concomitant oral intake of purified clinoptilolite tuff (G-PUR) reduces enteral lead uptake in healthy humans. Sci Rep 2021; 11:14796. [PMID: 34285282 PMCID: PMC8292361 DOI: 10.1038/s41598-021-94245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Lead exposure can cause substantial organ damage. Enteral lead absorption may be reduced by concomitant intake of clinoptilolite tuff, a zeolite from natural sources. This study aimed to assess the effect of purified clinoptilolite tuff (G-PUR) on enteral lead uptake in adults using stable lead isotope 204Pb as a tracer. In this randomized, placebo-controlled, double-blind, parallel-group study, 42 healthy participants were randomized to receive oral G-PUR 2.0 g, 2 * 2.0 g, or placebo, together with 2.5 µg of 204Pb in water. The enrichment of 204Pb caused by the tracer in blood and urine was measured by mass spectrometry. G-PUR was well tolerated. The mean maximum 204Pb enrichment of 0.505% of total blood lead was significantly higher (p < 0.0001) in the placebo group compared to G-PUR 2.0 g (0.073%) or G-PUR 2 * 2.0 g (0.057%) group. Normalized 204Pb AUC0-192 was 86.5, 11.9, and 8.5% * h without and with G-PUR 2.0 g, and G-PUR 2 * 2.0 g, respectively (p < 0.0001 vs. placebo). This smaller 204Pb exposure was paralleled by a reduced urinary excretion in subjects receiving G-PUR. Concomitant oral intake of purified clinoptilolite tuff reduced enteral uptake of 204Pb in healthy humans by approximately 90%. The reduced bioavailability is demonstrable by a decrease of 204Pb tracer enrichment in blood and urine.Trial registration: clinicaltrials.gov identifier: NCT04138693, registered 24/10/2019.
Collapse
|
517
|
Hydrochloric Acid Modification and Lead Removal Studies on Naturally Occurring Zeolites from Nevada, New Mexico, and Arizona. Processes (Basel) 2021. [DOI: 10.3390/pr9071238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.
Collapse
|
518
|
Golsanamlou Z, Soleymani J, Abbaspour S, Siahi-Shadbad M, Rahimpour E, Jouyban A. Sensing and bioimaging of lead ions in intracellular cancer cells and biomedical media using amine-functionalized silicon quantum dots fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119747. [PMID: 33819757 DOI: 10.1016/j.saa.2021.119747] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 05/28/2023]
Abstract
A novel amine-functionalized silica quantum dots (SiQDs) fluorescent nanoprobe was developed for sensing of lead concentration in water, plasma and cell lysate. In addition, the developed probe was utilized for bioimaging of intracellular lead ions in HT 29 cancer cells. The amine-functionalized nanoprobe exhibited fluorescence emission at 445 nm under excitation at 355 nm. Upon addition of lead ions, the fluorescence of SiQDs linearly enhanced from 50 ng/mL to 5 µg/mL and 50 ng/mL to 25 µg/mL for plasma and standard media, respectively. The synthesis and fabrication of this probe are simple and serves high sensitivity with a limit of detection down to around 20 ng/mL. In the presence of various molecular and ion interfering, reliable results are obtained, confirming the specificity of the nanoprobe for lead ion detection. Meanwhile, amine-functionalized SiQD-based nanoprobe exhibits excellent cell membrane-permeability and biocompatibility. Thus, this probe is utilized for lead tracing in HT 29 cancer live cells. Fluorescent microscopy results confirmed the attachment of the produced nanomaterials to the HT 29 cancer cells.
Collapse
Affiliation(s)
- Zahra Golsanamlou
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheil Abbaspour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
519
|
Tudosie MS, Caragea G, Popescu DM, Avram O, Serban D, Smarandache CG, Tudor C, Badiu CD, Socea B, Sabau AD, Comandasu M, Spataru R, Costea DO, Tanasescu C, Dascalu AM. Optimization of a GF-AAS method for lead testing in blood and urine: A useful tool in acute abdominal pain management in emergency. Exp Ther Med 2021; 22:985. [PMID: 34345267 DOI: 10.3892/etm.2021.10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
Suspicion of lead poisoning is confirmed by its concentration in blood and protoporphyrin red blood cells. At low concentrations, lead influences the synthesis of the heme in the sense of lowering it. Acute and chronic lead intoxication is extremely polymorphic in regards to its clinical manifestations, with digestive, hematological, cardiovascular, renal hepatic and neurological features. The aim of the study was to evaluate the presence of lead in human whole blood and urine harvested before and during chelation treatment in the case of lead poisoning. An atomic absorption spectroscopic method for the analysis of lead was developed using graphite furnace atomic absorption spectrophotometer (GF-AAS), Varian Spectra AA-880 with a hollow cathode lead lamp and a deuterium lamp for background correction, coupled to a GTA-100 atomizer and a programmable sample dispenser. Standard calibration solutions were used for the range 10-100 µg/l. The linearity range was 10.0 to 100.0 µg/l with the correlation coefficient of 0.999. We established that the method can be applied for the determination of lead in whole blood and urine, and the results obtained are useful for monitoring chelation therapy in cases of acute lead poisoning, a neglected cause of abdominal colic pain in an emergency situation.
Collapse
Affiliation(s)
- Mihail Silviu Tudosie
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Genica Caragea
- Military Medical Research Center, 010919 Bucharest, Romania
| | - Dragos Marian Popescu
- Faculty of Medicine, The University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Oana Avram
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,ICU II Toxicology, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Dragos Serban
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Catalin Gabriel Smarandache
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Corneliu Tudor
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Cristinel Dumitru Badiu
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,General Surgery, Emergency Clinical Hospital 'Prof. Dr. Bagdasar Arseni', 041915 Bucharest, Romania
| | - Bogdan Socea
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,Department of Surgery, 'Sf. Pantelimon' Emergency Clinical Hospital, 021659 Bucharest, Romania
| | - Alexandru Dan Sabau
- Third Department, Faculty of Medicine, 'Lucian Blaga' University of Sibiu, 550169 Sibiu, Romania
| | - Meda Comandasu
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Radu Spataru
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,Department of Pediatric Surgery, Emergency Clinic Hospital for Children 'Marie S. Curie', 077120 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Faculty of Medicine, Ovidius University, 900470 Constanta, Romania.,First Surgery Department, Emergency County Hospital, 900591 Constanta, Romania
| | - Ciprian Tanasescu
- Third Department, Faculty of Medicine, 'Lucian Blaga' University of Sibiu, 550169 Sibiu, Romania
| | - Ana Maria Dascalu
- Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020011 Bucharest, Romania.,Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
520
|
Zhu J, Yeo JH, Bowyer AA, Proschogo N, New EJ. Studies of the labile lead pool using a rhodamine-based fluorescent probe. Metallomics 2021; 12:644-648. [PMID: 32342963 DOI: 10.1039/d0mt00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead is a heavy metal which has long been known to have toxic effects on the body. However, much remains to be learnt about the labile lead pool and cellular uptake of lead. We report here RPb1 that undergoes a 100-fold increase in fluorescence emission in the presence of Pb2+, and which can be applied to study the labile lead pool within cells. We demonstrate the capacity of RPb1 for investigating labile lead pool in DLD-1 cells and changes in labile lead during differentiation of K562 cells.
Collapse
Affiliation(s)
- Jianping Zhu
- University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
521
|
Polat N. Determination of Lead in Urine by Slotted Quartz Tube (SQT) – Flame Atomic Absorption Spectrometry (FAAS) Following Preconcentration by Dispersive Liquid Phase Microextraction (DLLME). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1914645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Naci Polat
- Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
522
|
He P, Yang C, He D, Zhao S, Xie Y, Wang H, Ma J. Blood Lead, Systemic Inflammation, and Blood Pressure: Exploring Associations and Mediation Effects in Workers Exposed to Lead. Biol Trace Elem Res 2021; 199:2573-2581. [PMID: 32959337 DOI: 10.1007/s12011-020-02397-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Relationships of lead exposure with blood pressure and blood lead with inflammation have been previously established yet, but the conclusions are still controversial. The objective of our study was to investigate the role of systemic inflammation in the relationships between blood lead concentration and blood pressure. We quantified the levels of blood lead and white blood cell count in 505 lead-exposed workers with 842 observations. Associations between blood lead, white blood cell count, and blood pressure were evaluated by using linear mixed models. We further performed mediation analysis to investigate the role of white blood cell count in the associations between blood lead concentration and blood pressure. We observed that each 1% increase of blood lead levels was significantly positively associated with a 0.9%, 1.7%, and 1.1% increases in systolic blood pressure, white blood cell count, and blood platelet count, respectively. Also, we found that the levels of white blood cell count were positively correlated with diastolic blood pressure and systolic blood pressure in a dose-response manner. Mediation analysis showed that the levels of white blood cell significantly mediated the associations between concentration of blood lead and systolic blood pressure. Collectively, our findings suggest that blood lead was positively associated with systolic blood pressure and that systemic inflammation might play a key role in this association.
Collapse
Affiliation(s)
- Ping He
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Chengxin Yang
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Dongkui He
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Shiyu Zhao
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Haijiao Wang
- National Center of Occupational Safety and Health, National Health Commission, Beijing, 102300, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
523
|
Cherkani-Hassani A, Slaoui M, Ghanname I, Mojemmi B, Eljaoudi R, Belhaj A, Kers B, Flayou M, Mouane N. Lead concentrations in breast milk of Moroccan nursing mothers and associated factors of exposure: CONTAMILK STUDY. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103629. [PMID: 33684565 DOI: 10.1016/j.etap.2021.103629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The aim of CONTAMILK study was to estimate levels of contamination of breast milk (BM) of Moroccan nursing mothers by some xenobiotics including, lead (Pb), to identify associated factors of exposure and to determine the daily intake of newborns. Lead concentrations were determined in 70 samples of colostrum by ICPMS and a structured questionnaire was filled during milk collection to report participants' data. The median lead concentration was 908 μg/L (range 1.38-515,39 μg/L) and in 79 % of samples, levels were higher than the normal range reported by the World Health Organization (WHO) in BM (2-5 μg/L). Indeed, preterm delivery, frequency of use of cosmetic powders and lipsticks were significantly associated with the level of lead in BM. The estimated daily intake was greater than the tolerable daily intake (TDI) of the European food safety authority (0.5 μg/kg/day) for 39 babies and 6 babies according to the WHO (3.6 μg/kg/day).
Collapse
Affiliation(s)
- Abha Cherkani-Hassani
- Unit of training and research in Nutrition and Food Science. Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco; Laboratory of analytical chemistry and food science, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| | | | - Imane Ghanname
- Team research of Pharmacoeconomics and Pharmacoepidemiology, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Morocco; Faculty of health sciences, International University of Casablanca, Morocco
| | - Brahim Mojemmi
- Laboratory of analytical chemistry and food science, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Eljaoudi
- Laboratory of pharmacology and toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Abdelilah Belhaj
- Laboratory of Quality Control of Waters, National Office of Electricity and Drinking Water (ONEE), Rabat, Morocco
| | - Brahim Kers
- Laboratory of Quality Control of Waters, National Office of Electricity and Drinking Water (ONEE), Rabat, Morocco
| | - Majda Flayou
- Laboratory of Quality Control of Waters, National Office of Electricity and Drinking Water (ONEE), Rabat, Morocco
| | - Nezha Mouane
- Unit of training and research in Nutrition and Food Science. Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco; Department of Pediatric, Hepatology, Gastroenterology and Nutrition PIII-Children's Hospital, Rabat, Morocco
| |
Collapse
|
524
|
de Oliveira VF, Busanello C, Viana VE, Stafen CF, Pedrolo AM, Paniz FP, Pedron T, Pereira RM, Rosa SA, de Magalhães Junior AM, Costa de Oliveira A, Batista BL, Pegoraro C. Assessing mineral and toxic elements content in rice grains grown in southern Brazil. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
525
|
Gori E, Pierini A, Meucci V, Abramo F, Muscatello LV, Marchetti V. Hepatic lead and copper concentrations in dogs with chronic hepatitis and their relationship with hematology, serum biochemistry, and histopathology. J Vet Intern Med 2021; 35:1773-1779. [PMID: 34021627 PMCID: PMC8295653 DOI: 10.1111/jvim.16149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although the influence of copper ([Cu]) on chronic hepatitis (CH) has been widely studied in dogs, little information is available about the accumulation of other metals. HYPOTHESIS/OBJECTIVES We assessed the concentration of lead ([Pb]) in the livers of dogs with CH with or without abnormal hepatic [Cu] to establish if any association existed between [Pb] and either hematologic or biochemical variables, fibrosis, necrosis and inflammation of the liver on histology. ANIMALS Thirty-four dogs with CH that had hepatic [Cu] and [Pb] determined. METHODS Retrospective review of medical records of dogs with CH and hepatic [Cu] and [Pb]. Chronic hepatitis was defined using current American College of Veterinary Internal Medicine consensus statement guidelines. Hepatic [Cu] and [Pb] were determined using square wave anodic stripping voltammetry. Dogs were divided into 2 groups based on [Cu]: <400 ppm (LoCu) and ≥400 ppm (HiCu). RESULTS The median [Cu] and [Pb] were 357 ppm (range, 100-7743 ppm) and 58.7 (range, 6.89-224.4 ppm), respectively. Nineteen dogs had LoCu and 15 dogs had HiCu. Median [Pb] was significantly higher in HiCu compared to LoCu dogs (P < .001). Hepatic [Pb] and [Cu] were significantly correlated (rho = 0.7; P < .001). Dogs with microcytosis had higher [Pb] than did dogs with normal red cell volume (P = .02). Hepatic [Pb] was not correlated with either necroinflammatory or fibrosis scores. CONCLUSIONS AND CLINICAL IMPORTANCE Although additional studies are needed to better understand the clinical role of hepatic [Pb], dogs with abnormal hepatic [Cu] may also have higher hepatic [Pb]. In addition, in dogs with high hepatic [Pb], microcytosis may be present.
Collapse
Affiliation(s)
- Eleonora Gori
- Veterinary Teaching Hospital “Mario Modenato,” Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Alessio Pierini
- Veterinary Teaching Hospital “Mario Modenato,” Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Valentina Meucci
- Veterinary Teaching Hospital “Mario Modenato,” Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Francesca Abramo
- Veterinary Teaching Hospital “Mario Modenato,” Department of Veterinary SciencesUniversity of PisaPisaItaly
| | | | - Veronica Marchetti
- Veterinary Teaching Hospital “Mario Modenato,” Department of Veterinary SciencesUniversity of PisaPisaItaly
| |
Collapse
|
526
|
Esmaeili N, Rakhtshah J, Kolvari E, Rashidi A, Shirkhanloo H. Rapid Speciation of Lead in Human Blood and Urine Samples Based on MWCNTs@DMP by Dispersive Ionic Liquid-Suspension-Micro-Solid Phase Extraction. Biol Trace Elem Res 2021; 199:2496-2507. [PMID: 33034808 DOI: 10.1007/s12011-020-02382-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022]
Abstract
An efficient sorbent based on 2,3-dimercapto-1-propanol immobilized on multi-wall carbon nanotubes (MWCNTs@DMP) was developed for separation/speciation of organic and inorganic lead (alkyl-Pb, Pb2+) in human blood, urine, and water samples by dispersive ionic liquid-suspension-micro-solid phase extraction (DIL-S-μ-SPE). By procedure, the MWCNTs@DMP as solid phase, acetone, and ionic liquid (IL, [HMIM][PF6]) were mixed and injected to 10 mL of the liquid phase at pH = 6.5. After shaking, the Pb(II) was extracted in MWCNTs@DMP and settled down in a conical tube with IL by centrifuging (Pb2+→: SH-SiO2@CNTs). The lead (Pb2+) was back-extracted from sorbent/IL in acidic pH and measured by atom trap atomic absorption spectrometry (AT-AAS). In addition, the organic lead (R-Pb, alkyl lead) converted to Pb(II) and total lead (T-Pb) was determined in the same conditions by UV radiation in 95 °C. Under the optimal conditions, the linear range (9.5-480 μg L-1), LOD (3.2 μg L-1), and enrichment factor (10.4) were obtained (RSD < 5%). The adsorption capacity of the MWCNTs@DMP and MWCNTs was achieved as 191.6 mg g-1 and 25.8 mg g-1, respectively. The method was validated by standard reference materials (SRM 1643d, SRM 955, and SRM 2668), ET-AAS, and ICP-MS analysis in real samples. Graphical abstract.
Collapse
Affiliation(s)
- Nafiseh Esmaeili
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| | - Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Eskandar Kolvari
- Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran
| | - Alimord Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box 14857-33111, Tehran, Iran.
| |
Collapse
|
527
|
Hammo MM, Akar T, Sayin F, Celik S, Akar ST. Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112490. [PMID: 33819651 DOI: 10.1016/j.jenvman.2021.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The removal of toxic metals from the aquatic ecosystem is one of the most pressing environmental and public health concerns today. A strong potential has recently emerged for the removal of such metals using biochar sorbents. Biosorption technology could make a significant difference in the future. It is a viable and cost-effective alternative to the remediation of toxic pollutants utilizing various biomaterials. In the current study, batch and fixed-bed studies were performed to evaluate the performance of Capsicum annuum L. seeds biochar (CASB) as an alternative material in removing toxic Pb(II) from aqueous solutions. Removal characteristics were investigated by considering the equilibrium and kinetic aspects. Biosorption equilibrium was established within 40 min. The optimum dosage of CASB for Pb(II) removal was determined as 2.0 g L-1. Biosorption data were well predicted by a non-linear Langmuir isotherm model. Monolayer biosorption occurred for CASB with a maximum capacity of 36.43 mg g-1. Biosorption kinetics fitted well with a pseudo-first-order kinetic model. The external mass transfer may control Pb(II) transport mechanism. Dynamic flow mode biosorption and regeneration potential of CASB were also examined. The application of CASB exhibited a 100% removal yield in real apple juice samples spiked with low concentrations of Pb(II). Exhausted points for the CASB packed columns were recorded as 195 and 320 min for simulated wastewater (SW) and synthetic Pb(II) solution, respectively. FTIR, BET, SEM-EDX analysis, and zeta potential measurements were used for the characterization of biochar and assessment of the metal ion-biosorbent interaction mechanism. Finally, our study provides a practical approach for the uptake of Pb(II) ions from contaminated solutions.
Collapse
Affiliation(s)
- Mahmoud M Hammo
- Eskisehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Chemistry, 26040, Eskisehir, Turkey
| | - Tamer Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey.
| | - Fatih Sayin
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| | - Sema Celik
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| | - Sibel Tunali Akar
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR-26040, Eskisehir, Turkey
| |
Collapse
|
528
|
Seo JW, Hong YS, Kim BG. Assessment of Lead and Mercury Exposure Levels in the General Population of Korea Using Integrated National Biomonitoring Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6932. [PMID: 34203486 PMCID: PMC8297126 DOI: 10.3390/ijerph18136932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
In Korea, the estimated values of blood lead (Pb) and mercury (Hg) levels differ between two national-level biomonitors, namely the Korean National Environmental Health Survey and the Korea National Health and Nutrition Examination Survey. The present study used integrated data from these surveys to estimate the representative values of the change in concentration and recent distribution characteristics. The yearly trend of age-standardized exposure levels in regular adults was identified, and the geometric mean (GM) adjusted according to demographic characteristics was presented. Age-standardized GM for blood Pb and Hg in the integrated data was 2.06 and 3.64 μg/L in 2008, respectively, which decreased to 1.55 and 2.92 μg/L, respectively, by 2017. Adjusted GMs from most recently conducted surveys (2015-2017) were 1.61 and 2.98 μg/L for blood Pb and Hg, respectively. In particular, the adjusted percentage of blood Hg exceeding the reference value of 5 μg/L was 20.79%. While the blood Pb and Hg exposure levels are decreasing in Korea, the levels remain high relative to those in other countries. The Hg levels exceeded the reference value in many individuals. Therefore, continued biomonitoring must be conducted, and a reduction plan and exposure management are needed for harmful metals, including Hg.
Collapse
Affiliation(s)
- Jeong-Wook Seo
- Environmental Health Center, Dong-A University, Busan 49201, Korea; (J.-W.S.); (Y.-S.H.)
| | - Young-Seoub Hong
- Environmental Health Center, Dong-A University, Busan 49201, Korea; (J.-W.S.); (Y.-S.H.)
- Department of Preventive Medicin, Dong-A University, Busan 49201, Korea
| | - Byoung-Gwon Kim
- Environmental Health Center, Dong-A University, Busan 49201, Korea; (J.-W.S.); (Y.-S.H.)
- Department of Preventive Medicin, Dong-A University, Busan 49201, Korea
| |
Collapse
|
529
|
Mohamad Jamil PAS, Karuppiah K, Rasdi I, How V, Mohd Tamrin SB, Mani KKC, Sambasivam S, Naeini HS, Mohammad Yusof NAD, Hashim NM. Occupational hazard in Malaysian traffic police: special focus on air pollutants. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:167-176. [PMID: 33594842 DOI: 10.1515/reveh-2020-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
This paper provides a specific deliberation on occupational hazards confronted daily by Malaysian Traffic Police. Traffic police is a high-risk occupation that involves a wide range of tasks and, indirectly, faced with an equally wide variety of hazards at work namely, physical, biological, psychosocial, chemical, and ergonomic hazards. Thereupon, occupational injuries, diseases, and even death are common in the field. The objective of this paper is to collate and explain the major hazards of working as Malaysian traffic police especially in Point Duty Unit, their health effects, and control measures. There are many ways in which these hazards can be minimised by ensuring that sufficient safety measures are taken such as a wireless outdoor individual exposure indicator system for the traffic police. By having this system, air monitoring among traffic police may potentially be easier and accurate. Other methods of mitigating these unfortunate events are incorporated and addressed in this paper according to the duty and needs of traffic police.
Collapse
Affiliation(s)
- Putri Anis Syahira Mohamad Jamil
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Irniza Rasdi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shamsul Bahri Mohd Tamrin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kulanthayan K C Mani
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia,Serdang, Selangor, Malaysia
| | - Sivasankar Sambasivam
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hassan Sadeghi Naeini
- Department of Industrial Engineering Design, School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Islamic Republic of Iran
| | - Nur Athirah Diyana Mohammad Yusof
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Maizura Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
530
|
Galagarza OA, Ramirez-Hernandez A, Oliver HF, Álvarez Rodríguez MV, Valdez Ortiz MDC, Pachari Vera E, Cereceda Y, Diaz-Valencia YK, Deering AJ. Occurrence of Chemical Contaminants in Peruvian Produce: A Food-Safety Perspective. Foods 2021; 10:foods10071461. [PMID: 34202592 PMCID: PMC8307517 DOI: 10.3390/foods10071461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of chemical contaminants in agricultural products is a continued food-safety challenge in Peru. This country has robust agriculture potential, but its output of fruits and vegetables is severely impacted by massive mining activities, as well as poor farming practices, including the use of polluted irrigation water, misuse of pesticides, and inadequate postharvest conditions. This review examines the current scientific knowledge on the levels of pesticide residues, heavy metals, and mycotoxins on crops produced in Peru. The available data shows that several crop varieties are contaminated with these classes of chemical contaminants, and at levels that exceed the national and international permissible limits. The abundance of chemical contaminants in produce indicates a relevant food-safety issue, which increases the risks of chronic human diseases, like cancer—a leading cause of death in Peru. Finally, this review presents recommendations to address these contamination problems in produce grown in the Andean country.
Collapse
Affiliation(s)
- Oscar A. Galagarza
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (A.R.-H.); (H.F.O.); (A.J.D.)
- Correspondence: ; Tel.: +1-404-824-2607
| | - Alejandra Ramirez-Hernandez
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (A.R.-H.); (H.F.O.); (A.J.D.)
| | - Haley F. Oliver
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (A.R.-H.); (H.F.O.); (A.J.D.)
| | - Mariel V. Álvarez Rodríguez
- Academic Department of Process Engineering, Universidad Nacional de San Agustin, Arequipa 04001, Peru; (M.V.Á.R.); (E.P.V.); (Y.K.D.-V.)
| | | | - Erika Pachari Vera
- Academic Department of Process Engineering, Universidad Nacional de San Agustin, Arequipa 04001, Peru; (M.V.Á.R.); (E.P.V.); (Y.K.D.-V.)
| | - Yakelin Cereceda
- Department of Sociology, Universidad Nacional de San Agustin, Arequipa 04001, Peru;
| | - Yemina K. Diaz-Valencia
- Academic Department of Process Engineering, Universidad Nacional de San Agustin, Arequipa 04001, Peru; (M.V.Á.R.); (E.P.V.); (Y.K.D.-V.)
| | - Amanda J. Deering
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (A.R.-H.); (H.F.O.); (A.J.D.)
| |
Collapse
|
531
|
Saenboonruang K, Poltabtim W, Thumwong A, Pianpanit T, Rattanapongs C. Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects. Polymers (Basel) 2021; 13:polym13121930. [PMID: 34200711 PMCID: PMC8230413 DOI: 10.3390/polym13121930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
This work theoretically determined the high-energy photon shielding properties of high-density polyethylene (HDPE) composites containing rare-earth oxides, namely samarium oxide (Sm2O3), europium oxide (Eu2O3), and gadolinium oxide (Gd2O3), for potential use as lead-free X-ray-shielding and gamma-shielding materials using the XCOM software package. The considered properties were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), half value layer (HVL), and lead equivalence (Pbeq) that were investigated at varying photon energies (0.001–5 MeV) and filler contents (0–60 wt.%). The results were in good agreement (less than 2% differences) with other available programs (Phy-X/PSD) and Monte Carlo particle transport simulation code, namely PHITS, which showed that the overall high-energy photon shielding abilities of the composites considerably increased with increasing rare-earth oxide contents but reduced with increasing photon energies. In particular, the Gd2O3/HDPE composites had the highest µm values at photon energies of 0.1, 0.5, and 5 MeV, due to having the highest atomic number (Z). Furthermore, the Pbeq determination of the composites within the X-ray energy ranges indicated that the 10 mm thick samples with filler contents of 40 wt.% and 50 wt.% had Pbeq values greater than the minimum requirements for shielding materials used in general diagnostic X-ray rooms and computerized tomography rooms, which required Pbeq values of at least 1.0 and 1.5 mmPb, respectively. In addition, the comparisons of µm, µ, and HVL among the rare-earth oxide/HDPE composites investigated in this work and other lead-free X-ray shielding composites revealed that the materials developed in this work exhibited comparable X-ray shielding properties in comparison with that of the latter, implying great potential to be used as effective X-ray shielding materials in actual applications.
Collapse
Affiliation(s)
- Kiadtisak Saenboonruang
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-25-625555 (ext. 646219)
| | - Worawat Poltabtim
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Arkarapol Thumwong
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Theerasarn Pianpanit
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| | - Chanis Rattanapongs
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (W.P.); (A.T.); (T.P.); (C.R.)
| |
Collapse
|
532
|
Lakshmi RV, Raja V, Chidambaram S, Sekar CP, Neelakantan MA. Industrial impact on groundwater quality with special reference to Cr 2+ and Pb 2+ in coastal aquifers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:389. [PMID: 34097151 DOI: 10.1007/s10661-021-09186-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The present investigation has been carried out in the Ottapidaram taluk to evaluate the suitability of groundwater for drinking purposes and to assess the non-carcinogenic health risks. Twenty groundwater samples were collected, and the major physicochemical parameters were measured along with the heavy metals lead (Pb2+) and chromium (Cr2+). The analyzed anions and cations follow the average dominance order, Cl- > PO43- > SO42- > NO3- > F-, and Mg2+ > Ca2+ > Na+ > K+, respectively. From the water quality index to know the 45% of the water samples are unsuitable for drinking purposes. The statistical analysis of the data infers that major geochemical process of the region is leaching of salts by contaminated water, followed by industrial pollution and geogenic sources. The spatial representation of the different parameters reveals that the western part of the study area is predominated by geogenic sources and the eastern part is contaminated by industrial effluents. The non-carcinogenic risks of F-, NO3-, Cr2+, and Pb2+ were assessed. The findings show 40% of the samples exceeds the chromium hazard quotient, and 50% exceed the lead hazard quotient value of 1 recommended by the US Environmental Protection Agency (USEPA). The present investigation shows that Cr2+ and Pb2+ highly pollute the groundwater due to the industrial impacts. The present study suggests that the groundwater from this taluk is worse, and people from this taluk have health risks due to groundwater drinking.
Collapse
Affiliation(s)
- Ramamoorthy Venkada Lakshmi
- Department of Civil Engineering, National Engineering College, K.R.Nagar, Thoothukudi District, Tamil Nadu, Kovilpatti, 628 503, India
| | - Velayutham Raja
- Chemistry Research Centre, National Engineering College, K.R.Nagar, Thoothukudi District, Tamil Nadu, Kovilpatti, 628 503, India
| | | | - Chelladurai Puthiya Sekar
- Department of Civil Engineering, National Engineering College, K.R.Nagar, Thoothukudi District, Tamil Nadu, Kovilpatti, 628 503, India
| | | |
Collapse
|
533
|
Optimizing the Biosorption Behavior of Ludwigia stolonifera in the Removal of Lead and Chromium Metal Ions from Synthetic Wastewater. SUSTAINABILITY 2021. [DOI: 10.3390/su13116390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a natural low-coast, efficient, and eco- bio-sorbent plant material (Ludwigia stolonifera), with both parts of the root and shoot, were studied for the removal of the cationic metal ions, lead Pb2+ and chromium Cr6+, via batch mode experiments to evaluate their maximum adsorption capacity, and held a comparison between the used bio-sorbent roots and shoots, based on the highest bio-sorption potential. Optimization of the bio-sorption parameters, such as contact time, pH, bio-sorbent (root and shoot) dosage, and initial ion concentration was conducted. The results indicated that 1.6 g of the used bio-sorbent shoot material removed 81.4% of Pb2+, and 77% of Cr6+ metal ions from liquid media under the conditions of 100 ppm of initial metal ions concentration at room temperature for 60 min of contact time with the static condition. Different isotherms and kinetic models were fit to the experimental data to understand the nature of the bio-sorption process. The experimental data were best fit by the pseudo-second-order kinetic model with a high correlation coefficient (R2 = 0.999), which reveals the chemisorption nature of the bio-sorption process. The chemical and structural analysis of the used bio-sorbent, before and after Cr6+ and Pb2+ bio-sorption, were performed using different techniques of characterization, such as Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The used bio-sorbent proved to be a low-cost, efficient, and eco-friendly material to remove heavy metal ions from aqueous solutions.
Collapse
|
534
|
Kasuno M, Osuga H, Shina K, Yamazaki T. Coulometric Anodic Stripping Voltammetry of Lead at Copper Column Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Megumi Kasuno
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Hitomi Osuga
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Katsuya Shina
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Takuya Yamazaki
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| |
Collapse
|
535
|
Wimalasiri AKVK, Fernando MS, Dziemidowicz K, Williams GR, Koswattage KR, Dissanayake DP, de Silva KMN, de Silva RM. Structure-Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead. ACS OMEGA 2021; 6:13527-13543. [PMID: 34095648 PMCID: PMC8173547 DOI: 10.1021/acsomega.0c05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption.
Collapse
Affiliation(s)
| | - M. Shanika Fernando
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Karolina Dziemidowicz
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gareth R. Williams
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | | | - D. P. Dissanayake
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - K. M. Nalin de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Rohini M. de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
536
|
Al-Anbari HSN, Ismail DK, Hasan MK, Aga QAAK, Shinu P, Nair AB. High Blood Lead Levels: An Increased Risk for Development of Brain Hyperintensities among Type 2 Diabetes Mellitus Patients. Biol Trace Elem Res 2021; 199:2149-2157. [PMID: 32865724 DOI: 10.1007/s12011-020-02359-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
Abstract
The current study was aimed to ascertain the effect of blood lead level on brain tissues in patients with type 2 diabetes. A total of 300 human participants ages 27 to 60 years with type 2 diabetes (n = 150) and healthy individuals (n = 150) were included in this study. The serum samples were used for measuring HbA1c and fasting blood glucose. Blood lead level was measured using flame atomic absorption spectrophotometer. Magnetic resonance imaging sub-analysis was used to assess the brain hyperintensities. Brain hyperintensities were found in 55% of patients with diabetes and 6% of non-diabetic control group subjects. The deep white matter hyperintensities were observed in 45% of diabetic patients, while the subcortical hyperintensities were noted in 10% of cases. Entorhinal cortex changes (31%) and hippocampus changes (42%) were noted in diabetic patients with brain hyperintensities. Diabetic patients with brain hyperintensities showed higher blood lead levels, HbA1c, and fasting blood sugar (p < 0.0001) as compared with healthy volunteers. A higher correlation (R2 = 0.8922) was found between deep white matter hyperintensities' size and blood lead levels. In nutshell, persistence of high blood lead level in diabetic patients may progress to brain hyperintensities which may consequently lead to cognitive, behavioral changes and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Dawser K Ismail
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al Esraa University College, Baghdad, 10069, Iraq
| | - Mohammed Khudair Hasan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al Esraa University College, Baghdad, 10069, Iraq
| | - Qutaiba Ahmed Al Khames Aga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman, 19392, Jordan.
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
537
|
Bhardwaj JK, Paliwal A, Saraf P. Effects of heavy metals on reproduction owing to infertility. J Biochem Mol Toxicol 2021; 35:e22823. [PMID: 34051019 DOI: 10.1002/jbt.22823] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
The reproductive performance of most of the species is adversely affected by hazardous heavy metals like lead, cadmium, mercury, arsenic, zinc, and copper. Heavy metals are liberated in the environment by natural sources like rock weathering, volcanic eruption, and other human activities like industrial discharge, mineral mining, automobile exhaust, and so forth. Heavy metals alter several reproductive functions in both males and females like a decrease in sperm count, motility, viability, spermatogenesis, hormonal imbalance, follicular atresia, and delay in oocyte maturation, and so forth, and thus, forms an important aspect of reproductive toxicology. The present review compiles toxicity aspects of various heavy metals and their efficacy and mechanism of action in mammals.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Aakansha Paliwal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
538
|
Aglan HS, Safar MM, Ain-Shoka AAM, Kandil AM, Gebremedhn S, Salilew-Wondim D, Schellander K, Tesfaye D. Developmental toxicity of lead in rats after gestational exposure and the protective role of taurine. J Biochem Mol Toxicol 2021; 35:e22816. [PMID: 34043862 DOI: 10.1002/jbt.22816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023]
Abstract
The present study was conducted to investigate the potential adverse effect of Pb on pregnant Sprague-Dawley rats and their fetuses after maternal exposure, on gestational days (GD) 7-16. The possible protective role of taurine (TA), administered throughout the gestation period (GD 1-20) against Pb toxicity, was also evaluated. Pregnant rats were divided into four groups: Group 1 (control) was given distilled water; Group 2 was exposed to Pb (250 ppm) in drinking water (GD 7-16), whereas Group 3 received TA (50 mg/kg/day) by oral gavage (GD 1-20); Group 4 was exposed to Pb (GD 7-16), whereas pretreated with TA from GD 1 till the end of the gestation period. After termination on GD 20, maternal and embryo-fetal outcomes were evaluated. Blood samples were collected for hematological and biochemical parameters assessment. The results showed that, Pb induced a significant reduction in the maternal body weight, weight gain, uterine and placental weight, in addition to a high incidence of abortion and fetal resorption. Meanwhile, fetuses demonstrated decreased body weight and length, with a high rate of mortality as well as external and skeletal abnormalities. Additionally, Pb induced severe hematological and biochemical alterations in both dams and fetuses. The toxicity of Pb was further emphasized by placental histopathological examination and hepatic DNA fragmentation. Pretreatment with TA greatly attenuated the impact of Pb on both maternal and fetal parameters. Moreover, TA alleviated the incidence of placental damage and hepatic DNA fragmentation. The results highlight the potential prophylaxis role of TA against maternal and developmental Pb toxicity.
Collapse
Affiliation(s)
- Hoda Samir Aglan
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Asmaa Munir Kandil
- Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Samuel Gebremedhn
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Dessie Salilew-Wondim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| |
Collapse
|
539
|
Ujueta F, Navas-Acien A, Mann KK, Prashad R, Lamas GA. Low-Level Metal Contamination and Chelation in Cardiovascular Disease-A Ripe Area for Toxicology Research. Toxicol Sci 2021; 181:135-147. [PMID: 33662137 DOI: 10.1093/toxsci/kfab026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. In spite of cardiovascular prevention, there is residual risk not explicable by traditional risk factors. Metal contamination even at levels previously considered safe in humans may be a potential risk factor for atherosclerosis. This review examines evidence that 2 metals, lead, and cadmium, demonstrate sufficient toxicological and epidemiologic evidence to attribute causality for atherosclerotic disease. Basic science suggests that both metals have profound adverse effects on the human cardiovascular system, resulting in endothelial dysfunction, an increase in inflammatory markers, and reactive oxygen species, all of which are proatherosclerotic. Epidemiological studies have shown both metals to have an association with cardiovascular disease, such as peripheral arterial disease, ischemic heart disease, and cardiovascular mortality. This review also examines edetate disodium-based chelation as a possible pharmacotherapy to reduce metal burden in patients with a history of cardiovascular disease and thus potentially reduce cardiovascular events.
Collapse
Affiliation(s)
- Francisco Ujueta
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Rakesh Prashad
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, Florida
| | - Gervasio A Lamas
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida.,Columbia University Division of Cardiology, Mount Sinai Medical Center,Miami Beach, Florida
| |
Collapse
|
540
|
Fadda LM, Alsharidah R, Hasan IH. Turmeric and vitamin C mitigate testicular atrophy induced by lead diacetate via regulation of GRP-78/17β-HSD pathways in rat's model. Andrologia 2021; 53:e14120. [PMID: 34028854 DOI: 10.1111/and.14120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Occupational and ecological contacts to lead persist as a universal concern. Lead alters most of the physiological processes via enhancing oxidative stress. Thus, this study was purposed to assess the influence of turmeric (TMRC) and/or vitamin C (VIT-C) on Lead diacetate (Lead diAC)-induced testicular atrophy with an emphasis on oxidative stress, inflammation, BAX/STAR and GRP-78/17β-HSD signalling. Rats were injected with Lead diAC and then treated with TMRC and/or VIT-C orally for 1 week. Lead diAC decreased serum testosterone and testicular glutathione levels. It also decreased superoxide dismutase activity. On the contrary, levels of malondialdehyde, tumour necrosis factor-α, IL-1β and caspase-3 were increased. mRNA levels and protein expressions of GRP-78 and BAX were upregulated, while the expression of both steroidogenic acute regulatory protein and 17β-HSD were downregulated. DNA fragmentation was increased as well. These changes were further confirmed by histopathological findings. Supplementation with TMRC and/or VIT-C ameliorated all of the above parameters. In Conclusion: TMRC or VIT-C specially in combination group prevents Lead diAC testicular damage via reduction of oxidative injury as well as inflammation, downregulation of GRP-78/BAX and upregulation of 17β-HSD and STAR expression as well as improvement in the histological architecture of the testis.
Collapse
Affiliation(s)
- Laila Mohamed Fadda
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Reem Alsharidah
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Iman Huseein Hasan
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
541
|
Zheng Y, Li Q, Wang C, Su M. Enhanced Turn-On Fluorescence Detection of Aqueous Lead Ions with Size-Shrinkable Hydrogels. ACS OMEGA 2021; 6:11897-11901. [PMID: 34056343 PMCID: PMC8154013 DOI: 10.1021/acsomega.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Highly sensitive detection of lead ions in water is of importance. This paper reports a new method to enhance the sensitivity of fluorescence detection of aqueous lead ions by exploiting the large volume reduction of hydrogels upon dehydration. Rhodamine-derived prefluorescent probes with high selectivity to lead ions are grafted on a carboxylated agarose hydrogel. Upon binding low-concentration lead ions, fluorescence emission is turned on. The dehydration of the hydrogel leads to a size reduction of over 40 times and an enhancement of fluorescence of 10 times at a lead-ion concentration of 10-7 M, allowing fluorescence detection with naked eyes. Given its low cost, easy operation, and high sensitivity, the volume reduction hydrogel can be used to detect lead ions in drinking water.
Collapse
Affiliation(s)
- Yiting Zheng
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qingxuan Li
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chenfei Wang
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ming Su
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
542
|
Umejuru E, Prabakaran E, Pillay K. Coal Fly Ash Decorated with Graphene Oxide-Tungsten Oxide Nanocomposite for Rapid Removal of Pb 2+ Ions and Reuse of Spent Adsorbent for Photocatalytic Degradation of Acetaminophen. ACS OMEGA 2021; 6:11155-11172. [PMID: 34056271 PMCID: PMC8153921 DOI: 10.1021/acsomega.0c04194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/28/2021] [Indexed: 05/03/2023]
Abstract
Coal fly ash was decorated with a graphene oxide-tungsten oxide nanorods nanocomposite (CFA/GO/WO3NRs nanocomposite) via a hydrothermal method and applied for the remediation of lead (Pb2+ ions). The Pb2+ ion-loaded spent adsorbent (CFA/GO/WO3NRs + Pb2+ nanocomposite) was reused for the photodegradation of acetaminophen. CFA/GO/WO3NRs + Pb2+ nanocomposite displayed rapid removal of Pb2+ ions. Pseudo-second-order kinetics and the Langmuir isotherm model described the adsorption data. The adsorption capacity of the CFA/GO/WO3NRs nanocomposite was 41.51 mg/g for the removal of Pb2+ ions. Additionally, the Pb2+ ion-loaded spent adsorbent significantly influenced the degradation of acetaminophen by photocatalysis where 93% degradation was observed. It is worthy to note the reuse application of Pb2+ ion-loaded spent adsorbent as a photocatalyst, which will significantly reduce the secondary waste obtained from conventional adsorption methods.
Collapse
Affiliation(s)
- Emmanuel
Christopher Umejuru
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Eswaran Prabakaran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Kriveshini Pillay
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
543
|
Toghan A, Abd-Elsabour M, Abo-Bakr AM. A novel electrochemical sensor based on EDTA-NQS/GC for simultaneous determination of heavy metals. SENSORS AND ACTUATORS A: PHYSICAL 2021; 322:112603. [DOI: 10.1016/j.sna.2021.112603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
544
|
Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity - A review. CHEMOSPHERE 2021; 271:129735. [PMID: 33736223 DOI: 10.1016/j.chemosphere.2021.129735] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals pose a serious threat if they go beyond permissible limits in our bodies. Much heavy metal's viz. Lead, Chromium, Arsenic, Mercury, Nickel, and Cadmium pose a serious threat when they go beyond permissible limits and cause hepatotoxicity. They cause the generation of ROS which in turn causes numerous injuries and undesirable changes in the liver. Epidemiological studies have shown an increase in the levels of such heavy metals in the environment posing a serious threat to human health. Epigenetic alterations have been seen in the event of exposure to such heavy metals. Apoptosis, caspase activation as well as ultrastructural changes in the hepatocytes have also been seen due to heavy metals. Inflammation involving TNF-alpha, pro-inflammatory cytokines, MAPK, ERK pathways have been seen in the event of heavy metal hepatotoxicity. All these have shown that these heavy metals pose a serious threat to human health in particular and the environment as a whole.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Rajeshwari Koti
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
545
|
Abstract
The contamination of soil by heavy metals and metalloids is a worldwide problem due to the accumulation of these compounds in the environment, endangering human health, plants, and animals. Heavy metals and metalloids are normally present in nature, but the rise of industrialization has led to concentrations higher than the admissible ones. They are non-biodegradable and toxic, even at very low concentrations. Residues accumulate in living beings and become dangerous every time they are assimilated and stored faster than they are metabolized. Thus, the potentially harmful effects are due to persistence in the environment, bioaccumulation in the organisms, and toxicity. The severity of the effect depends on the type of heavy metal or metalloid. Indeed, some heavy metals (e.g., Mn, Fe, Co, Ni) at very low concentrations are essential for living organisms, while others (e.g., Cd, Pb, and Hg) are nonessential and are toxic even in trace amounts. It is important to monitor the concentration of heavy metals and metalloids in the environment and adopt methods to remove them. For this purpose, various techniques have been developed over the years: physical remediation (e.g., washing, thermal desorption, solidification), chemical remediation (e.g., adsorption, catalysis, precipitation/solubilization, electrokinetic methods), biological remediation (e.g., biodegradation, phytoremediation, bioventing), and combined remediation (e.g., electrokinetic–microbial remediation; washing–microbial degradation). Some of these are well known and used on a large scale, while others are still at the research level. The main evaluation factors for the choice are contaminated site geology, contamination characteristics, cost, feasibility, and sustainability of the applied process, as well as the technology readiness level. This review aims to give a picture of the main techniques of heavy metal removal, also giving elements to assess their potential hazardousness due to their concentrations.
Collapse
|
546
|
Protective Effect of Opuntia dillenii Haw Fruit against Lead Acetate-Induced Hepatotoxicity: In Vitro and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6698345. [PMID: 34012476 PMCID: PMC8105112 DOI: 10.1155/2021/6698345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
Lead is one of the most common environmental contaminants in the Earth's crust, which induces a wide range of humans biochemical changes. Previous studies showed that Opuntia dillenii (OD) fruit possesses several antioxidant and anti-inflammatory properties. The present study evaluates OD fruit hydroalcoholic extract (OHAE) hepatoprotective effects against lead acetate- (Pb-) induced toxicity in both animal and cellular models. Male rats were grouped as follows: control, Pb (25 mg/kg/d i.p.), and groups 3 and 4 received OHAE at 100 and 200 mg/kg/d + Pb (25 mg/kg/d i.p.), for ten days of the experiment. Thereafter, we evaluated the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), catalase (CAT) activity and malondialdehyde (MDA) in serum, and liver histopathology. Additionally, the cell study was also done using the HepG2 cell line for measuring the direct effects of the extract on cell viability, oxidative stress MDA, and glutathione (GSH) and inflammation tumor necrosis factor-α (TNF-α) following the Pb-induced cytotoxicity. Pb significantly increased the serum levels of ALT, AST, ALP, and MDA and liver histopathological scores but notably decreased CAT activity compared to the control group (p < 0.001 for all cases). OHAE (100 and 200 mg/kg) significantly reduced the levels of serum liver enzyme activities and MDA as well as histopathological scores while it significantly increased CAT activity compared to the Pb group (p < 0.001-0.05 for all cases). OHAE (20, 40, and 80 μg/ml) concentration dependently and significantly reduced the levels of MDA and TNF-α, while it increased the levels of GSH and cell viability in comparison to the Pb group (p < 0.001-0.05 for all cases). These data suggest that OHAE may have hepatoprotective effects against Pb-induced liver toxicity both in vitro and in vivo by its antioxidant and anti-inflammatory activities.
Collapse
|
547
|
Kakimov A, Muratbayev A, Zharykbasova K, Amanzholov S, Mirasheva G, Kassymov S, Utegenova A, Jumazhanova M, Shariati MA. Heavy metals analysis, GCMS-QP quantification of flavonoids, amino acids and saponins, analysis of tannins and organoleptic properties of powder and tincture of Echinacea purpurea (L.) and Rhapónticum carthamoídes. POTRAVINARSTVO 2021. [DOI: 10.5219/1476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants are one of the main sources of vitamins, minerals salts, macro-and microelements, and other biologically active substances that have a health and protective effect on the human body. The current study was aimed to appraise the heavy metals contents in the powder materials of two medicinally important plants Echinacea purpurea (L.) and Rhapónticum carthamoídes collected from the Semipalatinsk nuclear test site using atomic absorption spectrophotometer. Flavonoids, saponins, amino acid contents quantification were done both in raw materials as well as tincture prepared from both plants via GCMS-QP 2010 Ultra chromatomass spectrometer. Further, tannins concentrations and organoleptic properties of the tincture were elucidated using previously reported standard procedures. In the current study, the concentrations of heavy metals were within the permitted range i.e. lead (0.0027 mg.100g-1), cadmium (0.00012 mg.100g-1), arsenic (ND), mercury (ND). In the crude powder, flavonoids were observed to be in the highest concentration in E. purpurea (L.) (5.5 ±0.20 mg.100g-1), whereas, its concentration was 3.1 ±0.346 mg.100g-1 in R. carthamoídes powder. Tannin concentration was higher in R. carthamoídes (5.5 ±0.115 mg.100g-1) and 3.1 ±0.46 mg.100g-1 in E. purpurea. Likewise, saponins concentrations were 4.1 ±0.40 mg.100g-1 and 5.6 ±0.17 mg.100g-1 in E. purpurea and R. carthamoídes powder respectively. Concentrations of these active metabolites in the resultant tincture were flavonoids (7.6 ±0.23), tannins (7.5 ±0.28), and saponins (8.5 ±0.16) mg.100g-1. In the current study, we observed highest concentrations of these essential amino acids in the tincture including leucine/isoleucine (78.00 ±1.15 mg.100g-1), histidine (14.00 ±1.44 mg.100g-1), lysine (49.33 ±2.02 mg.100g-1), methionine (18.66 ±2.90 mg.100g-1), cystine (29.00 ±0.57 mg.100g-1), phenylalanine (24.16 ±1.87 mg.100g-1) and threonine (32.50 ±1.22 mg.100g-1) respectively. The resultant tincture has a pleasant agreeable taste coupled with acceptable herbal flavor which are important organoleptic properties for any product.
Collapse
|
548
|
Mohamed Nor NH, Kooi M, Diepens NJ, Koelmans AA. Lifetime Accumulation of Microplastic in Children and Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5084-5096. [PMID: 33724830 PMCID: PMC8154366 DOI: 10.1021/acs.est.0c07384] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Human exposure to microplastic is recognized as a global problem, but the uncertainty, variability, and lifetime accumulation are unresolved. We provide a probabilistic lifetime exposure model for children and adults, which accounts for intake via eight food types and inhalation, intestinal absorption, biliary excretion, and plastic-associated chemical exposure via a physiologically based pharmacokinetic submodel. The model probabilistically simulates microplastic concentrations in the gut, body tissue, and stool, the latter allowing validation against empirical data. Rescaling methods were used to ensure comparability between microplastic abundance data. Microplastic (1-5000 μm) median intake rates are 553 particles/capita/day (184 ng/capita/day) and 883 particles/capita/day (583 ng/capita/day) for children and adults, respectively. This intake can irreversibly accumulate to 8.32 × 103 (90% CI, 7.08 × 102-1.91 × 106) particles/capita or 6.4 (90% CI, 0.1-2.31 × 103) ng/capita for children until age 18, and up to 5.01 × 104 (90% CI, 5.25 × 103-9.33 × 106) particles/capita or 40.7 (90% CI, 0.8-9.85 × 103) ng/capita for adults until age 70 in the body tissue for 1-10 μm particles. Simulated microplastic concentrations in stool agree with empirical data. Chemical absorption from food and ingested microplastic of the nine intake media based on biphasic, reversible, and size-specific sorption kinetics, reveals that the contribution of microplastics to total chemical intake is small. The as-yet-unknown contributions of other food types are discussed in light of future research needs.
Collapse
|
549
|
Abstract
The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.
Collapse
|
550
|
Kuraeiad S, Kotepui M. Blood Lead Level and Renal Impairment among Adults: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4174. [PMID: 33920861 PMCID: PMC8071292 DOI: 10.3390/ijerph18084174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
Background: The adult population in lead-related occupations or environmentally exposed to lead may be at risk for renal impairment and lead nephropathy. This meta-analysis aims to determine the impact of blood lead level (BLL) on renal function among middle-aged participants. Methods: Cross-sectional, longitudinal, or cohort studies that reported BLL and renal function tests among adult participants were retrieved from PubMed, Scopus, and ISI Web of Science. Relevant studies were included and assessed for quality using the Newcastle-Ottawa Scale (NOS). The pooled mean BLL of participants with a high BLL (≥30 µg/dL), moderate BLL (20-30 µg/dL), and low BLL (<20 µg/dL) was estimated using the random effects model. The pooled mean differences in BLL, blood urea nitrogen (BUN), creatinine, uric acid, and creatinine clearance between the exposed and non-exposed participants were estimated using the random effects model. Meta-regression was performed to demonstrate the association between the effect size (ES) of the pooled mean BLL and renal function. Heterogeneity among the included studies was assessed using the Cochrane Q and I2 statistics. Cochrane Q with a p value less than 0.05 and I2 more than 50% demonstrated substantial heterogeneity among the studies included. Publication bias was assessed using the funnel plot between the effect size and standard error of the effect size. Results: Out of 1657 articles, 43 were included in the meta-analysis. The meta-analysis demonstrated that the pooled mean BLL in the participants with a high BLL, moderate BLL, and low BLL was 42.41 µg/dL (95% confidence interval (CI): 42.14-42.67, I2: 99.1%), 22.18 µg/dL (95% CI: 21.68-22.68, I2: 60.4%), and 2.9 µg/dL (95% CI: 2.9-2.9, I2: 100%), respectively. The mean BLL of the exposed participants was higher than that of the non-exposed participants (weighted mean difference (WMD): 25.5, p < 0.0001, 95% CI: 18.59-32.45, I2: 99.8%, 17 studies). The mean BUN (WMD: 1.66, p < 0.0001, 95% CI: 0.76-2.55, I2: 76%, 10 studies) and mean creatinine (WMD: 0.05, p = 0.007, 95% CI: 0.01-0.08, I2: 76.8%, 15 studies) in the exposed participants were higher than those in the non-exposed participants. The mean creatinine clearance in the exposed participants was lower than that in the non-exposed participants (standard mean difference (SMD): -0.544, p = 0.03, 95% CI: -1.035-(-0.054), I2: 96.2%). The meta-regression demonstrated a significant positive effect of BLL on BUN (p = 0.022, coefficient: 0.75, constant: -3.7, 10 studies). Conclusions: BLL was observed to be associated with abnormal renal function test parameters, including high BUN, high creatinine, and low creatinine clearance. Moreover, BUN seemed to be the most valuable prognostic marker for lead-induced renal impairment. Therefore, regular checks for renal function among lead-exposed workers should be a priority and publicly promoted.
Collapse
Affiliation(s)
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|