501
|
Ieronimakis N, Hays AL, Janebodin K, Mahoney WM, Duffield JS, Majesky MW, Reyes M. Coronary adventitial cells are linked to perivascular cardiac fibrosis via TGFβ1 signaling in the mdx mouse model of Duchenne muscular dystrophy. J Mol Cell Cardiol 2013; 63:122-34. [PMID: 23911435 PMCID: PMC3834000 DOI: 10.1016/j.yjmcc.2013.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/20/2013] [Accepted: 07/23/2013] [Indexed: 01/12/2023]
Abstract
In Duchenne muscular dystrophy (DMD), progressive accumulation of cardiac fibrosis promotes heart failure. While the cellular origins of fibrosis in DMD hearts remain enigmatic, fibrotic tissue conspicuously forms near the coronary adventitia. Therefore, we sought to characterize the role of coronary adventitial cells in the formation of perivascular fibrosis. Utilizing the mdx model of DMD, we have identified a population of Sca1+, PDGFRα+, CD31-, and CD45- coronary adventitial cells responsible for perivascular fibrosis. Histopathology of dystrophic hearts revealed that Sca1+ cells extend from the adventitia and occupy regions of perivascular fibrosis. The number of Sca1+ adventitial cells increased two-fold in fibrotic mdx hearts vs. age matched wild-type hearts. Moreover, relative to Sca1-, PDGFRα+, CD31-, and CD45- cells and endothelial cells, Sca1+ adventitial cells FACS-sorted from mdx hearts expressed the highest level of Collagen1α1 and 3α1, Connective tissue growth factor, and Tgfβr1 transcripts. Surprisingly, mdx endothelial cells expressed the greatest level of the Tgfβ1 ligand. Utilizing Collagen1α1-GFP reporter mice, we confirmed that the majority of Sca1+ adventitial cells expressed type I collagen, an abundant component of cardiac fibrosis, in both wt (71%±4.1) and mdx (77%±3.5) hearts. In contrast, GFP+ interstitial fibroblasts were PDGFRα+ but negative for Sca1. Treatment of cultured Collagen1α1-GFP+ adventitial cells with TGFβ1 resulted in increased collagen synthesis, whereas pharmacological inhibition of TGFβR1 signaling reduced the fibrotic response. Therefore, perivascular cardiac fibrosis by coronary adventitial cells may be mediated by TGFβ1 signaling. Our results implicate coronary endothelial cells in mediating cardiac fibrosis via transmural TGFβ signaling, and suggest that the coronary adventitia is a promising target for developing novel anti-fibrotic therapies.
Collapse
|
502
|
Souma T, Yamazaki S, Moriguchi T, Suzuki N, Hirano I, Pan X, Minegishi N, Abe M, Kiyomoto H, Ito S, Yamamoto M. Plasticity of renal erythropoietin-producing cells governs fibrosis. J Am Soc Nephrol 2013; 24:1599-616. [PMID: 23833259 PMCID: PMC3785278 DOI: 10.1681/asn.2013010030] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
CKD progresses with fibrosis and erythropoietin (Epo)-dependent anemia, leading to increased cardiovascular complications, but the mechanisms linking Epo-dependent anemia and fibrosis remain unclear. Here, we show that the cellular phenotype of renal Epo-producing cells (REPs) alternates between a physiologic Epo-producing state and a pathologic fibrogenic state in response to microenvironmental signals. In a novel mouse model, unilateral ureteral obstruction-induced inflammatory milieu activated NFκB and Smad signaling pathways in REPs, rapidly repressed the Epo-producing potential of REPs, and led to myofibroblast transformation of these cells. Moreover, we developed a unique Cre-based cell-fate tracing method that marked current and/or previous Epo-producing cells and revealed that the majority of myofibroblasts are derived from REPs. Genetic induction of NFκB activity selectively in REPs resulted in myofibroblastic transformation, indicating that NFκB signaling elicits a phenotypic switch. Reversing the unilateral ureteral obstruction-induced inflammatory microenvironment restored the Epo-producing potential and the physiologic phenotype of REPs. This phenotypic reversion was accelerated by anti-inflammatory therapy. These findings demonstrate that REPs possess cellular plasticity, and suggest that the phenotypic transition of REPs to myofibroblasts, modulated by inflammatory molecules, underlies the connection between anemia and renal fibrosis in CKD.
Collapse
Affiliation(s)
- Tomokazu Souma
- Department of Medical Biochemistry
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine
| | | | | | - Norio Suzuki
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, and
| | | | - Xiaoqing Pan
- Department of Medical Biochemistry
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; and
| | - Naoko Minegishi
- Department of Medical Biochemistry
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; and
| | - Michiaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; and
| | - Hideyasu Kiyomoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; and
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine
| | - Masayuki Yamamoto
- Department of Medical Biochemistry
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; and
- JST, CREST, Sendai, Miyagi, Japan
| |
Collapse
|
503
|
Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 2013; 46:765-76. [PMID: 24072452 DOI: 10.1007/s11255-013-0520-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023]
Abstract
Unilateral ureteral obstruction is a popular experimental model of renal injury. However, the study of the kidney response to urinary tract obstruction is only one of several advantages of this model. Unilateral ureteral obstruction causes subacute renal injury characterized by tubular cell injury, interstitial inflammation and fibrosis. For this reason, it serves as a model both of irreversible acute kidney injury and of events taking place during human chronic kidney disease. Being a unilateral disease, it is not useful to study changes in global kidney function, but has the advantage of a low mortality and the availability of an internal control (the non-obstructed kidney). Experimental unilateral ureteral obstruction has illustrated the molecular mechanisms of apoptosis, inflammation and fibrosis, all three key processes in kidney injury of any cause, thus providing information beyond obstruction. Recently this model has supported key concepts on the role in kidney fibrosis of epithelial-mesenchymal transition, tubular epithelial cell G2/M arrest, the anti-aging hormone Klotho and renal innervation. We now review the experimental model and its contribution to identifying novel therapeutic targets in kidney injury and fibrosis, independently of the noxa.
Collapse
|
504
|
Schindeler A, Kolind M, Little DG. Cellular transitions and tissue engineering. Cell Reprogram 2013; 15:101-6. [PMID: 23550730 DOI: 10.1089/cell.2012.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) describe complex changes in progenitor lineage, cell morphology, and gene expression. Stimulated by environmental cues, these cellular transitions are essential for elements of embryonic development and can be pathologically dysregulated in disease states. EMT occurs in biological processes such as gastrulation, cardiogenesis, and fibrosis. EndMT is involved in development and tissue fibrosis, but recent studies have implicated this process in musculoskeletal biology and pathology. Tissue engineering and regenerative medicine typically rely on endogenous progenitors or progenitors expanded ex vivo to repair damaged or impaired tissues or organs. The processes of EMT and EndMT may aid in elucidating new methods for reducing fibrosis and identifying novel plastic progenitor populations for tissue repair. This review will discuss the potential for EMT and EndMT to impact on tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research & Biotechnology, the Children's Hospital at Westmead, Sydney, Australia.
| | | | | |
Collapse
|
505
|
Prakoura N, Politis PK, Ihara Y, Michalak M, Charonis AS. Epithelial calreticulin up-regulation promotes profibrotic responses and tubulointerstitial fibrosis development. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1474-1487. [PMID: 24035512 DOI: 10.1016/j.ajpath.2013.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023]
Abstract
Renal fibrosis is the common anatomical feature underlying the progression of chronic kidney disease, a leading cause of morbidity and mortality worldwide. In a previous study, we demonstrated that during development of renal fibrosis in a rat model of unilateral ureteric obstruction, calreticulin (CRT) is up-regulated in tubular epithelial cells (TECs). In the present study, we used in vitro and in vivo approaches to examine the role of CRT in TECs and its contribution to the progression of fibrosis. In cultured renal TECs, CRT overexpression induced acquisition of an altered, profibrotic cellular phenotype. Consistently, the opposite effects were observed for CRT knockdown. Subsequently, we confirmed that critical changes observed in vitro were also apparent in tubular cells in vivo in the animal model of unilateral ureteric obstruction. In agreement with these results, we demonstrate that substantial (50%) reduction in the expression of CRT reduced the development of tubulointerstitial fibrosis at a comparable level through regulation of inflammation, transcriptional activation, transforming growth factor β1-associated effects, and apoptosis. In summary, our findings establish that CRT is critically involved in the molecular mechanisms that drive renal fibrosis progression and indicate that inhibition of CRT expression might be a therapeutic target for reduction of fibrosis and chronic kidney disease development.
Collapse
Affiliation(s)
- Niki Prakoura
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aristidis S Charonis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
506
|
Okamura DM, Bahrami NM, Ren S, Pasichnyk K, Williams JM, Gangoiti JA, Lopez-Guisa JM, Yamaguchi I, Barshop BA, Duffield JS, Eddy AA. Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD. J Am Soc Nephrol 2013; 25:43-54. [PMID: 24009239 DOI: 10.1681/asn.2012090962] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy to slow the relentless expansion of interstitial extracellular matrix that leads to renal functional decline in patients with CKD is currently lacking. Because chronic kidney injury increases tissue oxidative stress, we evaluated the antifibrotic efficacy of cysteamine bitartrate, an antioxidant therapy for patients with nephropathic cystinosis, in a mouse model of unilateral ureteral obstruction. Fresh cysteamine (600 mg/kg) was added to drinking water daily beginning on the day of surgery, and outcomes were assessed on days 7, 14, and 21 after surgery. Plasma cysteamine levels showed diurnal variation, with peak levels similar to those observed in patients with cystinosis. In cysteamine-treated mice, fibrosis severity decreased significantly at 14 and 21 days after unilateral ureteral obstruction, and renal oxidized protein levels decreased at each time point, suggesting reduced oxidative stress. Consistent with these results, treatment of cultured macrophages with cysteamine reduced cellular generation of reactive oxygen species. Furthermore, treatment with cysteamine reduced α-smooth muscle actin-positive interstitial myofibroblast proliferation and mRNA levels of extracellular matrix proteins in mice and attenuated myofibroblast differentiation and proliferation in vitro, but did not augment TGF-β signaling. In a study of renal ischemia reperfusion, cysteamine therapy initiated 10 days after injury and continued for 14 days decreased renal fibrosis by 40%. Taken together, these data suggest previously unrecognized antifibrotic actions of cysteamine via TGF-β-independent mechanisms that include oxidative stress reduction and attenuation of the myofibroblast response to kidney injury and support further investigation into the potential benefit of cysteamine therapy in the treatment of CKD.
Collapse
Affiliation(s)
- Daryl M Okamura
- Seattle Children's Hospital Research Institute, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
507
|
Greenhalgh SN, Iredale JP, Henderson NC. Origins of fibrosis: pericytes take centre stage. F1000PRIME REPORTS 2013; 5:37. [PMID: 24049641 PMCID: PMC3768328 DOI: 10.12703/p5-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pericytes are ubiquitous perivascular cells that have recently attracted interest as potential myofibroblast precursors. In turn, myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis. Given the worldwide burden of fibrotic disease and paucity of therapeutic options available to halt its progression, elucidating the origins of myofibroblasts is of prime importance. The advent of genetic strategies that permit fate-mapping of specific cell populations through permanent and heritable expression of reporter proteins has begun to shed light on the source of the fibrogenic myofibroblast. Here we discuss recent studies in multiple organs that highlight the central role of pericytes in the origins of fibrosis.
Collapse
|
508
|
Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice. Radiother Oncol 2013; 108:464-8. [DOI: 10.1016/j.radonc.2013.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022]
|
509
|
Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, Barazzoni R, Scherer PE, Cinti S. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res 2013; 54:2423-2436. [PMID: 23836106 PMCID: PMC3735940 DOI: 10.1194/jlr.m038638] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Indexed: 12/24/2022] Open
Abstract
We previously suggested that, in obese animals and humans, white adipose tissue inflammation results from the death of hypertrophic adipocytes; these are then cleared by macrophages, giving rise to distinctive structures we denominated crown-like structures. Here we present evidence that subcutaneous and visceral hypertrophic adipocytes of leptin-deficient (ob/ob and db/db) obese mice exhibit ultrastructural abnormalities (including calcium accumulation and cholesterol crystals), many of which are more common in hyperglycemic db/db versus normoglycemic ob/ob mice and in visceral versus subcutaneous depots. Degenerating adipocytes whose intracellular content disperses in the extracellular space were also noted in obese mice; in addition, increased anti-reactive oxygen species enzyme expression in obese fat pads, documented by RT-PCR and immunohistochemistry, suggests that ultrastructural changes are accompanied by oxidative stress. RT-PCR showed NLRP3 inflammasome activation in the fat pads of both leptin-deficient and high-fat diet obese mice, in which formation of active caspase-1 was documented by immunohistochemistry in the cytoplasm of several hypertrophic adipocytes. Notably, caspase-1 was not detected in FAT-ATTAC transgenic mice, where adipocytes die of apoptosis. Thus, white adipocyte overexpansion induces a stress state that ultimately leads to death. NLRP3-dependent caspase-1 activation in hypertrophic adipocytes likely induces obese adipocyte death by pyroptosis, a proinflammatory programmed cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilenia Severi
- Department of Experimental and Clinical Medicine and
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; and
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine and
- Center of Obesity University of Ancona (Politecnica delle Marche)-United Hospitals, Ancona, Italy
| |
Collapse
|
510
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
511
|
Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol 2000 2013; 63:14-28. [DOI: 10.1111/prd.12030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 01/17/2023]
|
512
|
Abstract
Fibrosis of the kidney glomerulus and interstitium are characteristic features of almost all chronic kidney diseases. Fibrosis is tightly associated with destruction of capillaries, inflammation, and epithelial injury which progresses to loss of nephrons, and replacement of kidney parenchyma with scar tissue. Understanding the origins and nature of the cells known as myofibroblasts that make scar tissue is central to development of new therapeutics for kidney disease. Whereas many cell lineages in the body have become defined by well-established markers, myofibroblasts have been much harder to identify with certainty. Recent insights from genetic fate mapping and the use of dynamic reporting of cells that make fibrillar collagen in mice have identified with greater clarity the major population of myofibroblasts and their precursors in the kidney. This review will explore the nature of these cells in health and disease of the kidney to underst and their central role in the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology Kidney Research Institute, Center for Lung Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
513
|
|
514
|
Hosper NA, van den Berg PP, de Rond S, Popa ER, Wilmer MJ, Masereeuw R, Bank RA. Epithelial-to-mesenchymal transition in fibrosis: collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Exp Cell Res 2013; 319:3000-9. [PMID: 23906925 DOI: 10.1016/j.yexcr.2013.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/14/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023]
Abstract
The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-β1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-β1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.
Collapse
Affiliation(s)
- Nynke A Hosper
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
515
|
Abstract
Renal anemia has been recognized as a characteristic complication of chronic kidney disease. Although many factors are involved in renal anemia, the predominant cause of renal anemia is a relative deficiency in erythropoietin (EPO) production. To date, exogenous recombinant human (rh)EPO has been widely used as a powerful drug for the treatment of patients with renal anemia. Despite its clinical effectiveness, a potential risk for increased mortality has been suggested in patients who receive rhEPO, in addition to the economic burden of rhEPO administration. The induction of endogenous EPO is another therapeutic approach that might have advantages over rhEPO administration. However, the physiological and pathophysiological regulation of EPO are not fully understood, and this lack of understanding has hindered the development of an endogenous EPO inducer. In this review, we will discuss the current treatment for renal anemia and its drawbacks, provide an overview of EPO regulation in healthy and diseased conditions, and propose future directions for therapeutic trials that more directly target the underlying pathophysiology of renal anemia.
Collapse
Affiliation(s)
- Yuki Sato
- 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
516
|
Tsukui T, Ueha S, Abe J, Hashimoto SI, Shichino S, Shimaoka T, Shand FHW, Arakawa Y, Oshima K, Hattori M, Inagaki Y, Tomura M, Matsushima K. Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:758-73. [PMID: 23886891 DOI: 10.1016/j.ajpath.2013.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is characterized by accumulation of activated fibroblasts that produce excessive amounts of extracellular matrix components such as collagen type I. However, the dynamics and activation signatures of fibroblasts during fibrogenesis remain poorly understood, especially in vivo. We examined changes in lung tissue cell populations and in the phenotype of activated fibroblasts after acute injury in a model of bleomycin-induced pulmonary fibrosis. Despite clustering of collagen type I-producing fibroblasts in fibrotic regions, flow cytometry-based quantitative analysis of whole lungs revealed that the number of fibroblasts in the lungs remained constant. At the peak of inflammation, fibroblast proliferation and apoptosis were both increased, suggesting that the clustering was not merely a result of proliferation, but also of fibroblast migration from nearby alveolar walls. Parabiosis experiments demonstrated that fibroblasts were not supplied from the circulation. Comprehensive gene expression analysis of freshly isolated fibroblasts revealed a detailed activation signature associated with fibrogenesis, including changes in genes responsible for migration and extracellular matrix construction. The Spp1 gene, which encodes osteopontin, was highly up-regulated and was an identifying characteristic of activated fibroblasts present at the sites of remodeling. Osteopontin may serve as a useful marker of profibrotic fibroblasts. These results provide insights into the cellular and molecular mechanisms underlying pulmonary fibrosis and provide a foundation for development of specific antifibrotic therapies.
Collapse
Affiliation(s)
- Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
517
|
TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury. PLoS One 2013; 8:e68640. [PMID: 23844229 PMCID: PMC3700949 DOI: 10.1371/journal.pone.0068640] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/31/2013] [Indexed: 01/13/2023] Open
Abstract
Inflammatory macrophages are abundant in kidney disease, stimulating repair, or driving chronic inflammation and fibrosis. Damage associated molecules (DAMPs), released from injured cells engage pattern recognition receptors (PRRs) on macrophages, contributing to activation. Understanding mechanisms of macrophage activation during kidney injury may lead to strategies to alleviate chronic disease. We identified Triggering-Receptor-in-Myeloid-cells (TREM)-1, a regulator of TLR signaling, as highly upregulated in kidney inflammatory macrophages and tested the roles of these receptors in macrophage activation and kidney disease. Kidney DAMPs activated macrophages in vitro, independently of TREM-1, but partially dependent on TLR-2/−4, MyD88. In two models of progressive interstitial kidney disease, TREM-1 blockade had no impact on disease or macrophage activation in vivo, but TLR-2/−4, or MyD88 deficiency was anti-inflammatory and anti-fibrotic. When MyD88 was mutated only in the myeloid lineage, however, there was no bearing on macrophage activation or disease progression. Instead, TLR-2/−4 or MyD88 deficiency reduced activation of mesenchyme lineage cells resulting in reduced inflammation and fibrosis, indicating that these pathways play dominant roles in activation of myofibroblasts but not macrophages. To conclude, TREM-1, TLR2/4 and MyD88 signaling pathways are redundant in myeloid cell activation in kidney injury, but the latter appear to regulate activation of mesenchymal cells.
Collapse
|
518
|
Khairoun M, van der Pol P, de Vries DK, Lievers E, Schlagwein N, de Boer HC, Bajema IM, Rotmans JI, van Zonneveld AJ, Rabelink TJ, van Kooten C, Reinders MEJ. Renal ischemia-reperfusion induces a dysbalance of angiopoietins, accompanied by proliferation of pericytes and fibrosis. Am J Physiol Renal Physiol 2013; 305:F901-10. [PMID: 23825073 DOI: 10.1152/ajprenal.00542.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) are highly susceptible to hypoxia and easily affected upon ischemia-reperfusion (I/R) during renal transplantation. Pericytes and angiopoeitins play important role in modulating EC function. In the present study, we investigate the effect of renal I/R on the dynamics of angiopoietin expression and its association with pericytes and fibrosis development. Male Lewis rats were subjected to unilateral renal ischemia for 45 min followed by removal of the contralateral kidney. Rats were killed at different time points after reperfusion. Endothelial integrity (RECA-1), pericytes [platelet-derived growth factor receptor-β (PDGFR-β)], angiopoietin-2 (Ang-2)/angiopoietin-1 (Ang-1) expression, and interstitial collagen deposition (Sirius red and α-smooth muscle actin) were assessed using immunohistochemistry and RT-PCR. Our study shows an increase in protein expression of Ang-2 starting at 5 h and remaining elevated up to 72 h, with a consequently higher Ang-2/Ang-1 ratio after renal I/R (P < 0.05 at 48 h). This was accompanied by an increase in protein expression of the pericytic marker PDGFR-β and a loss of ECs (both at 72 h after I/R, P < 0.05). Nine weeks after I/R, when renal function was restored, we observed normalization of the Ang-2/Ang-1 ratio and PDGFR-β expression and increase in cortical ECs, which was accompanied by fibrosis. Renal I/R induces a dysbalance of Ang-2/Ang-1 accompanied by proliferation of pericytes, EC loss, and development of fibrosis. The Ang-2/Ang-1 balance was reversed to baseline at 9 wk after renal I/R, which coincided with restoration of cortical ECs and pericytes. Our findings suggest that angiopoietins and pericytes play an important role in renal microvascular remodeling and development of fibrosis.
Collapse
Affiliation(s)
- Meriem Khairoun
- Dept. of Nephrology, Leiden Univ. Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1049-60. [PMID: 23046809 PMCID: PMC3787896 DOI: 10.1016/j.bbadis.2012.09.014] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 12/20/2022]
Abstract
Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Lee A Borthwick
- Tissue Fibrosis and Repair Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
520
|
Yuasa T, Juniantito V, Ichikawa C, Yano R, Izawa T, Kuwamura M, Yamate J. Thy-1 expression, a possible marker of early myofibroblast development, in renal tubulointerstitial fibrosis induced in rats by cisplatin. ACTA ACUST UNITED AC 2013; 65:651-9. [DOI: 10.1016/j.etp.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
|
521
|
Origin and function of myofibroblasts in kidney fibrosis. Nat Med 2013; 19:1047-53. [PMID: 23817022 DOI: 10.1038/nm.3218] [Citation(s) in RCA: 1017] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/01/2013] [Indexed: 01/08/2023]
Abstract
Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.
Collapse
|
522
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
523
|
An in vitro culture system for long-term expansion of epithelial and mesenchymal salivary gland cells: role of TGF-β1 in salivary gland epithelial and mesenchymal differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:815895. [PMID: 23841093 PMCID: PMC3690740 DOI: 10.1155/2013/815895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 01/10/2023]
Abstract
Despite a pivotal role in salivary gland development, homeostasis, and disease, the role of salivary gland mesenchyme is not well understood. In this study, we used the Col1a1-GFP mouse model to characterize the salivary gland mesenchyme in vitro and in vivo. The Col1a1-GFP transgene was exclusively expressed in the salivary gland mesenchyme. Ex vivo culture of mixed salivary gland cells in DMEM plus serum medium allowed long-term expansion of salivary gland epithelial and mesenchymal cells. The role of TGF-β1 in salivary gland development and disease is complex. Therefore, we used this in vitro culture system to study the effects of TGF-β1 on salivary gland cell differentiation. TGF-β1 induced the expression of collagen, and inhibited the formation of acini-like structures in close proximity to mesenchymal cells, which adapted a fibroblastic phenotype. In contrast, TGF-βR1 inhibition increased acini genes and fibroblast growth factors (Fgf-7 and Fgf-10), decreased collagen and induced formation of larger, mature acini-like structures. Thus, inhibition of TGF-β signaling may be beneficial for salivary gland differentiation; however, due to differential effects of TGF-β1 in salivary gland epithelial versus mesenchymal cells, selective inhibition is desirable. In conclusion, this mixed salivary gland cell culture system can be used to study epithelial-mesenchymal interactions and the effects of differentiating inducers and inhibitors.
Collapse
|
524
|
Abstract
PURPOSE OF REVIEW Interest in the myofibroblast as a key player in propagation of chronic progressive fibrosis continues to elicit many publications, with focus on its cellular origins and the mechanisms underpinning their differentiation and/or transition. The objective of the review is to highlight this recent progress. RECENT FINDINGS The epithelial origin of the myofibroblast in fibrosis has been challenged by recent studies, with the pericyte suggested as a possible precursor instead. Additional signaling pathways, including Notch, Wnt, and hedgehog, are implicated in myofibroblast differentiation. The importance of NADPH oxidase 4 was highlighted recently to suggest a potential link between cellular/oxidative stress and the genesis of the myofibroblast. Recent observations on the importance of lysophosphatidic acid in fibrosis suggest that this may be due, in part, to its ability to regulate myofibroblast differentiation. Finally, there is increasing evidence for the role of epigenetic mechanisms in regulating myofibroblast differentiation, including DNA methylation and miRNA regulation of gene expression. SUMMARY These recent discoveries open up a whole new array of potential targets for novel antifibrotic therapies. This is of special importance given the current bleak outlook for chronic progressive fibrotic diseases, such as scleroderma, due to lack of effective therapies.
Collapse
|
525
|
Abstract
PURPOSE OF REVIEW Pathological deposition of fibrous matrix in organs is a major problem and contributes to as many as 45% of all natural deaths. Chronic kidney disease affects 8% of the US population, and is characterized by fibrotic processes. It frequently progresses to organ failure and is a major cause of cardiovascular death; yet it lacks therapies. Understanding the pathological mechanisms of fibrosis in the kidney and other organs is central to the development of new therapeutics. RECENT FINDINGS Pericytes are mesenchymal cells that partially cover capillary walls. Pericytes play critical roles in micro-vessel formation, maturation and stability. New genetic fate-mapping studies have identified pericytes and the closely related resident fibroblasts as the major progenitors of scar-forming myofibroblasts in multiple organs including the kidney, appearing in response to tissue injury. When pericytes become myofibroblasts they lose pericyte functions. Capillaries become unstable with deleterious consequences for the kidney. The cellular and molecular mechanisms underpinning these processes are starting to unravel, leading to new therapeutics for chronic fibrosing diseases of the kidney and potentially other organs. SUMMARY This review focuses on pericytes in the kidney and other organs, their role in fibrogenesis and their role in regulation of the microvasculature.
Collapse
|
526
|
Tang J, Liu N, Tolbert E, Ponnusamy M, Ma L, Gong R, Bayliss G, Yan H, Zhuang S. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:160-72. [PMID: 23684791 DOI: 10.1016/j.ajpath.2013.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
Severe acute kidney injury (AKI) is frequently accompanied by maladaptive repair and renal fibrogenesis; however, the molecular mechanisms that mediate these acute and chronic consequences of AKI remain poorly understood. In this study, we examined the role of epidermal growth factor receptor (EGFR) in these processes using waved-2 (Wa-2) mice, which have reduced EGFR activity, and their wild-type (WT) littermates after renal ischemia. Renal EGFR phosphorylation was induced within 2 days after ischemia, increased over time, and remained elevated at 28 days in WT mice, but this was diminished in Wa-2 mice. At the early stage of postischemia (2 days), Wa-2 mice developed more severe acute renal tubular damage with less reparative responses as indicated by enhanced tubular cell apoptosis, and reduced dedifferentiation and proliferation as compared to WT animals. At the late stage of postischemia (28 days), Wa-2 mice exhibited a less severe renal interstitial fibrosis as shown by reduced activation/proliferation of renal myofibroblasts and decreased deposition of extracellular matrix proteins. EGFR activation also contributed to cell cycle arrest at the G2/M phase, a cellular event associated with production of profibrogenetic factors, in the injured kidney. Collectively, these results indicate that severe AKI results in sustained activation of EGFR, which is required for reparative response of renal tubular cells initially, but eventually leads to fibrogenesis.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Gomez IG, Grafals M, Portilla D, Duffield JS. MicroRNAs as potential therapeutic targets in kidney disease. J Formos Med Assoc 2013; 112:237-43. [PMID: 23660218 PMCID: PMC4017353 DOI: 10.1016/j.jfma.2012.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/28/2012] [Accepted: 12/26/2012] [Indexed: 01/23/2023] Open
Abstract
One cornerstone of chronic kidney disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. This review will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD.
Collapse
|
528
|
Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M. VEGFR2-dependent Angiogenic Capacity of Pericyte-like Dental Pulp Stem Cells. J Dent Res 2013; 92:524-31. [DOI: 10.1177/0022034513485599] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have previously demonstrated potential pericyte-like topography and function. However, the mechanisms regulating their pericyte function are still unknown. In this study, murine DPSC angiogenic and pericyte function were investigated. Tie2-GFP mouse DPSCs were negative for GFP, indicating the absence of endothelial cells in DPSC cultures. Endothelial cells co-cultured with DPSCs formed more mature in vitro tube-like structures as compared with those co-cultured with bone marrow stromal cells (BMSCs). Many DPSCs were located adjacent to vascular tubes, assuming a pericyte location. Subcutaneous DPSC transplants in mice with matrigel (MG) (DPSC-MG) induced more vessel formation than BMSC-MG. Soluble Flt (sFlt), an angiogenic inhibitor that binds VEGF-A, significantly decreased the amount of blood vessels in DPSC-MG, but not in BMSC-MG. sFlt inhibited VEGFR2 and downstream ERK signaling in DPSCs. Similar to sFlt inhibition, VEGFR2 knockdown in DPSCs resulted in down-regulation of Vegfa, Vegf receptors, and EphrinB2 and decreased angiogenic induction of DPSCs in vivo. Therefore, the capacity of DPSCs to induce angiogenesis is VEGFR2-dependent. DPSCs enhance angiogenesis by secreting VEGF ligands and associating with vessels resembling pericyte-like cells. This study provides first insights into the mechanism(s) of DPSC angiogenic induction and their function as pericytes, crucial aspects for DPSC use in tissue regeneration.
Collapse
Affiliation(s)
- K. Janebodin
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Y. Zeng
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - W. Buranaphatthana
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - N. Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - M. Reyes
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
529
|
EMT-MET in renal disease: should we curb our enthusiasm? Cancer Lett 2013; 341:24-9. [PMID: 23612071 DOI: 10.1016/j.canlet.2013.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/25/2013] [Accepted: 04/15/2013] [Indexed: 11/24/2022]
Abstract
Renal epithelial cells arise during embryogenesis by mesenchymal to epithelial transition (MET). In the context of renal diseases, these cells can switch back to a mesenchymal phenotype, in a process thus reminiscent of an epithelial-to-mesenchymal transition (EMT) in which we referred to as "Epithelial Phenotypic Changes" (EPC). The pathophysiological consequence of EPC is controversial: in particular, to what extent EPC contribute to the pool of disease-associated renal fibroblasts is very uncertain. However, there is strong evidence that EPC correlate with a poor renal outcome. EPC indeed reflect an exposure to a profibrotic environment, at an early and potentially reversible stage. Detecting EPC has potential therapeutic implications for patients prone to renal fibrosis, both as a marker of efficacy or more directly as a target. In opposition to the EMT occurring during embryogenesis, EMT in fibrosis as well as in cancer is an anarchic cellular process actually developing at the expense of the whole organ(ism).
Collapse
|
530
|
Stefańska A, Stefańska AM, Péault B, Péault B, Mullins JJ, Mullins JJ. Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch 2013; 465:767-73. [PMID: 23588377 DOI: 10.1007/s00424-013-1263-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
Pericytes have become a hot topic in renal biology. They play a critical physiological role in vessel development, maintenance and remodelling through active communication with their vascular partners-endothelial cells-and modulation of extracellular matrix proteins. Multiple functions for renal pericytes have been described; specialised perivascular populations participate in glomerular filtration, regulate medullary blood flow and contribute to kidney fibrosis by differentiation into collagen-generating myofibroblasts. Interestingly, the origin of renin-producing cells of the juxtaglomerular region is attributed to the perivascular cell lineage; we have observed the coincidence of renin and pericyte marker expression during human kidney development. Finally, pericytes have been shown to share features with mesenchymal stem cells, which places them as potential renal progenitor cell candidates. Since renal diseases are often associated with microvascular complications, renal pericytes may emerge as new targets for the treatment of kidney disease.
Collapse
Affiliation(s)
- Ania Stefańska
- University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, 47 Little France Avenue, Edinburgh, EH16 4TJ, Scotland, UK
| | | | | | | | | | | |
Collapse
|
531
|
Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2013; 32:463-70. [PMID: 23062987 DOI: 10.1016/j.semnephrol.2012.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pericytes are a heterogeneous group of extensively branched cells located in microvessels where they make focal contacts with endothelium. Pericytes stabilize blood vessels, regulate vascular tone, synthesize matrix, participate in repair, and serve as progenitor cells, among other functions. Recent work has highlighted the role of pericytes and pericyte-like cells in fibrosis, in which chronic injury triggers pericyte proliferation and differentiation into collagen-secretory, contractile myofibroblasts with migration away from vessels, causing microvascular rarefaction. In this review the developmental origins of kidney pericytes and perivascular fibroblasts are summarized, pericyte to myofibroblast transition in type I diabetic nephropathy is discussed, and the regulation of pericyte differentiation into myofibroblasts as a therapeutic target for treatment of diabetic nephropathy is described.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
532
|
Rodriguez A, Friman T, Kowanetz M, van Wieringen T, Gustafsson R, Sundberg C. Phenotypical differences in connective tissue cells emerging from microvascular pericytes in response to overexpression of PDGF-B and TGF-β1 in normal skin in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2132-46. [PMID: 23570836 DOI: 10.1016/j.ajpath.2013.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 01/05/2023]
Abstract
Fibrosis is a deleterious consequence of chronic inflammation in a number of human pathologies ultimately leading to organ dysfunction and failure. Two growth factors that are important in blood vessel physiology and tissue fibrosis, platelet-derived growth factor (PDGF)-B and transforming growth factor (TGF)-β1, were investigated. Adenoviral vectors were used to induce transient overexpression of these growth factors in mouse skin. Changes in tissue structure and protein and mRNA expressions were investigated. Both PDGF-B and TGF-β1 could initiate but neither could sustain angiogenesis. Instead, vascular regression was observed. Overexpression of both TGF-β1 and PDGF-B led to a marked macrophage influx and an expansion of the connective tissue cell population. Over time, this effect was sustained in mice treated with TGF-β1, whereas it was partially reversible in mice treated with PDGF-B. On the basis of structure and expression of phenotypical markers, the emerging connective tissue cell population may originate from microvascular pericytes. TGF-β1 induced expansion of connective tissue cells with a myofibroblast phenotype, whereas PDGF-B induced a fibroblast phenotype negative for α-smooth muscle actin. TGF-β1 and PDGF-B overexpressions mediated distinct effects on mRNA transcript levels of fibrillar procollagens, their modifying enzymes, small leucin-rich repeat proteoglycans, and matricellular proteins affecting both the composition and the quantity of the extracellular matrix. This study offers new insight into the effects of PDGF-B and TGF-β1 on the vasculature and connective tissue in vivo.
Collapse
Affiliation(s)
- Alejandro Rodriguez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
533
|
Chang FC, Lin SL. The role of angiopoietin-2 in progressive renal fibrosis. J Formos Med Assoc 2013; 112:175-6. [DOI: 10.1016/j.jfma.2012.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/16/2012] [Accepted: 07/23/2012] [Indexed: 01/09/2023] Open
|
534
|
Tan TK, Zheng G, Hsu TT, Lee SR, Zhang J, Zhao Y, Tian X, Wang Y, Wang YM, Cao Q, Wang Y, Lee VWS, Wang C, Zheng D, Alexander SI, Thompson E, Harris DCH. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. J Transl Med 2013; 93:434-449. [PMID: 23358111 DOI: 10.1038/labinvest.2013.3] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.
Collapse
Affiliation(s)
- Thian Kui Tan
- Centre for Transplant and Renal Research, University of Sydney at Westmead Millennium Institute, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol 2013; 24:559-72. [PMID: 23492730 DOI: 10.1681/asn.2012080871] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microvascular disease, a characteristic of acute and chronic kidney diseases, leads to rarefaction of peritubular capillaries (PTCs), promoting secondary ischemic injury, which may be central to disease progression. Bidirectional signaling by EphB4 receptor and ephrinB2 ligand is critical for angiogenesis during murine development, suggesting that ephrinB2 reverse signaling may have a role in renal angiogenesis induced by injury or fibrosis. Here, we found that ephrinB2 reverse signaling is activated in the kidney only after injury. In mice lacking the PDZ intracellular signaling domain of ephrinB2 (ephrinB2 ΔV), angiogenesis was impaired and kidney injury led to increased PTC rarefaction and fibrosis. EphrinB2 ΔV primary kidney pericytes migrated more than wild-type pericytes and were less able to stabilize capillary tubes in three-dimensional culture and less able to stimulate synthesis of capillary basement membrane. EphrinB2 ΔV primary kidney microvascular endothelial cells migrated and proliferated less than wild-type microvascular endothelial cells in response to vascular endothelial growth factor A and showed less internalization and activation of vascular endothelial growth factor receptor-2. Taken together, these results suggest that PDZ domain-dependent ephrinB2 reverse signaling protects against PTC rarefaction by regulating angiogenesis and vascular stability during kidney injury. Furthermore, this signaling in kidney pericytes protects against pericyte-to-myofibroblast transition and myofibroblast activation, thereby limiting fibrogenesis.
Collapse
Affiliation(s)
- Yujiro Kida
- Division of Nephrology and Center for Lung Biology, Department of Medicine, and Institute for Stem Cell and Regenerative Medicine, 850 Republican Street, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
536
|
Wounds that will not heal: pervasive cellular reprogramming in cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1055-64. [PMID: 23438473 DOI: 10.1016/j.ajpath.2013.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 01/19/2023]
Abstract
There has been an explosion of articles on epithelial-mesenchymal transition and other modes of cellular reprogramming that influence the tumor microenvironment. Many controversies exist and remain to be resolved. The interest of the pathologists in the molecular and functional parallels between wound healing and the developing tumor stroma has its earliest origin in the writings of Rudolph Virchow in the 19(th) century. Since then, most of the focus has been primarily on the dynamics of the extracellular matrix; however, new interest has been redirected toward deciphering and understanding the enigmatic, yet elegant, plasticity of the cellular components of the proliferating epithelia and stroma and how they are reciprocally influenced. Citing several examples from breast cancer research, we will trace how these perspectives have unfolded in the pages of The American Journal of Pathology and other investigative journals during the past century, their impact, and where the field is headed.
Collapse
|
537
|
Lai CF, Chen YM, Chiang WC, Lin SL, Kuo ML, Tsai TJ. Cysteine-rich protein 61 plays a proinflammatory role in obstructive kidney fibrosis. PLoS One 2013; 8:e56481. [PMID: 23457573 PMCID: PMC3574066 DOI: 10.1371/journal.pone.0056481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022] Open
Abstract
Cysteine-rich protein 61 (Cyr61) is a secreted matrix-associated protein that regulates a broad spectrum of biological and cellular activities. This study aimed to investigate the role of Cyr61 in progressive kidney fibrosis induced by unilateral ureteral obstruction (UUO) surgery in mice. The expression of Cyr61 transcripts and proteins in the obstructed kidneys were increased from day 1 and remained high until day 10 after surgery. Immunohistochemistry indicated that Cyr61 was expressed mainly in renal tubular epithelial cells. The upregulated Cyr61 in UUO kidneys was reduced in mice treated with pan-transforming growth factor-β (TGF-β) antibody. The role of TGF-β in tubular Cyr61 upregulation after obstructive kidney injury was further supported by experiments showing that TGF-β1 stimulated Cyr61 expression in cultured tubular epithelial cells. Notably, the upregulation of Cyr61 in UUO kidneys was followed by a marked increase in monocyte chemoattractant protein 1 (MCP-1) transcripts and macrophage infiltration, which were attenuated in mice treated with anti-Cyr61 antibodies. This proinflammatory property of Cyr61 in inducing MCP-1 expression was further confirmed in tubular epithelial cells cultured with Cyr61 protein. The anti-Cyr61 antibody in UUO mice also reduced the levels of collagen type 1-α1 transcripts, collagen fibril accumulation evaluated by picrosirius red staining, and the levels of α-smooth muscle actin (α-SMA) transcripts and proteins on day 4 after surgery; however, the antifibrotic effect was not sustained. In conclusion, the TGF-β-mediated increase in tubular Cyr61 expression involved renal inflammatory cell infiltration through MCP-1 induction during obstructive kidney injury. The Cyr61 blockade attenuated kidney fibrosis in the early phase, but the antifibrotic effect could not be sustained.
Collapse
Affiliation(s)
- Chun-Fu Lai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliou City, Taiwan
| | - Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shuei-Liong Lin
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tun-Jun Tsai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
538
|
Wu VC, Young GH, Huang PH, Lo SC, Wang KC, Sun CY, Liang CJ, Huang TM, Chen JH, Chang FC, Chen YL, Kuo YS, Chen JB, Chen JW, Chen YM, Ko WJ, Wu KD. In acute kidney injury, indoxyl sulfate impairs human endothelial progenitor cells: modulation by statin. Angiogenesis 2013; 16:609-24. [DOI: 10.1007/s10456-013-9339-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/06/2013] [Indexed: 11/24/2022]
|
539
|
Ranganathan P, Jayakumar C, Ramesh G. Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am J Physiol Renal Physiol 2013; 304:F1054-65. [PMID: 23408169 DOI: 10.1152/ajprenal.00650.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis. Acute injury was promptly followed by a rise in serum creatinine in both wild-type and netrin-1 transgenic animals. However, the wild-type showed a slow recovery of kidney function compared with netrin-1 transgenic animals and reached baseline by 3 wk. Histological examination showed increased infiltration of interstitial macrophages, extensive fibrosis, reduction of capillary density, and glomerulosclerosis. Collagen IV and α-smooth muscle actin expression was absent in sham-operated kidneys; however, their expression was significantly increased at 2 wk and peaked at 3 wk after reperfusion. These changes were reduced in the transgenic mouse kidney, which overexpresses netrin-1 in proximal tubular epithelial cells. Fibrosis was associated with increased expression of IL-6 and extensive and chronic activation of STAT3. Administration of IL-6 exacerbated fibrosis in vivo in wild-type, but not in netrin-1 transgenic mice kidney and increased collagen I expression and STAT3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by netrin-1. Our data suggest that proximal tubular epithelial cells may play a prominent role in interstitial fibrosis and that netrin-1 could be a useful therapeutic agent for treating kidney fibrosis.
Collapse
Affiliation(s)
- Punithavathi Ranganathan
- Department of Medicine and Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
540
|
Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229:298-309. [PMID: 22996908 DOI: 10.1002/path.4104] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | | | | |
Collapse
|
541
|
Abstracts of papers presented at the 23rd Genetics Society's Mammalian Genetics and Development Workshop held at the Institute of Child Health, University College London on 22nd November 2012. Genet Res (Camb) 2013. [DOI: 10.1017/s0016672312000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
542
|
Kennedy‐Lydon TM, Crawford C, Wildman SSP, Peppiatt‐Wildman CM. Renal pericytes: regulators of medullary blood flow. Acta Physiol (Oxf) 2013; 207:212-25. [PMID: 23126245 PMCID: PMC3561688 DOI: 10.1111/apha.12026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/03/2012] [Accepted: 09/27/2012] [Indexed: 01/29/2023]
Abstract
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla.
Collapse
Affiliation(s)
| | - C. Crawford
- Medway School of Pharmacy The Universities of Kent and Greenwich at Medway Kent UK
| | - S. S. P. Wildman
- Medway School of Pharmacy The Universities of Kent and Greenwich at Medway Kent UK
| | | |
Collapse
|
543
|
Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 2013; 304:C216-25. [PMID: 23255577 PMCID: PMC3566435 DOI: 10.1152/ajpcell.00328.2012] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis.
Collapse
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
544
|
Campanholle G, Ligresti G, Gharib SA, Duffield JS. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol 2013; 304:C591-603. [PMID: 23325411 DOI: 10.1152/ajpcell.00414.2012] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease, defined as loss of kidney function for more than three months, is characterized pathologically by glomerulosclerosis, interstitial fibrosis, tubular atrophy, peritubular capillary rarefaction, and inflammation. Recent studies have identified a previously poorly appreciated, yet extensive population of mesenchymal cells, called either pericytes when attached to peritubular capillaries or resident fibroblasts when embedded in matrix, as the progenitors of scar-forming cells known as myofibroblasts. In response to sustained kidney injury, pericytes detach from the vasculature and differentiate into myofibroblasts, a process not only causing fibrosis, but also directly contributing to capillary rarefaction and inflammation. The interrelationship of these three detrimental processes makes myofibroblasts and their pericyte progenitors an attractive target in chronic kidney disease. In this review, we describe current understanding of the mechanisms of pericyte-to-myofibroblast differentiation during chronic kidney disease, draw parallels with disease processes in the glomerulus, and highlight promising new therapeutic strategies that target pericytes or myofibroblasts. In addition, we describe the critical paracrine roles of epithelial, endothelial, and innate immune cells in the fibrogenic process.
Collapse
Affiliation(s)
- Gabriela Campanholle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
545
|
Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J 2013; 27:1830-46. [PMID: 23322166 DOI: 10.1096/fj.12-219378] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There has been much recent interest in lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, in fibrotic diseases, but the mechanisms by which LPA-LPA1 signaling promotes pathological fibrosis remain to be fully elucidated. Using a mouse peritoneal fibrosis model, we demonstrate central roles for LPA and LPA1 in fibroblast proliferation. Genetic deletion or pharmacological antagonism of LPA1 protected mice from peritoneal fibrosis, blunting the increases in peritoneal collagen by 65.4 and 52.9%, respectively, compared to control animals and demonstrated that peritoneal fibroblast proliferation was highly LPA1 dependent. Activation of LPA1 on mesothelial cells induced these cells to express connective tissue growth factor (CTGF), driving fibroblast proliferation in a paracrine fashion. Activation of mesothelial cell LPA1 induced CTGF expression by inducing cytoskeleton reorganization in these cells, causing nuclear translocation of myocardin-related transcription factor (MRTF)-A and MRTF-B. Pharmacological inhibition of MRTF-induced transcription also diminished CTGF expression and fibrosis in the peritoneal fibrosis model, mitigating the increase in peritoneal collagen content by 57.9% compared to controls. LPA1-induced cytoskeleton reorganization therefore makes a previously unrecognized but critically important contribution to the profibrotic activities of LPA by driving MRTF-dependent CTGF expression, which, in turn, drives fibroblast proliferation.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
546
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
547
|
Boor P, Floege J. The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 2013; 27:3027-36. [PMID: 22851626 DOI: 10.1093/ndt/gfs296] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
Collapse
|
548
|
Abstract
TGF-β (transforming growth factor-β) and BMP-7 (bone morphogenetic protein-7), two key members in the TGF-β superfamily, play important but diverse roles in CKDs (chronic kidney diseases). Both TGF-β and BMP-7 share similar downstream Smad signalling pathways, but counter-regulate each other to maintain the balance of their biological activities. During renal injury in CKDs, this balance is significantly altered because TGF-β signalling is up-regulated by inducing TGF-β1 and activating Smad3, whereas BMP-7 and its downstream Smad1/5/8 are down-regulated. In the context of renal fibrosis, Smad3 is pathogenic, whereas Smad2 and Smad7 are renoprotective. However, this counter-balancing mechanism is also altered because TGF-β1 induces Smurf2, a ubiquitin E3-ligase, to target Smad7 as well as Smad2 for degradation. Thus overexpression of renal Smad7 restores the balance of TGF-β/Smad signalling and has therapeutic effect on CKDs. Recent studies also found that Smad3 mediated renal fibrosis by up-regulating miR-21 (where miR represents microRNA) and miR-192, but down-regulating miR-29 and miR-200 families. Therefore restoring miR-29/miR-200 or suppressing miR-21/miR-192 is able to treat progressive renal fibrosis. Furthermore, activation of TGF-β/Smad signalling inhibits renal BMP-7 expression and BMP/Smad signalling. On the other hand, overexpression of renal BMP-7 is capable of inhibiting TGF-β/Smad3 signalling and protects the kidney from TGF-β-mediated renal injury. This counter-regulation not only expands our understanding of the causes of renal injury, but also suggests the therapeutic potential by targeting TGF-β/Smad signalling or restoring BMP-7 in CKDs. Taken together, the current understanding of the distinct roles and mechanisms of TGF-β and BMP-7 in CKDs implies that targeting the TGF-β/Smad pathway or restoring BMP-7 signalling may represent novel and effective therapies for CKDs.
Collapse
|
549
|
Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for Fibrotic Diseases: Nearing the Starting Line. Sci Transl Med 2013; 5:167sr1. [DOI: 10.1126/scitranslmed.3004700] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
550
|
LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A 2013; 110:1440-5. [PMID: 23302695 DOI: 10.1073/pnas.1211179110] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fibrosis of vital organs is a major public health problem with limited therapeutic options. Mesenchymal cells including microvascular mural cells (pericytes) are major progenitors of scar-forming myofibroblasts in kidney and other organs. Here we show pericytes in healthy kidneys have active WNT/β-catenin signaling responses that are markedly up-regulated following kidney injury. Dickkopf-related protein 1 (DKK-1), a ligand for the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP-5 and LRP-6) and an inhibitor of WNT/β-catenin signaling, effectively inhibits pericyte activation, detachment, and transition to myofibroblasts in vivo in response to kidney injury, resulting in attenuated fibrogenesis, capillary rarefaction, and inflammation. DKK-1 blocks activation and proliferation of established myofibroblasts in vitro and blocks pericyte proliferation to PDGF, pericyte migration, gene activation, and cytoskeletal reorganization to TGF-β or connective tissue growth factor. These effects are largely independent of inhibition of downstream β-catenin signaling. DKK-1 acts predominantly by inhibiting PDGF-, TGF-β-, and connective tissue growth factor-activated MAPK and JNK signaling cascades, acting via LRP-6 with associated WNT ligand. Biochemically, LRP-6 interacts closely with PDGF receptor β and TGF-β receptor 1 at the cell membrane, suggesting that it may have roles in pathways other than WNT/β-catenin. In summary, DKK-1 blocks many of the changes in pericytes required for myofibroblast transition and attenuates established myofibroblast proliferation/activation by mechanisms dependent on LRP-6 and WNT ligands but not the downstream β-catenin pathway.
Collapse
|