501
|
Yao X, Mai X, Tian Y, Liu Y, Jin G, Li Z, Chen S, Dai X, Huang L, Fan Z, Pan G, Pan X, Li X, Yu MC, Sun J, Ou J, Chen H, Xie L. Skeletal muscle-specific Bambi deletion induces hypertrophy and oxidative switching coupling with adipocyte thermogenesis against metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-023-2586-x. [PMID: 39821828 DOI: 10.1007/s11427-023-2586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 01/19/2025]
Abstract
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes. Leveraging the Chromatin immunoprecipitation (ChIP)-seq and bioinformatics analysis, Bambi gene is shown to be a direct target of HIF2α, which is further confirmed by ChIP-qPCR and promoter luciferase assay. Skeletal muscle-specific Bambi deletion led to significant muscle hypertrophy and improved metabolic parameters, even under high-fat diet conditions. This deletion induced metabolic reprogramming of stromal vascular fractions (SVFs) into thermogenic adipocytes, contributing to systemic metabolic improvements, potentially through the secretory factor. Notably, mice with skeletal muscle-specific Bambi deletion demonstrate resistance to high-fat diet-induced metabolic disorders, highlighting a potential therapeutic pathway for metabolic syndrome management. Thus, skeletal muscle-specific deletion of Bambi triggers muscle growth, enhances metabolic performance, and activates thermogenic adipocytes. These findings suggest Bambi as a novel therapeutic target for metabolic syndromes, providing new insights into the interaction between muscle hypertrophy and systemic metabolic improvement. The study underscores the potential of manipulating muscle physiology to regulate whole-body metabolism, offering a novel perspective on treating metabolic disorders.
Collapse
Affiliation(s)
- Xiangping Yao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ye Tian
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ze Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shujie Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Liujing Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zijing Fan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260, USA
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, China.
- College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, 510300, China.
| |
Collapse
|
502
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
503
|
Cano-Barquilla P, Jiménez-Ortega V, Fernández-Mateos P, Virto L, Maldonado Bautista E, Perez-Miguelsanz J, Esquifino AI. Daily Lipolysis Gene Expression in Male Rat Mesenteric Adipose Tissue: Obesity and Melatonin Effects. Int J Mol Sci 2025; 26:577. [PMID: 39859293 PMCID: PMC11765279 DOI: 10.3390/ijms26020577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet. Four experimental groups were established: control, obese, and control or obese plus 2.3 mg/kg/day of melatonin in tap water. After 11 weeks, animals were sacrificed at different times throughout a 24 h cycle, and mesenteric adipose tissue and plasma samples were collected and analyzed. Cgi58, Perilipin, and Dgat1 gene expression, as well as FFA and glycerol concentrations, showed rhythm patterns in the control group. HFD disrupted those rhythm patterns and increased FFA and glycerol concentrations during the dark photoperiod. In both melatonin-treated groups, almost all analyzed genes showed circadian patterns. Notably, melatonin significantly prevented the increase in FFA levels during the dark photoperiod in obese rats (obese group: ~1100 mM vs. obese + melatonin group: ~600 μM, similar to control levels). However, the rhythmic pattern observed in control animals was not sustained. According to our results, melatonin could regulate circadian gene transcription of mesenteric adipose tissue lipolysis proteins. The effect of melatonin on preventing elevated FFA plasma levels associated with high-fat diet intake warrants further investigation.
Collapse
Affiliation(s)
- Pilar Cano-Barquilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| | - Vanesa Jiménez-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| | - Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Leire Virto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Anatomía y Embriología, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Estela Maldonado Bautista
- Departamento de Anatomía y Embriología, Faculta de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Juliana Perez-Miguelsanz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
- Departamento de Anatomía y Embriología, Faculta de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Ana I. Esquifino
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain; (L.V.); (J.P.-M.)
| |
Collapse
|
504
|
Lee Y, Tukei KL, Fang Y, Kuila S, Liu X, Imoukhuede PI. Integrative analysis of angiogenic signaling in obesity: capillary features and VEGF binding kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630107. [PMID: 39763822 PMCID: PMC11703262 DOI: 10.1101/2024.12.23.630107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Obesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation. Systems biology approaches have advanced our understanding of VEGF-A signaling in vascular diseases, but their application to obesity is limited by scattered and sometimes contradictory data. To address this gap, we performed a comprehensive analysis of the existing literature to synthesize key findings, standardize data, and provide a holistic perspective on the adipose vascular microenvironment. The data mining revealed five key findings: (1) obesity increases adipocyte size by 78%; (2) vessel density in adipose tissue decreases by 51% in obese mice, with vessels being 47-58% smaller and 4-9 times denser in comparison with tumor vessels; (3) capillary basement membrane thickness remains similar regardless of obesity; (4) VEGF-A shows the strongest binding affinity for VEGFR1, with four times stronger affinity for VEGFR2 than for NRP1; and (5) binding affinities measured by radioligand binding assay and surface plasmon resonance (SPR) are significantly different. These consolidated findings provide essential parameters for systems biology modeling, new insights into obesity-induced changes in adipose tissue, and a foundation for developing angiogenesis-targeting therapies for obesity.
Collapse
|
505
|
Cariati I, Bonanni R, Romagnoli C, Caprioli L, D’Arcangelo G, Tancredi V, Annino G. Bone Adaptations to a Whole Body Vibration Protocol in Murine Models of Different Ages: A Preliminary Study on Structural Changes and Biomarker Evaluation. J Funct Morphol Kinesiol 2025; 10:26. [PMID: 39846667 PMCID: PMC11755639 DOI: 10.3390/jfmk10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Whole body vibration (WBV) is a valuable tool to mitigate physiological adaptations related to age and inactivity. Although significant benefits have been found at the musculoskeletal level, including increased bone mass and reduced muscle atrophy, the underlying biological mechanisms remain largely unknown. Therefore, our study aimed to evaluate the effects of vibratory training on bone tissue in murine models of different age groups by investigating the structural and distribution changes in some crucial biomarkers involved in musculoskeletal homeostasis. Methods: Specifically, 4-, 12-, and 24-month-old mice were trained with a WBV protocol characterized by three series of 2 min and 30 s, interspersed with a recovery period of the same duration, on a 3-weekly frequency for 3 months. At the end of the training, histological and morphometric analyses were conducted, in association with immunohistochemical analysis to investigate changes in the distribution of fibronectin type III domain-containing protein 5 (FNDC5), NADPH oxidase 4 (NOX4), and sirtuin 1 (SIRT1). Results: Our preliminary results showed that WBV improves musculoskeletal health by preserving bone architecture and promoting up-regulation of FNDC5 and SIRT1 and down-regulation of NOX4. Conclusions: Our study confirms vibratory training as a viable alternative to counter musculoskeletal decline in elderly and/or sedentary subjects. Further investigations should be conducted to deepen knowledge in this field and explore the role of other molecular mediators in physiological adaptations to vibration.
Collapse
Affiliation(s)
- Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Cristian Romagnoli
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, 00166 Rome, Italy;
| | - Lucio Caprioli
- Sports Engineering Laboratory, Department of Industrial Engineering, “Tor Vergata” University of Rome, 00133 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (I.C.); (G.D.); (V.T.); (G.A.)
- Sports Engineering Laboratory, Department of Industrial Engineering, “Tor Vergata” University of Rome, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| |
Collapse
|
506
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
507
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, Pereira de Lima R, Stoll L, Lo JC. Complement 3a receptor 1 on macrophages and Kupffer cells is not required for the pathogenesis of metabolic dysfunction-associated steatotic liver disease. eLife 2025; 13:RP100708. [PMID: 39773465 PMCID: PMC11709426 DOI: 10.7554/elife.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Maya A Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Odin M Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - James C Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
508
|
Plácido AI, Azevedo D, Herdeiro MT, Morgado M, Roque F. Understanding the Role of Irisin in Longevity and Aging: A Narrative Review. EPIDEMIOLOGIA 2025; 6:1. [PMID: 39846531 PMCID: PMC11755480 DOI: 10.3390/epidemiologia6010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/24/2025] Open
Abstract
Irisin is a protein resulting from a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FND5). The ability of irisin to modulate adipocyte and control glucose metabolism in human metabolic diseases gave rise to the hypothesis that irisin could have a pivotal role in aging-related diseases. Although in animal models, increased levels of irisin have been positively associated with better health outcomes, in humans, its role remains controversial. To provide an overview of the main finding on irisin in older adults, a comprehensive search was performed through the MEDLINE-PubMed, Web of Science, Scopus, and Cochrane databases for studies conducted in older adults (≥60 years) published since 2012. After grouping and analyzing the articles based on diseases associated with older adults, the main conclusion of this narrative review is that the included studies did not yield consistent evidence regarding the association between irisin and health or disease in older adults. Further studies are necessary to clarify the effective role of this protein in promoting health and longevity.
Collapse
Affiliation(s)
- Ana I. Plácido
- Biotechnology Research, Innovation and Design for Health Products (BRIDGES), Research Laboratory on Epidemiology and Population Health, Polytechnic of Guarda Av. Dr. Francisco Sá Carneiro 50, 6300-559 Guarda, Portugal; (D.A.); (F.R.)
| | - Daniela Azevedo
- Biotechnology Research, Innovation and Design for Health Products (BRIDGES), Research Laboratory on Epidemiology and Population Health, Polytechnic of Guarda Av. Dr. Francisco Sá Carneiro 50, 6300-559 Guarda, Portugal; (D.A.); (F.R.)
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuel Morgado
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Pharmaceutical Services of Local Health Unit of Cova da Beira (ULS Cova da Beira), 6200-251 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal
| | - Fátima Roque
- Biotechnology Research, Innovation and Design for Health Products (BRIDGES), Research Laboratory on Epidemiology and Population Health, Polytechnic of Guarda Av. Dr. Francisco Sá Carneiro 50, 6300-559 Guarda, Portugal; (D.A.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
509
|
Braunsperger A, Bauer M, Brahim CB, Seep L, Tischer D, Peitzsch M, Hasenauer J, Figueroa SH, Worthmann A, Heeren J, Dyar KA, Koehler K, Soriano-Arroquia A, Schönfelder M, Wackerhage H. Effects of time-of-day on the noradrenaline, adrenaline, cortisol and blood lipidome response to an ice bath. Sci Rep 2025; 15:1263. [PMID: 39779795 PMCID: PMC11711488 DOI: 10.1038/s41598-025-85304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
While the effect of time-of-day (morning versus evening) on hormones, lipids and lipolysis has been studied in relation to meals and exercise, there are no studies that have investigated the effects of time-of-day on ice bath induced hormone and lipidome responses. In this crossover-designed study, a group of six women and six men, 26 ± 5 years old, 176 ± 7 cm tall, weighing 75 ± 10 kg, and a BMI of 23 ± 2 kg/m2 had an ice bath (8-12 °C for 5 min) both in the morning and evening on separate days. Absence from intense physical exercise, nutrient intake and meal order was standardized in the 24 h prior the ice baths to account for confounders such as diet or exercise. We collected venous blood samples before and after (5 min and 30 min) the ice baths to measure hormones (noradrenaline, adrenaline, and cortisol) and lipid levels in plasma via liquid chromatography mass spectrometry shotgun lipidomics. We found that ice baths in the morning increase plasma fatty acids more than in the evening. Overall plasma lipid composition significantly differed in-between the morning and evening, and only in the morning ice bathing is accompanied by significantly increased plasma fatty acids from 5.1 ± 2.2% to 6.0 ± 2.4% (P = 0.029) 5 min after and to 6.3 ± 3.1% (P = 0.008) 30 min after. Noradrenaline was not affected by time-of-day and increased significantly immediately after the ice baths in the morning by 127 ± 2% (pre: 395 ± 158 pg/ml, post 5 min: 896 ± 562 pg/ml, P = 0.025) and in the evening by 144 ± 2% (pre: 385 ± 146 pg/ml, post 5 min: 937 ± 547 pg/ml, P = 0.015). Cortisol was generally higher in the morning than in the evening (pre: 179 ± 108 pg/ml versus 91 ± 59 pg/ml, P = 0.013; post 5 min: 222 ± 96 pg/ml versus 101 ± 52 pg/ml, P = 0.001; post 30 min: 190 ± 96 pg/ml versus 98 ± 54 pg/ml, P = 0.009). There was no difference in the hormonal and lipidome response to an ice bath between women and men. The main finding of the study was that noradrenaline, adrenaline, cortisol and plasma lipidome responses are similar after an ice bath in the morning and evening. However, ice baths in the morning increase plasma fatty acids more than in the evening.
Collapse
Affiliation(s)
- Alexander Braunsperger
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Maximilian Bauer
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Chaima Ben Brahim
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lea Seep
- Computational Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dominik Tischer
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan Hasenauer
- Computational Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Helmholtz Center Munich, German Research Center for Environmental Health, Computational Health Center, Munich, Germany
| | - Sieglinde Hechenbichler Figueroa
- Professorship of Exercise, Nutrition and Health, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Koehler
- Professorship of Exercise, Nutrition and Health, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ana Soriano-Arroquia
- Institute for Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany
| | - Martin Schönfelder
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Henning Wackerhage
- Professorship of Exercise Biology, Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
510
|
Chen H, Li T, Cai M, Huang Z, Gao J, Ding H, Li M, Guan W, Chen J, Wang W, Li C, Shi J. Study on gene expression in the liver at various developmental stages of human embryos. Front Cell Dev Biol 2025; 12:1515524. [PMID: 39845086 PMCID: PMC11751009 DOI: 10.3389/fcell.2024.1515524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background The normal development of the liver during human embryonic stages is critical for the functionality of the adult liver. Despite this, the essential genes, biological processes, and signal pathways that drive liver development in human embryos remain poorly understood. Methods In this study, liver samples were collected from human embryos at progressive developmental stages, ranging from 2-month-old to 7-month-old. Highly expressed genes and their associated enrichment processes at various developmental stages of the liver were identified through transcriptomic sequencing. Results The findings indicated that genes associated with humoral immune responses and B-cell-mediated immunity were highly expressed during the early developmental stages. Concurrently, numerous genes related to vitamin response, brown adipocyte differentiation, T cell differentiation, hormone secretion, hemostasis, peptide hormone response, steroid metabolism, and hematopoietic regulation exhibited increased expression aligned with liver development. Our results suggest that the liver may possess multiple functions during embryonic stages, beyond serving hematopoietic roles. Moreover, this study elucidated the complex regulatory interactions among genes involved in lymphocyte differentiation, the regulation of hemopoiesis, and liver development. Consequently, the development of human embryonic liver necessitates the synergistic regulation of numerous genes. Notably, alongside conventionally recognized genes, numerous previously uncharacterized genes involved in liver development and function were also identified. Conclusion These findings establish a critical foundation for future research on liver development and diseases arising from fetal liver abnormalities.
Collapse
Affiliation(s)
- Hanqing Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Tingting Li
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Ming Cai
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Zhiqi Huang
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jianjun Gao
- Department of Critical Care Medicine, Nantong Second People’s Hospital, Nantong, Jiangsu, China
| | - Hongping Ding
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Minmin Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiyu Guan
- Department of General Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jinpeng Chen
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Wenran Wang
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Chunhong Li
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
511
|
Yu X, Chen S, Funcke JB, Straub LG, Pirro V, Emont MP, Droz BA, Collins KA, Joung C, Pearson MJ, James CM, Babu GJ, Efthymiou V, Vernon A, Patti ME, An YA, Rosen ED, Coghlan MP, Samms RJ, Scherer PE, Kusminski CM. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab 2025; 37:187-204.e7. [PMID: 39642881 PMCID: PMC11711001 DOI: 10.1016/j.cmet.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.
Collapse
Affiliation(s)
- Xinxin Yu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leon G Straub
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Valentina Pirro
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brian A Droz
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kyla Ai Collins
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mackenzie J Pearson
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Corey M James
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gopal J Babu
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Ashley Vernon
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew P Coghlan
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ricardo J Samms
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
512
|
Korenfeld N, Charni-Natan M, Bruse J, Goldberg D, Marciano-Anaki D, Rotaro D, Gorbonos T, Radushkevitz-Frishman T, Polizzi A, Nasereddin A, Gover O, Bar-Shimon M, Fougerat A, Guillou H, Goldstein I. Repeated fasting events sensitize enhancers, transcription factor activity and gene expression to support augmented ketogenesis. Nucleic Acids Res 2025; 53:gkae1161. [PMID: 39673515 PMCID: PMC11724283 DOI: 10.1093/nar/gkae1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024] Open
Abstract
Mammals withstand frequent and prolonged fasting periods due to hepatic production of glucose and ketone bodies. Because the fasting response is transcriptionally regulated, we asked whether enhancer dynamics impose a transcriptional program during recurrent fasting and whether this generates effects distinct from a single fasting bout. We found that mice undergoing alternate-day fasting (ADF) respond profoundly differently to a following fasting bout compared to mice first experiencing fasting. Hundreds of genes enabling ketogenesis are 'sensitized' (i.e. induced more strongly by fasting following ADF). Liver enhancers regulating these genes are also sensitized and harbor increased binding of PPARα, the main ketogenic transcription factor. ADF leads to augmented ketogenesis compared to a single fasting bout in wild-type, but not hepatocyte-specific PPARα-deficient mice. Thus, we found that past fasting events are 'remembered' in hepatocytes, sensitizing their enhancers to the next fasting bout and augment ketogenesis. Our findings shed light on transcriptional regulation mediating adaptation to repeated signals.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Justine Bruse
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Dorin Marciano-Anaki
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Dan Rotaro
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Tali Gorbonos
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Abed Nasereddin
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem-Hadassah Medical School, Kalman Ya'Akov Man Street, Jerusalem 9112001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
513
|
Fang S, Huang W, Qu X, Chai W. The mitochondria as a potential therapeutic target in cerebral I/R injury. Front Neurosci 2025; 18:1500647. [PMID: 39844858 PMCID: PMC11752919 DOI: 10.3389/fnins.2024.1500647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking. Accumulating data supports a paradigm whereby cerebral ischemia/reperfusion (I/R) injury is coupled with impaired mitochondrial function, contributing to the pathogenesis of ischemic stroke. Herein, we review recent evidence demonstrating a heterogeneous mitochondrial response following cerebral I/R injury, placing a specific focus on mitochondrial protein modifications, reactive oxygen species, calcium (Ca2+), inflammation, and quality control under experimental conditions using animal models.
Collapse
Affiliation(s)
- Susu Fang
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wenzhou Huang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, Jiangxi, China
| | - Xinhui Qu
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
514
|
Weber CM, Moiz B, Kheradmand M, Scott A, Kettula C, Wunderler B, Alpízar Vargas V, Clyne AM. Glutamine metabolism is systemically different between primary and induced pluripotent stem cell-derived brain microvascular endothelial cells. J Cereb Blood Flow Metab 2025:271678X241310729. [PMID: 39763385 PMCID: PMC11705297 DOI: 10.1177/0271678x241310729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier. We found that glutamine metabolism was systemically different between the two cell types. hpBMEC had a higher metabolic rate and produced more glutamate and GABA, while hiBMEC rerouted glutamine to produce more glutathione, fatty acids, and asparagine. Higher glutathione production in hiBMEC correlated with higher oxidative stress compared to hpBMEC. α-ketoglutarate (α-KG) supplementation increased glutamate secretion from hiBMEC to match that of hpBMEC; however, α-KG also decreased hiBMEC glycolytic rate. These fundamental metabolic differences between BMEC types may impact in vitro blood-brain barrier model function, particularly communication between BMEC and surrounding cells, and emphasize the importance of evaluating the metabolic impacts of iPSC-derived cells in disease models.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Marzyeh Kheradmand
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Arielle Scott
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Claire Kettula
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brooke Wunderler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
515
|
Xing S, Ma Y, Song B, Bai M, Wang K, Song W, Cao T, Guo C, Zhang Y, Wang Z, Wang Y. Irisin reshapes bone metabolic homeostasis to delay age-related osteoporosis by regulating the multipotent differentiation of BMSCs via Wnt pathway. Front Mol Biosci 2025; 11:1524978. [PMID: 39840074 PMCID: PMC11746060 DOI: 10.3389/fmolb.2024.1524978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health. Its mechanism of action in preventing osteoporosis has generated considerable interest within the research community. Nonetheless, the targeting effect of irisin on age-related osteoporosis and its underlying molecular biological mechanisms remain unclear. Methods The specific role of irisin in osteogenic-adipogenic differentiation in young or aging BMSCs was evaluated by multiple cells staining and quantitative real-time PCR (RT-qPCR) analysis. RNA-seq and protein Western blotting excavated and validated the key pathway by which irisin influences the fate determination of aging BMSCs. The macroscopic and microscopic changes of bone tissue in aging mice were examined using Micro-computed tomography (Micro-CT) and morphological staining. Results It was noted that irisin affected the multilineage differentiation of BMSCs in a manner dependent on the dosage. Simultaneously, the Wnt signaling pathway might be a crucial mechanism through which irisin sustains the bone-fat balance in aging BMSCs and mitigates the decline in pluripotency. In vivo, irisin reduced bone marrow fat deposition in aging mice and effectively alleviating the occurrence of bone loss. Conclusion Irisin mediates the Wnt signaling pathway, thereby influencing the fate determination of BMSCs. In addition, it is essential for preserving metabolic equilibrium in the bone marrow microenvironment and significantly contributes to overall bone health. The findings provide new evidence for the use of iris extract in the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Shangman Xing
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Bing Song
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Bai
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan, China
| | - Kexin Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjing Song
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tingting Cao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chao Guo
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhandong Wang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongfeng Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Medical University School of Basic Medicine, Pingliang, China
| |
Collapse
|
516
|
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, Tseng YH, Schéele C, Boucher J, Petrovic N, Blondin DP, Carpentier AC, Virtanen KA, Kooijman S, Rensen PCN, Cero C, Kajimura S. Emerging debates and resolutions in brown adipose tissue research. Cell Metab 2025; 37:12-33. [PMID: 39644896 PMCID: PMC11710994 DOI: 10.1016/j.cmet.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
Collapse
Affiliation(s)
- Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, The Center of Inflammation and Metabolism and the Center for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Cheryl Cero
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
517
|
Zhang L, Xu F, Huang Y, Xu W, Pu Y, Chen K, Zhou B, Gong R, Su X, Zhang J, Shi Q. Epidemiological features of uterine fibroid-associated imaging changes in Chinese women of reproductive age: a retrospective study. BMJ Open 2025; 15:e085671. [PMID: 39773792 PMCID: PMC11749307 DOI: 10.1136/bmjopen-2024-085671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES To investigate uterine fibroid (UF)-associated imaging changes, and their prevalence, incidence and potential risk factors in the Chinese population. DESIGN This was a retrospective observational study using health examination data. SETTING A physical examination centre in Nanchong, China, between October 2017 and December 2020. PARTICIPANTS A total of 33 915 Chinese women older than 15 years of age underwent uterine imaging during the study period. PRIMARY AND SECONDARY OUTCOME MEASURES This study identified entries of UF-associated imaging changes through a two-round expert consultation and calculated prevalence and incidence of UF-associated imaging changes. Logistic regression estimated the association (OR, 95% CI of body mass index, high blood pressure (HBP), blood lipid profile, and fasting blood glucose level) with UF-associated imaging changes. Age-stratified (≤40 years and >40 years) risks were ascertained. RESULTS Besides the entry 'Potential UF', 17 other entries of UF-associated imaging changes screened by the expert consultation were included, involving a total of 46 864 records (n=33 915), and crude prevalence=25.18%; crude incidence density/1000-woman-years=63.28. Incidence and prevalence increased with age during reproductive age (15-49 years) and decreased thereafter. The greatest burden was in women aged 40-54 years, the prevalence was 38.60%-45.38% and the incidence was 14.73%-17.96%. In the incident younger population (age ≤40 years), overweight (OR: 1.48, 95% CI 1.03 to 2.14) and HBP (OR: 2.16, 95% CI 1.10 to 4.24) were associated with a higher risk for UF-associated imaging changes; in the >40 years group, no association was observed. CONCLUSION UF incidence and prevalence in Asians were higher than previously reported, showed age-related increase in reproductive age, and UF incidence increased with overweight and HBP in ≤40-year-old participants. Variation in UF burden and factors with higher risk noted in different age ranges, and the correlations identified in younger women make it possible for early preventive measures for women with a higher risk of UF.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Fan Xu
- Department of Obstetrics and Gynecology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanyan Huang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wei Xu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yang Pu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Department of Health Management Center, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bingqian Zhou
- Department of Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ruoyan Gong
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xueyao Su
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jiayuan Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Qiuling Shi
- School of Public Health, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
518
|
Duan L, Togou A, Ohta K, Okamoto K. Mitochondria-giant lipid droplet proximity and autophagy suppression in nitrogen-depleted oleaginous yeast Lipomyces starkeyi cells. J Biochem 2025; 177:15-25. [PMID: 39404033 DOI: 10.1093/jb/mvae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 01/03/2025] Open
Abstract
Balancing energy production and storage is a fundamental process critical for cellular homeostasis in most eukaryotes that relies on the intimate interplay between mitochondria and lipid droplets (LDs). In the oleaginous yeast Lipomyces starkeyi under nitrogen starvation, LD forms a single giant spherical structure that is easily visible under a light microscope. Currently, how mitochondria behave in L. starkeyi cells undergoing giant LD formation remains unknown. Here we show that mitochondria transition from fragments to elongated tubules and sheet-like structures that are in close proximity to a giant LD in nitrogen-depleted L. starkeyi cells. Under the same conditions, mitochondrial degradation and autophagy are strongly suppressed, suggesting that these catabolic events are not required for giant LD formation. Conversely, carbon-depleted cells suppress mitochondrial elongation and LD expansion, whereas they promote mitochondrial degradation and autophagy. We propose a potential link of mitochondrial proximity and autophagic suppression to giant LD formation.
Collapse
Affiliation(s)
- Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinobu Togou
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
519
|
Trivanović D, Vujačić M, Arsić A, Kukolj T, Rajković M, Bogosavljević N, Baščarević Z, Maljković Ružičić M, Kovačević J, Jauković A. Skeletal Site-Specific Lipid Profile and Hematopoietic Progenitors of Bone Marrow Adipose Tissue in Patients Undergoing Primary Hip Arthroplasty. Metabolites 2025; 15:16. [PMID: 39852359 PMCID: PMC11767117 DOI: 10.3390/metabo15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there is no evidence on the lipid profile and cellularity at different skeletal locations in osteoarthritis patients undergoing primary hip arthroplasty. METHODS Acetabular and femoral bone marrow (BM) and gluteofemoral subcutaneous adipose tissue (gfSAT) were obtained from matched patients undergoing hip replacement surgery. BM, BMAT, and gfSAT were explored at the levels of total lipids, fatty acids, and cells by using thin-layerand gas chromatography, ex vivo cellular assays, and flow cytometry. RESULTS BMAT content was significantly higher in femoral than in acetabular BM. Total lipid analyses revealed significantly lower triglyceride content in femoral than in acetabular BMAT and gfSAT. Frequencies of saturated palmitic, myristic, and stearic acids were higher in femoral than in acetabular BMAT and gfSAT. The content of CD45+CD34+ cells within femoral BMAT was higher than in acetabular BMAT or gfSAT. This was associated with a higher incidence of total clonogenic hematopoietic progenitors and late erythroid colonies CFU-E in femoral BMAT when compared to acetabular BMAT, similar to their BM counterparts. CONCLUSIONS Collectively, our results indicate that the lipid profiles of hip bone and femoral BMAT impose significantly different microenvironments and distributions of cells with hematopoietic potential. These findings might bring forth new inputs for defining BMAT biology and setting novel directions in OA disease investigations.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Arsić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Milica Rajković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Nikola Bogosavljević
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Baščarević
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Jovana Kovačević
- Faculty of Mathematics, University of Belgrade, 11000 Belgrade, Serbia; (M.M.R.); (J.K.)
- Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| |
Collapse
|
520
|
Fitzgibbons TP, Kogan S, Tran KV. Vascular-Adipose Crosstalk: Angiogenesis and Adipose Tissue Remodeling. Circ Res 2025; 136:112-114. [PMID: 39745990 PMCID: PMC11698489 DOI: 10.1161/circresaha.124.325899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Timothy P Fitzgibbons
- Division of Cardiovascular Medicine, Department of Medicine (T.P.F., K.-V.T.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Sophia Kogan
- Department of Psychiatry (S.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Khanh-Van Tran
- Division of Cardiovascular Medicine, Department of Medicine (T.P.F., K.-V.T.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
521
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
522
|
Fan Z, Wu F, Wang P, Wu L, Zhang J, Li W, Pang Q, Zhang A. Serum Irisin Levels Are Positively Correlated with Physical Activity Capacity in Hemodialysis Patients. Kidney Blood Press Res 2025; 50:105-114. [PMID: 39756383 PMCID: PMC11844682 DOI: 10.1159/000543214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Regular physical activity is beneficial for health but is often reduced in patients receiving maintenance hemodialysis treatment. Irisin is a muscle-secreted hormone that reportedly improves metabolism and slows down the progression of some chronic diseases. In this study, we aimed to investigate the relationship between physical activity capacity and serum irisin levels in hemodialysis patients. METHODS Our study included 252 patients undergoing hemodialysis at Xuanwu Hospital Capital Medical University. Enzyme-linked immunosorbent assay was used to measure blood irisin levels. Body composition was analyzed by bioelectrical impedance analysis. The International Physical Activity Questionnaire (IPAQ) was used to score physical activity ability. RESULTS Bivariate correlation analysis showed a positive correlation between IPAQ scores and ln irisin (the natural logarithm of irisin; r = 0.326, p < 0.001). Independent determinants of IPAQ scores were ln irisin, age, fasting glucose, and carbon dioxide combining power. CONCLUSION Our findings provide the first clinical evidence that serum irisin levels are positively correlated with physical activity capacity in hemodialysis patients.
Collapse
Affiliation(s)
- Zhengjia Fan
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Wu
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Peixin Wang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wen Li
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
523
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025:10.1038/s41569-024-01110-1. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
524
|
Guo L, Xu L, Nie Y, Liu L, Liu Z, Yang Y. Murine gut microbial interactions exert antihyperglycemic effects. THE ISME JOURNAL 2025; 19:wraf028. [PMID: 39961020 PMCID: PMC11896791 DOI: 10.1093/ismejo/wraf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
The correlations between gut microbiota and host metabolism have been studied extensively, whereas little relevant work has been done to investigate the impact of gut microbial interactions on host metabolism. With the use of a bacteriocin-targeting strategy, we aimed to identify the gut microbes associated with glucose and lipid metabolism by adjusting the gut microbial composition of mice fed a high-fat diet. To fulfill this goal, a Listeria monocytogenes (Lmo)-derived bacteriocin Lmo2776 secretion module was constructed and integrated into the genome of Escherichia coli Nissle 1917 (EcN), yielding the Lmo2776-secreting strain EcN-2776. In high-fat diet-fed mice, EcN-2776 administration decreased blood glucose and increased serum triglyceride, and gene amplicon sequencing of 16S rRNA in these mice indicated that intestinal secretion of Lmo2776 led to adjustment of the gut microbial composition. Specifically, Lmo2776 restricted the growth of Ligilactobacillus murinus, thus alleviating its inhibitory impact towards Faecalibaculum rodentium. Further analyses indicated that F. rodentium administration decreased the fasting blood glucose of high-fat diet-fed mice, an effect that may be attributable to the intestinal consumption of glucose by F. rodentium. In this study, we identified the gut microbes associated with glucose metabolism, uncovered their interactions, and deciphered the impact of these gut microbial interactions on the host glucose metabolism. Our findings may pave the way for the treatment of hyperglycemia from the perspective of gut microbial interactions.
Collapse
Affiliation(s)
- Liying Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Libing Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Lu Liu
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zongping Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
525
|
Luk C, Bridge KI, Warmke N, Simmons KJ, Drozd M, Moran A, MacCannell ADV, Cheng CW, Straw S, Scragg JL, Smith J, Ozber CH, Wilkinson CG, Skromna A, Makava N, Prag HA, Simon Futers T, Brown OI, Bruns AF, Walker AM, Watt NT, Mughal R, Griffin KJ, Yuldasheva NY, Limumpornpetch S, Viswambharan H, Sukumar P, Beech DJ, Vidal-Puig A, Witte KK, Murphy MP, Hartley RC, Wheatcroft SB, Cubbon RM, Roberts LD, Kearney MT, Haywood NJ. Paracrine role of endothelial IGF-1 receptor in depot-specific adipose tissue adaptation in male mice. Nat Commun 2025; 16:170. [PMID: 39747815 PMCID: PMC11696296 DOI: 10.1038/s41467-024-54669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes. The endothelium has been suggested to act as a paracrine organ. We explore the role of endothelial insulin-like growth factor-1 receptor (IGF-1R), as a paracrine modulator of white adipose phenotype. We show that a reduction in endothelial IGF-1R expression in the presence of high-fat feeding in male mice leads to depot-specific beneficial white adipose tissue remodelling, increases whole-body energy expenditure and enhances insulin sensitivity via a non-cell-autonomous paracrine mechanism. We demonstrate that increased endothelial malonate may be contributory and that malonate prodrugs have potentially therapeutically relevant properties in the treatment of obesity-related metabolic disease.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katie J Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, Leeds, UK
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amy Moran
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jason L Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Claire H Ozber
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Gastroenterology & Surgery, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chloe G Wilkinson
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, St Mary's Hospital, Oxford Road, Manchester, UK
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Oliver I Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Andrew Mn Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Department of Optometry and Vision Sciences, University of Huddersfield, Huddersfield, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sunti Limumpornpetch
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Internal Medicine, Cardiology Unit, Faculty of Medicine Prince of Songkla University, Songkhla, Thailand
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
526
|
She P, Gao B, Li D, Wu C, Zhu X, He Y, Mo F, Qi Y, Jin D, Chen Y, Zhao X, Lin J, Hu H, Li J, Zhang B, Xie P, Lin C, Christoffels VM, Wu Y, Zhu P, Zhong TP. The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis. Nat Commun 2025; 16:232. [PMID: 39747914 PMCID: PMC11696871 DOI: 10.1038/s41467-024-55557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure. Conversely, Hey2 depletion in adult mouse hearts and zebrafish enhances the expression of mitochondrial oxidation genes and cardiac function. Multifaceted genome-wide analyses reveal that HEY2 enriches at the promoters of genes known to regulate metabolism (including Ppargc1, Esrra and Cpt1) and colocalizes with HDAC1 to effectuate histone deacetylation and transcriptional repression. Consequently, restoration of PPARGC1A/ESRRA in Hey2- overexpressing zebrafish hearts or human cardiomyocyte-like cells rescues deficits in mitochondrial bioenergetics. Knockdown of Hey2 in adult mouse hearts protects against doxorubicin-induced cardiac dysfunction. These studies reveal an evolutionarily conserved HEY2/HDAC1-Ppargc1/Cpt transcriptional module that controls energy metabolism to preserve cardiac function.
Collapse
Affiliation(s)
- Peilu She
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
| | - Bangjun Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dongliang Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chen Wu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuejiao Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fei Mo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yao Qi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Daqing Jin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yewei Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xin Zhao
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinzhong Lin
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hairong Hu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jia Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Zhang
- Shanghai Center for Systems Biomedicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chengqi Lin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China.
| | - Tao P Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
527
|
Xu W, Mesa-Eguiagaray I, Morris DM, Wang C, Gray CD, Sjöström S, Papanastasiou G, Badr S, Paccou J, Li X, Timmers PRHJ, Timofeeva M, Farrington SM, Dunlop MG, Semple SI, MacGillivray T, Theodoratou E, Cawthorn WP. Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank. Nat Commun 2025; 16:99. [PMID: 39747859 PMCID: PMC11697225 DOI: 10.1038/s41467-024-55422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants. We then establish the heritability and genome-wide significant associations for bone marrow adiposity at each site. Our meta-GWAS in the white population finds 67, 147, 134, and 174 independent significant single nucleotide polymorphisms, which map to 54, 90, 43, and 100 genes for the femoral head, total hip, femoral diaphysis, and spine, respectively. Transcriptome-wide association studies, colocalization analyses, and sex-stratified meta-GWASes in the white participants further resolve functional and sex-specific genes associated with bone marrow adiposity at each site. Finally, we perform a multi-ancestry meta-GWAS to identify genes associated with bone marrow adiposity across the different bone regions and across ancestry groups. Our findings provide insights into BMAT formation and function and provide a basis to study the impact of BMAT on human health and disease.
Collapse
Affiliation(s)
- Wei Xu
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Ines Mesa-Eguiagaray
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David M Morris
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Chengjia Wang
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- School of Mathematics and Computer Sciences, Heriot-Watt University, Edinburgh, UK
| | - Calum D Gray
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Samuel Sjöström
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Giorgos Papanastasiou
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Archimedes Unit, Athena Research Centre, Marousi, Greece
| | - Sammy Badr
- Univ. Lille, CHU Lille, Marrow Adiposity and Bone Laboratory (MABlab) ULR 4490, Department of Rheumatology, Lille, France
| | - Julien Paccou
- Univ. Lille, CHU Lille, Marrow Adiposity and Bone Laboratory (MABlab) ULR 4490, Department of Rheumatology, Lille, France
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Paul R H J Timmers
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK.
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.
| |
Collapse
|
528
|
Hejazi J, Ghobadian B, Ghasemi N, Sadeh H, Abedimanesh N, Rahimlou M. Relationship of serum irisin levels, physical activity, and metabolic syndrome biomarkers in obese individuals with low-calorie intake and non-obese individuals with high-calorie intake. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:2. [PMID: 39748434 PMCID: PMC11697921 DOI: 10.1186/s41043-024-00730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Despite all the advances in our knowledge regarding obesity, our understanding of its etiology is still far from complete. This study aimed to evaluate the association of serum irisin levels with physical activity and some of the metabolic syndrome-related biomarkers among obese people with low-calorie intake and non-obese people with high-calorie intake. METHODS Obese and non-obese healthy individuals with respectively low and high-calorie intakes were recruited. Irisin and other biomarkers were measured using standard biochemical methods. Participants' physical activity was evaluated by administering the International Physical Activity Questionnaire (IPAQ). To analyze the body composition of the participants, a standard body composition device (ioi 353) was applied. Logistic regression was used to calculate the odds ratio (OR) and to examine the effect of confounders such as age, sex, genetics, and activity. RESULTS Data from the seventy-seven participants were included in the final analysis. The mean age of the participants in the obese and non-obese groups was 38.33 ± 14.88 and 30.24 ± 13.37 years, respectively. Participants in the obese group had lower physical activity compared to the non-obese group (3395.38 ± 2801 MET-min/week vs. 6015.18 ± 3178 MET-min/week; p < 0.001). The Irisin concentration in the obese and non-obese groups was 7.84 ± 2.49 ng/ml and 8.06 ± 1.89 ng/ml, respectively, which wasn't significantly different (p = 0.66). We observed a noteworthy and favorable association between irisin concentration and total body water (TBW), lean body mass (LBM), and soft lean mass (SLM) in the non-obese group. CONCLUSIONS These data indicated that although obese participants were relatively inactive compared to non-obese individuals, circulating irisin level wasn't significantly different between the two groups.
Collapse
Affiliation(s)
- Jalal Hejazi
- Social Determinants of Health Research Center, Health and Metabolic Diseases Research Institute , Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bijan Ghobadian
- Metabolic Diseases Research Center, Health and Metabolic Research Institute , Zanjan University of Medical Science , Zanjan, Iran.
| | - Nasrin Ghasemi
- Zanjan Health and Treatment Center, Health Deputy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Sadeh
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasim Abedimanesh
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
529
|
Nakamoto H, Shichi S, Shirakawa C, Suzuki T, Kitamura H, Taketomi A. Diacylglycerol kinase alpha regulates post-hepatectomy liver regeneration. Sci Rep 2025; 15:555. [PMID: 39747625 PMCID: PMC11696009 DOI: 10.1038/s41598-024-84403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to generate phosphatidic acid, which plays important roles in intracellular signal transduction. DGKα is reportedly associated with progression of tumors, including hepatocellular carcinomas, but its relationship with liver regeneration has not been examined. The purpose of this research is to elucidate the role of DGKα in liver regeneration. Here, we provide a detailed examination of C57BL/6 wild-type and DGKα knockout (KO) mice subjected to 70% partial hepatectomy (70% PH) modeling, including survival rates, hematological marker and gene expression levels, and histological analyses of factors related to liver regeneration. Following 70% PH, DGKα KO mice produce higher levels of hepatobiliary enzymes and have a higher incidence of jaundice compared with wild-type mice, with a death rate of ~ 40%. Furthermore, they exhibit impaired glycogen and lipid consumption, low liver energy charge, and hepatocyte hypertrophy disorder, accompanied by significantly reduced liver expression of proliferating cell nuclear antigen and cyclin D. We conclude that DGKα is a key molecule in the post-PH liver regeneration process and may have potential as a therapeutic target for the acceleration of liver regeneration.
Collapse
Affiliation(s)
- Hiroki Nakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Chisato Shirakawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuto Suzuki
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hidemitsu Kitamura
- Department of Biomedical Engineering, Faculty of Life Sciences, Toyo University, Saitama, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
530
|
Meng L, Shapses SA, Wang X. Parathyroidectomy Reduces Inflammatory Cytokines and Increases Vitamin D Metabolites in Patients With Primary Hyperparathyroidism. Endocr Pract 2025; 31:52-58. [PMID: 39426725 DOI: 10.1016/j.eprac.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Primary hyperparathyroidism (PHPT) is accompanied by a decreased 25-hydroxyvitamin D (25OHD) and vitamin D binding protein (DBP). High parathyroid hormone (PTH) is associated with elevated interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), yet the effect of parathyroidectomy (PTX) on DBP and cytokines is not clear. This study aims to prospectively evaluate the effect of PTX on inflammatory profiles, total and free 25OHD, and DBP in patients with PHPT. METHODS Newly diagnosed patients with PHPT were recruited for the study (n = 70). Twenty-eight patients returned after PTX, 3 months later. Biochemical markers were measured before and after PTX. A group of age and body mass index-matched healthy subjects were included as controls (n = 70). RESULTS Before PTX, patients had lower serum DBP (37.5 ± 6.0 vs 41.5 ± 6.1 mg/dL, P < .001) and total 25OHD (30.1 ± 9.5 vs 33.3 ± 7.9 ng/mL, P < .05) but similar free 25OHD when compared to controls. Serum IL-6, C-reactive protein, and MCP-1 were higher in patients with PHPT (P < .05), whereas interleukin-10 was similar to that in controls. PTX increased total and free 25OHD and DBP (P < .001) and decreased serum IL-6 and MCP-1 (P < .05), but not C-reactive protein and interleukin-10. Multiple regression analysis indicated that the preoperative PTH explained a significant portion of the variance of IL-6 and MCP-1 (P < .05). CONCLUSION These findings suggest that PTH may upregulate the production of MCP-1 and IL-6 and downregulate circulating DBP in patients with PHPT that are normalized by PTX. The exact mechanism of IL-6 and MCP-1 on DBP, vitamin D metabolites, and clinical outcomes in patients with PHPT is an area requiring further study.
Collapse
Affiliation(s)
- Lingqiong Meng
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey; Department of Medicine, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Xiangbing Wang
- Department of Medicine, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey.
| |
Collapse
|
531
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
532
|
Campagna R, Cecati M, Vignini A. The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e15733998313402. [PMID: 39620334 DOI: 10.2174/0115733998313402240726080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 04/23/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-ofart regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Scientific Direction, Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
533
|
Li Y, Qi J, Guo L, Jiang X, He G. Organellar quality control crosstalk in aging-related disease: Innovation to pave the way. Aging Cell 2025; 24:e14447. [PMID: 39668579 PMCID: PMC11709098 DOI: 10.1111/acel.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Organellar homeostasis and crosstalks within a cell have emerged as essential regulatory and determining factors for the survival and functions of cells. In response to various stimuli, cells can activate the organellar quality control systems (QCS) to maintain homeostasis. Numerous studies have demonstrated that dysfunction of QCS can lead to various aging-related diseases such as neurodegenerative, pulmonary, cardiometabolic diseases and cancers. However, the interplay between QCS and their potential role in these diseases are poorly understood. In this review, we present an overview of the current findings of QCS and their crosstalk, encompassing mitochondria, endoplasmic reticulum, Golgi apparatus, ribosomes, peroxisomes, lipid droplets, and lysosomes as well as the aberrant interplays among these organelles that contributes to the onset and progression of aging-related disorders. Furthermore, potential therapeutic approaches based on these quality control interactions are discussed. Our perspectives can enhance insights into the regulatory networks underlying QCS and the pathology of aging and aging-related diseases, which may pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Jinxin Qi
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
| | - Linhong Guo
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xian Jiang
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Gu He
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
534
|
Fu JT, Huang HT, Chen PC, Kuo YM, Chen PS, Tzeng SF. Exploring the reduction in aquaporin-4 and increased expression of ciliary neurotrophic factor with the frontal-striatal gliosis induced by chronic high-fat dietary stress. J Neurochem 2025; 169:e16236. [PMID: 39374168 DOI: 10.1111/jnc.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
High-fat diet (HFD)-induced obesity induces peripheral inflammation and hypothalamic pathogenesis linking the activation of astrocytes and microglia. Clinical evidence indicates a positive correlation between obesity and psychiatric disorders, such as depression. The connectivity of the frontal-striatal (FS) circuit, involving the caudate putamen (CPu) and anterior cingulate cortex (ACC) within the prefrontal cortex (PFC), is known for its role in stress-induced depression. Thus, there is a need for a thorough investigation into whether chronic obesity-induced gliosis, characterized by the activation of astrocytes and microglia, in these brain regions of individuals with chronic obesity. The results revealed increased S100β+ astrocytes and Iba1+ microglia in the CPu and ACC of male obese mice, along with immune cell accumulation in meningeal lymphatic drainage. Activated GFAP+ astrocytes and Iba1+ microglia were observed in the corpus callosum of obese mice. Gliosis in the CPu and ACC was linked to elevated cleaved caspase-3 levels, indicating potential neural cell death by chronic HFD feeding. There was a loss of myelin and adenomatous polyposis coli (APC)+ oligodendrocytes (OLs) in the corpus callosum, an area known to be linked with injury to the CPu. Additionally, reduced levels of aquaporin-4 (AQP4), a protein associated within the glymphatic systems, were noted in the CPu and ACC, while ciliary neurotrophic factor (CNTF) gene expression was upregulated in these brain regions of obese mice. The in vitro study revealed that high-dose CNTF causing a trend of reduced astrocytic AQP4 expression, but it significantly impaired OL maturation. This pathological evidence highlights that prolonged HFD consumption induces persistent FS gliosis and demyelination in the corpus callosum. An elevated level of CNTF appears to act as a potential regulator, leading to AQP4 downregulation in the FS areas and demyelination in the corpus callosum. This cascade of events might contribute to neural cell damage within these regions and disrupt the glymphatic flow.
Collapse
Affiliation(s)
- Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
535
|
Balemba OB, Gulbransen BD. A potential link between enteric glia and the pathophysiology of diet-induced obesity and related metabolic diseases. Acta Physiol (Oxf) 2025; 241:e14258. [PMID: 39641235 DOI: 10.1111/apha.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Onesmo B Balemba
- Department of Biological Sciences/WWAMI Medical Ed. Program, University of Idaho, Moscow, Idaho, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
536
|
Robb JL, Boisjoly F, Machuca-Parra AI, Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K, Bilodeau JF, Forest A, Daneault C, Ruiz M, Laurent C, Arbour N, Layé S, Fioramonti X, Madore C, Fulton S, Alquier T. Blockage of ATGL-mediated breakdown of lipid droplets in microglia alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. Brain Behav Immun 2025; 123:315-333. [PMID: 39326768 DOI: 10.1016/j.bbi.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LD) are triglyceride storing organelles that have emerged as an important component of cellular inflammatory responses. LD lipolysis via adipose triglyceride lipase (ATGL), the enzyme that catalyses the rate-limiting step of triglyceride lipolysis, regulates inflammation in peripheral immune and non-immune cells. ATGL elicits both pro- and anti-inflammatory responses in the periphery in a cell-type dependent manner. The present study determined the impact of ATGL inhibition and microglia-specific ATGL genetic loss-of-function on acute inflammatory and behavioural responses to pro-inflammatory insult. First, we evaluated the impact of lipolysis inhibition on lipopolysaccharide (LPS)-induced expression and secretion of cytokines and phagocytosis in mouse primary microglia cultures. Lipase inhibitors (ORlistat and ATGListatin) and LPS led to LD accumulation in microglia. Pan-lipase inhibition with ORlistat alleviated LPS-induced expression of IL-1β and IL-6. Specific inhibition of ATGL had a similar action on CCL2, IL-1β and IL-6 expression in both neonatal and adult microglia cultures. CCL2 and IL-6 secretion were also reduced by ATGListatin or knockdown of ATGL. ATGListatin increased phagocytosis in neonatal cultures independently from LPS treatment. Second, targeted and untargeted lipid profiling revealed that ATGListatin reduced LPS-induced generation of pro-inflammatory prostanoids and modulated ceramide species in neonatal microglia. Finally, the role of microglial ATGL in neuroinflammation was assessed using a novel microglia-specific and inducible ATGL knockout mouse model. Loss of microglial ATGL in adult male mice dampened LPS-induced expression of IL-6 and IL-1β and microglial density. LPS-induced sickness- and anxiety-like behaviours were also reduced in male mice with loss of ATGL in microglia. Together, our results demonstrate potent anti-inflammatory effects produced by pharmacological or genetic inhibition of ATGL-mediated triglyceride lipolysis and thereby propose that supressing microglial LD lipolysis has beneficial actions in acute neuroinflammatory conditions.
Collapse
Affiliation(s)
- Josephine Louise Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédérick Boisjoly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Adeline Coursan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Romane Manceau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Danie Majeur
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Anik Forest
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Matthieu Ruiz
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Xavier Fioramonti
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France.
| |
Collapse
|
537
|
Eleuteri S, Wang B, Cutillo G, Zhang Fang TS, Tao K, Qu Y, Yang Q, Wei W, Simon DK. PGC-1α regulation by FBXW7 through a novel mechanism linking chaperone-mediated autophagy and the ubiquitin-proteasome system. FEBS J 2025; 292:332-354. [PMID: 39429232 DOI: 10.1111/febs.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons. We show that enhancing chaperone-mediated autophagy (CMA) activity promotes the CMA-mediated degradation of FBXW7 and consequently increases PGC-1α. We confirm the relevance of this pathway in vivo by showing decreased FBXW7 and increased PGC-1α as a result of boosting CMA selectively in dopaminergic (DA) neurons by overexpressing lysosomal-associated membrane protein 2A (LAMP2A) in TH-Cre-LAMP2-loxp conditional mice. We further demonstrate that these mice are protected against MPTP-induced oxidative stress and neurodegeneration. These results highlight a novel regulatory pathway for PGC-1α in DA neurons and suggest targeted increasing of CMA or decreasing FBXW7 in DA neurons as potential neuroprotective strategies in PD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bao Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Gianni Cutillo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracy Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
538
|
Gauthier MF, Ostinelli G, Pelletier M, Tchernof A. Origin of dedifferentiated adipocyte-derived cells (DFAT) during ceiling culture in an Adiponectin Cre-Recombinase mouse model. Biochem Cell Biol 2025; 103:1-10. [PMID: 39476403 DOI: 10.1139/bcb-2024-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
DFAT cells represent an attractive source of stem cells in tissue engineering and in the potential treatment of several clinical conditions. Our objective was to determine whether DFAT cells originate from mature adipocytes and address whether contamination from the stromal vascular fraction (SVF) could be as a source for these cells. A murine adiponectin-creERT;mT/mG model was used with the excision of the cassette induced by tamoxifen injection for the cells expressing adiponectin (adipoq). This model allows distinguishing of mature adipocytes (green fluorescence) from other SVF cell types (red fluorescence) based on the fluorescent protein expressed. Mature adipocytes and SVF cells were isolated from adipose tissues by collagenase digestion. Ceiling cultures were imaged by time-lapse microscopy. Confocal microscopy was used to follow cells over 21 days. Time-lapse microscopy experiments showed liposecretion occurring in mature adipocytes displaying green fluorescence. Confocal imaging allowed the identification of a heterogeneous cell population expressing green but also red fluorescence after 21 days of culture. Asymmetrical division of mature adipocytes was not observed. In conclusion, liposecretion of mature adipocytes is a phenomenon that can be observed in vitro and DFAT cells do originate from mature adipocytes. However, the population of DFAT cells is heterogenous.
Collapse
Affiliation(s)
- Marie-Frédérique Gauthier
- Institut universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
| | - Giada Ostinelli
- Institut universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
- École de Nutrition, Université Laval, Québec, QC, Canada
| | - Mélissa Pelletier
- Institut universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
| | - André Tchernof
- Institut universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
- École de Nutrition, Université Laval, Québec, QC, Canada
| |
Collapse
|
539
|
Wen H, Yano N, Zhao T, Wei L, Zhao TC. The protective effect of irisin against hemorrhagic injury is mediated by PI3K and p38 pathways in hemorrhage/resuscitation. J Pharmacol Exp Ther 2025; 392:100027. [PMID: 39892988 DOI: 10.1124/jpet.124.002238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
The objective of this study was to investigate whether phosphoinositide 3-kinase (PI3K) and p38 mitogen-activated kinase contribute to the protection of irisin during hemorrhage/resuscitation. Experimental groups were divided based on the different treatments during resuscitation as follows: (1) hemorrhage: adult male CD-1 mice were subjected to hemorrhage at a mean arterial blood pressure of 35-45 mm Hg for 60 minutes, followed by resuscitation with shed blood and lactated Ringer's solution (n = 13); (2) hemorrhage + irisin: receiving irisin (5 μg/kg; n = 13); (3) hemorrhage + irisin + PI3K inhibitor: receiving both Ly294002 (1 mg/kg, i.v.) and irisin (n = 6); and (4) hemorrhage + irisin + p38 inhibitor: receiving SB202190 (1 mg/kg, i.v.) and irisin (n = 6). Compared with hemorrhage/resuscitation control, irisin improved cardiac function and the recovery of hemodynamics in association with the decreased systemic interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α, which were completely abrogated by PI3K or p38 inhibitions. Furthermore, the inhibition of PI3K or p38 abolished irisin-induced reduction of the inflammatory cell infiltration and terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling-positive apoptosis in the cardiac and skeletal muscles. Irisin reduced TNF-α and IL-6 expression in cardiac and skeletal muscles, which was abrogated by the inhibition of PI3K or p38. Irisin-treated hemorrhage increases the phosphorylation of PI3K and p38 in both cardiac and skeletal muscles, which was mitigated by the inhibition of PI3K or p38. PI3K and p38 play an important role in modulating the protective effect of irisin during the hemorrhage/resuscitation. SIGNIFICANCE STATEMENT: This study has identified a critical pathway in the regulation of trauma/hemorrhage by using a preclinical trauma model, in which irisin, as a hormone factor, stimulates PI3K and p38 pathways to induce protection against traumatic conditions. The study holds promise for developing a new therapeutic strategy to target irisin and its pathways related to PI3K and p38 to treat trauma and its comorbidities to reduce mortality for clinical implications.
Collapse
Affiliation(s)
- Huai Wen
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Thomas Zhao
- Department of Biology, Boston University, Boston, Massachusetts
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ting C Zhao
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; Department of Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
540
|
Kang YE, Lee JH. Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes (Diabetes Metab J 2024;48:885-900). Diabetes Metab J 2025; 49:160-161. [PMID: 39828978 PMCID: PMC11788549 DOI: 10.4093/dmj.2024.0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
541
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
542
|
Mahankali VB, Velraja S, Parvathi VD, Ramasamy S. Key Players in the Complex Pathophysiology of Obesity: A Cross-Talk Between the Obesogenic Genes and Unraveling the Metabolic Pathway of Action of Capsaicin and Orange Peel. Appl Biochem Biotechnol 2025; 197:649-666. [PMID: 39102081 DOI: 10.1007/s12010-024-04999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Obesity is a widespread prevailing health concern with multifactorial causes. Among the various defined molecular targets associated with obesity, peroxisome proliferator activated receptor gamma, leptin, ghrelin, and adiponectin play crucial roles in fundamental processes including energy balance, adipose tissue biology, and metabolic health, making them particularly significant in the study of obesity.Capsaicin and orange peel exhibit promising anti-obesity properties through their thermogenic, metabolic, and anti-inflammatory effects. Potential pathways for therapeutic approaches in the management of obesity are provided by these targets. The lipid-lowering and anti-obesity benefits of specific plant species have been highlighted in Asian medicine. Due to the potential anti-obesity qualities, capsaicin, which is derived from chilli peppers, and orange peel extract has been focused in this review. Capsaicin causes apoptosis in preadipocytes and adipocytes and suppresses adipogenesis. Citrus fruits are a significant source of bioactive substances, primarily flavonoids. Due to their ability to reduce adipocyte development and cellular lipid content, citrus polyphenols are helpful in the control of obesity. This extensive analysis offers insights into new treatment approaches for the prevention and management of obesity and metabolic syndrome by examining the interactions of molecular variables in obesity as well as the possible anti-obesity advantages of capsaicin and orange peel extract.
Collapse
Affiliation(s)
- Varshini Bhavanandam Mahankali
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India
| | - Supriya Velraja
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | | |
Collapse
|
543
|
Wang L, Jin J, Zhang N, Dai Y, Bai X, Li J, Yu Y, Shi X, Bai H, Yang Q, Jiang B, Ben J, Zhang H, Li X, Chen Q, Zhu X. VEGFB promotes adipose tissue thermogenesis by inhibiting norepinephrine clearance in macrophages. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167536. [PMID: 39378967 DOI: 10.1016/j.bbadis.2024.167536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Adipokines play key roles in adaptive thermogenesis of beige adipocytes, though its detailed regulatory mechanisms are not fully understood. In the present study, we identify a critical function of vascular endothelial growth factor B (VEGFB)/vascular endothelial growth factor receptor 1 (VEGFR1) signaling in improving thermogenesis in white adipose tissue (WAT). In mouse subcutaneous WAT (scWAT), thermogenesis activation leads to the up-regulation of VEGFB in adipocytes and its receptor VEGFR1 in macrophages. Ablation of adipocyte VEGFB results in deficiency in murine WAT browning. Meanwhile, supplementation of VEGFB promotes WAT thermogenesis, but this effect is blocked by knockout of macrophage VEGFR1. Mechanistic studies show that the VEGFB-activated VEGFR1 inhibits p38 MAPK signaling through its dissociation with receptor for activated C kinase 1, thereby preventing norepinephrine transporter (solute carrier family 6 member 2) and norepinephrine-degrative monoamine oxidase a mediated norepinephrine clearance in macrophages. Our findings demonstrate that VEGFB/VEGFR1 circuit contributes to the WAT thermogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Department of Pathology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Jin
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Nuo Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Dai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xueya Bai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jinhao Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yueqi Yu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoling Shi
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
544
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
545
|
Yan H, Shao M, Lin X, Peng T, Chen C, Yang M, Zhong J, Yang J, Hui S. Resveratrol stimulates brown of white adipose via regulating ERK/DRP1-mediated mitochondrial fission and improves systemic glucose homeostasis. Endocrine 2025; 87:144-158. [PMID: 39198343 DOI: 10.1007/s12020-024-04008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE Diabetes mellitus and metabolic homeostasis disorders may benefit from white adipose tissue (WAT) browning, which is associated with mitochondrial fission. Resveratrol, a dietary polyphenol, exhibits beneficial effects against abnormalities related to metabolic diseases. However, it remains unknown whether resveratrol contributes to WAT browning by regulating mitochondrial fission. METHODS We administered resveratrol (0.4% mixed with control) to db/db mice for 12 weeks, measuring body weight, oral glucose tolerance, insulin tolerance, and histological changes. The uncoupling protein 1 (UCP1) and dynamin-related protein 1 (DRP1) expressions in the epididymal WAT were assessed via immunoblotting. RESULTS We found that resveratrol improved systemic glucose homeostasis and insulin resistance in db/db mice, which was associated with increased UCP1 in epididymal WAT. Resveratrol-treated mice exhibited more fragmented mitochondria and increased phosphorylation of DRP1 in the epididymal WAT of the db/db mice. These results were further confirmed in vitro, where resveratrol induced extracellular signal-regulated kinase (ERK) signaling activation, leading to phosphorylation of DRP1 at the S616 site (p-DRP1S616) and mitochondrial fission, which was reversed by an ERK inhibitor in 3T3-L1 adipocytes. CONCLUSION Resveratrol plays a role in regulating the phosphorylation of ERK and DRP1, resulting in the promotion of beige cells with epididymal WAT and the improvement of glucose homeostasis. Our present study provides novel insights into the potential mechanism of resveratrol-mediated effects on WAT browning, suggesting that it is, at least in part, mediated through ERK/DRP1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Hongjia Yan
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Peng
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Mei Yang
- Department of Endocrinology, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Suocheng Hui
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
546
|
Soták M, Clark M, Suur BE, Börgeson E. Inflammation and resolution in obesity. Nat Rev Endocrinol 2025; 21:45-61. [PMID: 39448830 DOI: 10.1038/s41574-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Inflammation is an essential physiological defence mechanism, but prolonged or excessive inflammation can cause disease. Indeed, unresolved systemic and adipose tissue inflammation drives obesity-related cardiovascular disease and type 2 diabetes mellitus. Drugs targeting pro-inflammatory cytokine pathways or inflammasome activation have been approved for clinical use for the past two decades. However, potentially serious adverse effects, such as drug-induced weight gain and increased susceptibility to infections, prevented their wider clinical implementation. Furthermore, these drugs do not modulate the resolution phase of inflammation. This phase is an active process orchestrated by specialized pro-resolving mediators, such as lipoxins, and other endogenous resolution mechanisms. Pro-resolving mediators mitigate inflammation and development of obesity-related disease, for instance, alleviating insulin resistance and atherosclerosis in experimental disease models, so mechanisms to modulate their activity are, therefore, of great therapeutic interest. Here, we review current clinical attempts to either target pro-inflammatory mediators (IL-1β, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, tumour necrosis factor (TNF) and IL-6) or utilize endogenous resolution pathways to reduce obesity-related inflammation and improve cardiometabolic outcomes. A remaining challenge in the field is to establish more precise biomarkers that can differentiate between acute and chronic inflammation and to assess the functionality of individual leukocyte populations. Such advancements would improve the monitoring of drug effects and support personalized treatment strategies that battle obesity-related inflammation and cardiometabolic disease.
Collapse
Affiliation(s)
- Matúš Soták
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Madison Clark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bianca E Suur
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emma Börgeson
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
547
|
De Francesco F, Sbarbati A, Sierra LAQ, Zingaretti N, Sarmadian Z, Parodi PC, Ricci G, Riccio M, Mobasheri A. Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:53-78. [PMID: 39107527 DOI: 10.1007/5584_2024_801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Zahra Sarmadian
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, Sun Yat-sen University, Guangzhou, People's Republic of China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
548
|
Li J, Zhou Z, Wu Y, Zhao J, Duan H, Peng Y, Wang X, Fan Z, Yin L, Li M, Liu F, Yang Y, Du L, Li J, Zhong H, Hou W, Zhang F, Ma H, Zhang X. Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons. Theranostics 2025; 15:1376-1398. [PMID: 39816678 PMCID: PMC11729562 DOI: 10.7150/thno.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS. Methods: Male C57BL/6 mice (6-8 weeks) and male TRPV1-Cre mice (6-8 weeks) were used in our experiments. The EHS model with or without HA training were established for this study. RNA sequencing, qPCR, immunoblot, immunofluorescent assays, calcium imaging, optogenetic/ chemical genetic intervention, virus tracing, patch clamp, and other methods were employed to investigate the molecular mechanism and neural circuit by which HA training improves the function of the medial preoptic area (mPOA) neurons. Furthermore, a novel exosome-based strategy targeting the central nervous system to deliver irisin, a protective peptide generated by HA, was established to protect against EHS. Results: HA-related neurons in the mPOA expressing transient receptor potential vanilloid-1 (TRPV1) were identified as a population whose activation reduces Tb; inversely, dysfunction of these neurons contributes to hyperthermia and EHS. mPOATRPV1 neurons facilitate vasodilation and reduce adipose tissue thermogenesis, which is associated with their inhibitory projection to the raphe pallidus nucleus (RPa) and dorsal medial hypothalamus (DMH) neurons, respectively. Furthermore, HA improves the function of preoptic heat-sensitive neurons by enhancing TRPV1 expression, and Trpv1 ablation reverses the HA-induced heat tolerance. A central nervous system-targeted exosome strategy to deliver irisin, a protective peptide generated by HA, can promote preoptic TRPV1 expression and exert similar protective effects against EHS. Conclusions: Preoptic TRPV1 neurons could be enhanced by HA, actively contributing to heat defense through the mPOA"DMH/RPa circuit during EHS, which results in the suppression of adipose tissue thermogenesis and facilitation of vasodilatation. A delivery strategy of exosomes engineered with RVG-Lamp2b-Irisin significantly improves the function of mPOATRPV1 neurons, providing a promising preventive strategy for EHS in the future.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Ziqing Zhou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China, 100071
| | - You Wu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jianshuai Zhao
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haokai Duan
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yuliang Peng
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xiaoke Wang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lu Yin
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Mengyun Li
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fuhong Liu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yongheng Yang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lixia Du
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jin Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haixing Zhong
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Wugang Hou
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| |
Collapse
|
549
|
Miro C, Menale C, Acampora L, Nappi A, Sagliocchi S, Restolfer F, Torabinejad S, Stornaiuolo M, Dentice M, Cicatiello AG. Muscle PGC-1α Overexpression Drives Metabolite Secretion Boosting Subcutaneous Adipocyte Browning. J Cell Physiol 2025; 240:e31480. [PMID: 39676331 PMCID: PMC11733859 DOI: 10.1002/jcp.31480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Muscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers. As a consequence, the upregulation of muscle respiratory rate might affect metabolite production and consumption. However, the underlying mechanisms have not yet been fully elucidated. Here, we used a muscle-specific PGC-1α overexpressing mouse model (MCK-PGC-1α) to analyze the metabolite secretion profile of serum and culture medium recovered from MCK-PGC-1α muscle fibers by NMR. We revealed modified levels of different metabolites that might be ascribed to the metabolic activation of the skeletal muscle fibers. Notably, the dysregulated levels of these metabolites affected adipocyte differentiation, as well as the browning process in vitro and in vivo. Interestingly such effect was exacerbated in the subcutaneous WAT, while only barely present in the visceral WAT. Our data confirm a prominent role of PGC-1α as a trigger of mitochondrial function in skeletal muscle and propose a novel function of this master regulator gene in modulating the metabolite production in turn affecting the activation of WAT and its conversion toward the browning.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Ciro Menale
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Lucia Acampora
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Annarita Nappi
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Serena Sagliocchi
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Federica Restolfer
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Sepehr Torabinejad
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | | | - Monica Dentice
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
- CEINGE‐Biotecnologie Avanzate Franco SalvatoreNaplesItaly
| | | |
Collapse
|
550
|
Akyigit A, Arslan Solmaz O, Kalayci M, Sakallioglu O, Duzer S, Ozercan İH, Keles E, Karlidag T, Kaygusuz I, Yalcin S. The role of irisin and cytokines in the etiology of parotid tumors. Biotech Histochem 2025; 100:32-39. [PMID: 39772907 DOI: 10.1080/10520295.2025.2450406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
This study explores the role of irisin and interleukins in parotid tumors by determining the tissue staining intensity of irisin, the salivary and plasma levels of irisin, and the plasma levels of IL-4, IL-6, IL-10 and TNF-alpha in individuals with parotid tumors. Forty-eight patients and forty healthy individuals were included to the study and allocated into four group. Benign Group I (pleomorphic adenoma), Group II (Warthin's tumor), Group III (mucoepidermoid carcinoma) and Group IV (benign parotid control group, healthy control group). Parotid tissue, plasma and saliva samples were collected from each of the patients with parotid tumors, while plasma and saliva samples were collected from the healthy individuals. Normal parotid tissue for histologic evaluation was obtained from unaffected areas in patients with parotid tumors. The levels of irisin in the plasma and saliva were significantly lower in the parotid tumors, while the plasma levels of IL-6 and TNF-alpha were higher in patients with parotid tumors, but no statistically significant difference in IL-4 and IL-10 levels was found. The histopathological intensity of FNDC-5/irisin staining was significantly decreased in the parotid tumor tissues when compared to the benign parotid control group with normal parotid tissue. The low histopathological tissue staining intensity and plasma and salivary levels of irisin suggest that irisin may be a protective protein in parotid tumors.
Collapse
Affiliation(s)
- Abdulvahap Akyigit
- Department of Ear Nose and Throat, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ozgen Arslan Solmaz
- Clinic of Medical Pathology, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Mehmet Kalayci
- Clinic of Medical Biochemistry, Duzce Ataturk State Hospital, Duzce, Turkey
| | - Oner Sakallioglu
- Clinic of Ear Nose and Throat, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Sertac Duzer
- Clinic of Ear Nose and Throat, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | | | - Erol Keles
- Department of Ear Nose and Throat, Firat University Faculty of Medicine, Elazig, Turkey
| | - Turgut Karlidag
- Department of Ear Nose and Throat, Firat University Faculty of Medicine, Elazig, Turkey
| | - Irfan Kaygusuz
- Department of Ear Nose and Throat, Firat University Faculty of Medicine, Elazig, Turkey
| | - Sinasi Yalcin
- Department of Ear Nose and Throat, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|