551
|
Liu X, Zhang F, Wang Z, Zhang T, Teng C, Wang Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111143. [PMID: 32942098 DOI: 10.1016/j.ecoenv.2020.111143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The wide use of graphene oxide (GO) has raised increasing concerns about the potential risks to environmental and human health. Recent studies have shown the vital role of gut microbiome in various pathological status or even exogenous exposure, but more detailed understanding about the effects of possible gut microbiome alterations under GO exposure on reproductive toxicology evaluations in pregnant mammals remained elusive. Here we found that orally administrated GO daily during gestational day (GD) 7-16 caused dose-dependent pregnant complications of mice on the endpoint (GD19), including decreased weight of dam and live fetus, high rate of resorbed embryos and dead fetus, and skeletal development retardation. Meanwhile in placenta tissues of pregnant mice exposed to GO at dose over 10 mg/kg, the expression levels of tight junctions (Claudin1 and Occludin) and vascular endothelial growth factor (VEGFA) decreased approximately by 30%-80%, meaning impaired placenta barrier. According to the data of fecal 16s RNA sequencing in 40 mg/kg dose group and the control group, gut microbiome showed dramatically decreased α- and β-diversity, and upregulated Firmicutes/Bacteroidetes ratio owing to GO exposure. What's more, significantly differentiated abundance of Euryarchaeota is expected to be a special biomarker for failed pregnancy caused by GO. Notably, the result of Spearman correlation analysis suggested that there was a strong link (correlation coefficient>0.6) between perturbed gut microbiome with both abnormally expressed factors of placenta barrier and adverse pregnant outcomes. In summary, the damages of GO exposure to placenta barrier and pregnancy were dose-dependent. And GO exposure was responsible for gut microbiome dysbiosis in mice with pregnant complications. These findings could provide referable evidence to evaluate reproductive risk of GO to mammals.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Tongchao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
552
|
Khan Mirzaei M, Deng L. Sustainable Microbiome: a symphony orchestrated by synthetic phages. Microb Biotechnol 2021; 14:45-50. [PMID: 33171009 PMCID: PMC7888444 DOI: 10.1111/1751-7915.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
We are surrounded by microbes, mostly bacteria and their viruses or phages, on the inside and outside of our bodies. These bacteria in constant interactions with phages are regulating multiple functions critical to our health. Luckily, they are amenable, but we need precise tools for their safe manipulation and improving human health. Here, we argue that recent advances in single-cell technologies, culturomics and synthetic biology offer exciting opportunities to create these tools as well as revealing specific phages-bacteria interactions in the body.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of VirologyHelmholtz Centre Munich and Technical University of MunichNeuherbergBavaria85764Germany
| | - Li Deng
- Institute of VirologyHelmholtz Centre Munich and Technical University of MunichNeuherbergBavaria85764Germany
| |
Collapse
|
553
|
Ezechukwu HC, Diya CA, Egoh IJ, Abiodun MJ, Grace JUA, Okoh GR, Adu KT, Adegboye OA. Lung microbiota dysbiosis and the implications of SARS-CoV-2 infection in pregnancy. Ther Adv Infect Dis 2021; 8:20499361211032453. [PMID: 35035953 PMCID: PMC8753069 DOI: 10.1177/20499361211032453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
There are a great number of beneficial commensal microorganisms constitutively colonizing the mucosal lining of the lungs. Alterations in the microbiota profile have been associated with several respiratory diseases such as pneumonia and allergies. Lung microbiota dysbiosis might play an important role in the pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as elicit other opportunistic infections associated with coronavirus disease 2019 (COVID-19). With its increasing prevalence and morbidity, SARS-CoV-2 infection in pregnant mothers is inevitable. Recent evidence shows that angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) act as an entry receptor and viral spike priming protein, respectively, for SARS-CoV-2 infection. These receptor proteins are highly expressed in the maternal-fetal interface, including the placental trophoblast, suggesting the possibility of maternal-fetal transmission. In this review, we discuss the role of lung microbiota dysbiosis in respiratory diseases, with an emphasis on COVID-19 and the possible implications of SARS-CoV-2 infection on pregnancy outcome and neonatal health.
Collapse
Affiliation(s)
- Henry C. Ezechukwu
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos, Nigeria
| | - Cornelius A. Diya
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos State, Nigeria
| | | | - Mayowa J. Abiodun
- Department of Cell Biology, University of Lagos, Akoka, Lagos State, Nigeria
| | | | - God’spower R. Okoh
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, Townsville, QLD, Australia
- Cann Group Ltd., Walter and Eliza Hall Institute, VIC, Australia
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
554
|
Audano M, Pedretti S, Ligorio S, Giavarini F, Caruso D, Mitro N. Investigating metabolism by mass spectrometry: From steady state to dynamic view. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4658. [PMID: 33084147 DOI: 10.1002/jms.4658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Metabolism is the set of life-sustaining reactions in organisms. These biochemical reactions are organized in metabolic pathways, in which one metabolite is converted through a series of steps catalyzed by enzymes in another chemical compound. Metabolic reactions are categorized as catabolic, the breaking down of metabolites to produce energy, and/or anabolic, the synthesis of compounds that consume energy. The balance between catabolism of the preferential fuel substrate and anabolism defines the overall metabolism of a cell or tissue. Metabolomics is a powerful tool to gain new insights contributing to the identification of complex molecular mechanisms in the field of biomedical research, both basic and translational. The enormous potential of this kind of analyses consists of two key aspects: (i) the possibility of performing so-called targeted and untargeted experiments through which it is feasible to verify or formulate a hypothesis, respectively, and (ii) the opportunity to run either steady-state analyses to have snapshots of the metabolome at a given time under different experimental conditions or dynamic analyses through the use of labeled tracers. In this review, we will highlight the most important practical (e.g., different sample extraction approaches) and conceptual steps to consider for metabolomic analysis, describing also the main application contexts in which it is used. In addition, we will provide some insights into the most innovative approaches and progress in the field of data analysis and processing, highlighting how this part is essential for the proper extrapolation and interpretation of data.
Collapse
Affiliation(s)
- Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Simona Ligorio
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Flavio Giavarini
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Donatella Caruso
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
555
|
Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry 2021; 12:734837. [PMID: 34744824 PMCID: PMC8568770 DOI: 10.3389/fpsyt.2021.734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and characterized by early childhood-onset impairments in social interaction and communication, restricted and repetitive patterns of behavior or interests. So far there is no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic and epigenetic factors have been considered to be the main cause of ASD. It is known that endocannabinoid and its receptors are widely distributed in the central nervous system, and provide a positive and irreversible change toward a more physiological neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to participate in the regulation of social reward behavior, which has attracted considerable attention from neuroscientists and neurologists. Both animal models and clinical studies have shown that the ECS is a potential target for the treatment of autism, but the mechanism is still unknown. In the brain, microglia express a complete ECS signaling system. Studies also have shown that modulating ECS signaling can regulate the functions of microglia. By comprehensively reviewing previous studies and combining with our recent work, this review addresses the effects of targeting ECS on microglia, and how this can contribute to maintain the positivity of the central nervous system, and thus improve the symptoms of autism. This will provide insights for revealing the mechanism and developing new treatment strategies for autism.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Qiang Li
- Exchange, Development and Service Center for Science and Technology Talents, The Ministry of Science and Technology, Beijing, China
| | - Jiacai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lei Pei
- Collaborative Innovation Center for Brain Science, The Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
556
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
557
|
Ronan V, Yeasin R, Claud EC. Childhood Development and the Microbiome-The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology 2021; 160:495-506. [PMID: 33307032 PMCID: PMC8714606 DOI: 10.1053/j.gastro.2020.08.065] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
The composition of the intestinal microbiome affects health from the prenatal period throughout childhood, and many diseases have been associated with dysbiosis. The gut microbiome is constantly changing, from birth throughout adulthood, and several variables affect its development and content. Features of the intestinal microbiota can affect development of the brain, immune system, and lungs, as well as body growth. We review the development of the gut microbiome, proponents of dysbiosis, and interactions of the microbiota with other organs. The gut microbiome should be thought of as an organ system that has important effects on childhood development. Dysbiosis has been associated with diseases in children and adults, including autism, attention deficit hyperactivity disorder, asthma, and allergies.
Collapse
Affiliation(s)
- Victoria Ronan
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Rummanu Yeasin
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Windsor University School of Medicine, Cayon, St Kitts, West Indies
| | - Erika C Claud
- Department of Pediatrics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
558
|
Gong W, Qiao Y, Li B, Zheng X, Xu R, Wang M, Mi X, Li Y. The Alteration of Salivary Immunoglobulin A in Autism Spectrum Disorders. Front Psychiatry 2021; 12:669193. [PMID: 34093280 PMCID: PMC8175640 DOI: 10.3389/fpsyt.2021.669193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives: Autism spectrum disorders (ASD) are neurodevelopmental disorders with changes in the gut and oral microbiota. Based on the intimate relationship between the oral microbiota and oral mucosal immunity, this study aimed to investigate changes in salivary immunoglobulin A (IgA) level in ASD and the underlying mechanism for any such changes. Methods: We recruited 36 children diagnosed with ASD and 35 normally developing children and measured their salivary IgA content using enzyme-linked immunosorbent assay (ELISA). The valproate (VPA) -treated ASD mouse model was established by prenatal exposure to valproate and mouse salivary IgA content was also quantified by ELISA. The submandibular glands of VPA and control mice were isolated and analyzed using qRT-PCR, immunofluorescence staining, and flow cytometry. ASD-related Streptococci were co-incubated with the human salivary gland (HSG) cell line, and western blotting was used to detect the levels of relevant proteins. Results: We found that salivary IgA content was significantly decreased in patients with ASD and had a significant ASD diagnostic value. The salivary IgA content also decreased in VPA mice and was significantly correlated with autistic-like behaviors among them. The mRNA and protein levels of the polymeric immunoglobulin receptor (Pigr) were downregulated in the submandibular glands of VPA mice and the Pigr mRNA level was positively correlated with mouse salivary IgA content. HSG cells treated with ASD-related Streptococci had reduced PIGR protein level. Conclusion: Therefore, protective IgA levels were reduced in the saliva of individuals with ASD, which correlated with the bacteria-induced downregulation of Pigr in salivary glands. This study suggests a new direction for ASD diagnosis and prevention of oral diseases in ASD cohorts and provides evidence for the ASD mucosal immunophenotype in the oral cavity.
Collapse
Affiliation(s)
- Wuyi Gong
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yanan Qiao
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Bosheng Li
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Xiaoguo Zheng
- Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihuan Xu
- Clinic Lab, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, National Center for Children's Health, Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Children's Hospital of Fudan University, Shanghai, China
| | - Xiaohui Mi
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yongming Li
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
559
|
Larroya A, Pantoja J, Codoñer-Franch P, Cenit MC. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr 2021; 9:705859. [PMID: 34277527 PMCID: PMC8280474 DOI: 10.3389/fped.2021.705859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Mental health is determined by a complex interplay between the Neurological Exposome and the Human Genome. Multiple genetic and non-genetic (exposome) factors interact early in life, modulating the risk of developing the most common complex neurodevelopmental disorders (NDDs), with potential long-term consequences on health. To date, the understating of the precise etiology underpinning these neurological alterations, and their clinical management pose a challenge. The crucial role played by diet and gut microbiota in brain development and functioning would indicate that modulating the gut-brain axis may help protect against the onset and progression of mental-health disorders. Some nutritional deficiencies and gut microbiota alterations have been linked to NDDs, suggesting their potential pathogenic implications. In addition, certain dietary interventions have emerged as promising alternatives or adjuvant strategies for improving the management of particular NDDs, at least in particular subsets of subjects. The gut microbiota can be a key to mediating the effects of other exposome factors such as diet on mental health, and ongoing research in Psychiatry and Neuropediatrics is developing Precision Nutrition Models to classify subjects according to a diet response prediction based on specific individual features, including microbiome signatures. Here, we review current scientific evidence for the impact of early life environmental factors, including diet, on gut microbiota and neuro-development, emphasizing the potential long-term consequences on health; and also summarize the state of the art regarding the mechanisms underlying diet and gut microbiota influence on the brain-gut axis. Furthermore, we describe the evidence supporting the key role played by gut microbiota, diet and nutrition in neurodevelopment, as well as the effectiveness of certain dietary and microbiome-based interventions aimed at preventing or treating NDDs. Finally, we emphasize the need for further research to gain greater insight into the complex interplay between diet, gut microbiome and brain development. Such knowledge would help towards achieving tailored integrative treatments, including personalized nutrition.
Collapse
Affiliation(s)
- Ana Larroya
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Jorge Pantoja
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pilar Codoñer-Franch
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.,Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.,Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
560
|
Dong Z, Shen X, Hao Y, Li J, Li H, Xu H, Yin L, Kuang W. Gut Microbiome: A Potential Indicator for Differential Diagnosis of Major Depressive Disorder and General Anxiety Disorder. Front Psychiatry 2021; 12:651536. [PMID: 34589003 PMCID: PMC8473618 DOI: 10.3389/fpsyt.2021.651536] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Major depressive disorder (MDD) and general anxiety disorder (GAD) share many common features, leading to numerous challenges in their differential diagnosis. Given the importance of the microbiota-gut-brain axis, we investigated the differences in gut microbiota between representative cases of these two diseases and sought to develop a microbiome-based approach for their differential diagnosis. Methods: We enrolled 23 patients with MDD, 21 with GAD, and 10 healthy subjects (healthy crowd, HC) in the present study. We used 16S rRNA gene-sequencing analysis to determine the microbial compositions of the gut microbiome based on Illumina Miseq and according to the standard protocol. Results: GAD showed a significant difference in microbiota richness and diversity as compared with HC. Additionally, Otu24167, Otu19140, and Otu19751 were significantly decreased in MDD relative to HC, and Otu2581 and Otu10585 were significantly increased in GAD relative to MDD. At the genus level, the abundances of Sutterella and Fusicatenibacter were significantly lower in MDD relative to HC, and the abundances of Fusicatenibacter and Christensenellaceae_R7_group were significantly lower in GAD than in HC. The abundance of Sutterella was significantly higher whereas that of Faecalibacterium was significantly lower in GAD relative to MDD. Moreover, we observed that Christensenellaceae_R7_group negatively correlated with the factor score (Limited to Hopelessness) and total score of HAMD-24 (p < 0.05), whereas Fusicatenibacter negatively correlated with FT4 (p < 0.05). Furthermore, the GAD group showed significant differences at the genus level for Faecalibacterium, which negatively correlated with PTC (p < 0.05). Conclusions: This study elucidated a unique gut-microbiome signature associated with MDD and GAD that could facilitate differential diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoling Shen
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Hao
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Li
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Haizheng Xu
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Li Yin
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
561
|
Chen Z, Shi K, Liu X, Dai Y, Liu Y, Zhang L, Du X, Zhu T, Yu J, Fang S, Li F. Gut Microbial Profile Is Associated With the Severity of Social Impairment and IQ Performance in Children With Autism Spectrum Disorder. Front Psychiatry 2021; 12:789864. [PMID: 34975585 PMCID: PMC8718873 DOI: 10.3389/fpsyt.2021.789864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Objective: Autism spectrum disorder (ASD) refers to a heterogeneous set of neurodevelopmental disorders with diverse symptom severity and comorbidities. Although alterations in gut microbiota have been reported in individuals with ASD, it remains unclear whether certain microbial pattern is linked to specific symptom or comorbidity in ASD. We aimed to investigate the associations between gut microbiota and the severity of social impairment and cognitive functioning in children with ASD. Methods: A total of 261 age-matched children, including 138 children diagnosed with ASD, 63 with developmental delay or intellectual disability (DD/ID), and 60 typically developing (TD) children, were enrolled from the Shanghai Xinhua Registry. The children with ASD were further classified into two subgroups: 76 children diagnosed with ASD and developmental disorder (ASD+DD) and 62 with ASD only (ASD-only). The gut microbiome of all children was profiled and evaluated by 16S ribosomal RNA sequencing. Results: The gut microbial analyses demonstrated an altered microbial community structure in children with ASD. The alpha diversity indices of the ASD+DD and ASD-only subgroups were significantly lower than the DD/ID or TD groups. At the genus level, we observed a decrease in the relative abundance of Prevotella. Simultaneously, Bacteroides and Faecalibacterium were significantly increased in ASD compared with DD/ID and TD participants. There was a clear correlation between alpha diversity and the Childhood Autism Rating Scale (CARS) total score for all participants, and this correlation was independent of IQ performance. Similar correlations with the CARS total score were observed for genera Bacteroides, Faecalibacterium, and Oscillospira. However, there was no single genus significantly associated with IQ in all participants. Conclusions: Specific alterations in bacterial taxonomic composition and associations with the severity of social impairment and IQ performance were observed in children with ASD or ASD subgroups, when compared with DD/ID or TD groups. These results illustrate that gut microbiota may serve as a promising biomarker for ASD symptoms. Nevertheless, further investigations are warranted.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Shi
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juehua Yu
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuanfeng Fang
- Department of Child Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
562
|
Virulence factor-related gut microbiota genes and immunoglobulin A levels as novel markers for machine learning-based classification of autism spectrum disorder. Comput Struct Biotechnol J 2020; 19:545-554. [PMID: 33510860 PMCID: PMC7809157 DOI: 10.1016/j.csbj.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition for which early identification and intervention is crucial for optimum prognosis. Our previous work showed gut Immunoglobulin A (IgA) to be significantly elevated in the gut lumen of children with ASD compared to typically developing (TD) children. Gut microbiota variations have been reported in ASD, yet not much is known about virulence factor-related gut microbiota (VFGM) genes. Upon determining the VFGM genes distinguishing ASD from TD, this study is the first to utilize VFGM genes and IgA levels for a machine learning-based classification of ASD. Sequence comparisons were performed of metagenome datasets from children with ASD (n = 43) and TD children (n = 31) against genes in the virulence factor database. VFGM gene composition was associated with ASD phenotype. VFGM gene diversity was higher in children with ASD and positively correlated with IgA content. As Group B streptococcus (GBS) genes account for the highest proportion of 24 different VFGMs between ASD and TD and positively correlate with gut IgA, GBS genes were used in combination with IgA and VFGMs diversity to distinguish ASD from TD. Given that VFGM diversity, increases in IgA, and ASD-enriched VFGM genes were independent of sex and gastrointestinal symptoms, a classification method utilizing them will not pertain only to a specific subgroup of ASD. By introducing the classification value of VFGM genes and considering that VFs can be isolated in pregnant women and newborns, these findings provide a novel machine learning-based early risk identification method for ASD.
Collapse
|
563
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
564
|
Kelly VW, Liang BK, Sirk SJ. Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synth Biol 2020; 9:3184-3201. [PMID: 33205966 DOI: 10.1021/acssynbio.0c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern medicine has long studied the mechanism and impact of pathogenic microbes on human hosts, but has only recently shifted attention toward the complex and vital roles that commensal and probiotic microbes play in both health and dysbiosis. Fueled by an enhanced appreciation of the human-microbe holobiont, the past decade has yielded countless insights and established many new avenues of investigation in this area. In this review, we discuss advances, limitations, and emerging frontiers for microbes as agents of health maintenance, disease prevention, and cure. We highlight the flexibility of microbial therapeutics across disease states, with special consideration for the rational engineering of microbes toward precision medicine outcomes. As the field advances, we anticipate that tools of synthetic biology will be increasingly employed to engineer functional living therapeutics with the potential to address longstanding limitations of traditional drugs.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin K. Liang
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
565
|
Maternal Microbiome and Infections in Pregnancy. Microorganisms 2020; 8:microorganisms8121996. [PMID: 33333813 PMCID: PMC7765218 DOI: 10.3390/microorganisms8121996] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy induces unique changes in maternal immune responses and metabolism. Drastic physiologic adaptations, in an intricately coordinated fashion, allow the maternal body to support the healthy growth of the fetus. The gut microbiome plays a central role in the regulation of the immune system, metabolism, and resistance to infections. Studies have reported changes in the maternal microbiome in the gut, vagina, and oral cavity during pregnancy; it remains unclear whether/how these changes might be related to maternal immune responses, metabolism, and susceptibility to infections during pregnancy. Our understanding of the concerted adaption of these different aspects of the human physiology to promote a successful pregnant remains limited. Here, we provide a comprehensive documentation and discussion of changes in the maternal microbiome in the gut, oral cavity, and vagina during pregnancy, metabolic changes and complications in the mother and newborn that may be, in part, driven by maternal gut dysbiosis, and, lastly, common infections in pregnancy. This review aims to shed light on how dysregulation of the maternal microbiome may underlie obstetrical metabolic complications and infections.
Collapse
|
566
|
Aluthge ND, Tom WA, Bartenslager AC, Burkey TE, Miller PS, Heath KD, Kreikemeier-Bower C, Kittana H, Schmaltz RJ, Ramer-Tait AE, Fernando SC. Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models. Commun Biol 2020; 3:760. [PMID: 33311550 PMCID: PMC7733510 DOI: 10.1038/s42003-020-01477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.
Collapse
Affiliation(s)
- Nirosh D Aluthge
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.,Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Wesley A Tom
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, 1104 T St., Lincoln, NE, 68588-0118, USA
| | - Alison C Bartenslager
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Kelly D Heath
- Institutional Animal Care Program, University of Nebraska-Lincoln, 110 Mussehl Hall, 1915 N 38th St., Lincoln, NE, 68653-0720, USA
| | - Craig Kreikemeier-Bower
- Institutional Animal Care Program, University of Nebraska-Lincoln, 110 Mussehl Hall, 1915 N 38th St., Lincoln, NE, 68653-0720, USA
| | - Hatem Kittana
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA.,Veterinary Medical Diagnostic Laboratory (VMDL) at University of Missouri (MU), 901 E Campus Loop, Columbia, MO, 65211, USA
| | - Robert J Schmaltz
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
567
|
Kimura H, Mori D, Aleksic B, Ozaki N. Elucidation of molecular pathogenesis and drug development for psychiatric disorders from rare disease-susceptibility variants. Neurosci Res 2020; 170:24-31. [PMID: 33316300 DOI: 10.1016/j.neures.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Recent rapid progress in genome analysis and large-scale consortia has made it possible to discover variants with a variety of allele frequencies and effect sizes associated with psychiatric disorders. Among psychiatric disorder-susceptibility variants, rare variants with large effect sizes detected by sequencing analysis or array comparative genomic hybridization would be particularly useful for elucidating pathophysiology by developing disease models, such as genome-edited mouse or induced pluripotent stem cells. In the last decade, investigations of rare variants with large effect size have revealed an important role of neurodevelopment in the pathogenesis of psychiatric disorders. In future research, integration of recent evidence concerning the contribution of the immune system or gut microbiota will enhance our understanding of psychiatric disorders and facilitate novel drug development.
Collapse
Affiliation(s)
- Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
568
|
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 2020; 11:604179. [PMID: 33362788 PMCID: PMC7758428 DOI: 10.3389/fimmu.2020.604179] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.
Collapse
Affiliation(s)
| | | | - Francesca Ronchi
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
569
|
Saposnik FE, Huber JF. Trends in Web Searches About the Causes and Treatments of Autism Over the Past 15 Years: Exploratory Infodemiology Study. JMIR Pediatr Parent 2020; 3:e20913. [PMID: 33284128 PMCID: PMC7752533 DOI: 10.2196/20913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ninety percent of adults in the United States use the internet, and the majority of internet users report looking on the web for health information using search engines. The rising prevalence of autism spectrum disorder (ASD), uncertainty surrounding its etiology, and variety of intervention approaches contribute to questions about its causes and treatments. It is not known which terms people search most frequently about ASD and whether web search queries have changed over time. Infodemiology is an area of health informatics research using big data analytics to understand web search behavior. OBJECTIVE The objectives were to (1) use infodemiological data to analyze trends in web-based searches about the causes and treatments of ASD over time and (2) inform clinicians and ASD organizations about web queries regarding ASD. METHODS Google Trends was used to analyze web searches about the causes and treatments of ASD in the United States from 2004 to 2019. The search terms analyzed for queries about causes of ASD included vaccines, genetics, environmental factors, and microbiome and those for therapies included applied behavior analysis (ABA), gluten-free diet, chelation therapy, marijuana, probiotics, and stem cell therapy. RESULTS Google Trends results are normalized on a scale ranging from 0 to 100 to represent the frequency and relative interest of search topics. For searches about ASD causes, vaccines had the greatest frequency compared to other terms, with an initial search peak observed in 2008 (scaled score of 81), reaching the highest frequency in 2015 (scaled score of 100), and a current upward trend. In comparison, searches about genetics, environmental factors, and microbiome occurred less frequently. For web searches about ASD therapies, ABA consistently had a high frequency of search interest since 2004, reaching a maximum scaled score of 100 in 2019. The analyses of chelation therapy and gluten-free diet showed trending interest in 2005 (scaled score of 68) and 2007 (scaled score of 100), respectively, followed by a steady decline since (scaled scores of only 10 and 16, respectively, in 2019). Searches related to ASD and marijuana showed a rise in 2009 (scaled score of 35), and they continue to trend upward. Searches about probiotics and stem cell therapy have been relatively low (scaled scores of 22 and 18, respectively), but are gradually gaining interest. Web search volumes for stem cell therapy in 2019 surpassed both gluten-free diet and chelation therapy as web-searched interventions for ASD. CONCLUSIONS Google Trends is an effective infodemiology tool to analyze large-scale web search trends about ASD. The results showed informative variation in search trends over 15 years. These data are useful to inform clinicians and organizations about web queries on topics related to ASD, identify knowledge gaps, and target web-based education and knowledge translation strategies.
Collapse
Affiliation(s)
| | - Joelene F Huber
- Paediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Developmental Paediatrics, Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Surrey Place, Toronto, ON, Canada
| |
Collapse
|
570
|
Yin X, Altman T, Rutherford E, West KA, Wu Y, Choi J, Beck PL, Kaplan GG, Dabbagh K, DeSantis TZ, Iwai S. A Comparative Evaluation of Tools to Predict Metabolite Profiles From Microbiome Sequencing Data. Front Microbiol 2020; 11:595910. [PMID: 33343536 PMCID: PMC7746778 DOI: 10.3389/fmicb.2020.595910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Metabolomic analyses of human gut microbiome samples can unveil the metabolic potential of host tissues and the numerous microorganisms they support, concurrently. As such, metabolomic information bears immense potential to improve disease diagnosis and therapeutic drug discovery. Unfortunately, as cohort sizes increase, comprehensive metabolomic profiling becomes costly and logistically difficult to perform at a large scale. To address these difficulties, we tested the feasibility of predicting the metabolites of a microbial community based solely on microbiome sequencing data. Paired microbiome sequencing (16S rRNA gene amplicons, shotgun metagenomics, and metatranscriptomics) and metabolome (mass spectrometry and nuclear magnetic resonance spectroscopy) datasets were collected from six independent studies spanning multiple diseases. We used these datasets to evaluate two reference-based gene-to-metabolite prediction pipelines and a machine-learning (ML) based metabolic profile prediction approach. With the pre-trained model on over 900 microbiome-metabolome paired samples, the ML approach yielded the most accurate predictions (i.e., highest F1 scores) of metabolite occurrences in the human gut and outperformed reference-based pipelines in predicting differential metabolites between case and control subjects. Our findings demonstrate the possibility of predicting metabolites from microbiome sequencing data, while highlighting certain limitations in detecting differential metabolites, and provide a framework to evaluate metabolite prediction pipelines, which will ultimately facilitate future investigations on microbial metabolites and human health.
Collapse
Affiliation(s)
| | - Tomer Altman
- Altman Analytics LLC, San Francisco, CA, United States
| | | | | | - Yonggan Wu
- Second Genome Inc., Brisbane, CA, United States
| | | | - Paul L. Beck
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gilaad G. Kaplan
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Shoko Iwai
- Second Genome Inc., Brisbane, CA, United States
| |
Collapse
|
571
|
Commensal microbe-derived propionic acid mediates juvenile social isolation-induced social deficits and anxiety-like behaviors. Brain Res Bull 2020; 166:161-171. [PMID: 33279588 DOI: 10.1016/j.brainresbull.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Social experiences during early life are thought to be critical for proper social and emotional development. Conversely, social insults during development causes long-lasting behavioral abnormalities later in life. However, how juvenile social deprivation influences social and emotional behaviors remains poorly understood. Here, we show that juvenile social isolation induces a shift in microbial ecology that negatively impacts social and emotional behaviors in adulthood. These behavioral changes, which occur during this critical period are transferable to antibiotic pre-treated mice by fecal microbiota transplant. In addition, juvenile social isolation decreases the expression of oxytocin receptor (OXTR) in the medial prefrontal cortex (mPFC), and increases the amounts of fecal propionic acid (PA), a short-chain fatty acid derived from gut micobiota. Accordingly, infusion with an OXTR antagonist (OXTR-A, l-368,899) specifically in the mPFC or supplementation of PA both can cause social deficits and anxiety-like behaviors in group housed mice. Collectively, our findings reveal that juvenile social experience regulates prefrontal cortical OXTR expression through gut microbiota-produced PA and that is essential for normal social and emotional behaviors, thus providing a cellular and molecular context to understand the consequences of juvenile social deprivation.
Collapse
|
572
|
Chen Y, Fang H, Li C, Wu G, Xu T, Yang X, Zhao L, Ke X, Zhang C. Gut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social Deficits in Autism Spectrum Disorder. mSphere 2020; 5:e01044-20. [PMID: 33268567 PMCID: PMC7716279 DOI: 10.1128/msphere.01044-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota of autism spectrum disorder (ASD) children differs from that of children without ASD. The maternal gut microbiota impacts offspring gut microbiota. However, the relationship between the development of ASD and gut bacteria shared between children and their mothers remains elusive. Our study recruited 76 children with ASD and 47 age- and gender-matched children with typical development (TD), as well as the mothers of both groups, and investigated their gut microbiota using amplicon sequence variants (ASVs). The gut microbiota of ASD children was altered compared with that of children with TD, while no significant alterations were found in their mothers. We established 30 gut bacterial coabundance groups (CAGs) and found the relative abundances of CAG15 and CAG16 significantly decreased in ASD children. CAG15 showed a positive correlation with developmental level. The proportion of ASD children who shared either one of the two Lachnospiraceae ASVs from CAG15 with their mothers was significantly lower than that of children with TD. Moreover, we found that CAG12, CAG13, and CAG18 negatively correlated with the severity of social deficits in ASD children. ASD children who shared any one of the four (two Ruminococcaceae, one Lachnospiraceae, and one Collinsella) ASVs in CAG13 and CAG18 with their mothers showed a lower level of social deficits than ASD children that did not share those with their mothers. These data demonstrate that these shared gut bacteria in ASD children are associated with their developmental level and social deficits. This work provides a new direction toward understanding the role of the gut microbiota in the pathogenesis and development of ASD. (This study has been registered in the Chinese Clinical Trial Registry under number ChiCTR-RPC-16008139.)IMPORTANCE Gut microbiota may contribute to the pathogenesis and development of autism spectrum disorder. The maternal gut microbiota influences offspring gut microbial structure and composition. However, the relationship between the clinical symptoms of autism spectrum disorder and the gut bacteria shared between children and their mothers is not yet known. In our study, the gut microbiota of children with autism spectrum disorder differed from that of children with typical development, but there were no differences in the gut microbiota of their mothers. More importantly, gut bacteria shared between children with autism spectrum disorder and their mothers were related to developmental disabilities and social deficits. Thus, our study suggests that these shared gut bacteria may play an important role in the development of autism spectrum disorder. This provides a new direction for future studies aiming to explore the role of the gut microbiota in autism spectrum disorder.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Fang
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunyan Li
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology, New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology, New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaoyan Ke
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
573
|
Park SY, Ufondu A, Lee K, Jayaraman A. Emerging computational tools and models for studying gut microbiota composition and function. Curr Opin Biotechnol 2020; 66:301-311. [PMID: 33248408 PMCID: PMC7744364 DOI: 10.1016/j.copbio.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The gut microbiota and its metabolites play critical roles in human health and disease. Advances in high-throughput sequencing, mass spectrometry, and other omics assay platforms have improved our ability to generate large volumes of data exploring the temporal variations in the compositions and functions of microbial communities. To elucidate mechanisms, methods and tools are needed that can rigorously model the dependencies within time-series data. Longitudinal data are often sparse and unevenly sampled, and nontrivial challenges remain in determining statistical significance, normalization across different data types, and model validation. In this review, we highlight recent developments in models and software tools for the analysis of time series microbiome and metabolome data, as well as integration of these data.
Collapse
Affiliation(s)
- Seo-Young Park
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Arinzechukwu Ufondu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA.
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
574
|
Chen YC, Seyedsayamdost MR, Ringstad N. A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior. Proc Natl Acad Sci U S A 2020; 117:30589-30598. [PMID: 33199611 PMCID: PMC7720207 DOI: 10.1073/pnas.2017918117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural products are a major source of small-molecule therapeutics, including those that target the nervous system. We have used a simple serotonin-dependent behavior of the roundworm Caenorhabditis elegans, egg laying, to perform a behavior-based screen for natural products that affect serotonin signaling. Our screen yielded agonists of G protein-coupled serotonin receptors, protein kinase C agonists, and a microbial metabolite not previously known to interact with serotonin signaling pathways: the disulfide-bridged 2,5-diketopiperazine gliotoxin. Effects of gliotoxin on egg-laying behavior required the G protein-coupled serotonin receptors SER-1 and SER-7, and the Gq ortholog EGL-30. Furthermore, mutants lacking serotonergic neurons and mutants that cannot synthesize serotonin were profoundly resistant to gliotoxin. Exogenous serotonin restored their sensitivity to gliotoxin, indicating that this compound synergizes with endogenous serotonin to elicit behavior. These data show that a microbial metabolite with no structural similarity to known serotonergic agonists potentiates an endogenous serotonin signal to affect behavior. Based on this study, we suggest that microbial metabolites are a rich source of functionally novel neuroactive molecules.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| | | | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
575
|
Chung JY, Jeong JH, Song J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front Aging Neurosci 2020; 12:588044. [PMID: 33328965 PMCID: PMC7732484 DOI: 10.3389/fnagi.2020.588044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut-brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut-brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut-brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, South Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
576
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
577
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism‐Related Bacterium
Clostridium bolteae
Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
578
|
Huang Z, Zhang J, Gu Y, Cai Z, Feng X, Yang C, Xin G. Research progress on inosine monophosphate deposition mechanism in chicken muscle. Crit Rev Food Sci Nutr 2020; 62:1062-1078. [PMID: 33146022 DOI: 10.1080/10408398.2020.1833832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
With the continuous improvements in human diet, there is an ever-increasing demand for high-quality chicken, so it is particularly important for poultry breeders to carry out the breeding of high-quality broilers in a timely fashion. Inosine monophosphate (IMP) is a flavor-enhancing substance, which plays a critical role in the umami taste of the muscle, making the content of IMP an important umami taste indicator. Currently, research on the deposition mechanism of IMP in chicken is not only necessary for chicken breeders to promote the production of high-quality meat and poultry but also to meet the human demand for chicken meat. In this paper, the research history of IMP, its structure and taste mechanisms, the pathway and influencing factors of de novo IMP synthesis, and the key genes regulating IMP synthesis and metabolism are briefly summarized. Our aim was to lay a theoretical foundation and provide scientific background and research directions for further research on high-quality broiler breeding.
Collapse
Affiliation(s)
- Zengwen Huang
- Agriculture College, Ningxia University, Yinchuan, China
| | - Juan Zhang
- Agriculture College, Ningxia University, Yinchuan, China
| | - Yaling Gu
- Agriculture College, Ningxia University, Yinchuan, China
| | - Zhengyun Cai
- Agriculture College, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- Agriculture College, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- Agriculture College, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- College of Life Sciences, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan, China
| |
Collapse
|
579
|
Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Res 2020; 293:113471. [PMID: 33198044 DOI: 10.1016/j.psychres.2020.113471] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
Many studies have identified some abnormalities in gastrointestinal (GI) physiology (e.g., increased intestinal permeability, overall microbiota alterations, and gut infection) in children with autism spectrum disorder (ASD). Furthermore, changes in the intestinal flora may be related to GI and ASD symptom severity. Thus, we decided to systematically review the effects of gut microbial-based interventions on gut microbiota, behavioral symptoms, and GI symptoms in children with ASD. We reviewed current evidence from the Cochrane Library, EBSCO PsycARTICLES, PubMed, Web of Science, and Scope databases up to July 12, 2020. Experimental studies that used gut microbial-based treatments among children with ASD were included. Independent data extraction and quality assessment of studies were conducted according to the PRISMA statement. Finally, we identified 16 articles and found that some interventions (i.e., prebiotic, probiotic, vitamin A supplementation, antibiotics, and fecal microbiota transplantation) could alter the gut microbiota and improve behavioral symptoms and GI symptoms among ASD patients. Our findings highlight that the gut microbiota could be a novel target for ASD patients in the future. However, we only provided suggestive but not conclusive evidence regarding the efficacy of interventions on GI and behavioral symptoms among ASD patients. Additional rigorous trials are needed to evaluate the effects of gut microbial-based treatments and explore potential mechanisms.
Collapse
|
580
|
Panzer AR, Lynch SV. Gut Microbial Regulation of Autism Spectrum Disorder Symptoms. Trends Endocrinol Metab 2020; 31:809-811. [PMID: 32972817 DOI: 10.1016/j.tem.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
Relationships between gut microbiome perturbation and autism spectrum disorder (ASD) have been observed in several human studies, but the functional implications and molecular mechanisms by which microbes may influence disease symptomology remain enigmatic. A recently published study by Sharon et al. offers evidence that the gut microbiome has a causative role in ASD and highlights the importance of early-life gut microbial metabolites in shaping mammalian behavior.
Collapse
Affiliation(s)
- Ariane R Panzer
- Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA; UCSF Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA; UCSF Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
581
|
Abstract
The innate immune system in the central nervous system (CNS) is mainly represented by specialized tissue-resident macrophages, called microglia. In the past years, various species-, host- and tissue-specific as well as environmental factors were recognized that essentially affect microglial properties and functions in the healthy and diseased brain. Host microbiota are mostly residing in the gut and contribute to microglial activation states, for example, via short-chain fatty acids (SCFAs) or aryl hydrocarbon receptor (AhR) ligands. Thereby, the gut microorganisms are deemed to influence numerous CNS diseases mediated by microglia. In this review, we summarize recent findings of the interaction between the host microbiota and the CNS in health and disease, where we specifically highlight the resident gut microbiota as a crucial environmental factor for microglial function as what we coin "the microbiota-microglia axis."
Collapse
Affiliation(s)
- Omar Mossad
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Daniel Erny
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
582
|
Bjørklund G, Pivina L, Dadar M, Meguid NA, Semenova Y, Anwar M, Chirumbolo S. Gastrointestinal alterations in autism spectrum disorder: What do we know? Neurosci Biobehav Rev 2020; 118:111-120. [DOI: 10.1016/j.neubiorev.2020.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
|
583
|
Couper RTL, Day AS. Paediatric gastroenterology: The doors of perception. J Paediatr Child Health 2020; 56:1667-1668. [PMID: 33197973 DOI: 10.1111/jpc.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Richard T L Couper
- Department of Gastroenterology, Women's and Children's Hospital, Adelaide, South Australia, Australia.,University Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Day
- Department of Paediatrics, Christchurch Public Hospital, Christchurch, New Zealand.,Department of Paediatrics, University of Otago, Otago, New Zealand
| |
Collapse
|
584
|
Gotkine M, Kviatcovsky D, Elinav E. Amyotrophic lateral sclerosis and intestinal microbiota-toward establishing cause and effect. Gut Microbes 2020; 11:1833-1841. [PMID: 32501768 PMCID: PMC7524331 DOI: 10.1080/19490976.2020.1767464] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiota may be involved, through metabolic gut-brain interactions, in a variety of neurological conditions. In this addendum, we summarize the findings of our recent study investigating the potentially modulatory influence of the microbiome in a transgenic ALS mouse model, and the possible application to human disease. We found that transgenic mice show evidence of dysbiosis, even at the pre-symptomatic stage, and have a more severe disease course under germ-free conditions or after receiving broad-spectrum antibiotics. We demonstrated that Akkermansia muciniphila ameliorated the disease in mice and that this may be due to the production of nicotinamide. We then conducted a preliminary study in human ALS and identified functionally similar alterations within the metagenome. Furthermore, we found that patients with ALS had lower systemic and CSF levels of nicotinamide, suggesting that the changes observed in the mouse model may be relevant to human disease.
Collapse
Affiliation(s)
- Marc Gotkine
- Neuromuscular/EMG Service and ALS/Motor Neuron Disease Clinic, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,CONTACT Marc Gotkine Neuromuscular/EMG Service and ALS/Motor Neuron Disease Clinic, Hadassah - Hebrew University Medical Center, Jerusalem9112001, Israel
| | | | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| |
Collapse
|
585
|
Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington's disease. Sci Rep 2020; 10:18270. [PMID: 33106549 PMCID: PMC7589489 DOI: 10.1038/s41598-020-75229-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a progressive, multifaceted neurodegenerative disease associated with weight loss and gut problems. Under healthy conditions, tight junction (TJ) proteins maintain the intestinal barrier integrity preventing bacterial translocation from the intestinal lumen to the systemic circulation. Reduction of TJs expression in Parkinson's disease patients has been linked with increased intestinal permeability-leaky gut syndrome. The intestine contains microbiota, most dominant phyla being Bacteroidetes and Firmicutes; in pathogenic or disease conditions the balance between these bacteria might be disrupted. The present study investigated whether there is evidence for an increased intestinal permeability and dysbiosis in the R6/2 mouse model of HD. Our data demonstrate that decreased body weight and body length in R6/2 mice is accompanied by a significant decrease in colon length and increased gut permeability compared to wild type littermates, without any significant changes in the protein levels of the tight junction proteins (occludin, zonula occludens). Moreover, we found an altered gut microbiota in R6/2 mice with increased relative abundance of Bacteroidetes and decreased of Firmicutes. Our results indicate an increased intestinal permeability and dysbiosis in R6/2 mice and further studies investigating the clinical relevance of these findings are warranted.
Collapse
|
586
|
Van Cise AM, Wade PR, Goertz CEC, Burek-Huntington K, Parsons KM, Clauss T, Hobbs RC, Apprill A. Skin microbiome of beluga whales: spatial, temporal, and health-related dynamics. Anim Microbiome 2020; 2:39. [PMID: 33499987 PMCID: PMC7807513 DOI: 10.1186/s42523-020-00057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Host-specific microbiomes play an important role in individual health and ecology; in marine mammals, epidermal microbiomes may be a protective barrier between the host and its aqueous environment. Understanding these epidermal-associated microbial communities, and their ecological- or health-driven variability, is the first step toward developing health indices for rapid assessment of individual or population health. In Cook Inlet, Alaska, an endangered population of beluga whales (Delphinapterus leucas) numbers fewer than 300 animals and continues to decline, despite more than a decade of conservation effort. Characterizing the epidermal microbiome of this species could provide insight into the ecology and health of this endangered population and allow the development of minimally invasive health indicators based on tissue samples. RESULTS We sequenced the hypervariable IV region of bacterial and archaeal SSU rRNA genes from epidermal tissue samples collected from endangered Cook Inlet beluga whales (n = 33) and the nearest neighboring population in Bristol Bay (n = 39) between 2012 and 2018. We examined the sequences using amplicon sequence variant (ASV)-based analyses, and no ASVs were associated with all individuals, indicating a greater degree of epidermal microbiome variability among beluga whales than in previously studied cetacean species and suggesting the absence of a species-specific core microbiome. Epidermal microbiome composition differed significantly between populations and across sampling years. Comparing the microbiomes of Bristol Bay individuals of known health status revealed 11 ASVs associated with potential pathogens that differed in abundance between healthy individuals and those with skin lesions or dermatitis. Molting and non-molting individuals also differed significantly in microbial diversity and the abundance of potential pathogen-associated ASVs, indicating the importance of molting in maintaining skin health. CONCLUSIONS We provide novel insights into the dynamics of Alaskan beluga whale epidermal microbial communities. A core epidermal microbiome was not identified across all animals. We characterize microbial dynamics related to population, sampling year and health state including level of skin molting. The results of this study provide a basis for future work to understand the role of the skin microbiome in beluga whale health and to develop health indices for management of the endangered Cook Inlet beluga whales, and cetaceans more broadly.
Collapse
Affiliation(s)
- Amy M Van Cise
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- North Gulf Oceanic Society, Visiting Scientist at Northwest Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA, USA.
| | - Paul R Wade
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA, USA
| | | | | | - Kim M Parsons
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA, USA
- Conservation Biology Division, Northwest Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA, USA
| | - Tonya Clauss
- Animal & Environmental Heath, Georgia Aquarium, Atlanta, GA, USA
| | - Roderick C Hobbs
- Marine Mammal Laboratory (retired), Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA, USA
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
587
|
Abstract
In a striking display of trans-kingdom symbiosis, gut bacteria cooperate with their animal hosts to regulate the development and function of the immune, metabolic and nervous systems through dynamic bidirectional communication along the 'gut-brain axis'. These processes may affect human health, as certain animal behaviours appear to correlate with the composition of gut bacteria, and disruptions in microbial communities have been implicated in several neurological disorders. Most insights about host-microbiota interactions come from animal models, which represent crucial tools for studying the various pathways linking the gut and the brain. However, there are complexities and manifest limitations inherent in translating complex human disease to reductionist animal models. In this Review, we discuss emerging and exciting evidence of intricate and crucial connections between the gut microbiota and the brain involving multiple biological systems, and possible contributions by the gut microbiota to neurological disorders. Continued advances from this frontier of biomedicine may lead to tangible impacts on human health.
Collapse
|
588
|
Eng A, Verster AJ, Borenstein E. MetaLAFFA: a flexible, end-to-end, distributed computing-compatible metagenomic functional annotation pipeline. BMC Bioinformatics 2020; 21:471. [PMID: 33087062 PMCID: PMC7579964 DOI: 10.1186/s12859-020-03815-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Microbial communities have become an important subject of research across multiple disciplines in recent years. These communities are often examined via shotgun metagenomic sequencing, a technology which can offer unique insights into the genomic content of a microbial community. Functional annotation of shotgun metagenomic data has become an increasingly popular method for identifying the aggregate functional capacities encoded by the community's constituent microbes. Currently available metagenomic functional annotation pipelines, however, suffer from several shortcomings, including limited pipeline customization options, lack of standard raw sequence data pre-processing, and insufficient capabilities for integration with distributed computing systems. RESULTS Here we introduce MetaLAFFA, a functional annotation pipeline designed to take unfiltered shotgun metagenomic data as input and generate functional profiles. MetaLAFFA is implemented as a Snakemake pipeline, which enables convenient integration with distributed computing clusters, allowing users to take full advantage of available computing resources. Default pipeline settings allow new users to run MetaLAFFA according to common practices while a Python module-based configuration system provides advanced users with a flexible interface for pipeline customization. MetaLAFFA also generates summary statistics for each step in the pipeline so that users can better understand pre-processing and annotation quality. CONCLUSIONS MetaLAFFA is a new end-to-end metagenomic functional annotation pipeline with distributed computing compatibility and flexible customization options. MetaLAFFA source code is available at https://github.com/borenstein-lab/MetaLAFFA and can be installed via Conda as described in the accompanying documentation.
Collapse
Affiliation(s)
- Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Adrian J Verster
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
589
|
Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy. mSphere 2020; 5:5/5/e00314-20. [PMID: 33087514 PMCID: PMC7580952 DOI: 10.1128/msphere.00314-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the prevalence of autism and its extensive impact on our society, no U.S. Food and Drug Administration-approved treatment is available for this complex neurobiological disorder. Based on mounting evidences that support a link between autism and the gut microbiome, we previously performed a pioneering open-label clinical trial using intensive fecal microbiota transplant. The therapy significantly improved gastrointestinal and behavioral symptoms. Comprehensive metabolomic measurements in this study showed that children with autism spectrum disorder (ASD) had different levels of many plasma metabolites at baseline compared to those in typically developing children. Microbiota transfer therapy (MTT) had a systemic effect, resulting in substantial changes in plasma metabolites, driving a number of metabolites to be more similar to those from typically developing children. Our results provide evidence that changes in metabolites are one mechanism of the gut-brain connection mediated by the gut microbiota and offer plausible clinical evidence for a promising autism treatment and biomarkers. Accumulating evidence has strengthened a link between dysbiotic gut microbiota and autism. Fecal microbiota transplant (FMT) is a promising therapy to repair dysbiotic gut microbiota. We previously performed intensive FMT called microbiota transfer therapy (MTT) for children with autism spectrum disorders (ASD) and observed a substantial improvement of gastrointestinal and behavioral symptoms. We also reported modulation of the gut microbiome toward a healthy one. In this study, we report comprehensive metabolite profiles from plasma and fecal samples of the children who participated in the MTT trial. With 619 plasma metabolites detected, we found that the autism group had distinctive metabolic profiles at baseline. Eight metabolites (nicotinamide riboside, IMP, iminodiacetate, methylsuccinate, galactonate, valylglycine, sarcosine, and leucylglycine) were significantly lower in the ASD group at baseline, while caprylate and heptanoate were significantly higher in the ASD group. MTT drove global shifts in plasma profiles across various metabolic features, including nicotinate/nicotinamide and purine metabolism. In contrast, for 669 fecal metabolites detected, when correcting for multiple hypotheses, no metabolite was significantly different at baseline. Although not statistically significant, p-cresol sulfate was relatively higher in the ASD group at baseline, and after MTT, the levels decreased and were similar to levels in typically developing (TD) controls. p-Cresol sulfate levels were inversely correlated with Desulfovibrio, suggesting a potential role of Desulfovibrio on p-cresol sulfate modulation. Further studies of metabolites in a larger ASD cohort, before and after MTT, are warranted, as well as clinical trials of other therapies to address the metabolic changes which MTT was not able to correct. IMPORTANCE Despite the prevalence of autism and its extensive impact on our society, no U.S. Food and Drug Administration-approved treatment is available for this complex neurobiological disorder. Based on mounting evidences that support a link between autism and the gut microbiome, we previously performed a pioneering open-label clinical trial using intensive fecal microbiota transplant. The therapy significantly improved gastrointestinal and behavioral symptoms. Comprehensive metabolomic measurements in this study showed that children with autism spectrum disorder (ASD) had different levels of many plasma metabolites at baseline compared to those in typically developing children. Microbiota transfer therapy (MTT) had a systemic effect, resulting in substantial changes in plasma metabolites, driving a number of metabolites to be more similar to those from typically developing children. Our results provide evidence that changes in metabolites are one mechanism of the gut-brain connection mediated by the gut microbiota and offer plausible clinical evidence for a promising autism treatment and biomarkers.
Collapse
|
590
|
Ochoa-Repáraz J, Ramelow CC, Kasper LH. A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Front Immunol 2020; 11:510113. [PMID: 33193297 PMCID: PMC7604426 DOI: 10.3389/fimmu.2020.510113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota constitutes a complex ecosystem in constant reciprocal interactions with the immune, neuroendocrine, and neural systems of the host. Recent molecular technological advances allow for the exploration of this living organ and better facilitates our understanding of the biological importance of intestinal microbes in health and disease. Clinical and experimental studies demonstrate that intestinal microbes may be intimately involved in the progression of diseases of the central nervous system (CNS), including those of affective and psychiatric nature. Gut microbes regulate neuroinflammatory processes, play a role in balancing the concentrations of neurotransmitters and could provide beneficial effects against neurodegeneration. In this review, we explore some of these reciprocal interactions between gut microbes and the CNS during experimental disease and suggest that therapeutic approaches impacting the gut-brain axis may represent the next avenue for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
591
|
Abstract
The human body supports a thriving diversity of microbes which comprise a dynamic, ancillary, functional system that synergistically develops in lock-step with physiological development of its host. The human microbiome field has transitioned from cataloging this rich diversity to dissecting molecular mechanisms by which microbiomes influence human health. Early life microbiome development trains immune function. Thus, vertically, horizontally, and environmentally acquired microbes and their metabolites have the potential to shape developmental trajectories with life-long implications for health.
Collapse
|
592
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
593
|
Troisi J, Autio R, Beopoulos T, Bravaccio C, Carraturo F, Corrivetti G, Cunningham S, Devane S, Fallin D, Fetissov S, Gea M, Giorgi A, Iris F, Joshi L, Kadzielski S, Kraneveld A, Kumar H, Ladd-Acosta C, Leader G, Mannion A, Maximin E, Mezzelani A, Milanesi L, Naudon L, Peralta Marzal LN, Perez Pardo P, Prince NZ, Rabot S, Roeselers G, Roos C, Roussin L, Scala G, Tuccinardi FP, Fasano A. Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) Study Design: Biomarkers Identification for Precision Treatment and Primary Prevention of Autism Spectrum Disorders by an Integrated Multi-Omics Systems Biology Approach. Brain Sci 2020; 10:743. [PMID: 33081368 PMCID: PMC7603049 DOI: 10.3390/brainsci10100743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) affects approximately 1 child in 54, with a 35-fold increase since 1960. Selected studies suggest that part of the recent increase in prevalence is likely attributable to an improved awareness and recognition, and changes in clinical practice or service availability. However, this is not sufficient to explain this epidemiological phenomenon. Research points to a possible link between ASD and intestinal microbiota because many children with ASD display gastro-intestinal problems. Current large-scale datasets of ASD are limited in their ability to provide mechanistic insight into ASD because they are predominantly cross-sectional studies that do not allow evaluation of perspective associations between early life microbiota composition/function and later ASD diagnoses. Here we describe GEMMA (Genome, Environment, Microbiome and Metabolome in Autism), a prospective study supported by the European Commission, that follows at-risk infants from birth to identify potential biomarker predictors of ASD development followed by validation on large multi-omics datasets. The project includes clinical (observational and interventional trials) and pre-clinical studies in humanized murine models (fecal transfer from ASD probands) and in vitro colon models. This will support the progress of a microbiome-wide association study (of human participants) to identify prognostic microbiome signatures and metabolic pathways underlying mechanisms for ASD progression and severity and potential treatment response.
Collapse
Affiliation(s)
- Jacopo Troisi
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | - Reija Autio
- Faculty of Social Sciences, Health Sciences Unit, Tampere University, Arvo Ylpön Katu 34, 33014 Tampere, Finland;
| | - Thanos Beopoulos
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Carmela Bravaccio
- Department of science medicine translational, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | | | - Giulio Corrivetti
- Azienda Sanitaria Locale (ASL) Salerno, Via Nizza, 146, 84125 Salerno (SA), Italy;
| | - Stephen Cunningham
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Samantha Devane
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Daniele Fallin
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Serguei Fetissov
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Inserm UMR 1239, Rouen University of Normandy, 25 rue Tesnière, 76130 Mont-Saint-Aignan, France;
| | - Manuel Gea
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | | | - François Iris
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Lokesh Joshi
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Sarah Kadzielski
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Aletta Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Himanshu Kumar
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | - Christine Ladd-Acosta
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Geraldine Leader
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Arlene Mannion
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Elise Maximin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Alessandra Mezzelani
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Luciano Milanesi
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Laurent Naudon
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Naika Z. Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Sylvie Rabot
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Guus Roeselers
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | | | - Lea Roussin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Giovanni Scala
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | | | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125 Salerno (SA), Italy;
| |
Collapse
|
594
|
Barbosa AG, Pratesi R, Paz GSC, Dos Santos MAAL, Uenishi RH, Nakano EY, Gandolfi L, Pratesi CB. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep 2020; 10:17348. [PMID: 33060610 PMCID: PMC7566481 DOI: 10.1038/s41598-020-74239-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
There has been a significant increase in autism spectrum disorder (ASD) in the last decades that cannot be exclusively attributed to better diagnosis and an increase in the communication of new cases. Patients with ASD often show dysregulation of proteins associated with synaptic plasticity, notably brain-derived neurotrophic factor (BDNF). The objective of the present study was to analyze BDNF serum concentration levels in children with classic forms autism and a healthy control group to determine if there is a correlation between ASD and BDNF serum levels. Forty-nine children with severe classic form of autism, and 37 healthy children were enrolled in the study. Blood samples, from both patients and controls, were collected and BNDF levels from both groups were analyzed. The average BDNF serum concentration level was statistically higher for children with ASD (P < 0.000) compared to the control group. There is little doubt that BDNF plays a role in the pathophysiology of ASD development and evolution, but its brain levels may fluctuate depending on several known and unknown factors. The critical question is not if BDNF levels can be considered a prognostic or diagnostic marker of ASD, but to determine its role in the onset and progression of this disorder.
Collapse
Affiliation(s)
- Alexandre Garcia Barbosa
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Geysa Stefanne Cutrim Paz
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Maria Aparecida Alves Leite Dos Santos
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Rosa Harumi Uenishi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eduardo Y Nakano
- Department of Statistics, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Lenora Gandolfi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Claudia B Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
595
|
Sun Y, Tang Y, Xu X, Hu K, Zhang Z, Zhang Y, Yi Z, Zhu Q, Xu R, Zhang Y, Liu Z, Liu X. Lead exposure results in defective behavior as well as alteration of gut microbiota composition in flies and their offsprings. Int J Dev Neurosci 2020; 80:699-708. [PMID: 32966649 DOI: 10.1002/jdn.10067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lead (Pb) has become one of the most dangerous metals to human health, especially to the nervous system as its persistent accumulation and high toxicity. However, how the gut microbiota influence the Pb-related neurotoxicity remains unclear. The aim of our study was to explore the link among Pb exposure, behavior changes, and gut microbiota. METHODS Using Drosophila melanogaster as model, climbing assay, social avoidance, social space, and short-term memory analysis were preformed to study the behavioral changes in flies exposed to Pb and their offspring. 16S rRNA sequencing was used to explore the changes in the gut microbiota of the flies with/without Pb-exposure. RESULTS The crawling ability, memory, and social interactions of Pb-exposed parent flies decreased significantly. For the offspring, behaviors were more significantly affected in male offspring whose male parent was exposed to Pb. The alpha diversity and the beta diversity of gut microbiota were significantly different between the Pb-exposed flies and the controls, as well as between the male offspring and the controls. Two genera, Lactobacillus and Bifidobacterium were found significantly decreased in the Pb-exposed flies when compared to the controls and significantly correlated with the learning and memory. Four genera, Bilophila, Coprococcus, Desulfovibrio, and Ruminococcus were found depleted in the female offspring of the Pb-exposed flies. CONCLUSIONS Lead exposure resulted in defective behavior and alteration of gut microbiota composition in flies and their offspring, alteration in gut microbiota might be the link between behavioral changes induced by Pb-exposure.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xinwen Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Kehan Hu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zixiao Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Yi
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qihui Zhu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
596
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
597
|
Kaur H, Singh Y, Singh S, Singh RB. Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis. Genome 2020; 64:355-371. [PMID: 33031715 DOI: 10.1139/gen-2020-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gut-brain axis (GBA) is a biochemical link that connects the central nervous system (CNS) and enteric nervous system (ENS). Clinical and experimental evidence suggests gut microbiota as a key regulator of the GBA. Microbes living in the gut not only interact locally with intestinal cells and the ENS but have also been found to modulate the CNS through neuroendocrine and metabolic pathways. Studies have also explored the involvement of gut microbiota dysbiosis in depression, anxiety, autism, stroke, and pathophysiology of other neurodegenerative diseases. Recent reports suggest that microbe-derived metabolites can influence host metabolism by acting as epigenetic regulators. Butyrate, an intestinal bacterial metabolite, is a known histone deacetylase inhibitor that has shown to improve learning and memory in animal models. Due to high disease variability amongst the population, a multi-omics approach that utilizes artificial intelligence and machine learning to analyze and integrate omics data is necessary to better understand the role of the GBA in pathogenesis of neurological disorders, to generate predictive models, and to develop precise and personalized therapeutics. This review examines our current understanding of epigenetic regulation of the GBA and proposes a framework to integrate multi-omics data for prediction, prevention, and development of precision health approaches to treat brain disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Yuvraj Singh
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Raja B Singh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
598
|
Wei J, Ma L, Ju P, Yang B, Wang YX, Chen J. Involvement of Oxytocin Receptor/Erk/MAPK Signaling in the mPFC in Early Life Stress-Induced Autistic-Like Behaviors. Front Cell Dev Biol 2020; 8:564485. [PMID: 33134294 PMCID: PMC7561716 DOI: 10.3389/fcell.2020.564485] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The neonatal or infant period is a critical stage for the development of brain neuroplasticity. Early life stresses in the neonatal period, including neonatal maternal separation (NMS), have adverse effects on an increased risk of psychiatric disorders in juveniles and adults. However, the underlying molecular mechanisms are not largely understood. Here, we found that juvenile rats subjected to 4 h daily NMS during postnatal days 1 to 20 exhibited autistic-like behavioral deficits without impairments in learning and memory functions. Molecular mechanism studies showed that oxytocin receptor (OXTR) in the medial prefrontal cortex of NMS rats was evidently downregulated when compared with control pups, especially in neurons. Erk/MAPK signaling, the downstream coupling signaling of OTXR, was also inhibited in NMS juvenile rats. Treatment with oxytocin could relieve NMS-induced social deficit behaviors and activated phosphorylation of Erk/MAPK signaling. Furthermore, medication with the inhibitor of H3K4 demethylase alleviated the abnormal behaviors in NMS rats and increased the expression of OXTR in the medial prefrontal cortex, which showed an epigenetic mechanism underlying social deficits induced by NMS. Taken together, these findings identified a molecular mechanism by which disruptions of mother-infant interactions influenced later displays of typical social behaviors and suggested the potential for NMS-driven epigenetic tuning of OXTR expression.
Collapse
Affiliation(s)
- Jinbao Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Le Ma
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beibei Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
599
|
Qureshi F, Adams J, Hanagan K, Kang DW, Krajmalnik-Brown R, Hahn J. Multivariate Analysis of Fecal Metabolites from Children with Autism Spectrum Disorder and Gastrointestinal Symptoms before and after Microbiota Transfer Therapy. J Pers Med 2020; 10:E152. [PMID: 33023268 PMCID: PMC7712156 DOI: 10.3390/jpm10040152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Fecal microbiota transplant (FMT) holds significant promise for patients with Autism Spectrum Disorder (ASD) and gastrointestinal (GI) symptoms. Prior work has demonstrated that plasma metabolite profiles of children with ASD become more similar to those of their typically developing (TD) peers following this treatment. This work measures the concentration of 669 biochemical compounds in feces of a cohort of 18 ASD and 20 TD children using ultrahigh performance liquid chromatography-tandem mass spectroscopy. Subsequent measurements were taken from the ASD cohort over the course of 10-week Microbiota Transfer Therapy (MTT) and 8 weeks after completion of this treatment. Univariate and multivariate statistical analysis techniques were used to characterize differences in metabolites before, during, and after treatment. Using Fisher Discriminant Analysis (FDA), it was possible to attain multivariate metabolite models capable of achieving a sensitivity of 94% and a specificity of 95% after cross-validation. Observations made following MTT indicate that the fecal metabolite profiles become more like those of the TD cohort. There was an 82-88% decrease in the median difference of the ASD and TD group for the panel metabolites, and among the top fifty most discriminating individual metabolites, 96% report more comparable values following treatment. Thus, these findings are similar, although less pronounced, as those determined using plasma metabolites.
Collapse
Affiliation(s)
- Fatir Qureshi
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA;
| | - Kathryn Hanagan
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Dae-Wook Kang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (D.-W.K.); (R.K.-B.)
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (D.-W.K.); (R.K.-B.)
- Biodesign Center for Health through Microbiome, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Juergen Hahn
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
600
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|